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Abstract 

 Addiction has been conceptualized as a specific form of memory that appropriates 

typically adaptive neural mechanisms of learning to produce the progressive spiral of drug-

seeking and drug-taking behavior, perpetuating the path to addiction through aberrant processes 

of drug-related learning and memory.  From that perspective, to understand the development of 

alcohol use disorders it is critical to identify how a single exposure to alcohol enters into or alters 

the processes of learning and memory, so that involvement of and changes in neuroplasticity 

processes responsible for learning and memory can be identified early on. This review 

characterizes the effects produced by acute alcohol intoxication as a function of brain region and 

memory neurocircuitry. In general, exposure to ethanol doses that produce intoxicating effects 

causes consistent impairments in learning and memory processes mediated by specific brain 

circuitry, whereas lower doses either have no effect or produce a facilitation of memory under 

certain task conditions. Therefore, acute ethanol does not produce a global impairment of 

learning and memory, and can actually facilitate particular types of memory, perhaps particular 

types of memory that facilitate the development of excessive alcohol use.  In addition, the effects 

on cognition are dependent on brain region, task demands, dose received, pharmacokinetics, and 

tolerance. Additionally, we explore the underlying alterations in neurophysiology produced by 

acute alcohol exposure that help to explain these changes in cognition and highlight future 

directions for research. Through understanding the impact acute alcohol intoxication has on 

cognition, the preliminary changes potentially causing a problematic addiction memory can 

better be identified.  
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Abbreviations 
BAC Blood alcohol concentration 
IEGs Immediate early genes 
EPSCs Excitatory postsynaptic currents 
LTD Long-term depression 
LTP Long-term potentiation 
NOR Novel object recognition 
STEP Striatal-enriched protein tyrosine phosphatase 
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PROLOGUE 

Understanding why and how an individual transitions from being a social drinker to one 

with an alcohol use disorder (AUD) is a central issue currently facing alcohol research.  

Identifying the sources of underlying individual differences in the progression to an AUD and 

addiction is a complex challenge, but such understanding is crucial to the development of 

effective interventions for AUD treatment and prevention.  From a biological psychology 

perspective, ongoing behavior is mostly dependent on the functional interactions between 

various neurocircuits that engage different brain regions that are involved in distinct or 

dissociable functions.  While many behavioral classifications have been developed to explain 

this dynamic interplay between neurocircuits of different brain regions, cognition, i.e., learning 

and memory, has been a prevalent framework to understand how ongoing behavior is the result 

of this functional interplay and therefore can be informative in understanding some aspects of the 

development of an AUD. 

As an illustration, it has long been hypothesized and later confirmed that many animal 

species have a predisposition to use particular cognitive strategies to learn tasks and there are 

species-typical hierarchies for behavioral strategies that depend both on sensory-perceptual 

biases and attentional-cognitive processes.  For example, behavioral studies have shown that 

animals will use allocententric information to learn tasks instead of egocentric information 

(Tolman, 1948; O’Keefe & Nadel, 1978; Matthews & Best, 1997).  However, if an animal is 

over-trained, the use of egocentric information will often supersede the use of allocentric 

information (O’Keefe & Nadel, 1978).  This work demonstrates a functional hierarchy of 

cognition exists to organize and guide behaviors that can be both relatively stable and change 

predictably with experience based on learning processes.  The organization and neural 
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architecture of species-typical hierarchies of cognitive strategies can also be revealed by 

experimental dissociation studies, extending from approaches that have advanced the 

understanding of neural systems mediating declarative and non-declarative long-term memory 

(Squire, 2004; Bechara et al., 1995). These experimental approaches not only demonstrate that 

specific structures or circuits can be selectively essential for specific types of cognitive processes 

(and not others), but also that manipulations that target a specific brain structure and interfere 

selectively with one type of cognitive function can lead to compensation or hierarchical 

reorganization that favors an alternative cognitive strategy.  For example, the hippocampal 

region is essential for allocentic information use whereas the striatal region supports egocentric 

information use. Consistent with this, experimental manipulations that impair hippocampal 

function, and consequently degrade the use of allocentric information, lead to augmented use of 

egocentric, striatal cognitive functions. 

 It has been proposed that one mechanism by which alcohol addiction can lead to the 

development of an alcohol use disorder is by directly altering the cognitive strategy that is 

preferentially used.  Specifically, it is hypothesized that alcohol first impairs the function of the 

limbic circuit comprised of the hippocampus, prefrontal cortex, nucleus accumbens and ventral 

tegmental area thereby facilitating a progressive shift in  executive control of behavior from goal 

directed to compulsive drug use.  This change in control corresponds to a concomitant loss of 

prefrontal cortical regulation to a predominant control by the dorsal striatum that is associated 

with plasticity that shifts behavioral regulation via midbrain dopaminergic ventral striatal 

systems to dorsal striatal systems (for initial review see Everitt & Robbins, 2005).  Learning 

occurring during repeated alcohol use in which behavior becomes increasingly controlled by 

context and the reinforcement history associated with alcohol would then facilitate activity in 
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specific striatal circuits namely the functionality of the dorsal medial striatum would be degraded 

while the dorsal lateral striatum would be enhanced.  Such a shift in brain region dominance 

would lead first to the use of egocentric information instead of allocentric information followed 

by habitual responding instead of goal directed responding.  Once habitual responding has been 

strengthened in the presence of alcohol-related cues, the individual is at risk for development of 

an alcohol use disorder. See Figure 1. 

 If this overarching framework detailing the importance of cognition in the development 

of an alcohol use disorder is correct, it is important to understand the history of alcohol’s effects 

on cognition.  By exploring the archives of how alcohol impacts cognition, we can gain insights 

into pathways that can be explored to understand the development of alcohol use disorders. 

   

INTRODUCTION 

 

Alcohol use produces a variety of changes in ongoing behavior that range from slight 

motor impairments to respiratory depression that potentially leads to death. A full accounting of 

the nature and extent of the various effects of alcohol requires cross-disciplinary understanding, 

including genetic, molecular, systems neuroscience, previous experience with the drug, 

epidemiological, developmental, and social factors. When investigating a specific functional 

change produced by ethanol, researchers much also consider changes in function(s) from any one 

or more of the other levels or perspectives when trying to account for the constellation of 

impairments frequently observed. From that perspective, a central thesis of this review is that the 

role of cognition and of alcohol’s effect on cognition, specifically learning and memory, can 

directly impact or mediate effects described at other levels of analysis, and a full accounting of 
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the neurobiological and psychosocial effects of alcohol (from genes to behavior) is incomplete 

without incorporating cognitive effects in understanding the actions and outcomes of alcohol use.   

 Learning and memory has long been a core problem and focus of research for many 

academic disciplines. Recently, though, it has been strongly argued that addiction, including 

addiction to alcohol, needs to be understood in relation to altered or impaired learning and 

memory (Boening, 2001). It has been argued that addiction might in fact be a specific form of 

memory itself, i.e., an addiction memory (Mello, 1972; O’Brian et al., 1998). More recently, the 

addiction process has been thought to involve persistent, maladaptive drug-associated memories 

that maintain drug seeking and taking in the face of long-term adverse outcomes (Milton & 

Everitt, 2012). From this perspective, two factors causing, strengthening, and maintaining 

addiction are the initial inhibition of limbic-system based memories and the enhancement of 

sensorimotor system based memories. In this view aberrant learning processes in which drug-

associated stimuli become associated with the hedonic effects of drugs come to acquire  control 

over drug-seeking and drug-taking responses for drugs (Everitt & Robbins, 2005; Everitt and 

Robbins, 2016). As such, understanding and manipulating these aberrant drug-related memories 

provide a novel approach to more effective treatment of substance use disorders and addiction 

(Milton & Everitt, 2010).  It is critical to understand the neural circuitry and neuroplasticity 

underlying both typical and aberrant drug-associated learning, and to understand the bidirectional 

interactions between mechanisms of learning and memory and drugs of abuse, including alcohol.  

 The current work systematically reviews the historical and recent research investigating 

the effects of acute alcohol exposure on different types of memory systems. While it is 

recognized that differences between the effects of acute and chronic ethanol on cognition will 

exist, the current review is limited to acute alcohol exposure, due to the large amount of literature 
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and need for establishing a framework to compare to the effects of chronic ethanol. This review 

covers both the animal and human literature by using brain region as a basis of comparison, 

recognizing the limitation that this regional brain approach may not give adequate emphasis on 

multiple distributed, connectional systems that are involved within or between different brain 

regions. However, by identifying common actions or similarities of effects on specific brain 

regions across species, the intent is to highlight shared neurobiological mechanisms and 

important areas for future directions of research.  Given the scope of the work in this area, we 

have attempted to cast a wide, historical net, but acknowledge that some important work may be 

omitted or overlooked due simply to the large scope of the problem. We believe, however, the 

emphasis on historical context is important in that knowing where the field has been can help 

illuminate where our research efforts should go. 

 

Hippocampus 

Impairment of Spatial Cognition by Brain Lesions:   

A wealth of research has shown that the hippocampus and related structures are 

intimately involved in cognition, including learning and memory. This research was galvanized 

by the publication of Scoville and Milner describing the cognitive effects following the bilateral 

removal of large portions of the hippocampus (and other medial temporal structures) in H.M. 

(Scoville & Milner, 1957). H.M. (Henry Molaison) was born on February 2, 1926 and died 

December 2, 2008.  In early adolescence,  H.M. developed progressive, severe, medically 

intractable epilepsy, leading William Scoville to perform bilateral surgical removal of large 

portions of his medial temporal lobes. The surgery reduced the epileptic seizures, but it produced 

the unintended consequence of profound anterograde amnesia.  Based partially on findings in 
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H.M., it was proposed that the removal of H.M.’s hippocampus produced the cognitive deficits 

(for an overview, please see Corkin, 2002). Over the last 40 years, experimental studies in non-

human primates involving bilateral lesions of medial temporal lobe structures have confirmed 

that memory impairments evident in H.M. and other amnestic patients can be modeled (Mishkin, 

1978; Zola-Morgan and Squire, 1985), but the specific nature and types of impaired memory, the 

specific medial temporal lobe circuitry involved, and the relationship to human amnesia is still 

actively pursued (Murray and Wise, 2010). Given the importance of the hippocampal formation 

in learning and memory and the belief that alcohol impairs memory, the impact of acute alcohol 

on hippocampal-dependent learning and memory has received extensive attention. The overall 

conclusion from this literature is that acute alcohol exposure produces selective impairments in 

hippocampal-dependent memory due to a variety of factors, but most pertinently, its direct 

alterations in the neural function of the hippocampus.  

 In animal models, the hippocampus has been demonstrated to be involved in spatial 

learning and memory, contextual learning and memory, trace conditioning and spontaneous 

alternation. For example, it has been demonstrated that animals will often primarily use spatial 

information to organize and guide behavior in cognitive tasks (Matthews & Best, 1997; Morris, 

1981; Tolman, 1948) and that one prominent factor highly correlated with the neural activity of 

some individual hippocampal pyramidal neurons is the spatial location of the animals (O’Keefe 

& Dostrovsky, 1971, O’Keefe & Speakman, 1987; for review see Best & White, 1999; Best et 

al., 2001). Furthermore, lesions to the hippocampus or related structures impair the use of spatial 

information to support learning or memory regardless of task demands (Jarrard et al., 1984; 

Matthews & Best, 1995; Morris et al., 1982; Packard et al., 1989). The collective summary of 

research results support the hypothesis that a hierarchy of information usage exists, in that 
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animals will often use spatial information first, even if a task is designed so that the use of spatial 

information is counterproductive (Matthews & Best, 1997). In addition, the hippocampus is 

critical for spontaneous alternation, which is the systematic variation of choices based on the 

spatial location of a choice (e.g. see Gross & Black, 1968).  

