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Aims 

Emerging evidence suggests that maternal vitamin D status may be associated with gestational 

diabetes (GDM). However, the temporal relation remains unclear due to the lack of longitudinal 

data on vitamin D over pregnancy. We aimed to prospectively and longitudinally investigate 

vitamin D status during early to mid-pregnancy in relation to GDM risk. 

 

Methods 

In a nested case-control study of 107 GDM cases and 214 controls within the Fetal Growth 

Studies-Singleton Cohort, plasma levels of 25-hydroxyvitamin D2 and D3 (25(OH)D) and 

vitamin D binding protein were measured at gestational weeks 10-14, 15-26, 23-31, and 33-39; 

we further calculated total, free, and bioavailable 25(OH)D. Conditional logistic regression 

models and linear mixed-effects models were used. 

 

Results 

We observed a threshold effect for the relation of vitamin D biomarkers with GDM risk. Vitamin 

D deficiency (<50 nmol/L) at 10-14 gestational weeks was associated with a 2.82-fold increased 

risk for GDM [odds ratio (OR) =2.82, 95% confidence interval (CI): 1.15-6.93]. Women with 

persistent vitamin D deficiency at 10-14 and 15-26 weeks of gestation had a 4.46-fold elevated 

risk for GDM compared to women persistently non-deficient (OR=4.46, 95% CI: 1.15-17.3).  
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Conclusions 

Maternal vitamin D deficiency as early as the first trimester of pregnancy was associated with an 

elevated risk of GDM. The association was stronger for women who were persistently deficient 

through the 2nd trimester. Assessment of vitamin D status in early pregnancy may be clinically 

important and valuable for improving risk stratification and developing effective interventions 

for the primary prevention of GDM. 
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INTRODUCTION 

            Gestational diabetes mellitus (GDM) is one of the most common metabolic complications 

of pregnancy, affecting up to 9.2% of pregnant women in the United States (U.S.).1 GDM is also 

a global epidemic and is thought to affect up to 12.9% of all pregnancies worldwide.2 Women 

with GDM have an increased risk of developing type 2 diabetes after delivery; and their 

offspring may be predisposed to childhood obesity and type 2 diabetes later in life.3 Therefore, 

identifying potentially modifiable factors that may inform the prevention of GDM may not only 

improve pregnant women’s health, but also their children’s.    

            Although the precise mechanisms underlying the pathophysiology of GDM remain 

unclear, both ² -cell dysfunction and pregnancy-induced insulin resistance are thought to be key 

components.4 Accumulating data indicates that vitamin D may modulate pancreatic ² -cell 

function, improve insulin sensitivity, and alter glucose metabolism.5,6 Vitamin D deficiency is 

recognized as a common health concern during pregnancy at a prevalence up to 84% worldwide, 

depending on the country of residence and other related factors.7,8 Emerging evidence suggests 

that vitamin D deficiency may contribute to the development of GDM and human studies have 

been summarized in two recent meta-analyses of observational studies.9,10 However, previous 

studies focused on a single measurement of 25-hydroxyvitamin D [25(OH)D] levels and did not 

include serial measurements to reliably reflect a time-integrated measure of vitamin D status 

during pregnancy.11-13 Limited and inconsistent findings from clinical trials to examine the effect 

of vitamin D supplementation on GDM have been reported.14-17 Thus, the temporal association 
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between maternal vitamin D status and GDM risk remains unclear. Longitudinal data on 

maternal vitamin D status are needed to elucidate the variation of vitamin D levels and 

requirements over pregnancy and better understand the role of vitamin D metabolism and 

function on GDM development.   

            In addition, accumulating evidence indicates that free and bioavailable 25(OH)D may 

better reflect biological activity of vitamin D than total 25(OH)D.18,19 The bioavailability of 

vitamin D and its metabolites is largely regulated by vitamin D binding protein (VDBP); 

however, the validity of monoclonal immunoassays has been criticized for lack of sensitivity to 

VDBP isoforms determined by genetic polymorphisms.20-23 Further, there are no standardized 

assays for VDBP and free or bioavailable 25(OH)D to be well-validated in ethnically diverse 

populations. Thus, there remains a controversy regarding the optimal markers for determining 

vitamin D status and action.  

            In a prospective, multiracial cohort of U.S. pregnant women, we focused primarily on 

total 25(OH)D levels (including 25(OH)D2 and 25(OH)D3) assessed by the presumed gold 

standard liquid chromatography-tandem mass spectrometry (LC-MS/MS), which is the most 

widely used and clinically accepted biomarker for vitamin D status. We aimed to investigate 1) 

the longitudinal trajectories of vitamin D biomarkers over pregnancy; 2) the prospective 

associations between levels of vitamin D biomarkers during early to mid-pregnancy and 

subsequent risk of GDM; and 3) whether the levels of vitamin D biomarker from early to mid-

pregnancy and their prospective associations with GDM risk are modified by race/ethnicity, pre-
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pregnancy BMI, physical activity, parity, or family history of diabetes. 

