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This study tested the hypothesis that glucagon-like
peptide 1 (GLP-1) therapies improve cardiac contractile
function at rest and in response to adrenergic stimulation
in obese swine after myocardial infarction. Obese Ossa-
baw swine were subjected to gradually developing
regional coronary occlusion using an ameroid occluder
placed around the left anterior descending coronary
artery. Animals received subcutaneous injections of
saline or liraglutide (0.005-0.015 mg/kg/day) for 30 days
after ameroid placement. Cardiac performance was
assessed at rest and in response to sympathomimetic
challenge (dobutamine 0.3-10 pg/kg/min) using a left
ventricular pressure/volume catheter. Liraglutide in-
creased diastolic relaxation (dP/dt; Tau '/,; Tau '/,) during
dobutamine stimulation (P < 0.01) despite having no in-
fluence on the magnitude of myocardial infarction. The
slope of the end-systolic pressure volume relationship
(i.e., contractility) increased with dobutamine after liraglu-
tide (P < 0.001) but not saline administration (P = 0.63).
Liraglutide enhanced the slope of the relationship be-
tween cardiac power and pressure volume area (i.e.,
cardiac efficiency) with dobutamine (P = 0.017). Hearts
from animals treated with liraglutide demonstrated de-
creased 1-adrenoreceptor expression. These data sup-
port that GLP-1 agonism augments cardiac efficiency via
attenuation of maladaptive sympathetic signaling in the
setting of obesity and myocardial infarction.

Use of glucagon like peptide 1 (GLP-1)-based therapies for
the treatment of type 2 diabetes (T2DM) has increased
significantly since their discovery in the 1980s (1). Although
these agents demonstrate unequivocal efficacy in the control

of blood glucose concentration, an emerging body of evidence
indicates direct cardiovascular benefit, incduding improve-
ments in cardiac contractile function (2), reductions in myo-
cardial infarct size (3) in animal studies, and improved
cardiovascular event rates in some but not all clinical trials
(4-6). Thus, there is strong interest in these apparent car-
dioprotective effects of GLP-1-based therapies in clinical
applications of obesity and T2DM (7,8).

Prior studies of the cardiovascular effects of GLP-1 have
largely been performed in animal models lacking obesity/
metabolic disease phenotypes, in contrast to the fact that
most patient populations treated with agents from this
therapeutic class are overweight or obese (9). Studies from
our laboratory and others have demonstrated obesity-
related impairment in cardiovascular effects of GLP-1 ago-
nists, including attenuation of GLP-1-mediated increases in
myocardial glucose uptake in obese swine (10) and humans
with T2DM (10,11). Further evidence of different responses
in obesity comes from our recent report that the GLP-1R
agonist exendin-4 augmented end-diastolic volume (EDV)
and systolic pressure generation during coronary reperfu-
sion in lean swine while maintaining systolic pressure de-
spite marked reduction in diastolic filling in obese swine
12).

The mechanisms responsible for these obesity-related
differences are unknown. However, the capacity for GLP-1
to induce changes in cardiac inotropy (13) and lusitropy
(12) implicate underlying differences in adrenergic respon-
siveness that are known to exist in obesity (14). Such met-
abolic state—dependent effects of GLP-1 combined with the
inconsistent cardiovascular benefits of GLP-1-based thera-
peutics in clinical trials of patients with diabetes (4,5)
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support the need for a better understanding of the cardiac
effects of GLP-1 in the setting of obesity and metabolic
dysregulation, especially in the setting of complex ischemic
heart disease.

This study investigated the potential for liraglutide
to influence cardiac function at rest and in response to
B-adrenergic receptor (BADR) stimulation in an obese
swine model of subacute, progressive coronary artery
occlusion. We hypothesized that chronic (~3-4 weeks)
liraglutide administration (a GLP-1 analog) would demon-
strate cardioprotective capacity in ischemic hearts of obese
animals through infarct mitigation and/or alterations in
cardiac contractile function.

RESEARCH DESIGN AND METHODS

Surgical Preparation and Experimental Protocol

All experiments involving animals were approved by an
Institutional Animal Care and Use Committee and per-
formed in accordance with the Guide for the Care and Use of
Laboratory Animals (National Institutes of Health Publica-
tion. No. 85-23, Revised 2011). Ossabaw swine were fed
an obesogenic diet (10,15) for 6 months, after which an
ameroid constrictor (Research Instruments Southwest) was
placed around the left anterior descending coronary artery
(LAD). Next, animals were randomly assigned to saline
or liraglutide treatment groups. During the subsequent
4 weeks, liraglutide-treated animals received a step-up pro-
tocol of liraglutide (week 1: 0.005, week 2: 0.010, weeks
3 and 4: 0.015 mg/kg/day, delivered subcutaneously once
daily), and saline-treated animals received volume-matched
saline injections.