Extending this work, research has shown that the hippocampus is intimately involved in 

contextual learning, perhaps related to a form of spatial memory. For example, animals trained in 

a standard fear conditioning task will demonstrate impaired memory when tested to the 

conditioned context following hippocampal lesions but not exhibit impaired memory in cue 

testing following hippocampal lesions (Kim & Fanselow, 1992; Maren & Fanselow, 1997; 

Sparks et al., 2013). There is also some evidence that the rodent dorsal hippocampus 

(corresponding to the primate posterior hippocampus) subserves these more cognitive functions, 

whereas the rodent ventral hippocampus (corresponding to the primate anterior hippocampus) is 

more involved in regulating stress, emotion and affect (Moser and Moser, 1998; Fanselow and 

Dong, 2010). Finally, evidence supporting the notion that the hippocampus is critical for 

spatial/contextual learning is extensive but does not completely capture all cognitive functions 

supported by the hippocampus. Additional examples of memory types requiring hippocampal 

function is trace conditioning, configural processing and pattern completion.  Trace conditioning 

that requires the subject to remember the training information (i.e., a trace) for an intervening 

period prior to conditioning. This type of conditioning contrasts with delay conditioning where 

the training information and the conditioning event overlap. It has been consistently 

demonstrated that hippocampal lesions impair trace conditioning without impairing delay 

conditioning (Moyer et al., 1990; Solomon et al., 1986; for review see Thompson & Kim, 1996).  

Configural processing highlights the unique combinations that cues and/or contexts make during 
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the ongoing behavior of an animal.  For example, in a go/no-go task Cue A in Context B can 

mean go while Cue A in Context C can mean no-go.  The AB configural has a different meaning 

than the AC configural indicating the information content of cue A cannot be a simple additive 

stimulus.  Hippocampal lesions have been shown to impair configural learning (Rudy & 

Sutherland, 1995; Alvarado & Rudy, 1995).  Pattern completion is attuned to the notion that 

fragmentary information can be used to activate specific neural circuits in the hippocampus 

thereby providing enhanced cognition (Marr, 1971).  Abstract cognition of this type has been 

supported by single and multiunit electrophysiological studies (e.g., Mizumori et al., 1989; 

Staresina et al., 2016).  

 

Impairment in Spatial Working Memory by Acute Alcohol:  

In one of the first studies investigating the effect of acute alcohol on hippocampal-

dependent cognition, it was demonstrated that acute administration of 2.0 g/kg alcohol 

significantly reduced spontaneous alternation (Cox, 1970). This specific behavioral change 

established that ethanol does indeed impair cognition and suggests it might selectively impair 

cognition that is hippocampal-dependent. However, research into ethanol’s specific cognitive 

impairments became inconclusive following a series of studies that demonstrated that although 

moderate doses of acute ethanol (1.5 to 2.0 g/kg) impaired contextual memory (Devenport and 

Carter, 1986) and reduced spatial variability (Devenport and Merriman, 1983), the drug did not 

seem to impair spatial cognition directly but appeared to increase general response perseveration, 

reduce behavioral flexibility and impair performance in reversal tasks via mechanisms other than 

hippocampal function in rats (Devenport et al., 1983; Devenport, 1984; Devenport and Hale, 

1989) and rhesus macaques (Jedema et al., 2011 although see Wright et al., 2013). In fact, it was 
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eventually concluded that acute ethanol exposure does not impair spatial cognitive memory 

(Devenport et al., 1989). Although quite compelling, it is possible such a conclusion was reached 

due to an inadvertent experimental manipulation.  Specifically, in these studies, subjects learned 

to respond on an 8-arm radial arm maze by a gradual shaping technique where food reward was 

initially placed on the proximal end of the reward arms and moved down the arm over days until 

the reward was placed at the end of the goal arm (Devenport and Hale, 1989; Devenport et al., 

1989). Such a procedure might confound learning and mask specific cognitive deficits because 

rats would have the opportunity to not only learn spatial information but also specific cue 

information during the shaping procedure. 

Concurrent with and following the work by Devenport and colleagues, additional 

investigations of the effect of systemically administered alcohol have demonstrated effects on 

hippocampal-dependent cognition. For example, it was found that moderate ethanol exposure 

(0.75 – 2.0 g/kg) impairs spatial working memory, that is, spatial memory that is useful for a 

specific period of time, in rodents using navigation tasks (Gibson, 1985; Givens, 1995; 

Hoffmann & Matthews, 2001; Rossetti et al., 2002; White et al., 1997), delayed-match-to-

position tasks (Escher & Mittleman, 2004), and win-shift foraging tasks (Melchior et al., 1993). 

Interestingly, such effects are dose- and task- dependent in that low doses of 0.5 g/kg alcohol can 

actually facilitate spatial working memory under certain challenging test conditions (Rossetti et 

al., 2002).  

Gibson (1985) specifically investigated the effect of ethanol on spatial working memory 

by demonstrating that a moderate dose of alcohol, 1.25 g/kg, impaired spatial working memory 

when animals were tested on the radial arm maze, an effect that was replicated and extended to 

slightly lower doses (0.75 and 1.0 g/kg) by Givens (1995). Hoffmann and Matthews (2001) 
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developed a more challenging spatial working memory task using the radial arm maze and 

demonstrated that information that was learned within a single working memory session while 

the rats were sober could be disrupted following an acute ethanol challenge and that the observed 

spatial working memory impairment was dose dependent, especially at 1.5 and 2.0 g/kg. The 

exact behavioral mechanism driving this reduced spatial working memory is not completely clear 

but is likely influenced by decreased behavioral flexibility (or novelty seeking) in rats as the dose 

of ethanol increases (Devenport & Merriman, 1983). This is in keeping with the previously 

discussed decreased behavioral flexibility associated with increased response perseveration to 

previously learned information (Devenport et al., 1983; Acheson et al., 2013). 

Impairment in Non-spatial Working Memory by Acute Alcohol:  

In addition to spatial working memory, a small set of studies also demonstrated that acute 

alcohol can impact non-spatial working memory, or memory that is time dependent but does not 

require the processing and utilization of spatial information. For example, an early report 

demonstrated that low (0.5 – 0.75 g/kg) doses of acute ethanol in mice impair non-spatial 

working memory in a task that does not requiring learning (Melchior et al., 1993; Givens & 

McMahon, 1997) while higher alcohol doses can impair delayed matching to sample 

performance in rhesus monkeys (Mello, 1971). Research results suggesting that acute ethanol 

impairs working memory regardless of spatial demands demonstrates that the hippocampus is a 

brain region significantly impacted by the drug and challenges researchers to think about more 

than simply specific task demands such as spatial and/or working memory.  

 

Preliminary Cautions:  
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Attempts to equate specific cognitive strategies to particular brain regions are often 

fraught with difficulties because with such highly interconnected, parallel-distributed processing 

systems that characterize the brain, specific regions rarely equate 1:1 to cognitive tasks. Working 

memory is such an example of this conundrum. For example, H.M.’s immediate memory and 

digit span was relatively intact and he was able to follow task instructions during a memory 

session as long as disruptions and long wait times were not involved in the procedure, suggesting 

other brain regions are important for working memory. One such brain region is the prefrontal 

cortex, and the primate granular prefrontal cortex is directly interconnected with the anterior 

hippocampus in primates (Cavada et al., 2000) and has been suggested to store knowledge about 

behavior, including ordered sequences of actions and likely outcomes, along with their contexts 

(reviewed in Murray and Wise, 2010).  The prefrontal cortex regulates the gating of information 

into relevant brain regions and perhaps provides a temporal register for temporary maintenance 

and manipulation of time sensitive information (Miller & Cohen, 2001; Baddeley, 1983; 

Moscovitz, 1992). Supporting the notion that working memory may have multiple forms or 

subcomponents that may have selective functions (e.g., visuospatial vs. phonological), and that 

cognitive loads imposed by different types of challenges may selectively affect specific 

subcomponents, acute alcohol administered in humans impairs some working memory strategies 

without impairing all working memory strategies (Saults et al., 2007). It is therefore critical to 

recognize that frameworks of single brain region to cognitive function which are frequently used, 

such as in this paper, do not fully represent the complexity of actual cognitive function.  

Fortunately, research is beginning to address the actions of acute alcohol and the 

neuroadaptations with chronic alcohol exposure in more cell- and circuit-based approaches to 

understand how the progression to alcohol use disorders relates to alcohol-induced changes in 
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cognitive processes (e.g., DePoy et al, 2013; Munoz et al., 2018). Where possible we have 

incorporated this into our efforts here.    

 

Impairment in Spatial Reference Memory by Acute Alcohol:  

Spatial working memory is a very sensitive cognitive process that can be used to 

investigate the effects of alcohol on cognition since the subjects need to learn spatial information 

that is correct for a specific time frame. Given the difficulty of tasks used to access spatial 

working memory, it is possible that spatial working memory impairments following acute 

alcohol exposure are due to the task difficulty and/or a general effect of alcohol on cognition and 

not specifically due to the working memory (spatial or otherwise) nature of the task. To further 

understand how ethanol impacts cognition that is dependent on the hippocampus, a series of 

studies investigating the effect of ethanol on reference memory was undertaken. Reference 

memory, or memory for a specific rule regardless of the temporal component, requires less 

behavioral flexibility and is often an easier cognitive process for animals to learn (Olton, 1983). 

Consequently, it is possible that acute alcohol will not impair reference memory if ethanol is 

producing its impairments due to task demands. However, acute ethanol exposure was found to 

impair spatial reference learning and spatial reference memory in a dose dependent manner from 

1.5 – 2.0 g/kg ethanol in tasks that use both the radial arm maze and water maze (Matthews et 

al., 1995; 2002; Shimizu et al., 1998; Wright et al., 2003). Given that spatial memory is often 

dependent on animals using distal cues to form spatial representations of places (O’Keefe and 

Nadel, 1978), it is important to determine if animals under the influence of alcohol can actually 

perceive and use distal cues. Importantly, the spatial impairment produced by acute alcohol is not 

due simply to impaired visual perception (White et al., 1998). 
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The impairment produced by acute alcohol on spatial reference and working memory is 

selective in some specific situations. For instance, if a task is designed in such a way that animals 

can learn either spatial or non-spatial information while sober and then their memory is tested, it 

is found that acute ethanol (1.0 – 2.0 g/kg) impairs the use of spatial memory while actually 

facilitating the use of non-spatial memory, especially at moderate to high doses (Matthews et al., 

1999). In addition, ethanol induced spatial memory impairments are not task specific, as similar 

impairments are found when animals are tested in the Morris water maze, radial arm maze, or 

fear conditioning chamber (e.g., Matthews et al., 1995; 2002; Melia et al., 1997). This strongly 

suggests that effects on motivation (food reward vs. swimming) or motor performance are not 

the source of ethanol’s effect on hippocampal-dependent learning and memory. Furthermore, 

ethanol’s other effects, such as ataxia, cannot be producing the spatial memory impairments for 

at least two reasons: First, studies that investigate the impact of alcohol on cognition that use 

radial arm maze tasks (Matthews 1995; 1999; White et al., 1997) typically do not use latency to 

perform the task as a dependent variable but instead rely on choice accuracy. Secondly, studies 

using the Morris water maze have demonstrated that acute alcohol exposure does not impair 

swimming speed at doses that would produce ataxia in other behavioral tasks (Berry & 

Matthews, 2004; Matthews et al., 2002). Finally, the impairments produced by alcohol are not 

species specific in that acute alcohol administration impairs spatial memory in mice (Berry & 

Matthews, 2004), rats (e.g. Matthews et al., 1999), and humans (Weissenborn & Duka, 2003).  

 

Impairment in Contextual Memory by Acute Alcohol:   

The hippocampal formation is not only critical for cognitive tasks that involve purely 

spatial learning and memory but also important for cognitive tasks that use contextual cues 
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(Sparks et al., 2013; for review see Jarrard, 1993). The role of context in learning and memory is 

often probed using fear conditioning, where animals are exposed to both a context and/or a cue 

prior to a fearful event (e.g., a footshock). Research has consistently shown that the hippocampus 

is critical for learning the context (Kim & Fanselow, 1992; Maren & Fanselow, 1997) while the 

amygdala is critical for learning of the cue (Phillips & LeDoux, 1992; for review see Fanselow & 

Poulos, 2005; Maren, 2008). Therefore, if ethanol does impair cognition that is based on the 

hippocampus, then the drug should impair contextual fear conditioning and perhaps not impair 

cued fear conditioning. 