 

METHODS 

Study design and population    

            We performed a nested case-control study using the Eunice Kennedy Shriver National 

Institute of Child Health and Human Development (NICHD) Fetal Growth Studies-Singleton 

cohort (2009-2013), consisting of 2,802 generally healthy multiracial women (2,334 non-obese 

and 468 obese women) with singleton pregnancies and aged 18-40 years at enrollment. All 

women were enrolled between 8 weeks 0 days and 13 weeks 6 days of gestation at 12 clinical 

centers throughout the U.S. and were followed up throughout their pregnancies.24 For 

participants to be eligible, ultrasound estimates of gestational age at enrollment were required to 

be consistent (±5-7 days) with gestational dating, calculated by last menstrual period. Sampling 

and eligibility criteria are described in detail elsewhere.24 The study was approved by all 

participating institutions including NICHD. All study participants gave their written informed 

consent prior to enrollment. 

            In this prospective cohort study, maternal blood samples were longitudinally collected 

from each participant at four targeted study visits: gestational weeks 8-13 (enrollment visit), 16-

22, 24-29, and 34-37. However, the actual time ranges for blood collection were gestational 

weeks 10-14, 15-26, 23-31, and 33-39, respectively. All biospecimens were processed 

immediately and stored at -80°C before assay. All women were instructed to fast overnight for 8-
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14 h before their blood samples were drawn at the second visit (weeks 15-26). The screening or 

diagnosis of GDM was conducted according to standard clinical care, with an average gestational 

age of 27 weeks. A total of 107 women with incident GDM were identified as cases and matched 

randomly at a ratio of 1:2 to non-GDM controls on age (±2 years), race/ethnicity (non-Hispanic 

white, non-Hispanic black, Hispanic, or Asian/Pacific Islander), and gestational age at blood 

collection (±2 weeks). Overall, our case-control study consisted of 107 women with GDM and 

214 women without GDM for a total of 321 women. 

 

Outcome ascertainment 

            Gestational diabetes was ascertained by review of medical records. Of 107 cases, the vast 

majority (n=95) had a confirmed diagnosis of GDM based on 100-g, 3-h oral glucose tolerance 

test (OGTT) results. The Carpenter and Coustan diagnostic criteria were used for GDM 

diagnosis.25 For those without available OGTT results, hospital discharge diagnosis after 

delivery was reviewed and women who received medication for GDM were considered to have 

GDM (n=12). Among the 214 matched controls, 195 women underwent GDM screening by a 

50-g, 1-h glucose challenge test (GCT). Among the remaining women (n=19) without available 

GCT results, either an OGTT with the Carpenter and Coustan criteria thresholds (n=12) or 

review of hospital discharge diagnoses (n=7) was used to confirm non-GDM status. 

 

Laboratory assessment 
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            Biomarkers were measured at all four-time points of biospecimen collection among all 

cases (n=107) and one of the matched controls (n=107). In the remaining control subjects 

(n=107), assays were performed only for the two specimens collected prior to GDM screening 

(i.e., 10-14 and 15-26 gestational weeks) which are most informative for prospectively 

investigating biomarkers of GDM. All biospecimen samples of matched cases and controls were 

assayed in random order in the same analytic run, without knowledge of GDM status. Plasma 

levels of ergocalciferol (D2) and cholecalciferol (D3) were measured in ng/mL using liquid 

chromatography-tandem mass spectrometry (LC-MS/MS). Plasma VDBP was measured in 

ng/mL using a quantitative sandwich enzyme immunoassay (R&D Systems, Inc., Minneapolis, 

MN). Plasma albumin was measured using the bromcresol purple method (Roche Diagnostics, 

Indianapolis, IN). Total 25(OH)D was reflected by the summation of 25(OH)D2 and 25(OH)D3. 

Based on the lab data, free 25(OH)D and bioavailable 25(OH)D were derived using equations 

adapted from that of Vermeulen et al..26 Plasma glucose and insulin were measured using 

hexokinase and immunosorbent assays (Roche Diagnostics, Indianapolis, IN), respectively. 

HOMA-IR, as a surrogate measure of insulin sensitivity, was computed by multiplying fasting 

plasma insulin (FPI) mU/L by fasting plasma glucose (FPG) mmol/L, then dividing by the 

constant 22.5, i.e. HOMA-IR = (FPI × FPG)/22.5.27 Plasma levels of total cholesterol, HDL 

cholesterol, and triglycerides were measured using enzymatic assays (Roche Diagnostics, 

Indianapolis, IN). Plasma LDL cholesterol was calculated by the Friedewald’s formula:28  

            LDL cholesterol = total cholesterol – HDL cholesterol – triglycerides/5 
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The inter-assay coefficients of variation for all above-mentioned analytes were in the range of 

1.3-12.9%. We reported plasma 25(OH)D levels in nmol/L, multiply by 2.50 to convert from 

ng/mL to nmol/L (for 25(OH)D2, 1 ng/mL=2.42 nmol/L). 