After this 4-week treatment period, during which time
the ameroid constrictor induced a subacute, unrelieved
LAD occlusion, a terminal in vivo study was performed
to measure systemic hemodynamic parameters, blood gasses,
and cardiac function. Measurements were obtained at rest
and during a progressive sympathomimetic challenge (dobut-
amine 0.3-10 pg/kg/min).

Infarct Quantification

Immediately subsequent to the physiologic measurements,
hearts were fibrillated, excised, and flushed with 4°C,
Ca’*-free Krebs buffer via aortic cannulation. Hearts were
frozen at —20°C, sliced into 1-cm-thick sections, stained
with 1% weight/volume tetrazolium solution, and trans-
ferred to a 10% buffered formalin solution for at least
24 h. Formalin-fixed tissues were imaged, and the infarct
area (unstained) versus viable tissue (stained) was quantified
on each heart slice from each animal by two separate
investigators blinded to condition using ImageJ software
(National Institutes of Health).

Immunohistochemistry

Endocardial biopsy specimens from the 1-cm-thick heart
slices were taken from both the ischemic and normally
perfused regions of left ventricular myocardium for histologic
analysis. Tissues were processed into 4- to 5-pwm-thick slices
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stained for BADR (PA5-28808; Thermo Fisher, Rockford,
IL) and imaged on the Aperio Scan Scope CS whole-slide
digital imaging system (Aperio Technologies, Vista, CA) at
original magnification X20. Positive staining was quantified
using a positive pixel algorithm (Aperio Technologies), im-
age quantitation software approved by the U.S. Food and
Drug Administration for providing molecular imaging anal-
yses in support of new drug applications.

Statistical Analyses

Data are presented as mean *= SEM and were analyzed
using SigmaPlot 12 software (Systat Software Inc., San
Jose, CA) and SPSS 21 software (IBM). Comparisons were
considered statistically significant when P < 0.05. Treat-
ment groups and ischemic/nonischemic zone results were
compared using unpaired t tests or linear mixed modeling
evaluating the dobutamine dose response as a repeated
measure, as appropriate. For significant ANOVAs, Student-
Newman-Keuls post hoc testing was performed to identify
pairwise differences between groups. Multiple linear regres-
sion and ANCOVA were used to compare the slopes and
intercepts of the relationships between cardiac output
(CO) versus EDV and cardiac power versus pressure volume
(PV) area (PVA).

RESULTS

Phenotypic Characteristics of Obese Swine

Body weight on the day of ameroid placement was not
different in animals subsequently assigned to receive saline
versus liraglutide (P = 0.31) (Table 1). On randomized treat-
ment, the liraglutide-treated animals failed to gain weight,
resulting in significantly lower weight at the time of phys-
iologic studies relative to saline controls (P = 0.02) (Table
1). Liraglutide therapy did not significantly alter total car-
diac mass (P = 0.85) (Table 1), heart weight-to-body ratio
(P = 0.09) (Table 1), or the overall magnitude of infarction
(P = 0.81) (Fig. 1). Also, left ventricular free wall thickness,
measured 2 cm distal to the ameroid location, was not
different between treatment groups (saline, 2.3 * 0.1 vs.
liraglutide, 2.3 = 0.1 cm; P = 0.97).

Effects of Liraglutide on Baseline Hemodynamic

and Cardiac Parameters

All physiologic data were obtained during an anesthetized
procedure at the end of the treatment protocol (Table 2)
for cross-sectional comparisons of saline versus liraglutide

Table 1—Phenotype characteristics of obese swine

Saline Liraglutide P value

Body mass (kg)

At ameroid placement 63 * 11 52 £ 4 0.31

At terminal study 70 £ 6 54 =3 0.02
ABody weight (kg) 9+4 12 0.09
Heart weight (g) 2233 £ 175 2184 + 139 0.85
Heart weight-to-body

weight ratio 33+004 41=*0.02 009

Values are mean * SE for saline (n = 5) and liraglutide (n = 7).
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Figure 1—Quantification of myocardial infarction. Images (top) pre-
sent representative transmural sections of a left ventricle. Unstained
(white) tissue within the myocardium indicates infarcted tissue. Infarct
was quantified (bottom) as the percentage of total left ventricular area
of all slices. Liraglutide did not reduce infarct size (saline: 15.5 = 1.9%
of myocardium infarcted [n = 4] vs. liraglutide: 13.9 = 5.4% [n = 6];
P =0.81).