 Research has shown that acute ethanol administered before fear conditioning results in 

impairments in contextual fear conditioning in adult rats when ethanol dose administered is at 

least 1.0 g/kg and training occurs 10 minutes following exposure; a similar effect is also found in 

C57BL/6J mice (Hefner and Holmes, 2007). Interestingly, the impairments produced by acute 

ethanol prior to training have in some cases been shown to be selective to hippocampal-

dependent contextual conditioning (Melia et al., 1996; Weitemier & Ryabinin, 2003), whereas 

other studies have shown the impairment produced by acute ethanol may not be selective in that 

similar doses of ethanol administered before training also impair cued conditioning (Land & 

Spear, 2004) or administered pre-test can produce state dependent effects (Hunt & Barnet, 2016). 

However, a recent study has provided important data indicating that although ethanol 

administered before contextual training interferes with context retention, the reported impairment 

in cue retention is no longer significant if baseline freezing levels are accounted for (Broadwater 

& Spear, 2013).  While it is true that acute ethanol can impair both contextual and cued fear 

conditioning, a detailed analysis of this effect demonstrates that contextual fear conditioning is 

more sensitive to impairments produced by acute ethanol than is cued fear conditioning. In other 
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words, contextual fear conditioning is impaired at lower doses of ethanol compared to cued fear 

conditioning (Gould, 2003). However, the differential effect on conditioning based on when 

ethanol is administered is complex.  For example, if ethanol is administered before training in 

Swiss mice an increase in fear conditioning is found compared to saline tested animals.  

 Conditioned fear paradigms can also be used to investigate the effect of alcohol on 

hippocampal function without using context specifically as the hippocampal-dependent 

behavioral variable. For example, trace conditioning is a procedure where animals are 

conditioned to freeze to a cue, but the conditioning paradigm requires the animal to bridge a 

temporal window (i.e., a trace of time) between the neutral stimulus and the unconditioned 

response, and is also hippocampal-dependent (Solomon et al., 1986; for review see McEchron & 

Disterhoft, 1999). Interestingly, acute alcohol exposure of 0.8 and 1.6 g/kg impairs both trace 

conditioning and retention, which strongly suggests that alcohol impairs hippocampal-dependent 

cognition regardless of the task demands (Weitemier & Ryabinin, 2003). Unlike fear 

conditioning where the effects are variable, it appears that ethanol impairs hippocampal-

dependent trace conditioning regardless of whether it is administered before or following training 

(Hunt et al., 2009).  

Additionally, the novel object recognition (NOR) task, a version of which may be 

hippocampal-dependent following particular experimental manipulations (Warburton & Brown, 

2015), is impaired by pre-training ethanol administration (Ryabinin et al., 2002; Swartzwelder et 

al., 2012). This effect is due to reduced exploration during training that carries over to testing, 

where mice receiving the higher dose (2.4 g/kg, but not 1.6 g/kg) of ethanol spend a similar 

amount of time exploring the novel and familiar objects. Importantly, these effects are not due to 

a reduction of locomotor activity in this group (Ryabinin et al., 2002). However, other strains of 
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mice show NOR memory impairments at lower (1 g/kg) doses of ethanol (Yu et al., 2013). 

Unlike trace conditioning, ethanol impairs NOR only when administered prior to training, and 

not when given after training (Ryabinin et al., 2002) suggesting ethanol might preferentially 

impair attentional or encoding processes in NOR.  

 

Preliminary Conclusion and Cautions:   

Animals appear to have predispositions for the use of specific cognitive strategies with 

hippocampal dependent cognitive strategies engaging ongoing behavior first.  The allocentric 

cognitive strategies supported by hippocampal function provide flexible use of memory thereby 

facilitating behavior.  This hierarchical view of cognition implies that specific types of cognition 

are engaged first while other types of cognition are engaged later.  Acute alcohol administration 

impairs the use of hippocampal dependent allocentric cognition and the impairments occur at 

alcohol doses and corresponding blood alcohol concentrations that mirror drinking levels found 

in human populations.  It therefore appears that one of the first systematic effects of acute 

intoxication is the altering of the hierarchical function of cognition whereas hippocampal 

dependent allocentric memory is impaired thereby facilitating the use of other type of cognitive 

strategies.  However, it is important to remember that many drugs, including alcohol, can 

produce state-dependent effects whereby implied cognitive deficits are instead due to different 

pharmacological states between testing and training.  While we believe many of ethanol’s effects 

on cognition are not due to state-dependent effects, evidence clearly suggests state dependency 

can be demonstrated (e.g., Hunt & Barnet, 2016). Furthermore, we have attempted to limit our 

review to acute effects, however, the first exposure to a drug can led to expectations that might 

alter later, subsequent, effects.  While difficult to investigate, implicit memory in humans (see 

later section) can provide some meaningful insight into this challenging issue. 
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Electrophysiological Correlates of Alcohol’s Effect in the Hippocampus:   

Although acute alcohol has been shown to impair performance in cognitive tasks that are 

dependent on the hippocampus, this does not demonstrate that acute ethanol produces these 

impairments by altering hippocampal function directly. It is therefore critical to investigate if 

alcohol produces effects on hippocampal neurophysiology directly that may correlate with 

cognitive performance, thereby providing a neural mechanism by which the drug impairs 

hippocampal-dependent cognition.  

One of the first, and most critical findings implicating ethanol’s direct effects in the 

hippocampus came from studies demonstrating that ethanol inhibits NMDA-activated ion 

currents in the hippocampus (Lovinger et al., 1989; 1990). Not surprisingly, similar 

concentrations of ethanol were found to inhibit hippocampal long-term potentiation (LTP; 

Blitzer et al., 1990). These studies have been reviewed in an excellent recent publication 

(Zorumski et al., 2014). These studies, and many others using LTP, strongly implicate the 

hippocampus as a potential site of action for ethanol’s cognitive impairing effects.  

Early studies designed to investigate distinct brain regions underlying ethanol’s memory 

impairing effects used techniques to explore the expression patterns of immediate early genes 

(IEGs). Initially, it has been shown that the expression of IEGs such as c-Fos, is increased in a 

variety of brain regions due to such factors as stress, and acute alcohol selectively decreases c-

Fos expression in the hippocampus (Ryabinin et al., 1995; 1997) and can increase c-Fos 

expression in a variety of brain regions including the amygdala and caudate-putamen (Ryabinin 

et al., 1997). These data suggest that c-Fos expression might be a marker for brain region 

activation and consequent inhibition by acute ethanol exposure. In support of this idea, 
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expression of IEGs is increased in relevant brain regions, such as the hippocampus, following 

learning paradigms (Melia et al., 1996). In addition to IEG expression being increased in brain 

regions associated with learning, it has been also demonstrated that acute alcohol exposure at 

levels that impair hippocampal-dependent learning also reduce the expression of many IEGs (for 

review see Ryabinin, 1998). For example, acute ethanol, at doses that block context dependent 

fear conditioning, significantly decreases hippocampal c-Fos expression. However, the reduction 

in c-Fos expression was selective in that cortical c-Fos expression was not significantly 

decreased (Melia et al., 1996). Acute ethanol doses that produce cognitive deficits also 

significantly reduce hippocampal extracellular glutamate levels but do not alter cerebellar 

extracellular glutamate levels (Shimizu et al., 1998), further demonstrating that acute ethanol 

may selectively impact hippocampal function.  These data support the notion that one function of 

acute intoxication is to alter neurological activity in the hippocampal system thereby degrading 

hippocampal allocentric memory and altering the cognitive hierarchy animals use to organize 

and guide behaviors.  

Electrophysiological studies of hippocampus and related structures have provided more 

direct evidence that acute ethanol degrades allocentric cognitive strategies by altering 

hippocampal function. Initially it was shown that acute ethanol dose dependently (0.75 g/kg to 

3.0 g/kg ethanol) decreases the spontaneous activity of medial septum/diagonal band of Broca 

(MS/DB) neurons (Givens & Breese, 1990). Importantly for the current discussion, the inhibition 

of spontaneous neural activity was selective in that the spontaneous activity of lateral septal 

neurons was not altered. Such an inhibition of MS/DB neurons may be important because this 

brain region projects directly to the hippocampus and drives the hippocampal theta rhythm (for 

review please see Oddie & Bland, 1998), an oscillatory hippocampal field potential that predicts 
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learning in cognitive tasks (for review see Berry & Hoffmann, 2011). As expected, acute ethanol, 

at doses that impair hippocampal-dependent learning and memory, also significantly suppressed 

hippocampal theta rhythm (Givens, 1995; Zhang et al., 2016). These data strongly suggest that 

one mechanism by which acute ethanol administration alters hippocampal-dependent learning 

and memory is by altering hippocampal neurophysiology (for an early review see Givens et al., 

2000).   Indeed, this alteration may be due to ethanol decreasing levels of acetylcholine in the 

hippocampus (Henn et al., 1998), a reduction that is correlated with spatial memory impairments 

(for review see Gold, 2003). In support of this hypothesis it has recently been shown that co-

administration of cholinesterase inhibitors that increase acetylcholine levels, can significantly 

reduce spatial memory impairments produced by acute ethanol administration (Gawel et al., 

2016).   

 Although studies demonstrating that ethanol alters hippocampal theta rhythm highlight 

the hippocampus as one potential brain region underlying the deleterious cognitive effects 

produced by the drug, multi-unit studies are more challenging to correlate directly with ongoing 

behavior thereby reducing the explanatory power of these electrophysiological studies. As 

previously mentioned, hippocampal pyramidal neurons have been shown to increase their firing 

rate when an animal is in a given spatial location. These neurons, termed place cells, are thought 

to provide, among other things, information about the animal’s location (see Best et al., 2001 for 

review). Therefore, if acute alcohol administration impairs spatial learning and memory, and 

hippocampal place cells respond to the spatial location of the animal, it seems reasonable to 

predict that acute alcohol should also alter the firing characteristics of hippocampal place cells in 

freely behaving animals. Indeed, as first reported in 1996, acute alcohol exposure at a dose (2.0 

g/kg) that reliably impairs spatial, but not non-spatial, memory disrupts the spatial specificity of 
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hippocampal place cells in awake, freely behaving rats (Matthews et al., 1996). The disruption in 

the neurons’ spatial specificity only occurs during intoxication and the integrity of the field is 

reestablished 24 hours later, which is an important finding given acute ethanol does not impair 

spatial memory 24 hours following exposure (Hoffmann & Matthews, 2002). Furthermore, the 

degradation in spatial specificity is dose and time dependent and driven primarily by a reduction 

in the firing frequency of the pyramidal neurons and not hippocampal interneurons (Ludwig et 

al., 1998; White & Best, 2000).   Although the number of studies investigating acute alcohol and 

single unit electrophysiology in awake freely behaving animals are few, they do provide the most 

direct evidence to support the hypothesis that alcohol is altering cognitive hierarchies by directly 

impairing hippocampal function and corresponding hippocampal dependent cognition. 

 

Potential Neurobiological Mechanism Underlying Acute Alcohol’s Effect in the Hippocampus:  

The mechanisms by which acute ethanol alters hippocampal neurophysiology and 

correspondingly degrades hippocampal-dependent cognition has yet to be completely elucidated. 