 

Covariates  

            Information on participant demographics, lifestyle factors, and past medical history was 

collected through self-reported questionnaire. A priori selection of conventional GDM risk 

factors, including nulliparity (yes/no), prepregnancy BMI (kg/m2), and family history of diabetes 

(yes/no), was assessed at study enrollment. Based on the clinical centers where participants were 

enrolled, we categorized geographical regions by latitude as Southern (d37°N), Middle (>37°N 

to 40°N), and Northern (>40°N).29 Season of blood draw (February to April, May to July, August 

to October, and November to January) and physical activity (quartiles) at each study visit prior to 

GDM screening were also considered in our analysis. Physical activity was assessed using the 

Pregnancy Physical Activity Questionnaire.30 Given that cases were matched with controls 

within a certain range of maternal age (years) and gestational age at biospecimen collection 

(weeks), we also included these two matching variables as covariates to derive conservative 

GDM risk estimates.  

 

Statistical analysis 
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            Participant characteristics were compared according to GDM status using generalized 

linear mixed-effect models for continuous variables and binomial/multinomial logistic regression 

with generalized estimating equations for categorical variables, accounting for matched case-

control pairs. To illustrate the longitudinal trends of vitamin D biomarkers throughout pregnancy 

in both cases and controls, median levels of each biomarker were displayed graphically by study 

visit; generalized linear mixed-effects regression models, accounting for matched case-control 

pairs, were implemented for case-control comparisons at each study visit. Spearman’s partial 

correlation coefficients adjusting for maternal age were calculated to examine the associations of 

vitamin D biomarkers at either 10-24 or 15-26 gestational weeks with fasting plasma glucose 

during weeks 15-26, respectively. We performed the complete data analysis by excluding 

participants with missing measurements of vitamin D biomarkers. Additionally, one case at 

weeks 10-14 and five cases at weeks 15-26 were excluded from the final analysis, as their blood 

samples were collected after GDM diagnosis.  

            To evaluate the associations of maternal vitamin D levels with subsequent risk of GDM 

and identify the optimal timing of vitamin D assessment in relation to GDM risk, separate 

multivariable conditional logistic regression models were performed for each study visit prior to 

GDM diagnosis, i.e., gestational weeks 10-14 and 15-26. The levels of each vitamin D biomarker 

were parameterized as quartiles with the lowest quartile as the reference. To account for seasonal 

variation in vitamin D levels, season-specific quartile cutoffs of 25(OH)D were determined 

according to blood draw dates among the controls and applied for all the cases and controls. We 
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also categorized total 25(OH)D levels into deficiency (<50 nmol/L) and non-deficiency (e50 

nmol/L) according to previously published criteria for vitamin D status.31 The main multivariable 

logistic models were adjusted for race/ethnicity, maternal age, gestational age at blood collection, 

geographic latitude, prepregnancy BMI, parity, and family history of diabetes. We further 

adjusted for physical activity in separate models for sensitivity analysis considering its potential 

confounding and modifying effects. Tests for linear and nonlinear trends were performed by 

modeling the median levels of vitamin D within each category as a continuous explanatory 

variable and using restricted cubic splines, respectively.  

            We also investigated longitudinal vitamin D profiles in relation to GDM. Between the 

two visits that included blood collection prior to GDM screening (i.e., the first to second 

trimester), the following longitudinal patterns of changes in 25(OH)D levels were identified and 

conditional logistic regression models was used to assess the associations between changing 

patterns of vitamin D status and the subsequent risk for GDM, with persistent non-deficiency 

being the reference group: 1) persistent non-deficiency (e50 nmol/L); 2) persistent deficiency 

(<50 nmol/L); 3) non-deficiency to deficiency; or 4) deficiency to non-deficiency. We also fitted 

linear mixed-effects models accounting for matched case-control pairs to compare the 

longitudinal trajectories of vitamin D levels during early and mid-pregnancy before the diagnosis 

of GDM in individuals with GDM and normal glucose levels, with adjustment for the above-

listed confounders at baseline. The log-transformed levels of 25(OH)D were parameterized as a 
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continuous variable in the models. The least-squares means were back transformed to the 

original scale for result presentation.  

            To explore possible effect modification in the relationship between vitamin D deficiency 

and GDM, we first performed subgroup analyses stratified by race/ethnicity (non-Hispanic White, 

non-Hispanic Black, Hispanic, or Asian/Pacific Islander) and other factors, such as pre-

pregnancy weight status (normal weight or overweight/obese), maternal age (<30 or e30 years), 

physical activity (quartiles), parity (nulliparous or parous), and family history of diabetes 

(yes/no). We performed interaction analyses with multiplicative interaction terms to formally test 

their potential modifying effects on the association between vitamin D deficiency and GDM. All 

statistical analyses were conducted using SAS version 9.4 (SAS Institute, Cary, NC). 