treatment in the setting of subacute unrelieved infarction.
Mean arterial pressure was similar under resting conditions
(P = 0.87), but heart rate was ~40% higher in liraglutide-
versus saline-treated animals (Table 2). Heart rate changes
(described below) occurred independent of changes to pe-
ripheral vascular resistance, which is calculated as mean
arterial pressure/CO (saline, 0.03 = 0.004 vs. liraglutide,
0.03 £ 0.005 mmHg/mL; P = 0.82). Key indices of cardiac
function, including ejection fraction, Tau 1 5, end-diastolic
PV relationship (Table 2), end-systolic elastance (Ees) (Fig.
2D), and CO (Fig. 3B) were unaffected by liraglutide admin-
istration under resting conditions.

Effects of Liraglutide Treatment on Responses

to Adrenergic Stimulation

Systemic arterial pressures were not significantly increased
by dobutamine (0.3-10 pg/kg/min) and were unaffected by
liraglutide treatment (Table 2). Dobutamine increased heart
rate in both groups, with an enhanced effect in liraglutide-
treated animals (P = 0.001) (Table 2) and reduced CO
(~35%; P = 0.02) in liraglutide-treated animals at the high-
est levels of dobutamine (Fig. 3B). Liraglutide treatment
was also associated with enhanced diastolic function, as
indicated by increases in —dP/dt;, and Tau (Table 2), con-
sistent with the enhanced CO of liraglutide-treated animals
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(P = 0.04) (Fig. 3B). End-diastolic PV relationships were
unaffected by liraglutide treatment (Table 2).
Representative PV loops shown in Fig. 2A and B illus-
trate dobutamine-mediated reductions in EDV (right side of
the PV loop), and end-systolic volume (ESV; left side of the
PV loop), which decreased to a similar magnitude in both
groups (EDV, P = 0.19; ESV, P = 0.47). Stroke volume de-
creased similarly in both groups (P = 0.48), reaching sig-
nificance at the 10 pg/kg/min dose (saline, P = 0.005;
liraglutide, P = 0.02). Overall, the volume axis intercept
(Vo; greatest left ventricular volume at which pressure is
zero) was lower in liraglutide-treated swine (P < 0.001)
(Fig. 2C). Load-dependent measures of cardiac contraction
were enhanced by dobutamine in both groups, with dose-
dependent increases in dP/dt.,, (P = 0.001) as well as
significant reductions of contraction time in the liraglutide
groups (Table 2). Accordingly, the mean relaxation was dif-
ferent between groups across the range of the dobutamine
challenge (dP/dtpn, P < 0.001; Tau /5 P = 0.06; Tau '/,
P =0.005). The slope of end-systolic PV relationship, a load-
independent measure of cardiac contractility (Ees), was not
different on average between groups (P = 0.38) (Fig. 2D);
however, dobutamine infusion significantly increased con-
tractility at the 10 pg/kg/min dose in liraglutide- but not
saline-treated animals (P < 0.001) (Fig. 2D).

Effect of Liraglutide and Adrenergic Stimulation

on Cardiac Function and Efficiency

EDV was significantly decreased relative to baseline in both
saline- and liraglutide-treated animals at the highest con-
centrations of dobutamine (P < 0.001 for each group) (Fig.
3A). Dobutamine-dependent reductions in EDV were also
similar between treatment groups (P = 0.11) (Fig. 3A).
Dobutamine-driven changes in CO were dose-dependently
decreased in liraglutide-treated animals, achieving sig-
nificance at the highest dose (P = 0.02) (Fig. 3B). In
saline-treated animals, which demonstrated modestly lower
baseline CO values, CO was not significantly changed by
dobutamine administration (Fig. 3B) despite significant in-
creases in heart rate (Table 2).

PVA is linearly related to left ventricular myocardial
oxygen consumption (MvO,) (16) and was not different be-
tween treatment groups under resting conditions (P = 0.29)
or across the range of dobutamine exposures (P = 0.43) (Fig.
3C). However, PVA was decreased compared with resting
baseline in liraglutide-treated animals at 3.0 (P = 0.005) and
10 pg/kg/min (P < 0.001) dobutamine doses; there were
no significant changes in PVA from baseline within the
saline-treated animals (Fig. 3C).

