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Abstract

Background: Top-down homogeneous multiplexed tandem mass (HomMTM) spectra are generated from modified
proteoforms of the same protein with different post-translational modification patterns. They are frequently observed
in the analysis of ultramodified proteins, some proteoforms of which have similar molecular weights and cannot be
well separated by liquid chromatography in mass spectrometry analysis.

Results: We formulate the top-down HomMTM spectral identification problem as the minimum error k-splittable
flow problem on graphs and propose a graph-based algorithm for the identification and quantification of
proteoforms using top-down HomMTM spectra.

Conclusions: Experiments on a top-down mass spectrometry data set of the histone H4 protein showed that the
proposed method identified many proteoform pairs that better explain the query spectra than single proteoforms.

Keywords: Mass spectrometry, Top-down, Multiplexed mass spectra, Graph algorithms

Background
In top-down mass spectrometry (MS), separating simi-
lar proteoforms is a challenging problem. A ultramodified
protein may have many similar proteoforms with simi-
lar weights and different post-translational modification
(PTM) patterns. These proteoforms are often not well
separated in top-down MS analysis [1]. A multiplexed tan-
dem mass (MTM) spectrum is generated when tandem
mass spectrometry (MS/MS) is used to analyze two or
more proteoforms with similar molecular masses that are
not separated by protein separation methods [2]. Despite
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the complexity of MTM spectra, they have been exten-
sively studied because the interpretation of these spectra
provides valuable information about modifications and
quantification of proteoforms of ultramodified proteins
[1–3]. For example, MTM spectra are frequently observed
and analyzed in studies of histone proteins, which play
important roles in epigenetics and gene regulation [4, 5].

MTM spectra can be divided into two main types: het-
erogeneous multiplexed tandem mass (HetMTM) spectra
and homogeneous multiplexed tandem mass (HomMTM)
spectra. While HetMTM spectra are generated from pro-
teoforms of two or more different proteins, HomMTM
ones from proteoforms of the same protein with differ-
ent PTM patterns. In data-independent acquisition MS,
which has been rapidly developed in the past several years,
the precursor ions in a large mass-to-charge ratio (m/z
value) interval are collected for MS/MS analysis, resulting
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in complex HetMTM spectra [6, 7]. In spectral identifica-
tion, a HetMTM spectrum is searched against a protein
database to find k proteins/peptides that best explain the
spectrum [2], where k is a user-defined parameter. The
problem is computational challenging because its search
space is proportional to nk , where n is the number of
proteins/peptides in the database.

In the analysis of HomMTM spectra, we often focus on
purified proteins, whose sequences are known. Let P be
an unmodified protein sequence and S a HomMTM spec-
trum generated from k modified proteoforms of P. Denote
QM as the set of modified proteoforms of P that match
the precursor mass of S. The HomMTM spectral identifi-
cation problem is to find k proteoforms in QM and their
relative abundances to maximize the similarity between
the theoretical spectra of the proteoforms and the
spectrum S [1].

DiMaggio et al. first studied the HomMTM spectral
identification problem and proposed a mixed integer lin-
ear optimization framework for solving it [1]. The pro-
posed framework demonstrated good performance on the
analysis of middle-down MTM spectra of histone pro-
teins, but the exponential time complexity of integer linear
optimization makes it inefficient for analyzing top-down
HomMTM spectra of long protein sequences.

In top-down MS, many software tools have been devel-
oped for the identification of proteoforms with PTMs and
other alterations [8–12]. However, these software tools are
designed for analyzing tandem mass spectra from single
proteoforms, not multiplexed ones. Using these tools to
analyze an MTM spectrum reports only one proteoform
instead of multiple ones.

We formulate the minimum error k-splittable flow
(MEkSF) problem on graphs and convert the HomTMT
spectral identification problem to the MEkSF problem. To
our best knowledge, the MEkSF problem has not been
studied. However, the maximum k-splittable flow (MkSF)
problem, which is related to the MEkSF problem, has been
extensively studied and has various applications in com-
modity transportation and telecommunication network
optimization [13–18].

Let G be a connected graph with edge capacities, a
source vertex, and a sink vertex. A flow is k-splittable if
it can be decomposed to k or less than k paths. These
paths are neither required to be different, nor edge/vertex
disjoint. The MkSF problem aims at finding a k-splittable
flow in G from the source to the sink such that the edge
capacity constraints are not violated and the flow value is
maximized.