 

RESULTS 

Compared with non-GDM controls, GDM cases had a higher proportion of a family 

history of diabetes, lower HDL cholesterol, and higher prepregnancy BMI, triglycerides, fasting 

glucose, fasting insulin, and HOMA-IR (Table 1).  

Over the entire gestational period, median levels of 25(OH)D2 and 25(OH)D3 as well as 

total and free 25(OH)D increased whereas median bioavailable 25(OH)D levels decreased with 

gestational week among both cases and controls (Figure 1 and Supplementary Figure 1). Median 

levels of VDBP increased from gestational weeks 10-14 up to weeks 15-26, with a subsequent 

decline until the end of pregnancy. There was no statistically significant difference in any 
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vitamin D biomarkers between GDM cases and non-GDM controls at any study visit. After 

adjustment for maternal age, total, free, and bioavailable 25(OH)D were significantly and 

inversely correlated with fasting glucose at 15-26 gestational weeks (Supplementary Table 1).  

            At 10-14 gestational weeks, women with higher season-specific levels of total 25(OH)D 

biomarkers appeared to have a 50-60% lower subsequent risk of GDM compared with women in 

the lowest season-specific quartile (Supplementary Table 2). The association was similar with 

25(OH)D3. Although the significant linear trends between levels of total 25(OH)D (P=0.04) and 

25(OH)D3 (P=0.03) and GDM risk were robust to adjustment for race/ethnicity, maternal age, 

geographical latitude, and gestational age at blood collection, we did not observe linear 

associations after additional adjustment for prepregnancy BMI, parity, and family history of 

diabetes. However, significant nonlinear associations of total 25(OH)D (P=0.025) and 

25(OH)D3 (P=0.016) with GDM were observed. While increasing levels of free and bioavailable 

25(OH)D were suggestive of a lower risk for GDM, none of the quartile associations or linear 

trends were significant. VDBP was not associated with GDM risk. No significant results were 

observed at 15-26 gestational weeks.  

            First trimester vitamin D deficiency (10-14 gestational weeks) was significantly 

associated with an increased risk of developing GDM after adjusting for potential confounding 

factors (OR=2.82, 95% CI: 1.15-6.93) (Figure 2). This association remained significant after 

further adjustment for physical activity (OR=3.02, 95% CI: 1.20-7.57). Furthermore, women 

with persistent vitamin D deficiency (10 GDM cases and 13 controls) in both the first and second 
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trimester (10-14 and 15-26 weeks) had over a 4-fold significantly higher risk for GDM than 

those with persistently non-deficient vitamin D levels (68 GDM cases and 166 controls; 

OR=4.46, 95% CI: 1.15-17.3). However, this significant association was not observed in women 

with a change from non-deficiency to deficiency (1 GDM cases and 11 controls; OR=0.29, 95% 

CI: 0.03-2.59) or vice versa (11 GDM cases and 19 controls; OR=2.59, 95% CI: 0.82-8.19).  

In the adjusted mixed-effects models, longitudinal trajectories of log-transformed total 

25(OH)D and 25(OH)D3 levels during early to mid-pregnancy differed significantly between 

women with GDM and non-GDM controls (Table 2 and Supplementary Table 3). Compared to 

women without GDM, those who developed GDM appeared to have lower levels of total 

25(OH)D at 10-14 gestational weeks (² =-0.07, 95% CI: -0.15-0.02) and had a 6% greater 

incremental rate of total 25(OH)D levels on a logarithmic scale from 10-14 weeks to 15-26 

weeks (² =0.06, 95% CI: 0.001-0.11). Least-squares means of total 25(OH)D further illustrated 

this significant difference in the longitudinal increase of total 25(OH)D levels from the first to 

second trimester between GDM cases and non-GDM controls: least-squares means appeared to 

be different at 10-14 weeks between cases and controls (63.0 vs. 67.4 nmol/L; p=0.10), but were 

similar at 15-26 weeks (69.5 vs. 70.3 nmol/L; p=0.76) (Figure 3 and Supplementary Figure 2). 

Longitudinal change in least-squares means from 10-14 weeks to 15-26 weeks among cases was 

significantly greater than that among controls (p=0.046). We obtained very similar results for 

25(OH)D3.  
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Lastly, we did not observe significant effect modification by race/ethnicity, pre-

pregnancy BMI, maternal age, physical activity, parity, or family history of diabetes.  

 

DISCUSSION 

In this ethnically diverse longitudinal study, our results showed evidence of a significant 

longitudinal change in the vitamin D biomarkers during pregnancy with no differences between 

GDM cases and controls at each visit. We found a nonlinear threshold effect of total 25(OH)D 

and 25(OH)D3 levels on GDM risk, and vitamin D deficiency as defined by total 25(OH)D 

<50nmol/L during early and mid-pregnancy was significantly associated with risk of developing 

GDM among initially healthy pregnant women. The association appeared to be independent of 

conventional risk factors for GDM. We observed no significant effect modification by 

race/ethnicity, pre-pregnancy BMI, maternal age, physical activity, parity, or family history of 

diabetes. Our findings indicate that assessment of vitamin D status during early pregnancy may 

be clinically valuable for developing risk stratification and intervention strategies for GDM 

prevention. 