Cardiac power (product of stroke volume, mean aortic
pressure, and heart rate) was significantly increased under
resting conditions by liraglutide treatment (P = 0.03) and
was greater in those animals across the range of dobut-
amine administration (P = 0.04) (Fig. 3D). Dobutamine
administration resulted in significant reductions in cardiac
power at the 3 pg/kg/min (P = 0.03) and 10 wg/kg/min
(P = 0.01) doses in liraglutide-treated animals (Fig. 3D).
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Table 2—Effects of liraglutide therapies on hemodynamic and cardiac parameters

Dobutami ka/mi Liraglutide Dobutamine LirDob
Sl Al et il effect effect interaction
Baseline 0.3 1 3 10 P value P value P value

Systolic pressure (mmHg) Saline 93 +7 96 + 9 99 + 8 104 £ 9 107 £ 8 0.244 0.524 0.951
Liraglutide 94 +3 93 =2 94 + 1 97 =3 99 + 6

Diastolic pressure (mmHg) Saline 64 £5 65 £ 6 67 £7 67 £5 68 = 6 0.392 0.995 0.960
Liraglutide 65 + 3 64 =3 64 =3 64 =3 62 = 4

Mean pressure (mmHg) Saline 77 =6 77 =7 80 =7 81 +6 82 +7 0.509 0.932 0.974
Liraglutide 78 =3 77 =2 78 £ 2 79 £3 77 £ 4

Heart rate (bpm) Saline 77 =13 80 = 14 89 + 17 113 = 18 145 = 17* 0.001 0.001 0.956
Liraglutide 107 = 9 120 = 12 125 = 13 146 = 14 162 + 14*

Ejection fraction (%) Saline 48 =9 39 =10 38 =9 36 =8 28 + 6 0.965 0.384 0.772
Liraglutide 40 =5 38 +6 39 =4 37 4 36 +4

Contraction time (ms) Saline 53 +2 57 £ 4 49 + 5 43 + 4 43 + 4 0.573 0.001 0.424
Liraglutide 63 =7 60 =7 53 £ 7 43 = 3 36 + 2*

Relaxation time (ms) Saline 142 = 16 104 = 18* 131 = 14 113 £ 13 96 + 9* 0.027 <0.001 0.412
Liraglutide 120 = 5 117 = 4 110 = 4 95 + 4 82 + 5*

dPax (MmMHg/s) Saline 1,204 + 157 1,230 = 170 1,548 *= 250 2,350 *+ 403* 3,071 + 574* 0.618 <0.001 0.798
Liraglutide 1,536 = 108 1,460 = 101 1,584 = 140 2,249 + 208 3,010 + 392*

dPpin (MmMHg/s) Saline —858 + 66 —832 + 138 —955 + 193 —1,126 + 235 —1,379 = 178 0.001 0.014 0.988
Liraglutide —1,159 £ 108 —-1,182 = 102 —-1,281 + 131 —1,541 + 121* —1,839 + 229*

Tau %2 (ms) Saline 322 29 =3 334 304 23+ 2 0.006 0.002 0.479
Liraglutide 29 =2 28 + 1 17 =1 22 + 1t 17 = 2*

Tau '/, (ms) Saline 22 +2 20 £ 2 23+3 22 +3 16 = 2 0.005 0.004 0.428
Liraglutide 21 +2 20 =1 19 + 1 15 = 11 11 +2

End-diastolic PV relationship Saline 0.24 = 0.10 0.22 = 0.12 0.28 = 0.21 0.22 = 0.08 0.28 += 0.09 0.164 0.283 0.726
Liraglutide 0.17 = 0.05 0.21 = 0.10 0.25 + 0.12 0.36 = 0.10 0.36 = 0.12

Values are mean = SE for saline (n = 5) and liraglutide (n = 7). Treatment column reports P values for differences in mean response across dobutamine administration. *P < 0.05 vs. baseline value

(same treatment). TP < 0.05 vs. dobutamine infusion rate-matched, saline controls.
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Figure 2—Cardiac effects of liraglutide. Representative PV relationships of saline-treated (A) and liraglutide-treated (B) animals before dobut-

amine administration (solid lines) and at 10 pg/kg/min after dobutamine

(dashed lines). Dobutamine administration resulted in a profound leftward

shift in saline-treated animals that was attenuated in liraglutide-treated animals. C: The volume axis intercept (Vo) was significantly lower across the
range of dobutamine infusions. D: Ees did not increase across a range of dobutamine administration in saline-treated animals but was significantly
increased at the highest dobutamine dose in liraglutide-treated animals relative to saline-treated animals. Values for panels C and D are mean + SE for
saline (n = 5) and liraglutide (n = 7). *P < 0.05 vs. baseline value (same treatment). 1P < 0.05 vs. dobutamine infusion rate-matched, saline controls.