Baier et al. [13, 14] first investigated the MkSF prob-
lem and proved the NP-hardness of the problem on
directed graphs for k = 2. They proposed approxima-
tion algorithms with a performance ratio 2

3 for the max-
imum 2 and 3-splittable flow problem and presented a

1
2 -approximation algorithm for the general MkSF prob-
lem. Koch and Spenke [15] studied the complexity and
approximability of the MkSF problem for different val-
ues of k ≥ 2 on directed and undirected graphs. In
particular, they proved that the problem is NP-hard for
k = 2 on directed and undirected graphs and showed
that, for an arbitrary constant k, the problem cannot be
approximated with a performance ratio better than 5

6 .
Koch, Skutella and Spenke [16] decoupled the MkSF prob-
lem into two steps: the first step called packing finds the
flow values of the k paths in an optimal solution; the
second step called routing reports the optimal paths of
the k flow values. The packing procedure was described
for general directed graphs, while the routing for graphs
with bounded treewidth. Finally, they proposed a poly-
nomial algorithm for the MkSF problem on graphs of
bounded treewidth when k is a constant and presented a
polynomial-time approximation scheme when k is part of
the input.

Unlike the MkSF problem, an instance graph of the
MEkSF problem has capacities on vertices instead of
edges. In addition, it is allowed that a flow violates the ver-
tex capacity constrains. That is, the flow value on a vertex
may be larger than its capacity. The difference between
the flow value and the capacity on a vertex (the flow value
may be smaller or larger than the capacity) is defined as
the error of the vertex. Let G be a connected graph with
integer vertex capacities, a source vertex, and a sink ver-
tex. Given a total integer flow value f, the objective of the
MEkSF problem is to find a k-splittable flow F in G from
the source to the sink such that the flow value of F is f and
the sum of the errors on the vertices is minimized.

We prove that the MEkSF problem is NP-hard when
k is part of the input and propose a polynomial time
algorithm for the problem on layered directed graphs
when k = 2. We tested the algorithm on a top-down
MS/MS data set of the human histone H4 protein. Exper-
imental results showed that the proposed method iden-
tified many proteoform pairs (path pairs in the graph)
that provided better explanation for the query spectra
than single proteoforms reported by MS-Align-E [9],
an existing tool for the identification of ultramodified
proteins.

Methods
The MEkSF problem
Let G = (V , E) be a directed graph with a source vertex
s and a sink vertex t. Each vertex v ∈ V has a posi-
tive integer capacity c(v) ∈ Z

+. Let A denote the set of
all simple s-t-paths (without circles) in G. A k-splittable
s-t-flow F contains k pairs (A1, f1), · · · , (Ak , fk) where Ai
is a path in A and fi ∈ Z

+ is the integer flow value
on Ai, for 1 ≤ i ≤ k. The paths A1, · · · , Ak may share
vertices and/or edges. The flow value of F is the sum
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∑k
i=1 fi. Let F(v) be the set of the pairs (Ai, fi) in F sat-

isfying that Ai contains vertex v ∈ V . The flow value
of v is the sum of the flow values of the pairs in F(v),
denoted by f (v) = ∑

(Ai,fi)∈F(v) fi. The error on v is the
difference between the flow value and the capacity of the
vertex, denoted by ε(v) = |f (v) − c(v)|. The error of
F is the sum or the errors of all vertices in G, denoted
by ε(F) = ∑

v∈V ε(v). The MEkSF problem is defined
as follows.

Definition 1 Given a directed graph G with integer ver-
tex capacities, a source vertex s and a sink vertex t, and
an integer flow value f, the MEkSF problem is to find a k-
splittable flow F in G from s to t such that the flow value of
F is f and the error of F is minimized.

The HomMTM spectral identification problem
When a purified protein is analyzed and the target pro-
tein is known, the objective of MS analysis is to identify
and quantify modified proteoforms of the protein [19, 20].
Although hundreds of PTMs have been found on var-
ious proteins, it is common that only several expected
PTMs are observed on the target protein. For example,
expected PTMs on histone proteins include methylation,
dimethylation, trimethylation, acetylation, and phospho-
rylation. In this study, only proteoforms with expected
PTMs are considered as candidates in HomMTM spectral
identification.