Based on a wealth of data, it is known that ethanol potentiates GABA inhibition and inhibits 

glutamate excitation in the medial septum and hippocampal brain regions (for reviews see 

Grobin et al., 1998; Kumar et al., 2009; Chandrasekar, 2013) suggesting these molecular effects 

as potential mechanisms of action. However, it is possible that ethanol produces its effect on 

hippocampal function indirectly via an endogenous modulator. Our laboratory, and several 

others, have investigated the ability of the neurosteroid allopregnanalone, a highly potent 

GABAergic modulator (Harrison et al., 1987; Morrow et al., 1987), to significantly degrade 

cognition dependent on the hippocampus due to acute ethanol administration.  
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 Acute ethanol increases levels of allopregnanolone in a dose and time dependent manner 

in a variety of brain regions including the hippocampus (Barbaccia et al., 1999; VanDoren et al., 

2000; Cook et. al., 2014). Interestingly, allopregnanolone formation and release in the 

hippocampus is not dependent on the adrenal cortex but instead appears to occur de novo (Sanna 

et al., 2004; Cook et al., 2014), supporting the hypothesis that ethanol induced release of 

allopregnanolone in the hippocampus is a critical factor underlying the cognitive impairments 

produced by ethanol. Initially studies replicated data demonstrating that acute ethanol 

administration inhibited the spontaneous activity of medial septal neurons and then demonstrated 

that pretreatment with the 5α-reductase inhibitor finasteride completely blocked ethanol induced 

inhibition of medial septal neurons (VanDoren et al., 2000). Although finasteride can impact a 

variety of steroid hormones (Van Doren et al., 2000; Werner et al., 2016) the initial studies 

motivated investigations to determine if allopregnanolone directly alters hippocampal 

neurophysiology; it was reported that acute allopregnanolone administration dose dependently 

inhibited the spontaneous activity of hippocampal pyramidal neurons and that pretreatment with 

finasteride blocked ethanol induced inhibition of hippocampal pyramidal neurons (Tokunaga et 

al., 2003). In addition, it was investigated if acute allopregananolone produced dose dependent 

impairments in hippocampal-dependent spatial memory in a manner similar to acute ethanol 

administration. Importantly, acute allopregnanolone and acute ethanol administration selectively 

impaired hippocampal-dependent memory (Matthews et al., 2002; Rabinowitz et al., 2014) and 

endogenous allopregnanolone levels correlated with ethanol-induced spatial memory impairment 

(Silvers et al., 2006). These data suggest that allopregnanolone increases produced by acute 

ethanol exposure are a viable candidate mechanism underlying ethanol induced deficits in 

hippocampal based learning and memory.  This hypothesis is supported by findings that ethanol-
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induced increases in hippocampal allopregnanolone mediate ethanol’s ability to reduce 

hippocampal LTP (Izumi et al., 2007; Ramachandran et al., 2015). However, to date, only one 

preliminary report directly investigates this by first pretreating animals with finasteride to reduce 

allopregnanolone levels then testing spatial memory following an acute ethanol challenge. As 

expected, finasteride reduced the well-established impairment in hippocampal-dependent spatial 

memory (Morrow et al., 2003). However, a full study of the effect awaits further 

experimentation.  

 While the use of finasteride has proven successful in identifying allopregnanolone levels 

as a contributing factor in ethanol’s effect on memory, finasteride impacts multiple neurosteroid 

rendering it less than an ideal pharmacological manipulation.  Adrenalectomy can also 

significantly reduced allopregnanolone levels in brain but once again this manipulation impacts 

multiple neurosteroids (O’Dell et al., 2004).  However, it is possible that specific genetic 

manipulations (in addition, please see next section of this paper) may be viable tools to explore 

the impact of allopregnanolone on ethanol-induced spatial memory impairments.  For example, 

the Srd5a1 gene encodes the enzyme 5α-reductase-1, a necessary enzyme for the formation of 

allopregnanolone.  While there is some work demonstrating that Srd5a1 knockout mice increase 

ethanol consumption (Ford et al., 2015) and have blunted ethanol effects on some components of 

the plus maze, the majority of ethanol’s effects are not different between the knockout and the 

wildtype mice (Tanchuck-Nipper et al., 2015).  Consequently, this knockout is not likely to be a 

viable tool to study ethanol’s memory impairing effects.  A second possibility is GABAA 

receptor δ knockout mice, a genetic manipulation that reduces the sensitivity to neurosteroids in 

both behavioral (Mihalek et al., 1999) and hippocampal electrophysiological studies (Stell et al., 

2003).  This strain of mouse demonstrates enhanced hippocampal-dependent trace fear 
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conditioning (Wiltgen et al., 2005) and blunted responses to some effects of acute ethanol 

(anticonvulsant effects) but normal effects to other ethanol effects (anxiolytic and hypothermia) 

(Mihalek et al., 2001).  It is possible that GABAA receptor δ knockout mice will show blunted 

ethanol-induced spatial memory impairments because increases in allopregnanolone will not 

produce as large a behavioral impact in the knockout mice compared to the control mice.  

Interestingly, THIP, a neurosteroid that modulates GABAergic receptors, has a blunted spatial 

memory impairment and decreased LTP in GABAA receptor δ knockout mice compared to 

wildtype mice (Whissell et al., 2013).  Based on these results it is critical to investigate if 

GABAA receptor δ knockout mice have reduced hippocampal dependent spatial memory 

impairments compared to wildtype animals. 

 

Impact of Genetics on Acute Alcohol and Hippocampal Memory:   

Understanding the genetic factors that influence the effect of acute alcohol on learning 

and memory is an understudied research field.  To investigate genetic influences on ethanol 

induced memory impairments, one initial tool used was to assessed the effects of ethanol in 

various genetically modified mouse lines. To date, research from the Matthews’ laboratory has 

proven relatively unsuccessful in identifying genetic factors important for ethanol’s effect on 

cognition. Specifically, GABAA receptor α1 reduction via two different genetic manipulations or 

GABAA receptor γ2 knockdown did not alter ethanol induced spatial memory impairments in the 

Morris water maze (Berry et al., 2008; Berry et al., 2009; Werner et al., 2006). Potential genetic 

underpinnings of ethanol on hippocampal dependent learning and memory have also proven 

elusive for other laboratories. For example, GABAA receptor α5 knockout mice display similar 

impairments in ethanol-induced contextual fear memory compared to wildtype littermates 
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(Martin et al., 2011), suggesting extrasynaptic GABAA receptors do not mediate ethanol’s 

cognitive impairing effects in the hippocampus. However, GABAA receptor α4 knockout mice 

display enhanced contextual learning compared to wildtypes (Cushman et al., 2011), which 

suggests that hippocampal-dependent learning and memory is impaired by the tonic inhibition 

mediated by α4δ* receptors (Moore et al., 2010; Wiltgen et al., 2005). Despite enhanced learning 

compared to wildtypes, α4 knockouts are more sensitive to ethanol induced contextual learning 

impairments (Cushman et al., 2011). This effect is likely driven by the upregulation of γ2 

subunits in α4 knockout mice, which leads to enhanced ethanol sensitivity in synaptic GABAA 

receptor currents (Liang et al., 2008).  

 Genetic manipulations involving NMDA receptor (NMDAR) phosphorylation have 

proven to be somewhat more successful in delineating mechanisms of ethanol induced memory 

impairments. Ethanol conveys some of its acute memory impairing effects through inhibition of 

NMDA receptor -mediated LTP (Lovinger et al., 1989; Morris et al., 1986). Ethanol induced 

inhibition of NMDAR-mediated LTP and associated behavioral impairment has been shown to 

be dependent on striatal-enriched protein tyrosine phosphatase (STEP), as ethanol does not 

inhibit NMDA receptor excitatory postsynaptic currents (EPSCs) or block LTP in CA1 

pyramidal neurons of STEP knockout mice (Hicklin et al., 2011). Furthermore, STEP knockout 

mice do not show ethanol -induced impairments in fear conditioning (Hicklin et al., 2011). These 

data demonstrate that STEP is a critical mechanism for ethanol’s inhibition of NMDAR EPSCs 

and LTP, and fear conditioning impairments.  Recently a mouse strain with a mutant GluN1 

subunit that is less sensitive to the effects of ethanol has been generated and while this knockin 

strain has altered ethanol responsiveness to some of ethanol’s effects, the effect of ethanol on 

cognition has yet to be investigated (den Hartog et al., 2013Zamudio-Bulcock et al., 2018). 
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 Additionally, genetic differences in ethanol metabolism, specifically involving 

acetaldehyde accumulation have been shown to affect hippocampal-dependent spatial memory. 

Specifically, aldehyde dehydrogenase 2 (Aldh2) knockout mice showed greater ethanol induced 

hippocampal memory impairments in the Morris water maze and radial arm maze compared to 

wildtypes (Jamal et al., 2012). These impairments are likely mediated by excess acetaldehyde 

(Quertemont et al., 2005) that accumulates after ethanol consumption as a result of Aldh2 

deficiency (Wall et al., 1997). A potentially similar effect is found in certain ethnicities.  For 

example, a genetic polymorphism that is prevalent among East Asians resulting in increased 

acetaldehyde levels carries increased health risks beyond abnormal ethanol reactions and 

metabolism, including increased risk for certain cancers (Cai et al., 2015), coronary artery 

disease (Gu & Li, 2014), anxiety and depression (Yoshimasu et al., 2015), among others (for 

review see Vasiliou & Pappa, 2000). 

 

Impact of Age on Acute Alcohol’s Hippocampal Dependent Memory Impairments:   

In the last decade, extensive research has investigated whether alcohol produces a greater 

cognitive impairment in adolescents compared to adults. The policy implications surrounding 

this are quite large given adolescents consume alcohol at alarming rates during a life-stage 

defined by cognitive effort, i.e., schooling. We have recently discussed this literature at length 

(Novier et al., 2015; section 5.2; Chin et al., 2010) and determined that it is an overstatement to 

conclude alcohol produces greater cognitive impairments in adolescents compared to adults.  

A recent paper provides some insight into factors that might account for many of the 

divergent results in this literature field. Specifically, Hunt and colleagues investigated the extent 

to which acute ethanol impaired trace fear condition or contextual fear conditioning in both 
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adolescent and adult animals. They report data demonstrating that alcohol produced a greater 

impairment in adolescents compared to adults in trace conditioning but adults were more 

impaired than adolescents in context conditioning. However, the effect found in trace 

conditioning was state dependent whereas the effect found in context conditioning was not state 

dependent (Hunt & Barnet, 2016). This paper demonstrates two important issues. First, 

generalized state dependent impairments, not specific cognitive impairments, may underlie some 

of the reports demonstrating that adolescents are more sensitive to the learning and/or memory 

impairing effects of acute alcohol, and secondly, it is incorrect to conclude the cognitive function 

of adolescents is always more impaired by alcohol than adults.  

 

Enhancement of Habit Learning following impairments in allocentric/goal learning:  

More than a decade ago we published a literature review where it was argued that acute alcohol 

is a suitable tool to study multiple memory systems (Matthews & Silvers, 2004).  In making this 

argument, we capitalized on the work of others (e.g., Lynn Nadel, Paul Gold, Norman White and 

Mark Packard to name a few) to argue that a “hierarchy” of cognitive functions exist where 

alcohol selectively impaired one of the first engaged levels of the hierarchy, namely processes 

engaging the hippocampal system, therefore augmenting the importance of other, less affected, 

levels, e.g., the striatal system, to control behavior.  We believe this may be an important factor 

in explaining one of the early mechanisms underlying the development of alcohol addiction. 

As previously described, acute ethanol will impair hippocampal-dependent cognition, 

and, consequently, result in a facilitation in caudate/striatal memory (Matthews et al., 1999).  In 

that particular study, acute ethanol decreased the use of spatial memory and increased the use of 

cue memory.  It is interesting to speculate that acute ethanol was decreasing allocentric directed 
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behavior and increasing egocentric based behavior.  If true, acute alcohol might produce a 

“cognitive switch” that reflects the underlying change in the typical hierarchy of cognitive 

control of learning; repeated alcohol exposure may facilitate reliance on the cognitive switch 

such that the compromised learning can contribute to the progression of alcohol addiction.  

Research in the last decade coupled with advancements in theoretical frameworks have 

begun to delineate this potential cognitive switch (for an early review of this field please see 

Belleine et al., 2007). As outlined in a recent review of the literature (Gremel & Lovinger, 2018) 

three neural circuits are potentially critical to the formation of and maintenance of an AUD. 