Saline-treated animals, which showed lower cardiac power
overall, demonstrated no change in cardiac power in re-
sponse to dobutamine administration at any dose.

Figure 4 presents the relationship between CO and EDV
for the saline- and liraglutide-treated animals before and
during dobutamine administration. Liraglutide increased
the slope of the relationship between CO and EDV with
dobutamine challenge (P = 0.002), resulting in greater CO
at higher values of EDV. When cardiac power is expressed
relative to PVA, it produces an index of cardiac work effi-
ciency — power per unit of oxygen consumed (16,17). There-
fore, to assess whether liraglutide altered cardiac work
efficiency, we plotted cardiac power relative to PVA (Fig.
5A). This relationship demonstrates that liraglutide treat-
ment increased power generation at higher MvO, (P =
0.001 for slope of relationship saline vs. liraglutide by mul-
tiple linear regression); that is, cardiac efficiency was greater
in liraglutide-treated animals. Figure 5B demonstrates that
cardiac efficiency (ratio of cardiac power to PVA) was en-
hanced by liraglutide and that dobutamine challenge resulted
in significant enhancement of efficiency in liraglutide- but not
in saline-treated animals.

Immunohistochemistry of Formalin-Fixed Tissues
Immunohistochemistry was performed on formalin-fixed
endocardial samples from the normally perfused myocar-
dium. Abundance of B1ADR protein was decreased ~52%
(P = 0.045) in liraglutide-treated animals relative to their
saline counterparts (Fig. 6).

DISCUSSION

GLP-1 receptor activation produces potentially cardio-
protective phenomena in healthy animal models receiving
recombinant GLP-1-based therapies (1-3,10,13,18). Incon-
sistent data exist regarding the cardioprotective potential of
these therapies in the setting of ischemic heart disease with
underlying obesity and metabolism dysfunction (4-6). Be-
cause GLP-1-based therapies are classically used for the
purpose of glucose regulation in T2DM, a population with
significant lifetime cardiovascular risk, understanding the
cardiovascular effects of GLP-1-based treatments in the
setting of obesity is crucial.

Here we examined the effects of GLP-1 receptor activa-
tion via liraglutide on cardiac function at rest and in re-
sponse to sympathetic stimulation in an obese swine model
of slowly developing myocardial ischemia. We hypothesized
that chronic (~3-4 weeks) administration of the GLP-1
analog liraglutide would demonstrate cardioprotective ca-
pacity in ischemic hearts of obese animals through infarct
mitigation and/or alterations in cardiac contractile function.
This study identifies the capacity of liraglutide to improve
cardiac performance of significantly infarcted hearts in an
energetically favorable fashion and is the first to identify a
relationship between myocardial B1ADR abundance and
GLP-1-based therapies.

Infarct Size
This study examined GLP-1-based cardioprotection in the
context of a slowly developing, unrelieved, regional myocardial
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Figure 3—Effects of liraglutide treatment on cardiac volumes, oxygen consumption, and power. A: Dobutamine administration resulted in similar
and significant decreases in EDV in both saline- and liraglutide-treated animals. B: CO exhibited a similar decrease with dobutamine admin-
istration in liraglutide- but not saline-treated animals. C: PVA similarly decreased in liraglutide-treated animals only. D: Cardiac power, however,
was significantly greater on average in liraglutide-treated animals relative to saline controls. Values are mean + SE for saline (n = 5) and liraglutide
(n = 7). Displayed P values denote the overall treatment group comparison for differences in response to dobutamine. *P < 0.05 comparing
individual doses against baseline within the treatment group (significant in panel C only for the liraglutide-treated animals). TP < 0.05 comparing

the treatment groups under resting conditions.

infarction using an ameroid constrictor around the LAD.
Ameroid constrictors are a well-established tool in the study
of coronary artery disease in swine models (19,20). Post-
mortem analyses verified a 100% closure rate of the ame-
roid constrictors in all study animals; that is, each animal
experienced total loss of flow to the LAD perfusion territory
distal to the ameroid constrictor. The consistency of closure
between animals and treatment groups is evident in the
tetrazolium staining, which demonstrated a consistent ~15%
infarction of the left ventricle (Fig. 1). This point is critical
because these data demonstrate that differences in cardiac
function with liraglutide administration are not related to
underlying differences in the magnitude of infarction.
Data regarding the capacity of GLP-1 therapeutics to
mitigate myocardial infarction remain equivocal because
similar studies in swine from Kristensen et al. (21) and
Ekstrém et al. (22) failed to show infarct mitigation,
whereas Timmers et al. (3) and others have demonstrated
infarct reductions with GLP-1-based therapies. Similarly
equivocal findings exist in rodent models as well, which
show varied capacity for infarct mitigation (23,24). Some
discrepancy in the findings of the animal studies from dif-
ferent laboratories could arise as a result of differences in
the duration of ischemic insult and the presence or absence
of a reperfusion window. We posit that liraglutide failed to
mitigate infarct size in the current study because of the
absence of reperfusion (i.e., chronic total coronary artery
occlusion) and because of the limited endogenous collateral