Let Q be the set of all proteoforms of an unmod-
ified protein P with expected PTMs and QM a
subset of Q containing all the proteoforms with a
molecular mass M. For example, when acetylation
on lysine residues is the only expected PTM, the
set Q for the protein AKGKL contains three prote-
oforms AK[acetylation]GKL, AKGK[acetylation]L, and
AK[acetylation]GK[acetylation]L. When M is the sum
of the mass of the protein and the mass shift of
an acetylation, QM contains only two proteoforms
AK[acetylation]GKL and AKGK[acetylation]L. Let S be
a HomMTM spectrum with a precursor mass M gener-
ated from proteoforms Q1, Q2, . . . , Qk of protein P. The
molecular masses of the k proteoforms is the same to the
precursor mass of S. That is, Q1, Q2, . . . , Qk ∈ QM. In
practice, errors in the precursor mass of M are allowed,
and the set QM contains all proteoforms whose molecular
masses are similar to M (the difference is within an error
tolerance).

Definition 2 Given a set T of expected PTMs, a protein
P, a HomMTM spectrum S with a precursor mass M,
and a number k, the HomMTM spectral identification
problem is to find k proteoforms Q1, Q2, . . . , Qk ∈ QM
and their abundances that best explain the
spectrum S.

Representing the HomMTM spectral identification problem
as a graph problem
We will formulate the HomMTM spectral identification
problem as the MEkSF problem. The proposed method
can be applied to tandem mass spectra with various frag-
mentation methods, such as collision-induced dissocia-
tion (CID), higher-energy collision dissociation (HCD),
and electron-transfer dissociation (ETD). Here HCD tan-
dem mass spectra are used to explain the method. Only
one type of N-terminal fragment ions and one type of C-
terminal fragment ions are considered in the method to
simply the analysis.

Tandem mass spectra of proteoforms in top-down MS
often contain high charge state fragment ions and iso-
topomer envelopes. The first step in interpreting these
spectra is to convert a spectrum into a list of monoisotopic
fragment masses using top-down spectral deconvolution
tools, such as Thrash [21] and MS-Deconv [22]. In the
following analysis, we assume that the spectrum S is a
deconvoluted tandem mass spectrum.

The target protein P is represented as a sequence of
amino acids a1a2, . . . , an. The ith prefix residue mass of
P is the sum of the residue masses of its first i amino
acids, that is, pi = ∑i

k=1 Mass(ak), where Mass(ak) is
the residue mass of ak . Specifically, p0 = 0. The ith suf-
fix residue mass of P is the sum of the residue masses of
its last i amino acids, that is, si = ∑n

k=n−i+1 Mass(ak).
Because of the existence of PTMs, a proteoform Q in
QM may have prefix residue masses different from those
of P, and the ith prefix residue mass of Q is the sum of
pi and the mass shifts of the PTMs on the first i amino
acids in Q. Two different proteoforms in QM may have
the same ith prefix residue mass because they have the
same mass shifts on the first ith amino acids. For exam-
ple, GK[acetylation]GKL and GKGK[acetylation]L have
the same 4th prefix residue mass because the first 4 amino
acids in the two proteoforms have the same PTM acetyla-
tion on different sites. Similarly, different proteoforms in
QM may have the same ith suffix residue mass. Let Pi (Si),
for 0 ≤ i ≤ n, be the set of all different ith prefix (suffix)
residue masses of the proteoforms in QM. The ith prefix
residue mass and the n−ith suffix residue mass of a prote-
oform in Q are called complementary masses. Each prefix
residue mass in Pi has a corresponding complementary
suffix residue mass in Sn−i. Let Ti be the set of expected
PTMs that can occur on the ith amino acid in P. A mass
m1 in Pi is a preceding mass of another mass m2 in Pi+1
if m2 − m1 matches Mass(ai+1) or the sum of Mass(ai+1)
and the mass shift of a PTM in Ti.