While all three circuits operate in parallel during behavior, the limbic circuit, including the 

hippocampus, initially direct ongoing behavior.  However, if damage to the limbic circuit occurs, 

such as the prefrontal cortex, rodents learn tasks based on the sensorimotor circuit (Balleine & 

Dickinson, 1998; Corbit & Balleine, 2003).  In a potential extension of this to the current field of 

interest, as acute ethanol exposure inhibits the functionality of the limbic circuit (see above), the 

functionality of the associative circuit, including the dorsal medial striatum, and the sensorimotor 

circuit, including the dorsal lateral striatum, become more prominent.  Repeated ethanol 

exposures over time continue to suppress the limbic circuit while facilitating the formation of 

habitual learning thereby shifting behavioral control to the dorsal lateral striatum and the 

sensorimotor loop.  The individual is then at risk of an AUD as reward devaluation produced by 

loss of hedonic effects of the drug lose the power to inhibit habitual behavior.  This theory of 

AUD development is supported by work showing that inactivation of the dorsal medial striatum 

produces responding that is insensitive to reward devaluation and is habitual (Yin, 2005a,b).  

Excitingly, research is beginning to support this framework by using experimental designs that 

focus ethanol seeking and intake on non-spatial and/or response driven cues. 
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The potential importance of non-spatial cues in alcohol research has been studied in work 

showing that cues, such as a tone or light, could enhance alcohol self-administration in operant 

tasks (Corbit & Janak, 2007). Indeed, habit formation and habitual responding is strengthened by 

alcohol exposure (Mangieri et al., 2012, for an excellent review see O’Tousa & Grahame, 2014; 

Corbit et al., 2012) and might reflect ethanol exposure enhancing neurological systems 

supporting habitual learning (Corbit et al., 2012).  In support of this, it has been shown that the 

VTA is important for initiating Pavlovian, habitual learning (Corbit et al., 2007) with the dorsal 

lateral striatum and dorsal medial striatum playing a critical role in Pavlovian instrumental 

transfer selectivity (Corbit and Janak, 2007; Corbit and Janak, 2010; for review see Corbit & 

Janak, 2016).   However, Pavlovian instrumental transfer tasks can be confounded with limbic 

circuit function (Pascoli et al., 2015).  For example, reduction in ventral tegmental area 

activation can result in nonspecific reduced motivated responding and therefore confound a 

straightforward habit-response conclusion (Corit and Janak, 2007; 2010; 2016).  Research 

utilizing self-paced instrumental tasks have highlighted the initial importance of the associative 

and sensorimotor circuits.  Firstly, self-paced instrumental tasks has shown that both the 

associative and sensorimotor circuits are involved early in learning (Yin et al., 2005; 2006) and, 

secondly, can support sufficient learning to investigate drug related conditions (Yin et al., 2004; 

Gremel & Costa, 2013).  Importantly, a recent paper strongly supports the notion that alcohol 

impacting hierarchical organization of cognition via a cognitive switch may underlie addiction.  

Specifically, chronic ethanol exposure (granted, a “chronic” study in a review of the effects of 

acute alcohol) decreases the excitable input from the orbital frontal cortex (limbic circuit) to the 

dorsal medial striatum (associative cortex).  The result of this is an increase in the behavioral 
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control of the dorsal lateral striatum (sensorimotor circuit) resulting in an increase in habitual 

responding (Renteria et al., 2018).   

The direct research from both Pavlovian instrumental transfer studies and self-paced 

instrumental studies demonstrating that alcohol exposure (both acute and chronic) can facilitate 

egocentric, habitual learning, supports the proposed cognitive switch to striatal function from 

cortical-hippocampal function following alcohol exposure.  For example, intravenous alcohol 

increases fMRI activation of the striatum in humans undergoing a simulated risky gambling task 

(Gilman et al., 2012).  In addition, low doses of alcohol do not alter caudate multiple unit activity 

but do alter hippocampal multiple unit activity recorded in rabbits (Klemm et al., 1976).  

Consequently, it is possible that acute alcohol produces a differential neurophysiological effect 

between striatal and hippocampal regions resulting in a “cognitive switch” from goal directed to 

response directed (or habit-based) behavior.  The switch from goal-directed to habit-based 

responding can be controlled by the presence of learned contextual cues in the former switching 

to specific reinforcement history in the later that dynamically regulate the synaptic efficacy of 

orbitofrontal cortical projections to the dorsal striatum (Gremel et al., 2016; as it relates to 

alcohol altering orbitofrontal-mediated learning [reversal learning] in rhesus macaques please see 

Jedema et al., 2011). This switch involving regulation of competing circuits that control goal-

directed behaviors may set the stage for the first step in risky alcohol use.  Recently, this 

hypothesis has received strong support from studies investigating the impact of the µ-opioid 

system in the dorsal striatum as it relates to ethanol exposure (Munoz et al., 2018).  Specifically 

this research team demonstrated that a short 3-day binge of ethanol selectively impaired 

corticostiratal µ-opioid receptor-mediated long-term depression that occurs exclusively at the 

synapses of anterior insula to dorsal lateral striatal inputs.  This selective functional ablation of 
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LTD plasticity might prime at-risk individuals to seek additional ethanol consumption 

opportunities.  While the exact neuroantamical circuit underlying the altered neurophysiology is 

to be determined, it does appear that cortical anterior insular neurons are critical (Munoz et al., 

2018; Renteria et al., 2018).  Thus it is likely that alcohol facilitates a cognitive switch from 

allocentric, hippocampal function to egocentric, dorsal striatal function that increases habit 

learning at the expense of other types of learning thereby increasing the likelihood of developing 

an alcohol use disorder. 

 From the research discussed herein, it is clear that moderate to high doses of ethanol, 

from 1.5 g/kg to 2.5 g/kg produce consistent impairments in hippocampal functioning. Lower 

doses of 0.5 g/kg have been shown to facilitate spatial working memory under challenging task 

conditions; but for the most part, doses between 0.25 and 0.75 g/kg do not produce reliable 

effects on hippocampal functioning. The effects of doses falling between these ranges are task 

dependent (see table 1). Overall, acute alcohol produces selective impairments in hippocampal-

dependent cognition due to a variety of factors, including direct alterations in hippocampal 

neurophysiology. This reduction in hippocampal-dependent cognitive function facilitates the 

enhancement of striatal function producing habitual alcohol responding.  However, despite the 

depth and breadth of research on ethanol’s effects on the hippocampus, there are areas where 

gaps in knowledge remain to be bridged as well as somewhat controversial areas where a 

consensus has yet to be reached. 

Cerebellum 

Until relatively recently the primary function of the cerebellum was thought to be motor 

planning and execution; however, research starting in the 1980s suggested the cerebellum had a 

nonmotor function, including cognition, emotion, and even social behavior and reward through 
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both anatomical and functional associations with the cerebrum (for reviews, see Buckner, 2013; 

Strick et al., 2009; Schmahmann, 2004; Roger et al., 2011; Carta et al., 2019 ). Given the 

interface of the motor output and cognitive function that exists in cerebellar function, it is an 

important brain region to explore in relation to potentially supporting a cognitive switch from 

allocentrentic cognition via hippocampal function to egocentric, habitual cognition via striatal 

function. 

The importance of cerebellar circuitry in classical eyeblink conditioning, a form of 

associative motor learning, has been well documented in a variety of animals (Chen et al., 1996; 

Lavond & Steinmetz, 1989; McCormick & Thompson, 1984; Perrett et al., 1993; Skelton, 1988; 

Sun, 2012), as well as humans (Daum et al., 1993; Lye et al., 1988; Solomon et al., 1989; Topka 

et al., 1993; Chen et al., 2008). In this pavlovian procedure an unconditioned stimulus that elicits 

an eyeblink, such as a puff of air or periorbital shock, is slightly preceded by a tone or light 

conditioned stimulus and both stimuli co-terminate. Through repeated pairings, the tone, or 

conditioned stimulus, becomes predictive of the unconditioned stimulus, and an eyeblink will 

come to be elicited in response to the tone alone. As recently reviewed (Cheng et al., 2015), this 

paradigm has been used to study cerebellar learning deficits produced by chronic ethanol use 

(McGlinchey-Berroth et al., 1995; McGlinchey et al., 2005) and neonatal ethanol exposure 

(Brown et al., 2007; Green, 2003; Green et al., 2000; Jacobson et al., 2011; Stanton & Goodlett, 

1998; Wagner et al., 2013). However, despite the implication that the cerebellar cortex is one of 

the most sensitive to acute ethanol administration as assessed by multiple-unit electrode activity 

(Klemm et al., 1976), comparatively little research has been conducted on the impact of acute 

ethanol on classical eyeblink conditioning.  In particular, studies using task variants that can 

probe relative contributions of cerebellar cortex (manipulations of CS-US intervals to assess 
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timing control) or variants probing cerebellar- vs. cerebellar/hippocampal-dependent learning 

(delay vs. trace conditioning) are generally lacking.  

There are some historical data in humans, but the results are mixed. In the first paper to 

investigate the impact of acute ethanol on eyeblink classical conditioning, acute ethanol did not 

impact the acquisition of the eyeblink conditioned response (Franks, 1963). In this study, 

participants that received ethanol had an average blood alcohol concentration (BAC) of 86 

mg/dL and 80 mg/dL before and after conditioning, respectively. Importantly, all participants, 

including the control group (i.e., a group given a glass of soda lightly layered with 5mL of 

whiskey), reported that they had received ethanol. Given that certain effects of ethanol are 

suggestible based on alcohol-related expectancies (Monk & Heim, 2013), there may not have 

been a no treatment (i.e., a group that drank no solution) control group present in the study to 

provide a reliable baseline comparison. In contrast, a second report found that ethanol dose 

dependently suppressed conditioned response acquisition and blink amplitude at mean BACs of 

49, and 99 mg/dL (Hobson, 1966). This dose-dependent suppression of conditioned response 

acquisition has been replicated in rabbits with doses of 0.375, 0.75, and 1.5 g/kg of ethanol 

delivered intragastrically (Hernandez et  al., 1986), which produced BACs of 28.3, 82.6 and 

190.2 mg/dL, respectively. However, only the highest two ethanol doses suppressed conditioned 

responding, with no effect at the lowest dose of ethanol. Although 0.375 g/kg ethanol produced 

no effect on percent eyeblink conditioned responses, animals that received this dose had greater 

eyeblink amplitudes at the final training session, indicating conditioned responding may be 

slightly facilitated by a low dose of ethanol (Hernandez & Powell, 1986).  

At certain doses, ethanol also produces a state dependent effect on conditioned response 

extinction (Hernandez & Powell, 1986; Hernandez et al., 1986). Specifically, rabbits that 
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received 0.375 g/kg ethanol during both training and extinction (ethanol/ethanol) exhibited the 

greatest eyeblink amplitude compared to rabbits that received ethanol/water, water/ethanol, and 

water/water during training/extinction, respectively (Hernandez & Powell, 1986). Furthermore, 

rabbits that received opposing doses during training and extinction (water/ethanol, ethanol/water) 

had a higher percentage of eyeblink conditioned responses during extinction than the state-

congruent water/water or ethanol/ethanol groups. Rabbits trained with a higher dose of 0.75 g/kg 

ethanol had more eyeblink conditioned responses during extinction, independently of the drug 

received during extinction, indicating prior ethanol exposure delayed extinction despite the 

ethanol-induced suppression of response at this dose (Hernandez et al., 1986). Rabbits that 

received the highest dose, 1.5 g/kg, during training extinguished to the same level as those that 

received water during training, although the ethanol-induced suppressive effect of this dose was 

so great that there may be a floor effect present (Hernandez et al., 1986). In sum, ethanol’s 

effects on the behavioral manifestations of cerebellar learning appear to be dose dependent, such 

that low doses of ethanol facilitate certain aspects of eyeblink conditioned response acquisition, 

while moderate to high doses impair learning. Additionally, extinction is delayed in general 

during the training or extinction trials.  