network in swine (25). These factors would limit or prevent
exposure of ischemic tissues to receive the therapeutic
agent and have important implications for the cardiopro-
tective efficacy in the clinical circumstance of chronically
developing coronary occlusion because clinical studies also
report varied efficacy of GLP-1 therapies to mitigate infarct
(26-29).

Hemodynamics
Pressor effects of GLP-1 are particularly pronounced in
rodent models, which routinely show significant increases
in mean pressure as high as 20 mmHg (13), inconsistent
with human studies that report elevations of 2-3 mmHg or
reductions of <3 mmHg in response to GLP-1 receptor
agonism (8,13,14). The hemodynamic profile of liraglu-
tide-treated animals in this study is consistent with work
by Lovshin et al. (30), who found that 3 weeks of liraglutide
treatment failed to modulate blood pressure in patients
with T2DM. The absence of a significant pressor response
in this study (Table 2) is therefore consistent with the body
of literature in human subjects that demonstrates variable
or modest effects of GLP-1 drugs on blood pressure (13).
Central effects of GLP-1 therapies to modulate hemo-
dynamics are well established in rodents but remain
equivocal in large-animal models and humans (13). Pre-
vious work by our group identified no effect of hexametho-
nium treatment on changes to cardiac performance resulting
from acute administration of GLP-1 (7-36) in the setting of
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myocardial ischemia (2). These data further support an ab-
sence of sympathomimetic modulation by GLP-1-based
therapies with regard to pressor responses because systolic,
diastolic, and mean pressures are all consistent between
treatment groups across the range of dobutamine concen-
trations. Similarly, GLP-1- mediated chronotropy (positive
or negative) is highly variable and differs by species (13).
Tachycardia appears to be most pronounced in species that
demonstrate the greatest pressor responses to GLP-1 ther-
apies (13), whereas meta-analyses of human studies report
only modest GLP-1-related tachycardia (1).

In response to the sympathomimetic challenge, GLP-1
therapy resulted in a significantly higher heart rate across
the dose response range (P = 0.001) (Table 1), although the
magnitude of change relative to baseline was consistent
between groups (P = 0.44). These data support a potential
to modulate heart rate, but whether this is the result of
nodal activity remains to be determined. To assess the po-
tential of liraglutide to produce peripheral dilation, periph-
eral vascular resistance was calculated and not different
between groups (P = 0.82), removing the potential of pe-
ripheral dilation to bias the result.

Cardiac Function

Liraglutide significantly lowered Vj, an index of end-dia-
stolic relaxation, both at baseline and at lower dobutamine
concentrations. This decrease runs counter to previously
documented effects of GLP-1 (7-36) administration in the
setting of acute myocardial ischemia (2), where preload-
dependent increases in CO were accomplished in a GLP-
1-dependent fashion, reflected by a constant Ees and
increased V. However, prior observations were made in
lean swine, whereas the current observations included only
obese swine. The current findings are consistent with recent
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Figure 4—Liraglutide increases CO via a load-independent mecha-
nism. Liraglutide treatment resulted in an increase in the slope of the
relationship between CO and EDV (P = 0.002 by ANCOVA). As defined
by the Frank-Starling law of the heart, a load-dependent increase in
CO would result in a shift of values that would still fit the control line. A
change in slope is indicative of a load-independent increase in CO.
This analysis includes data points from all animals at all measurement
points. Saline (n = 5) and liraglutide (n = 7).
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Figure 5—Liraglutide increases cardiac efficiency. A: The slope of the
relationship between cardiac power and PVA was greater in liraglu-
tide-treated swine hearts. The increased ratio of PVA (an index of
cardiac oxygen consumption) to cardiac power evident in liraglutide-
treated animals establishes that liraglutide increased the ratio of car-
diac work to cardiac energetics. P value is by ANCOVA; P = 0.02 for
homogeneity of regressions. B: To better establish efficiency at each
dose of dobutamine, the ratio of cardiac power to the PVA was cal-
culated for each animal at each dose. Liraglutide therapy increased
the efficiency of this relationship overall (P = 0.005) and at the highest
dose of dobutamine relative to both baseline and the dobutamine
dose-matched saline control. *P < 0.05 comparing individual doses
against baseline within the treatment group. TP < 0.05 comparing the
treatment groups under resting conditions. Saline (n = 5) and liraglu-
tide (n = 7).