Theoretical masses in P1,P2, . . . ,Pn, S1,S2, . . . ,Sn are
compared with deconvoluted fragment masses in S to find
matched ones. Mass shifts determined by fragment ion
types are added these theoretical masses in the match-
ing because the theoretical prefix or suffix residue masses



Zhu and Liu BMC Bioinformatics 2018, 19(Suppl 9):280 Page 80 of 121

may have mass shifts compared with their correspond-
ing experimental fragment masses. For example, the mass
18.015 Dalton (Da) of a water molecule is added to theo-
retical suffix residue masses to match experimental y-ion
neutral fragment masses. The raw intensity of a pre-
fix residue mass m is the sum of intensities of neutral
fragment masses in S that match either m or the com-
plementary suffix residue mass of m, denoted by Inte(m).
The relative intensity of a prefix residue mass is the ratio
between the raw intensity of the mass and the largest raw
intensity of all prefix residue masses (Fig. 1a).

A directed graph G containing n + 1 layers is generated
from the sets of prefix residue masses P0,P1, . . . ,Pn with
five steps (Fig. 1b). (1) A vertex is added to the ith layer
of G for each mass in Pi. (2) A vertex u in the ith layer

is connected to another vertex v in the i + 1th layer by
a directed edge if and only if the mass corresponding to
u is a preceding mass of the mass corresponding to v. (3)
The only vertex in layer 0 is labeled as the source vertex,
and the only vertex in layer n is labeled as the sink vertex.
(4) We remove all vertices that are not on any path from
the source to the sink. (5) Let m1, m2, . . . , mk be the prefix
masses corresponding to the remaining vertices in a layer
of G. The capacity of the vertex corresponding to mass mi
is defined as Inte(mi)∑k

j=1 Inte(mj)
.

Each path from the source to the sink in G corresponds
to a proteoform in QM, and the flow of a path corresponds
to the relative abundance of the proteoform. Using this
method, the HomMTM spectral identification problem

Fig. 1 Illustration of the conversion from the HomMTM spectral identification problem to the MSkSF problem. A deconvoluted HomMTM spectrum
generated from two modified proteoforms of the protein GKGKLKAKE with one expected PTM: acetylation on K, is used as an example. a Each peak
corresponds to a potential prefix residue mass of a proteoform of GKGKLKAKE satisfying that the prefix residue mass or its complementary suffix
residue mass matches an experimental fragment mass. Potential masses for the prefix GKGKL matched to experimental masses are shown in the red
dotted box. b A graph with 10 layers is constructed based on the masses in P0,P1, . . . ,P10 and the peaks in (a). Each vertex in layer i, 0 ≤ i ≤ 10,
corresponds to a mass in Pi and those with dotted circles are removed because they are not on any path from the source to the sink. The capacity
of a vertex is the ratio (shown in percentage) between the intensity of the mass and the sum of the intensities of all masses corresponding to
vertices with solid circles in the same layer. The solution to the MSkSF problem is the two blue paths with flows 70 and 30 (in percentage), which
correspond to two proteoforms GK[Acetylation]GK[Acetylation]LKAKE with relative abundance 70% and GKGK[Acetylation]LK[Acetylation]AKE with
relative abundance 30%
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is transformed into an MEkSF problem on a graph, in
which the total flow value is fixed (100 was used in the
experiments).

An algorithm for the ME2SF problem
The MEkSF problem is NP-hard on directed acyclic
graphs when k is part of the input, which can be proved by
reducing from the partition problem [23]. (See Additional
file 1.) Here we propose a dynamic programming algo-
rithm for the MEkSF problem for k=2 on layered directed
graphs.

A directed graph G = (V , E) is a layered one if there
exists a partition of its vertex set V = {V1, V2, · · · , Vh},
such that (u, v) ∈ E if and only if u ∈ Vi and v ∈ Vi+1
for 1 ≤ i ≤ h − 1. Let G = ({V1, · · · , Vh}, E) be a lay-
ered directed graph in which V1 = {s} and Vh = {t}.
Following the terminology introduced in the studies of the
MkSF problem, which has many applications on commod-
ity transportation, a flow value pair (f1, f2), f1, f2 ≥ 0, is
called a packing, and the packing is optimal for the ME2SF
problem if there is an optimal ME2SF (P1, f1), (P2, f2).

Koch et al. has proved that the MkSF problem can
be solved in polynomial time on graphs with bounded
treewidth, including layered directed graphs, when k is a
constant [16]. The method consists of two steps: the pack-
ing step finds candidates for the flow values of the k paths
in an optimal flow, and the routing step reports k paths
with the minimum error for each candidate. Similarly, in
the proposed algorithm for the ME2SF problem, we first
generate candidate packings that contain an optimal one,
then find the best routing for each packing.