While the research on the overt behavioral effects of ethanol on cerebellar-dependent 

learning is limited, more studies have focused on the synaptic and electrophysiological changes 

produced by ethanol on the cerebellar learning circuits. Motor skill learning is associated with 

structural and functional adaptations of the cerebellar cortex, including increased synaptogenesis 

onto Purkinje cells (Black et al., 1990; Kleim et al., 1996; Kleim et al., 1998). Increased 

synaptogenesis is specific to motor skill learning, such as tasks requiring balance and fine motor 

skill, and is distinct from the angiogenesis caused from increased motor activity, including 
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running on a treadmill or running wheel (Black et al., 1990). Cerebellar plasticity also occurs in 

conjunction with associative learning in the eyeblink conditioning paradigm. During conditioned 

eyeblink training, climbing fibers relay information about the unconditioned stimulus, while 

parallel fibers transmit information regarding the conditioned stimulus (Thompson, 1986, 1990). 

Ultimately, these two fibers converge concurrently onto the same Purkinje cell and these 

plasticity mechanisms, including parallel fiber long-term depression (LTD) and long-term 

potentiation (LTP), alter Purkinje cell firing (Ito, 1989; Jorntell & Hansel, 2006; Kalmbach et al., 

2010; Valenzuela et al., 2010). LTD at the parallel fiber-Purkinje cell synapse represents a well-

accepted cellular mechanism underlying motor learning (Ito, 1986; Jorntell & Hansel, 2006; 

Valenzuela et al., 2010); however, LTD at this synapse requires concurrent activation of the 

parallel and climbing fibers (Chen & Thompson, 1995; Ito & Kano, 1982). In contrast to 

conditioned response acquisition, extinction of the conditioned response is mediated by parallel 

fiber LTP (Jorntell & Hansel, 2006) and climbing fiber inhibition (Medina et al., 2002).  

Acute ethanol impairs the cerebellar synaptic plasticity described above (Valenzuela et 

al., 2010). In the case of parallel fibers, application of acute ethanol impairs the induction of 

parallel fiber LTD, but not LTP (Belmeguenai et al., 2008). The blockade appears to be partially 

mediated by parallel fiber mGluR1-activated excitatory postsynaptic currents, which are 

attenuated by moderately high extracellular concentrations of ethanol (50-80 mM) but not a 

lower concentration (20 mM) (Belmeguenai et al., 2008; Su et al., 2010).  

Parallel fiber LTD can also be affected by action at the climbing fibers (He et al., 2013), 

and climbing fiber-related cerebellar plasticity is also affected by acute ethanol. Low 

concentrations of ethanol selectively impair climbing fiber evoked NMDAR-mediated excitatory 

postsynaptic currents (EPSCs) of Purkinje cells, but do not alter parallel fiber EPSCs (He et al., 
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2013). These results indicate that altered NMDA receptor activity at the climbing fiber-Purkinje 

cell synapse may be the mechanism of action for low dose ethanol induced inhibition of 

cerebellar plasticity, as low (10 mM) and higher (50 mM) concentrations of ethanol dose 

dependently inhibit NMDAR-mediated EPSCs and LTD at parallel fiber-Purkinje cell synapse 

(He et al., 2013). However, it is likely such concentration dependent effects depend on a variety 

of factors including brain region.  Additionally, higher concentrations of ethanol inhibit climbing 

fiber LTD through inhibition of mGluR1-activated EPSCs evoked by climbing fiber stimulation, 

which could have an indirect effect on parallel fiber-Purkinje cell LTD (Carta et al., 2006). These 

studies highlight the importance of glutamate in cerebellar synaptic plasticity, and suggest that 

the NMDA receptor may be the target for low dose ethanol LTD inhibition (He et al., 2013), 

while higher doses (50 mM, but not 20 mM) are required to affect mGluR-mediated LTD 

impairment (Belmeguenai et al., 2008; Carta et al., 2006). However, climbing fiber activation-

induced complex spikes are affected by a wide range of ethanol concentrations, 10-75 mM, 

which reduce the area under the curve approximately 10-25%, respectively (Carta et al., 2006).  

The ethanol induced changes in climbing fiber and parallel fiber activity described above 

ultimately alter Purkinje cell firing. As the sole output of the cerebellar cortex, Purkinje cells are 

an important target of ethanol’s effects (Chu, 1983; Franklin & Gruol, 1987; George & Chu, 

1984; Pauli et al., 1995; Phillips & Cragg, 1984; Urrutia & Gruol, 1992; Van Skike et al., 2010). 

Although LTD at the parallel fiber-Purkinje cell synapse is the representative cellular mechanism 

underlying motor learning (Ito, 1986), Purkinje cells themselves are an important component of 

eyeblink conditioning. In Purkinje cell degeneration (pcd) mice, which lack Purkinje cells and 

thereby lack efferent projections to the deep cerebellar nuclei, associative eyeblink conditioning 

was severely impaired in terms of frequency, amplitude and timing of acquired conditioned 
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responses (Chen et al., 1996).  Notably, acute ethanol exerts a biphasic response on Purkinje cell 

firing, with low doses administered systemically increasing the spontaneous activity of Purkinje 

cells and high doses inhibiting spontaneous activity (Chu, 1983). This mirrors the effect of 

ethanol on eyeblink conditioning in which low doses slightly facilitate (Hernandez & Powell, 

1986) and higher doses impair (Hernandez et al., 1986) the acquisition of the conditioned 

responding. Interestingly, Purkinje cells may not be required for extinction as the pcd mice 

exhibit proper extinction of the conditioned response (Chen et al., 1996).  

Another way in which Purkinje cells can directly contribute to cerebellar plasticity is 

through calcium signaling, which is an integral component of synaptic plasticity (Lamont & 

Weber, 2012). Climbing fiber activation produces a calcium transient in Purkinje cell dendrites 

(Knopfel et al., 1991; Ross & Werman, 1987) that is required for induction of parallel fiber LTD 

(Konnerth et al., 1992). These transients in Purkinje cells are generated by activation of voltage-

gated calcium channels (Knopfel et al., 1991; Ross & Werman, 1987), which are affected by 

application of acute ethanol. For instance, voltage-dependent calcium current amplitude is 

reduced by application of 50 mM, but not 20 mM, ethanol suggesting that only moderately high 

ethanol concentrations block Purkinje cell calcium currents and prevent the induction of parallel 

fiber-LTD (Belmeguenai et al., 2008). 

In summary, ethanol can inhibit cerebellar synaptic plasticity through a wide variety of 

mechanisms (Belmeguenai et al., 2008; Carta et al., 2006; He et al., 2013; Su et al., 2010), but 

ultimately impairs LTD at the parallel fiber-Purkinje cell synapse, considered to be the cellular 

correlate of cerebellar learning (Ito, 1986; Jorntell & Hansel, 2006; Valenzuela et al., 2010). 

Indeed, parallel fiber LTD has been shown to be directly related to eyeblink conditioning (Emi et 

al., 2013; Yuzaki, 2013), although there are some discrepancies (Schonewille et al., 2011). As 
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would be expected from the inhibition of parallel fiber LTD by ethanol, ethanol also impairs 

eyeblink conditioned response acquisition (Hernandez et al., 1986; Hobson, 1966), although a 

low dose of ethanol may slightly facilitate eyeblink responding (Hernandez & Powell, 1986). 

Ethanol also impairs extinction of the conditioned response (Hernandez & Powell, 1986; 

Hernandez et al., 1986), which is mediated by parallel fiber LTP (Jorntell & Hansel, 2006) and 

climbing fiber inhibition (Medina et al., 2002). Inconveniently, ethanol’s effects on the cellular 

components involved with extinction are the opposite of what the behavior would predict. 

Ethanol does not affect parallel fiber LTP (Belmeguenai et al., 2008) and climbing fibers are 

inhibited by ethanol (Carta et al., 2006; He et al., 2013), which should facilitate extinction in 

light of Medina et al., 2002. Nevertheless, this section demonstrates that ethanol generally 

inhibits cerebellar learning by inhibiting mechanisms of cerebellar plasticity. 

 

Amygdala 

The amygdala is involved in emotional learning and memory (LaBar & Cabeza, 2006), 

especially with enhanced reaction and recall of emotionally arousing material. For instance, 

blood oxygen level dependent activation in the right amygdala is greater for unpleasant words, 

compared to neutral words (Tabert et al., 2001). Additionally, an increased glucose metabolic 

rate is positively correlated with long-term recall of emotional, but not neutral, films (Cahill et 

al., 1996). In animals, the amygdala and its circuits are important for fear conditioning (Kim & 

Jung, 2006). An elegant series of pharmacological inactivation experiments indicate that the 

amygdala, while not necessary for innate fear responses, is critically involved in the formation of 

the learned fear response (Ribeiro et al., 2011). 
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Compared to contextual fear conditioning which is modulated by hippocampal function 

(Kim & Fanselow, 1992; Maren & Fanselow, 1997), cued fear conditioning, which modulated by 

amygdala function (Phillips & LeDoux, 1992; Fanselow & Poulos, 2005; Maren, 2008), is less 

susceptible to modulations by ethanol. Specifically, 1.0 g/kg and 1.5 g/kg ethanol suppressed 

cued conditioning by 9% and 17%, compared to 78% and 86% suppression in context 

conditioning (Melia et al., 1996). There is some evidence that ethanol’s effects on fear 

conditioning may be strain-dependent, and likely genetically influenced. For instance, acute 

withdrawal 6 hours after a single 4.0 g/kg ethanol exposure increases cued responses in DBA/2J 

mice, which are withdrawal-sensitive, but does not affect cued responding in C57BL6/6J mice, 

which are withdrawal-resistant (Tipps et al., 2015). However, acute intoxication has been shown 

to impact cued fear conditioning in C57BL6/6J mice, suggesting the effects of acute intoxication, 

as opposed to withdrawal, are not strain- or species- dependent.  

Although some studies do not report an ethanol induced impairment in cued fear 

conditioning (Melia et al., 1996; Weitemier & Ryabinin, 2003) or emotional cue recall (Ray et 

al., 2012), there is much evidence supporting ethanol induced modulation of emotional memory. 

Much like memory systems in the cerebellum and recall of explicit long term memories 

(discussed in the next section), ethanol has bidirectional effects depending on the timing of 

intoxication relative to learning. Specifically, 0.65 g/kg ethanol administration in humans 

facilitates recall for material that was viewed before intoxication and decreases recall for 

material acquired after ethanol consumption. Additionally, there is a greater retrograde 

facilitation and anterograde impairment for emotional compared to neutral material (Knowles & 

Duka, 2004), suggesting that the amygdala and its circuits are affected by acute alcohol. This has 

also been shown in mice with 0.25 g/kg ethanol producing a retrograde enhancement, and 1.0 
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and 1.5 g/kg ethanol yielding an anterograde impairment of the cued fear response (Gulick & 

Gould, 2008). Studies in mice suggest that 1.0 and 1.5 g/kg ethanol administration may alter the 

encoding or acquisition of cued fear conditioning, as ethanol given prior to training disrupts cued 

conditioning, whereas ethanol intoxication after training or during testing does not impact the 

cued fear response (Gould, 2003; Gulick & Gould, 2007). The impaired encoding produced by 

1.0 g/kg ethanol impairs long-term cued fear memory for at least one week (Gulick & Gould, 

2007). Interestingly, studies investigating the effects of acute ethanol exposure on cued fear 

conditioning in rats are sparser than those conducted in mice, and may have opposing results. 

This could be due to an effect discovered in a recent study where 1.5 g/kg ethanol administration 

in Sprague Dawley rats disrupts cued fear acquisition and conditioning, but cued fear deficits 

were not present when baseline freezing differences were controlled (Broadwater & Spear, 

2013). 