observations that demonstrated GLP-1 analog-dependent
increases in inotropy of obese hearts in the setting of is-
chemia-reperfusion (12). These changes in V could reflect
low levels of positive inotropy before overt increases in Ees
or could be the result of significant and differential cardiac
remodeling between the two treatment groups (31). Re-
gardless, the contrast of the current data against those
obtained in lean animals support the paradigm that meta-
bolic status significantly affects the cardiac effects of GLP-1
therapies.

Contractility, as determined by Ees, was not enhanced
with dobutamine challenge in saline-treated animals when
examined as an absolute change or as a change relative to
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Figure 6—Liraglutide decreases expression of BADR. Liraglutide-treated animals exhibited significantly decreased left ventricular BADR abun-
dance relative to saline-treated animals. Images show representative left ventricular myocardial staining for BADR in saline-treated (top) and
liraglutide-treated (bottom) animals. Values are mean =+ SE for saline (n = 4) and liraglutide (n = 4). TP < 0.05 vs. treatment same condition.

baseline. By contrast, liraglutide therapies preserved the
ability of infarcted hearts to respond to adrenoreceptor
activation in that there was a continuous increase in Ees
across the range of dobutamine concentrations both abso-
lute and relative to baseline. Examination of the relation-
ship between EDV and CO (Frank-Starling curve) (Fig. 4)
reveals that liraglutide treatment results in a shift of the
relationship of EDV to CO such that CO increases as EDV
increases in liraglutide-treated animals relative to their sa-
line counterparts. Classically, this relationship has been used
to establish whether a system is demonstrating an inotropic
response. We therefore interpret this set of observations as
further evidence for a modest positive inotropic effect of
liraglutide in obesity, even in the setting of significant myo-
cardial infarction.

Cardiac Efficiency

Pioneering work by Suga (32,33) demonstrated a linear
relationship between PVA and MvO,. Therefore, the data
obtained with transient inferior vena cava occlusion in this
study enabled us to use PVA as an index of MvO,, This
index of oxygen consumption was similar between groups
at baseline (P = 0.29). Despite similar PVAs, cardiac power
(work per unit time; estimated here as the triple product
of stroke volume, mean aortic pressure, and heart rate) was
significantly greater at baseline in liraglutide-treated ani-
mals (Fig. 3D) at rest (P = 0.03) and over the range of
dobutamine administration (P = 0.04). The relationship be-
tween cardiac power (work) and PVA (MvO,) is an index
of cardiac efficiency (Fig. 5). Owing to enhanced power
without attendant increases in MvO,, liraglutide treatment
resulted in a significant enhancement of cardiac efficiency

under conditions of enhanced metabolic demand imposed
by dobutamine.

Obesity and ischemia-related heart failure are associated
with reduced cardiac function and with impaired work
efficiency (34,35), making therapies that simultaneously
improve function and efficiency an attractive prospect.
Our observations suggest that liraglutide may provide this
advantageous combination of effects. The mechanism(s)
underlying the improved work efficiency is of some interest.
It is well recognized that utilization of fatty acids as a fuel
source in the heart is accompanied by some ATP consump-
tion unrelated to contractility through effects including
an unfavorable phosphate-to-oxygen ratio, mitochondrial
uncoupling, and futile cycling of metabolic intermediates
(36). By corollary, switching away from fatty acid utilization
can allow improved efficiency. Previous studies of GLP-1
agonists in animal models and in humans have described
shifts in myocardial fuel selection toward glucose (11,37),
with the important caveat that obesity and T2DM appear to
induce resistance to these fuel-selection effects of GLP-1
agonists including in the swine model used in the current
studies (10). The effects we observed were specific to the
circumstance of acutely increased work under 3-adrenergic
stimulation. However, the response to acute increases in
myocardial work under -adrenergic stimulation is to pref-
erentially utilize fatty acids, including mobilizing fatty acid
stores from adipose tissue (36). The effect we observed
prevailed despite these effects. Effects of GLP-1 on handling
of metabolic intermediates, such as pyruvate (38) or effects
to modulate mitochondrial handling of fuels or mitochon-
drial ATP production could help explain the observed effects
but such phenomena have not been directly evaluated to
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date. Further study of GLP-1 effects on myocardial sub-
strate selection and ATP generation, evaluating the effects
of treatment type, duration, and metabolic status as mod-
ulators of these effects is needed.