To our knowledge, only one study has investigated the longitudinal profiles of serum 

25(OH)D during pregnancy (at 12-14, 20-22, and 32-34 weeks) and prospectively examined the 

associations between trimester-specific vitamin D status and GDM in a cohort of 523 Korean 

women.32 Similar to our study, there was no statistically significant difference in 25(OH)D 

between GDM cases and controls at any time points. However, they did not examine the 
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associations between GDM risk and longitudinal changes of 25(OH)D levels, as well as other 

vitamin D biomarkers. In addition, they found no association between vitamin D status in either 

the first or second trimester and GDM. The small case number (23 GDM cases) may limit their 

statistical power to identify the significant association between first-trimester vitamin D 

deficiency and GDM. Whereas, the present study prospectively and longitudinally examined and 

demonstrated, for the first time, the significant and inverse association between maternal vitamin 

D levels based on repeated measurements and subsequent risk of GDM. Our main findings not 

only are in line with our prior work and a large body of the existing literature,11,12,33 showing an 

inverse association between vitamin D in early gestation and subsequent risk of GDM, but also 

further extend these findings by showing an association between longitudinal vitamin D status 

during early pregnancy to mid-gestation and subsequent risk for GDM which may be more 

clinically relevant for prevention of GDM. We previously observed that vitamin D deficiency 

before 20 weeks of gestation was associated with an increased risk of developing GDM in the 

Omega Study.11 Another prospective study indicated that the risk of incident GDM increased by 

40% with 1 SD decrease in 25(OH)D levels during gestational weeks 6-13.12 Evidence from a 

recent case-control study among a cohort of Saudi pregnant women consisting of 116 GDM 

cases and 303 control subjects suggested that vitamin D deficiency in the first trimester was 

associated with a 2.87-fold greater risk of subsequent GDM.33 In the present study, we further 

observed that longitudinal trajectories of 25(OH)D levels during early and mid-pregnancy 

differed significantly between GDM cases and women with normal glucose levels. Compared to 
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controls, GDM cases had lower 25(OH)D levels in early pregnancy, but increased to very similar 

levels at weeks 15-26. This might reflect the fact that pregnant women were more likely to take 

prenatal vitamin supplements due to counselling at their routine prenatal visits. Our findings also 

suggest the importance of vitamin D levels during early pregnancy but not the mid-pregnancy in 

the development of GDM. Compared to women with non-deficient levels of vitamin D (e50 

nmol/L) from the first to second trimester of gestation, those with persistently deficient vitamin 

D levels (<50 nmol/L) had significantly increased risk for developing GDM. These results 

indicate that prenatal vitamin supplements may not be enough for GDM prevention, especially 

for women with deficient levels of vitamin D in early pregnancy. It is also possible that these 

participants with persistently deficient vitamin D levels may have not taken any vitamin D 

supplements or had poor adherence or response to vitamin D supplements or dietary counselling. 

Overall, the trajectories of total 25(OH)D levels between GDM cases and controls were different 

from the first to second trimester of pregnancy and the associations of vitamin D deficiency with 

GDM were significant either during the first trimester or persistently through the second 

trimester. These findings indicate the importance of assessing trajectories of vitamin D status 

across gestation in relation to GDM risk. 

In contrast, inconsistent findings were also reported.34-36 A cross-sectional study of a 

Turkish population found no association between first-trimester vitamin D deficiency and GDM 

risk, potentially due to small sample size (50 GDM cases and 50 controls).34 Similar findings 

were reported by another nested case-control study of 180 pregnant women in North Carolina 
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(60 GDM cases and 120 controls).35 With more than 50% white women, the prevalence of 

vitamin D deficiency in this study was much lower (7.2%) compared to our study (22.4%) as 

well as another study with a nationally representative sample of U.S. pregnant women (33%);37 

some important confounding effects, such as geographical latitude and family history of diabetes, 

were also not accounted for. Therefore, their inference may be lack of generalizability and 

reliability. Our finding of no association between the second-trimester vitamin D deficiency and 

GDM was also less consistent with that from a birth cohort of 1,314 U.S. pregnant women.36 

They found an inverse association between second-trimester severe vitamin D deficiency (<25 

nmol/L) and GDM, although the association was attenuated to non-significance after adjusting 

for maternal BMI in addition to other risk factors.  

A recent review pointed out that controversial findings from observational studies on 

vitamin D and GDM may be affected by heterogeneity in study design and insufficient 

considerations of confounding factors.38 However, the results from clinical trials have also been 

inconsistent.14-17 Two randomized clinical trials (n=500 and n=90) in Iran found that vitamin D 

supplementation intake (50,000 IU every 2 weeks or 5,000 IU weekly) started in the first 

trimester of gestation decreased incidence of GDM,14,15 which are consistent with our findings. 