Although the evidence is somewhat mixed, acute ethanol (Gould, 2003; Gulick & Gould, 

2008; Knowles & Duka, 2004) and acute withdrawal (Tipps et al., 2015) appear to impact fear 

conditioned and emotional memories, which are modulated by the amygdala. Specifically, 

ethanol produces a retrograde facilitation and anterograde impairment of emotional memories in 

both humans (Knowles & Duka, 2004) and mice (Gulick & Gould, 2008). These data caution 

against drinking to alleviate depression, anxiety, or frustration, as ethanol actually facilitates 

recall of emotional memories acquired before intoxication, rather than relieving one’s emotional 

ailments. Additionally, ethanol appears to exert its short- and long-term anterograde memory 

impairment through disrupted acquisition or encoding (Gould, 2003; Gulick & Gould, 2007), 

rather than interfering with retrieval.  
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Acute Ethanol and Human Memory 

Alcohol produces differential effects on human memory stores that are dependent on 

many factors including quantity, metabolism, rising or falling phase of intoxication, timing of 

alcohol relative to learning and recall, and the type of memory considered. For this section, it is 

assumed that all participants in the studies reviewed have some prior alcohol experience, so the 

acute effects of alcohol on memory will be defined as those which occur within a single 

laboratory-controlled drinking episode in moderate alcohol consumers unless otherwise noted. 

Since alcohol has specific effects on different memory stores, this section will review alcohol’s 

effects on various types of short- and long-term memories. 

 Working memory is the temporary maintenance of a finite amount of information over a 

period of several seconds, in such a way that the information can be processed and manipulated. 

Alcohol dose dependently and selectively impairs certain aspects of working memory. For 

instance, a moderate dose of alcohol resulting in a BAC of 70 and 90 mg/dL impairs working 

memory capacity in participants with high, but not low, working memory capacity (Finn et al., 

1999). This impairment is likely driven by ethanol’s selective impairment on mnemonic 

strategies needed for encoding and retention rather than a decreased working memory capacity 

(Saults et al., 2007). Furthermore, alcohol induced memory impairments are dependent on age, 

such that older participants aged 55-70 years displayed greater working memory impairment at a 

BAC of 65 mg/dL compared to younger participants aged 25-35 years (Boissoneault et al., 

2014). 

 Additionally, alcohol may impair visual-spatial working memory, particularly on the 

descending limb of the BAC curve at concentrations near the legal limit. For instance, alcohol 

impairs performance on a visual-spatial working memory task during the falling phase of BAC 
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from 90 to 80 mg/dL (Schweizer et al., 2006), however, a different visual-spatial working 

memory task conducted during the descending limb at an average BAC of approximately 65 

mg/dL and did not detect any impairment in visual-spatial working memory (Paulus et al., 2006). 

A slightly lower mean BAC of 59 mg/dL does not impair spatial working memory, but impairs 

spatial recognition (Weissenborn & Duka, 2003). Collectively, these data indicate that spatial 

working memory may be spared by ethanol at mild concentrations, but could be impaired at 

BACs nearing the legal limit. 

 As previously alluded to, some working memory impairments are dependent on the phase 

of ethanol metabolism and are specific to the ascending or descending phases of the BAC curve 

(Söderlund et al., 2005). This phenomenon is termed acute functional tolerance, which develops 

within a single drinking session and is characterized by greater impairment on the ascending 

phase compared to the equivalent BAC on the descending phase (Wallace et al., 2006). In a task 

of working memory, intoxication at BACs of 68 and 80 mg/dL results in slower reaction time 

and increased errors during the rising phase of alcohol intoxication. However, the effects of 

declining BAC on these measures is divergent. Acute functional tolerance develops for reaction 

time, indicated by a recovery of impairment during declining BACs; whereas tolerance does not 

develop to working memory errors, which were still increased compared to control participants 

at BACs of 73 and 64 mg/dL (Grattan-Miscio & Vogel-Sprott, 2005). This pattern of tolerance to 

reaction time, but not to accuracy exists for several different cognitive functions, including 

inhibition, information processing, and working memory (as reviewed in Schweizer & Vogel-

Sprott, 2008). Curiously, certain types of working memory show ethanol induced impairments 

only on the descending phase of the BAC curve, but not during the ascending phase, such as the 

accuracy of visual memory and visual-spatial memory (Schweizer et al., 2006). Importantly, 
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these data indicate that there are contributors other than BAC levels to alcohol induced memory 

impairments, as BAC alone does not always predict the level of impairment. Additionally, 

tolerance is not a global phenomenon; rather tolerance is specific to the type of memory that is 

being considered.  

 Situational or environmental factors may be able to regulate intentional control of 

intoxication states, as certain effects of ethanol on working memory can be modulated by the 

presence of a reward. Specifically, the alcohol induced deficit in reaction time can be completely 

countered by a monetary reward, but accuracy is still impaired despite the presence of an 

incentive (Grattan-Miscio & Vogel-Sprott, 2005). This effect, along with the lack of acute 

functional tolerance for errors of working memory, indicates that the accuracy of short-term 

memory may be particularly sensitive to ethanol induced impairments. Given that these effects 

occur below the current legal limit (64-80 mg/dL), there are safety implications that should be 

considered for driving at these BAC levels. 

 Acute alcohol also affects several different aspects of long-term memory, which is 

comprised of implicit (non-declarative) and explicit (declarative) memories. Implicit memories 

do not require conscious effort for recall and include procedural memories for performing 

actions, familiarity, and priming, where prior experience influences current performance. 

Alcohol consumption differentially affects implicit and explicit memories. For instance, 

participants learned a task while intoxicated, 60 minutes after consuming either 0.3 or 0.6 g/kg 

ethanol, and were given tests of explicit memory, measured by free recall, and implicit memory, 

assessed by backwards-reading and word completion. Both doses of ethanol impaired explicit 

memory, but not did not impair implicit memory (Lister et al., 1991). Although alcohol 

administered prior to encoding does not affect the accuracy of implicit memories, it does reduce 
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awareness of these memories (Duka et al., 2001).  The selective deficit of alcohol on explicit 

memory while sparing implicit memory has strong parallels to rodent data previously reviewed 

where ethanol selectively impaired allocentric memory while sparing (and perhaps facilitating) 

egocentric, habit based memory.  Specifically, the selective impairment of explicit memory in 

humans and allocentric memory in rodents would result in an increased reliance on egocentric 

memory in rodents and intrinsic memory in humans, habitual memory strategies that can occur 

without conscious recollection.  The development of an alcohol use disorder therefore would be 

the resultant cognitive switch from limbic system function to striatal system function.  

Priming tasks are excellent experimental manipulations to test this hypothesis because 

they measure the transfer from prior memories that are not dependent on conscious recall 

(Roediger, 1990) and are another way to assess implicit memory. Alcohol-related implicit 

priming cues increase alcohol consumption in a laboratory setting (Roehrich & Goldman, 1995) 

exactly as would be predicted. However, implicit alcohol expectancies are not changed by BACs 

of 75 to 80 mg/dL as measured with the Implicit Associations Test in current drinkers (Pedersen 

et al., 2011). In contrast, at a BAC of 40 mg/dL, risky drinkers showed increased response time 

toward positive alcohol outcomes compared to negative outcomes (Palfai & Ostafin, 2003). 

These implicit cognitions regarding alcohol expectancies are important contributors to drinking 

behavior, as implicit expectations predict alcohol consumption along with explicit expectations 

(Stacy, 1997). It follows that heavy drinkers have stronger positive implicit associations for 

alcohol expectancies than lighter drinkers (Palfai & Ostafin, 2003; Pedersen et al., 2011; Wiers 

et al., 2002). In summary, it appears that alcohol intoxication does not directly impair implicit 

memory, although it can reduce awareness of these memories. Additionally, acute alcohol 
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intoxication only affects implicit alcohol expectancies in risky drinkers, but does not change 

implicit expectancies in moderate alcohol consumers. 

 Explicit or declarative memories are memories that can be consciously recalled, and fall 

into two main categories: episodic and semantic and would expected to be impaired by alcohol. 

Episodic memory is a type of long-term memory for specific events and the temporal-spatial 

relationships among different events, while semantic memory is used for language (Tulving, 

1972). The difference between these two types of memory stores is difficult to distinguish in a 

laboratory setting, leading some to argue against a functional separation of the episodic and 

semantic memory systems (McKoon & Ratcliff, 1979); therefore, explicit memory will be 

considered as a whole in this section.  

Perhaps the most obvious impairment of explicit memory comes from ethanol induced 

blackouts. These blackouts can be either fragmentary, where only certain memories are lost and 

may be retrievable with sufficient cuing, or en bloc, in which ethanol induced amnesia for the 

intoxication period is permanent (Lee et al., 2009). En bloc blackouts are less common than 

fragmentary blackouts, but the rate of occurrence for both types of blackouts increases with 

increasing BAC (Hartzler & Fromme, 2003). However, fragmentary blackouts can occur with 

estimated BACs below the legal limit (Hartzler & Fromme, 2003). Additionally, some 

individuals, without sober memory deficits, may be more vulnerable to alcohol induced 

blackouts: These individuals report blackouts at BACs that do not induce blackouts in others at 

the same BAC level (Wetherill & Fromme, 2011). Furthermore, alcohol has differential effects 

on blood oxygenation level-dependent (BOLD) activity during contextual recall in those with 

and without history of fragmentary blackouts, despite similar BOLD activation during recall 

when sober (Wetherill et al., 2012). Not only can alcohol prevent encoding for remembering 
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what has happened in the immediate past, it can also impair memory for future tasks, termed 

prospective memory. There are several different distinctions within this memory category, 

including time-based (remembering something to be done at a specific time) versus event-based 

(remembering to do the task itself) and regularly occurring tasks (medications) versus irregular 

occurrences (pick up the dry cleaning). Acute alcohol intoxication impairs all types of 

prospective memory (Leitz et al., 2009). 

 Alcohol differentially impacts explicit memory based on whether the alcohol is 

consumed before or after learning. For instance, when participants were intoxicated at a BAC of 

70 mg/dL during an incidental learning task, free recall was impaired; however, this deficit could 

be countered by providing cues (Birnbaum et al., 1978). Additionally, free recall after 

intoxicated word learning was shown to be significantly impaired by BACs of 54 mg/dL, but not 

17 mg/dL (Lister et al., 1991). In contrast, when free recall and paired-associate lists were 

learned sober, intoxicated free recall after a one week delay was similar compared to people who 

both learned and recalled sober (Birnbaum et al., 1978). Similarly, consumption of 0.65 g/kg 

alcohol facilitates emotional memory for images seen before intoxication, and impairs memory 

for images presented after intoxication (Knowles & Duka, 2004). These data indicate that 

moderate intoxication during encoding negatively impacts recall, whereas intoxication at the 

time of retrieval is not impaired and may even be facilitated by ethanol. 

 Additionally, ethanol has been shown to enhance other aspects of episodic memory 

involving recognition, as ethanol intoxication yielding a BAC of 80 mg/dL can retroactively 

enhance memory for recent information acquired when given immediately after sober learning 

(Parker et al., 1980), and this effect can occur with BACs as low as 34 mg/dL (Parker et al., 

1981). Furthermore, BACs of 80 mg/dL were associated with enhanced free- and cued- word 
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recall 24 hours after an incidental learning task (Parker et al., 1980). This retroactive memory 

enhancement has been attributed to enhanced trace consolidation (Parker et al., 1981) and 

reduced acquisition of interfering memories (Hewitt et al., 1996; Mueller et al., 1983). 

Collectively, these studies show that ethanol does not produce a global memory impairment, and 

can in fact facilitate some aspects of long-term memory. 

At a neurological level, impaired encoding is associated with reduced activity in various 

brain regions based on the type of information being encoded: Inactivation of the left inferior 

frontal gyrus for nonverbal information, reduced right middle frontal gyrus activity for objects, 

reduced activity of the right inferior frontal gyrus for face-name pairs, and reduced 

parahippocampal and fusiform gyri activity for objects were associated with impaired memory 

performance during intoxication (Söderlund et al., 2007). However, alcohol does not impair 

verbal encoding and memory, which corresponds to similar activation in both intoxicated and 

control participants of the left prefrontal regions during encoding (Söderlund et al., 2007). 