BADR Expression

In light of the different (-adrenergic responsiveness in-
duced by liraglutide treatment, we evaluated BADR ex-
pression in the myocardium (Fig. 6). Unexpectedly, and in
contrast to the observed enhancements of adrenergic re-
sponsiveness relative to saline-treated animals, the nor-
mally perfused myocardium of liraglutide-treated animals
exhibited ~50% lower levels of B1ADR. This raises the
possibility that liraglutide is affecting function and effi-
ciency via effects on adrenergic responsiveness. It is well rec-
ognized that BADR antagonism can improve function in
chronic heart failure (39) and that via effects to reduce fatty
acid oxidation, BADR activation can improve work efficiency
as well (40). Specific evaluations of effects on 3-adrenergic
responsiveness, and the role of adrenergic signaling as a
modulator of GLP-1 agonist effects on contractility and
work efficiency will help clarify the effect of the observed
changes in receptor density.

Although the increased cardiac function in liraglutide-
treated swine despite lower expression of B1ADR may seem
paradoxical, this phenotypic combination has been previ-
ously observed as conferring benefit in other dinically rel-
evant scenarios (41-43). Reduction in $1ADR signaling, via
B-blockade, is frequently used to improve cardiac function,
including in the setting of heart failure (44). Reducing
B1ADR signaling disrupts the positive feedback loop (mal-
adaptive adrenergic signaling) that pushes the heart toward
hypertrophy and eventually failure (45) while also enhanc-
ing efficiency via decreased myocardial fat oxidation (40).
Other ways that GLP-1 agonism might be influencing cardiac
mechanical work without additional demand for myocardi-
al oxygen uptake include effects on calcium handling
(as seen, for example, with digoxin or milrinone) or effects
on the contractile machinery (46). Prior proteomic studies
performed by our laboratory (12) found that exendin-4,
another GLP-1 agonist, changed the expression of key
calcium-handling proteins, components and regulators
of sarcomeric proteins, and protein mediators of inter-
mediary metabolism.

Some efforts to explore the signaling mechanism sup-
porting effects of GLP-1 on myocardial function have been
undertaken. Noyan-Ashraf et al. (47) recently demonstrated
significant enhancement to cardiac function with liraglutide
therapies in obese mice that could be abolished through the
application of an AMPK inhibitor. We previously found
enhanced P38-mitogen-activated protein kinase activity in
response to direct application of GLP-1 (7-36) to porcine
myocardial slices (10). These pathways represent targets of
further investigations to better understand the cardiopro-
tective and hemodynamic effects of GLP-1-related thera-
pies. Among other considerations is the question whether
effects are exerted via direct effects on the canonical
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receptor, effects on a noncanonical receptor, or secondary
effects resulting from effects in peripheral tissue. Our find-
ing that responsiveness to adrenergic stimulation is pre-
served with liraglutide and that efficiency is improved in
the treatment arm provides new opportunity for potentially
translational applications of GLP-1-based therapies.

Limitations

Molecular analysis after euthanasia was limited by the need
for intact, uncompromised heart slices for accurate infarct
measurement. Formalin fixation and staining with tetrazo-
lium chloride prevented subsequent use of these tissues
for gel-based analysis or ELISA. Biopsy samples from
formalin-fixed tissues were used for immunohistochem-
istry. To minimize bias inherent to histologic analysis,
we used digital pathology techniques to quantify stain.
Liraglutide treatment was associated with decreased
weight gain across the study, introducing modest dif-
ferences in obesity at the time of the study. Although
our power to demonstrate small effects was limited by
the relatively small numbers of animals in the study,
these samples were sufficient to identify large impor-
tant effects on key outcome variables.

Conclusions and Implications

This study is the first to identify the potential for GLP-1-
based therapies to modulate myocardial 31ADR abundance
and, by extension, the potential for liraglutide therapies to
improve cardiac performance of significantly infarcted
hearts in an energetically favorable fashion via attenuation
of maladaptive B1ADR signaling, similar to (3-blockade ther-
apies used to combat chronic heart failure. These findings
could explain recent observations by Marso et al. (6), who
found that the rate of fatal cardiovascular events, nonfatal
myocardial infarction, and nonfatal stroke was lower in
liraglutide-treated patients with T2DM than the placebo
group. Taken together, these data support that liraglutide
(and potentially other GLP-1 agonists) therapies can aug-
ment cardiac efficiency and function through alterations to
BADR expression and sensitivity, independent of changes
to infarct area.
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