In the packing step, the total flow value f is fixed, a naive
approach is to enumerate all possible packings (f1, f2) such
that f1 + f2 = f . The number of candidate packings is
O(f ), which may be an exponential function of the length
of the input. Below we show that it is sufficient to consider
O(|V |) packings to solve the ME2SF problem.

A set S of candidate packings with an O(|V |) size is gen-
erated as follows: (1) for each vertex v ∈ V with c(v) < f ,
a candidate packing (c(v), f − c(v)) is added to S ; (2) a
special packing (f , 0) is added to S . The total number of
candidate packings in S is no large than |V | + 1.

We will prove the candidate set S contains at least one
optimal packing. Let F = (P1, f1), (P2, f2) be an optimal
solution to the ME2SF problem, in which V1 is the set of
vertices in P1, V2 is the set of vertices in P2, and V1 �= V2.
Let v∗ be a vertex in (V1 − V2) ∪ (V2 − V1) with the
minimum capacity error. A vertex v with f (v) < c(v),
f (v) = c(v), f (v) > c(v) is called an under flow, perfect
flow, over flow vertex, respectively. The numbers of over
flow and under flow vertices in V1 − V2 are denoted as
n+

1 and n−
1 , respectively; the numbers of over flow and

under flow vertices in V2 − V1 are denoted as n+
2 and n−

2 ,
respectively.

Lemma 1 If v∗ is not a perfect flow vertex, then n+
1 +

n−
2 = n−

1 +n+
2 . That is, the sum of the numbers of over flow

vertices in V1−V2 and under flow vertices in V2−V1 equals
the sum of the numbers of under flow vertices in V1 − V2
and over flow vertices in V2 − V1.

Proof We prove the lemma by contradiction. If n+
1 +

n−
2 < n−

1 +n+
2 , then we increase the flow value of P1 by δ =

ε(v∗) and decrease the flow value of P2 by δ to obtain a new
flow (P1, f1 +δ), (P2, f2 −δ). By increasing the flow value in
P1, the error of each over flow vertex in V1 − V2 increases
by δ, and the error of each under flow vertex in V1 − V2
decreases by δ because δ = ε(v∗) is the smallest error of
the vertices in (V1−V2)∪(V2−V1). By decreasing the flow
value in P2, the error of each over flow vertex in V2 − V1
decreases by δ, and the error of each under flow vertex in
V2 − V1 increases by δ. In addition, the errors of the ver-
tices not in (V1−V2)∪(V2−V1) do not change. As a result,
the error of the new flow is ε(F)+(

n+
1 + n−

2 − n−
1 − n+

2
)
δ,

which is smaller than the error of F. This is a contradic-
tion. Similarly, if n+

1 +n−
2 > n−

1 +n+
2 , then the error of the

flow (P1, f1 − δ), (P2, f2 + δ) is smaller than the error of F,
which is a contradiction.

Theorem 1 The candidate set S contains at least one
optimal packing of G.

Proof Let F = (P1, f1), (P2, f2) be an optimal solution to
the ME2SF problem. We consider two cases: (1) P1 and P2
are the same and (2) P1 and P2 are different. In the first
case, the two paths are the same, then (P1, f ), (P2, 0) is an
optimal solution and (f , 0) ∈ S is an optimal packing. In
the second case, we will prove that there exists an optimal
solution F ′ = (

P1, f ′
1
)

,
(
P2, f ′

2
)

such that
(
f ′
1, f ′

2
)

or
(
f ′
2, f ′

1
)

is
in S .

Suppose P1 and P2 are different and (V1−V2)∪(V2−V1)
is not empty. Let v∗ be a vertex with the minimum error in
(V1−V2)∪(V2−V1). Without loss of generality, we assume
that v∗ ∈ V1 − V2. If v∗ is a perfect flow edge, then F ′ =
F and (f1, f2) = (c(v∗), f − c(v∗)) ∈ S. Otherwise, based
on Lemma 1, n+

1 + n−
2 = n−

1 + n+
2 . By changing the flow

values (f1, f2) to (c(v∗), f − c(v∗)), we obtain a new flow
F ′ = (P1, c(v∗)), (P2, f − c(v∗)). The difference between
the errors of F and F ′ is

(
n+

1 + n−
2 − n−

1 − n+
2
)
ε = 0. As a

result, F ′ is an optimal solution, and (c(v∗), f − c(v∗)) ∈ S
is an optimal packing.