In contrast, the results from two randomized clinical trials conducted in Sydney (n=179) and Iran 

(n=210) showed that vitamin D supplementation as doses from 400 to 5,000 IU daily had no 

effects on incidence of GDM or maternal glucose levels.16,17 Their negative findings may be due 

to: 1) relatively small sample size in each treatment arm; 2) late initiation of vitamin D 
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supplementation (gestational age of <20 weeks for Sydney’s trial and 14-16 weeks for Iran’s 

trial); 3) the control group containing low dose of vitamin D supplements; 4) extreme cutoffs 

used for definition of vitamin D deficiency (80 nmol/L in Sydney’s trial and 10 nmol/L in Iran’s 

trial); or 5) potentially low compliance since adherence rate was not reported in either study.  

Although the exact biological mechanisms underlying vitamin D and glucose metabolism 

in pregnancy remain unclear, the observed associations may be explained by the influence of 

vitamin D on glucose homeostasis. The biological effects of vitamin D on regulation of 

pancreatic ² -cell function and insulin secretion involve its biologically active metabolite, 

1,25(OH)2D, binding to the vitamin D receptor in ² -cells of the pancreas.39 Vitamin D deficiency 

may affect normal release of insulin by regulating the calcium pool of ² -cells intracellularly and 

extracellularly. Since the secretion of insulin is mediated by a calcium-dependent mechanism,40 

vitamin D deficiency may decrease the insulin response to glucose. Vitamin D may also 

influence insulin sensitivity through vitamin D receptors in adipose tissue and skeletal muscle 

through its role in activating the peroxisome proliferator activator receptor-´ , which is involved 

in the metabolism of fatty acids in adipose tissue and skeletal muscle.41 Thus, vitamin D 

deficiency may affect peripheral target tissues of insulin and thus lead to insulin resistance. 

Another possible indirect pathway by which vitamin D could affect glucose homeostasis is 

through systemic inflammation. Chronic inflammation can trigger ² -cell dysfunction or death 

and directly induce insulin resistance.42 Defects in insulin secretion and insulin sensitivity 

(insulin resistance) can contribute to GDM development. Through inhibiting production and 
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action of inflammatory cytokines, 1,25(OH)2D can lower systemic inflammation and promote ² -

cell survival.42,43  

            A major strength of our study is the use of longitudinal measurements of plasma levels of 

25(OH)D, VDBP, and albumin before GDM diagnosis and throughout pregnancy, which 

provided the opportunity to examine the temporal relationship between longitudinal vitamin D 

status during pregnancy and risk of GDM. In particular, we were able to examine a panel of 

vitamin D biomarkers and compare them for the strength of their associations with GDM risk. 

The multiethnic diversity of the study cohort increased the generalizability of our results. 

Furthermore, findings from our observational research will complement and extend findings 

from existing and future clinical research of the effects of vitamin D supplements on GDM. 

Clinical trials are ideal to define a causal relationship between vitamin D and GDM; however, 

some of logistical limitations may restrict their ability to address some unanswered questions 

about vitamin D as follows: (1) only certain fixed dose levels of vitamin D can be tested; (2) a 

relatively narrow range of vitamin D levels in the trial participants cannot allow for assessment 

of the full spectrum of vitamin D levels; (3) inability to assess a panel of novel vitamin D 

biomarkers relative to physiological levels of total 25(OH)D, including VDBP, free or 

bioavailable 25(OH)D, may hinder our further understandings of the physiological role of 

vitamin D in relation to GDM.  

However, some limitations need to be acknowledged. First, the relatively small sample 

size limited our ability to fully address ethnic disparities in the relationship between vitamin D 
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and GDM risk, and we were only able to explore possible effect modification of these 

associations by race/ethnicity. Second, a monoclonal ELISA assay used for VDBP 

measurements has been criticized for lack of sensitivity to genetically determined isoforms,  

yielding an underestimation of VDBP levels in Blacks due to a high frequency of Gc-1F alleles 

in this population, compared with polyclonal or LC-MS/MS-based VDBP measurements.20-

23,44,45 Thus, our main findings have focused primarily on total 25(OH)D levels assessed by the 

LC-MS/MS, which is the most widely used and clinically accepted biomarker of vitamin D 

status, and its associations with GDM risk across race/ethnicity. It is worth noting that a recent 

study of 368 healthy white pregnant women found that directly measured free 25(OH)D had 

stronger correlations with gestational age and markers of bone metabolism, lipid metabolism, 

and kidney function than total 25(OH)D.46 Their findings implicate the importance of free 

25(OH)D in monitoring of maternal vitamin D status, although further research is needed to 

clarify the validity and utility of free 25(OH)D in reflecting tissue-specific activities or overall 

status of vitamin D. Third, parathyroid hormone (PTH), known for its synergistic role with 

vitamin D endocrine system,31 was not measured. Emerging evidence has also suggested the 

potential effects of an interaction between vitamin D and PTH on glucose metabolism.47,48 Lastly, 

due to lack of information on determinants of vitamin D levels such as sun exposure or outdoor 

activities, residual confounding from them cannot be completely ruled out. 