In the routing step, we propose a dynamic programming
algorithm for finding a flow (P1, f1, ), (P2, f2) for a packing
(f1, f2) such that the error of the flow is minimized. We
first introduce partial flows that are used in the routing
algorithm. A path pair with flows (P1, f1), (P2, f2) is called a
partial 2-splittable s-t-flow if P1 and P2 start at the source
s. The two paths in the partial flow may not end at the
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sink t. The error of a partial flow is defined similarly as the
error of a 2-splittable s-t-flow.

For each ordered vertex pair (v1, v2) (v1 and v2
may be the same) in a layered directed graph G =
({V1, V2, . . . , Vh}, E), we define D(v1, v2) as the minimum
error of all partial 2-splittable flows (P1, f1), (P2, f2) such
that P1 ends at v1 and P2 ends at v2. A vertex pair

(
v′

1, v′
2
)

(v′
1 and v′

2 may be the same) precedes vertex pair (v1, v2) if(
v′

1, v1
)

,
(
v′

2, v2
) ∈ E. The error of an ordered vertex pair

(v1, v2) for a packing (f1, f2) is defined as

ε(v1, v2) =
{ |c(v1) − f1 − f2| if v1 = v2;

|c(v1) − f1| + |c(v2) − f2| otherwise.

Let T(v1, v2) be the set of all precedent pairs of (v1, v2).
We use a dynamic programming algorithm to fill out
D(v1, v2) for all vertex pairs v1, v2 in the same layer. The
recurrence function for computing D(v1, v2) is

D(v1, v2) = min
(v′

1,v′
2)∈T(v1,v2)

D(v′
1, v′

2) + ε(v1, v2).

After obtaining the value D(t, t) for the sink, we use
backtracking to find the best path pair for the ME2SF
problem. The time complexity of the routing algorithm
is O(l4h) where l is the largest number of vertices in a
layer and h is the number of layers in G. Since O(|V |)
packings are searched for finding the best solution, the
time complexity of the algorithm for the ME2SF prob-
lem is O(l4h|V |). In practice, the value l is not large in
most cases, and the proposed algorithm is efficient for the
ME2SF problem.

Results
We implemented the dynamic programming algorithm
for the ME2SF problem in C++ and tested it on a top-
down MS/MS data set of the human histone H4 protein.
The experiments were performed on a Linux server with
Intel(R) Xeon(R) E5-2680 2.5 GHz CPU.

Data set
Core histone proteins collected from normal human der-
mal fibroblasts were separated using a 2-dimensional
reverse phase hydrophilic interaction liquid chromatog-
raphy (RP-HILIC) system. Histone H4 isolated in the
first dimension of the separation was analyzed using an
LTQ Orbitrap Velos with a resolution of 60k for MS and
MS/MS spectra. In total, 1,626 CID and 1,626 ETD spec-
tra were acquired. Details of the experiment can be found
in ref. [9].

Proteoform identification
All top-down tandem mass spectra were deconvoluted
using MS-Deconv [22]. In the proposed algorithm, the
error tolerances for precursor and fragment masses were

set to 15 parts-per million (ppm); the maximum mass dif-
ference between the molecular mass of the unmodified
protein sequence and the precursor mass of the spectrum
was set to 200 Da; five PTMs were treated as expected
ones (Table 1). Spectral deconvolution often introduces
±1 Da errors into precursor masses of top-down tan-
dem mass spectra. To address this problem, ±1 Da errors
were also allowed in matching precursor masses to the
molecular masses of proteoforms.

With a cutoff of 10 matched fragment ions, the pro-
posed algorithm identified 441 spectra matched to sin-
gle proteoforms and 184 spectra matched to proteoform
pairs. The running time was about 25 minutes and the
memory requirement was about 32 GB. If the proteoform
pair matched to a spectrum provides explanation for many
fragment ions that are not explained by one proteoform,
it is highly possible that the spectrum is a HomTMT spec-
trum. For 39 of the 184 spectra, the proteoforms pairs
have at least 10 more explained fragment ions than the
single high abundance proteoforms in these pairs. In addi-
tion, for 26 of the 184 spectra, the proteoform pairs have
at least 20% more explained peak intensity than the single
high abundance proteoforms.