In conclusion, our results suggest that early-pregnancy vitamin D deficiency may 

increase the risk of developing GDM in pregnant women. These findings suggest that the 
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assessment of vitamin D in the first trimester of gestation may contribute to the identification of 

women at risk for developing GDM. For those identified as high-risk, clinical vitamin D 

supplementation and dietary recommendations might be considered in clinical-care strategies to 

aid in the prevention of GDM associated with vitamin D deficiency. Further longitudinal studies 

with larger sample size and accurate assessment of vitamin D-related biomarkers measured by 

well-validated and standardized assays are required to confirm our findings. If confirmed, future 

randomized controlled trials are warranted to clarify the preventive dosage and therapeutic time 

windows of vitamin D supplementation to prevent GDM and address potential racial/ethnic 

disparities.  
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Figure Legends 

Figure 1. Median levels of total 25(OH)D (a), 25(OH)D3 (b), and 25(OH)D2 (c) according to 

gestational age at blood collection among women with GDM (solid line) and their matched 

control subjects (dashed line).  

 

Figure 2. ORs for GDM by vitamin D deficiency status at gestational weeks 10-14 and 15-26. 

ORs for GDM in women with persistent vitamin D deficiency compared with those with 

persistent non-deficiency at both gestational weeks 10-14 and 15-26 were also shown. Model 1 

adjusted for race/ethnicity, maternal age, gestational age at blood collection, and geographical 

latitude (clinical center); Model 2 (main model) further adjusted for pre-pregnancy BMI, parity, 

season of blood draw, and family history of diabetes; Model 3 additionally adjusted for physical 

activity. 

 

Figure 3. Longitudinal change of vitamin D biomarkers, including total 25(OH)D (a), 25(OH)D3 

(b), and 25(OH)D2 (c), for individuals with GDM (case, orange line) and normal glucose levels 

(control, blue line). Back-transformed LS means and the corresponding 95% CIs of vitamin D 
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biomarkers at gestational weeks of 10-14 and 15-26 from linear mixed-effects models, adjusting 

for race/ethnicity, maternal age, gestational age at blood collection, geographical latitude 

(clinical center), pre-pregnancy BMI, parity, season of blood draw, and family history of 

diabetes (Model 2). 

 
 
 
Tables 

 
Table 1. Participant characteristics among women with GDM and their matched control subjects, 
the NICHD Fetal Growth Studies-Singleton cohort 

Variables 
 Case subjects 

with GDM                     
(n = 107) 

Control subjects 
(n = 214) P-value† 

Age (years) mean ± SD 30.5 ± 5.7 30.4 ± 5.4 — 
Race/ethnicity n (%)   — 
Non-Hispanic white  25 (23.4) 50 (23.4)  
Non-Hispanic black  15 (14.0) 30 (14.0)  
Hispanic  41 (38.3) 82 (38.3)  
Asian/Pacific Islander  26 (24.3) 52 (24.3)  
Education n (%)   0.18 
Less than high school  17 (15.9) 26 (12.1)  
High school graduate or equivalent  15 (14.0) 23 (10.7)  
More than high school  75 (70.1) 165 (77.1)  
Prepregnancy BMI (kg/m2) n (%)   <0.001 
   <25.0  37 (34.6) 123 (57.5)  
   25.0-29.9  35 (32.7) 56 (26.2)  
   30.0-34.9  20 (18.7) 17 (7.9)  
   35.0-44.9  15 (14.0) 16 (7.5)  
   Unknown/missing  0 2 (0.9)  
Nulliparity n (%) 48 (44.9) 96 (44.9) 1.00 
Smoking 6 months before pregnancy n (%) 4 (3.7) 1 (0.5) 0.06 
Alcohol consumption 3 months before 
pregnancy n (%) 61 (57.0) 137 (64.0) 0.22 

Family history of diabetes n (%) 40 (37.4) 48 (22.4) 0.003 
Geographical latitude (Clinical center) n (%)   0.38 
   Southern (d37°N)  40 (37.4) 77 (36.0)  
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   Middle (>37°N to 40°N)  22 (20.6) 37 (17.3)  
   Northern (>40°N)  42 (39.3) 100 (46.7)  
Season of blood draw (weeks 10-14) n (%)   0.01 
   February-April  28 (26.9) 65 (30.4)  
   May-July  26 (25.0) 39 (18.2)  
   August-October  32 (30.8) 50 (23.4)  
   November-January  18 (17.3) 60 (28.0)  
Season of blood draw (weeks 15-26) n (%)   0.02 
   February-April  24 (25.5) 65 (30.4)  
   May-July  22 (23.4) 39 (18.2)  
   August-October  30 (31.9) 50 (23.4)  
   November-January  18 (19.2) 60 (28.0)  
Physical activity at weeks 10-14 (MET-
minutes per week) mean ± SD 419 (214, 1112) 489 (185, 1059) 0.77 

Physical activity at weeks 15-26 (MET-
minutes per week) mean ± SD 288 (69, 558) 299 (117, 647) 0.34 

Gestational age at blood collection 
(weeks 10-14) mean ± SD 12.8 ± 0.9 12.9 ± 0.8 0.55 

Gestational age at blood collection 
(weeks 15-26) mean ± SD 19.2 ± 2.4 19.4 ± 2.2 0.27 

     
Metabolic biomarkers at gestational weeks 10-14    
Triglycerides (mmol/L) median (IQR) 1.7 (1.2, 2.2) 1.3 (1.1, 1.7) <0.001 
Total cholesterol (mmol/L) median (IQR) 4.8 (4.2, 5.0) 4.6 (4.1, 5.2) 0.73 
HDL-cholesterol (mmol/L) median (IQR) 1.5 (1.3, 1.7) 1.6 (1.9, 3.2) 0.001 
LDL-cholesterol (mmol/L) median (IQR) 2.4 (1.9, 2.7) 2.3 (1.8, 2.7) 0.83 
     
Metabolic biomarkers at gestational weeks 15-26    
Triglycerides (mmol/L) median (IQR) 1.8 (1.5, 2.2) 1.5 (1.2, 1.9) <0.001 
Total cholesterol (mmol/L) median (IQR) 5.1 (4.6, 5.8) 5.4 (4.6, 5.9) 0.17 
HDL-cholesterol (mmol/L) median (IQR) 1.7 (1.4, 1.9) 1.8 (1.5, 2.1) 0.005 
LDL-cholesterol (mmol/L) median (IQR) 2.5 (2.1, 3.1) 2.7 (2.1, 3.2) 0.22 
Fasting glucose (mmol/L) median (IQR) 4.9 (4.6, 5.4) 4.6 (4.3, 4.8) <0.001 
Fasting insulin (pmol/L) median (IQR) 10.6 (6.9, 18.4) 6.7 (4.2, 10.6) <0.001 
HOMA-IR median (IQR) 2.7 (1.8, 5.0) 1.6 (0.9, 2.6) <0.001 
†P-value for differences between case and control subjects were obtained by generalized linear mixed-effect models 
for continuous variables and binomial/multinomial logistic regression with generalized estimating equations for 
binary/multilevel categorical variables, accounting for matched case-control pairs. 
IQR, interquartile range. 
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Table 2. Change of total 25(OH)D, 25(OH)D3, and 25(OH)D2 from the 1st to 2nd trimester for 
individuals with GDM and normal glucose levels in multivariate mixed-effects models  

  Model 2†   Model 3‡  

 ²  95% CI P-value ²  95% CI P-value 

Total 25(OH)D 
      

GDM -0.07 (-0.15, 0.02) 0.11 -0.06 (-0.14, 0.02) 0.15 

Visit 0.09 (0.06, 0.13) <0.001 0.09 (0.06, 0.13) <0.001 

GDM*Visit 0.06 (0.001, 0.11) 0.046 0.06 (0.001, 0.11) 0.046 

25(OH)D3       

GDM -0.06 (-0.15, 0.02) 0.14 -0.06 (-0.14, 0.03) 0.17 

Visit 0.09 (0.06, 0.13) <0.001 0.09 (0.06, 0.13) <0.001 

GDM*Visit 0.05 (0.00001, 0.11) 0.049 0.05 (-0.00003, 0.11) 0.05 

25(OH)D2       

GDM -0.05 (-0.23, 0.13) 0.57 -0.04 (-0.21, 0.14) 0.68 

Visit 0.02 (-0.05, 0.09) 0.65 0.02 (-0.05, 0.09) 0.64 

GDM*Visit 0.08 (-0.05, 0.20) 0.22 0.08 (-0.05, 0.20) 0.22 
†Model 2 (main model) adjusted for race/ethnicity, maternal age, gestational age at blood collection, geographical 
latitude (clinical center), pre-pregnancy BMI, parity, season of blood draw, and family history of diabetes. 
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‡Model 3 further adjusted for physical activity. 
²  coefficient for � GDM�  represents the difference of vitamin D biomarker levels between GDM cases and non-
GDM controls when their gestational age was 10-14 weeks;  
²  coefficient for � Visit�  represents the longitudinal change of vitamin D levels from 10-14 to 15-26 weeks of 
gestation among non-GDM controls;  
²  coefficient for � GDM*Visit�  represents the difference in longitudinal change of vitamin D biomarker levels from 
10-14 to 15-26 weeks of gestation between GDM cases and non-GDM controls. 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 
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Figure 3 
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