Comparison with MS-Align-E
MS-Align-E [9] was employed to align the histone H4 pro-
tein with the deconvoluted tandem mass spectra in the
data set. With the same error tolerances and expected
PTMs described in the previous subsection, MS-Align-
E identified 1037 proteoform-spectrum-matches with at
least 10 matched fragment ions. The main reason that
MS-Align-E identified more spectra is that unexpected
PTMs are allowed in MS-Align-E, but not in the pro-
posed method. The 184 spectra matched to proteoform
pairs by the proposed method were all identified by MS-
Align-E. For these spectra, we compared the single pro-
teoforms reported by MS-Align-E and the proteoform
pairs reported by the proposed method in the number of
matched fragment ions and the explained peak intensi-
ties. Compared with MS-Align-E, the proposed method
increased the number of matched fragment ions by at least
10 for 43 spectra (Fig. 2) and increased the explained peak
intensities by at least 20% for 26 spectra, demonstrating

Table 1 Five expected PTMs are allowed in the identification and
quantification of histone H4 proteoforms

PTM Monoisotopic mass (Da) Amino acids

Acetylation 42.01056 R, K

Methylation 14.01565 R, K

Dimethylation 28.03130 R, K

Trimethylation 42.04695 R

Phosphorylation 79.96633 S, T, Y
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Fig. 2 Comparison of the numbers of matched fragment ions. The
numbers of matched fragment ions are compared for the 184 spectra
identified by both the proposed method and MS-Align-E. For each
spectrum, the difference between the number of fragment ions
matched to the proteoform pair reported by the proposed method
and that matched to the single proteoform reported by MS-Align-E is
computed

that these proteoform pairs better explain the spectra than
the single proteoforms.

Parameter selection
The size of the graph generated from a protein sequence
and a set of expected PTMs may be huge due to the com-
bination of PTMs. We can reduce the size of the graph
by introducing a bound for the sum of mass shifts intro-
duced by PTMs. When the bound increases from 50 Da
to 600 Da, the size of the graph generated from the his-
tone H4 protein and the five expected PTMs increases
significantly: the number of vertices increases from 606 to
77,246; the number of edges increases from 761 to 124,633
(Fig. 3). The size of the graph is proportional to hqt , where
h is the number of layers in the graph, q is the largest num-
ber of PTM sites in a proteoform, and t is the number
of expected PTM types. The bound for the sum of mass
shifts of PTMs is used to limit the number q. In practice,
when the number of expected PTM types t is 1 or 2, the
size of the graph increases slowly with respect to q and a
large bound 1000 or 1500 Da can be used to allow more
PTM sites in a proteoform. When the number t is 4 or
5, the size of the graph increases rapidly with respect to
q and a small bound 500 or 600 Da should be used to
guarantee the efficiency of the algorithm.

Discussion
Because experimental mass spectra contain many noise
peaks and miss many fragment peaks, it is not easy
to confidently identify more than 2 proteoforms from
a HomMTM spectrum. Therefore, we focus on the

Fig. 3 The sizes of graphs used in HomMTM spectral interpretation.
The numbers of vertices and edges in the graph generated from the
histone H4 protein and five PTMs (acetylation, methylation,
dimethylation, trimethylation, phosphorylation) increase significantly
when the bound for the sum of mass shifts introduced by PTMs
increases from 50 Da to 600 Da

HomMTM spectral identification problem for k = 2. The
proposed algorithm in the routing step can be extended
to the case with k > 2, but the one in the packing step
cannot. A trivial algorithm for the packing step is to enu-
merate all combinations of flow values for the k paths, and
the number of candidate packings is O(f k−1), where f is
the total flow value. Coupled with the dynamic program-
ming algorithm for the routing step, the time complexity
of the combined method is O

(
l2khf k−1).

Conclusions
We formulated the HomMTM spectral identification
problem as the MEkSF problem on graphs and proposed
an efficient algorithm for solving the ME2SF problem on
layered directed graphs. The experiments on the histone
H4 data set demonstrated that the proposed algorithm is
capable of identifying many top-down MTM spectra and
gives better explanation for these spectra using proteo-
form pairs.
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