Impairment of other brain regions have also been implicated in the negative effects of acute 

alcohol on memory performance. In fact, alcohol intoxication with a mean peak BAC of 103 

mg/dL has been compared to memory deficits seen in patients with prefrontal lobe damage due 

to the alcohol induced impairments of executive functioning, including impaired working and 

perceptual memory (Peterson et al., 1990). In sum, alcohol alters brain function (Oscar-Berman 

& Marinković, 2007), which can manifest as impairments in learning and memory (Peterson et 

al., 1990; Söderlund et al., 2007). 

Collectively, these studies on ethanol-induced memory impairments show that acute 

ethanol does not produce a global memory impairment (see table 2 for summary). Regarding 

explicit long-term memory, alcohol intoxication impairs prospective memory (Leitz et al., 2009) 
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and memory encoding (Birnbaum et al., 1978; Lister et al., 1991), but facilitates retrieval (Parker 

et al., 1980) and does not affect long-term implicit memories (Lister et al., 1991). The 

differential effects on encoding compared to retrieval highlight that the timing of ethanol 

exposure relative to learning and recall is imperative in determining its effects. Similarly, various 

types of short-term working memory are differentially impaired by the different phases of 

ethanol metabolism (Schweizer et al., 2006), indicating that BAC alone does not predict 

alcohol’s effects. As outlined previously and supported in the reviewed human imaging studies, 

acute alcohol intoxication alters functioning of the limbic circuitry centered on the hippocampus 

and prefrontal lobs, particularly in the right hemisphere(Oscar-Berman & Marinković, 2007), 

which corresponds to impaired memory performance (Peterson et al., 1990; Söderlund et al., 

2007), and likely facilitates behavioral control of the sensorimotor circuitry. Additionally, 

several impairments in both short- and long- term memory occur below the current legal limit in 

the United States of 80 mg/dL (see table 2), indicating that this BAC should not necessarily be 

considered a safe level of intoxication.  

 

Conclusions and Future Directions  

Acute alcohol exposure alters multiple memory systems and likely produces these effects 

by altering neural function through a variety of mechanisms that are dependent on dose, brain 

region, task demands, and timing of ethanol exposure relative to training and testing (see Tables 

1 and 2 for summary). Additionally, individual sensitivities to the intoxicating effects of ethanol 

are dependent on genetics, pharmacokinetics, pharmacodynamics, tolerance, and social factors, 

among others.  
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The hippocampus has received much attention due to its particular vulnerability to 

ethanol-induced impairments of behavior and neural function and its importance in learning and 

memory. With the exception of certain types of challenging spatial working memory tasks, 

ethanol produces dose dependent impairments in hippocampal based learning and memory tasks 

regardless of the motivational, behavioral, or temporal nature of the experimental procedure. In 

addition, it has been determined that there are at least two mechanisms by which ethanol 

produces these impairments: 1. Through altering medial septal acetylcholine and GABAergic 

projections into the hippocampus and 2. By increasing allopregnanolone levels directly in the 

hippocampus. 

 Alcohol was known to impair cerebellar functioning long before the cognitive functions 

of the cerebellum were appreciated and received extensive study. Cerebellar synaptic plasticity is 

impaired by alcohol through a wide variety of mechanisms, including inhibiting LTD at the 

parallel fiber-Purkinje cell synapse, which is considered to be the cellular correlate of cerebellar 

learning (Ito, 1986; Jorntell & Hansel, 2006; He et al., 2013; Su et al., 2010). Mirroring this 

effect, moderate to high doses of ethanol also impair the acquisition of conditioned eyeblink 

responding (Hernandez et al., 1986; Hobson, 1966). Together, the data indicate that ethanol 

likely impairs cerebellar learning by inhibiting mechanisms of cerebellar plasticity. 

 Although discrepancies have been found regarding amygdala dependent fear 

conditioning, there is some evidence in both animal models and humans that ethanol produces a 

retrograde facilitation and anterograde impairment of fear conditioned and emotional memories 

(Gulick & Gould 2008; Knowles & Duka, 2004). This bidirectional effect is similar to alcohol’s 

effects on explicit long-term memory: intoxication impairs prospective memory (Leitz et al., 
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2009) and memory encoding (Birnbaum et al., 1978; Lister et al., 1991), but facilitates retrieval 

(Parker et al., 1980). Therefore, alcohol does not produce global memory impairments.  

 While much is currently known about the effects of acute alcohol on learning and 

memory, several issues remain unknown and are in need of additional investigation. Fortunately, 

research has progressed to the point where specific studies can be proposed and predicted results 

can be hypothesized.  For example, additional studies are needed that directly investigate the 

effect of ethanol on cognition while neural activity is being concomitantly recorded. Although 

these studies are technologically difficult and time consuming, the marrying of ongoing brain 

activity with behavior is needed to more fully understand how alcohol impairs cognition.  

 Specifically, it is well known that acute alcohol administration produces impairments in 

hippocampal-dependent spatial memory tasks without producing impairments in caudate 

dependent non-spatial tasks.  In addition, recent research has shown that spatial memory in 

adolescent and adult animals, compared to aged animals, is less impaired by acute alcohol 

exposure.   Based on these previous findings, if animals of different ages (adolescent, adult and 

aged) are trained on a task that can be performed using either spatial (hippocampal dependent) or 

non spatial (caudate dependent) strategies while the neural activity of hippocampal and caudate 

neurons are recorded, it can be predicted that acute alcohol exposure will produce significantly 

greater alterations in the neural activity of hippocampal neurons compared to caudate neurons 

and the greater alterations will significantly correlate with animal age.  In more general terms, 

the research field has progressed to the point of predicting results based on brain region, age and 

task. 

Secondly, almost no informative genetic work has been accomplished on ethanol’s ability 

to impair learning and memory. With the development of consomic and recombinant inbred 
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mouse strains such as the BxD strains, rapid understanding of candidate genes underlying 

ethanol’s ability to alter cognition could occur. Third, it is important to determine the parameters 

of when acute alcohol produces greater, or less, cognitive impairments in adolescents compared 

to adults. The potential government policy issues related to this issue is of great importance, but 

currently little agreement exists in the field and work should more systematically address this 

issue.  Fourth, advanced behavioral studies need to be conducted to more fully explore if acute 

alcohol exposure facilitates striatal-based, habit learning, at the expense of other types of 

learning, and assess the dynamics and mechanisms of such shifts from goal-directed to habit-

based behaviors (Gremel et al., 2016).  Of particular interest is whether the propensity to develop 

habit learning is genetically correlated with family history for alcohol use disorder (or in rodent 

selected lines, genetic predisposition for high voluntary alcohol drinking), and the extent to 

which facilitated habit formation depends on the history of alcohol use.  Finally, virtual 

techniques (e.g., virtual Morris water maze) exist for use with human subjects that are similar to 

techniques used in animal models. The use of these virtual techniques coupled with alcohol 

exposure will greatly bridge the animal and human work and allow for the field to become truly 

translational in nature. 

Alcohol is among the most used and abused drug in the world and has a profound impact 

on learning and memory.   Given the importance of cognition in the human life, better 

understanding of how alcohol impacts learning and memory throughout the lifespan is a critical 

and important research area.  Our hope is that be telling the story of where the field has been we 

will facilitate the development of exciting research strategies to fully understand the complex 

interaction of alcohol and cognition.  
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Table 1. Effects of ethanol on brain region dependent tasks. 
 

Brain Region Task Effective Doses Effect of Acute Alcohol Citations 

Hippocampus 

Spatial 
Working 
Memory 

0.5 g/kg, i.p. 
Low dose facilitation under challenging 

task conditions 
Rossetti et al., 2002 

0.75 - 2.0 g/kg, i.p. Otherwise, dose-dependent impairments 
Hoffmann & Matthews, 2001; Givens 

1995 
Spatial 

Reference 
Memory 

1.5 - 2.0 g/kg, i.p. Dose-dependent impairments 
Matthews et al., 1995; 2002; Shimizu et 

al., 1998; Wright et al., 2003 

Contextual 
Learning and 

Memory 
0.8 - 1.6 g/kg, i.p. 

Impairs contextual learning and memory 
when administered before training or 

testing 

Devenport & Carter, 1986; Melia et al., 
1996; Weitemier & Ryabinin, 2003 

Trace 
Conditioning 

0.8 - 2.5 g/kg, 
i.p./i.g. 

Impairs trace conditioning when 
administered before or after training 

(with a long trace), but not before testing 

Hunt et al., 2009; Land & Spear, 2004; 
Weitemier & Ryabinin, 2003 

Spontaneous 
Alternation 

2.0 g/kg, i.p. Inhibits spontaneous alternation Cox, 1970 

Novel 
Object 

Recognition 

2.4 g/kg, i.p. in 
C57BL/6J mice 
1.0 g/kg, i.p. in 
Kun Ming mice 

Impairs novel object recognition when 
administered before training, but not after 

Ryabinin et al., 2002; Yu et al., 2013 

Long-term 
potentiation 

in vitro 
5-100 mM Inhibits and blocks LTP 

Blitzer et al., 1990; Lovinger et al., 1989, 
1990 

Place cell 
specificity 

in vivo 
1.0 - 2.0 g/kg, i.p. 

Disrupts spatial specificity of place cells 
in awake, freely behaving rats 

Matthews et al., 1996; White & Best, 
2000 

Cerebellum 
Eyeblink 

conditioning 

0.375 g/kg i.g. 
Low doses facilitate conditioned 

responding 
Hernandez & Powell, 1986 

0.75 – 1.5 g/kg i.g 
Dose-dependent inhibition at moderate to 

high doses 
Hernandez et al., 1986; Hobson, 1966 

0.75 g/kg i.g. Delays extinction Hernandez et al., 1986 
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Long-term 
depression 

10-80 mM Dose-dependent inhibition Belmeguenai et al., 2008; He et al., 2013 

Amygdala 

Cued 
conditioning 

1.0 – 1.5 g/kg, i.p 
Pre-training ethanol impairs cued 

responding 
Gulick & Gould, 2008 

0.25 g/kg, i.p. 
Post-training low-dose ethanol enhances 

cued responding 
Gulick & Gould, 2008 

0.25 – 1.5 g/kg i.p. 
No effect when administered during 

testing 
Gould 2003; Gulick & Gould, 2007 

Emotional 
memory 
recall 

0.65 g/kg p.o. Anterograde impairment Knowles & Duka, 2004 

0.65 g/kg p.o. Retrograde facilitation Knowles & Duka, 2004 
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Table 2. Effects of acute ethanol on human memory 
 

Memory 
Store Task Effective 

BAC/dose Effect of Acute Alcohol Citations 

Short 
term 

memory 

Working memory 

70-90 mg/dL Impairs working memory capacity  Finn et al., 1999 

65 mg/dL 
Greater working memory impairment in older 

participants compared to adults 
Boissoneault et al., 2014 

68-80 mg/dL 
Acute functional tolerance develops to ethanol induced 

increases in reaction time, but not error rates 
Grattan-Miscio & Vogel-

Sprott, 2005 

Visual-spatial working 
memory 

90-80 mg/dL 
Impairs visual-spatial working memory performance 

during the descending limb of BAC curve 
Schweizer et al., 2006 

59-65 mg/dL No effect on visual spatial working memory 
Paulus et al., 2006; 

Weissenborn & Duka, 
2003 

Implicit 
long term 
memory 

Backwards reading and 
word completion 

0.3-0.6 g/kg 
No impairment of implicit memory when words were 

learned during intoxication 
Lister et al., 1991 

Priming 
75-80 mg/dL 

Implicit alcohol expectancies are not changed in 
moderate drinkers 

Pedersen et al., 2011 

40 mg/dL 
Increased implicit association toward positive alcohol 

outcomes in risky drinkers 
Palfai & Ostafin, 2003 

Explicit 
long term 
memory 

Blackouts 70-420 mg/dL 
Occurrence of both fragmentary and en bloc blackouts 

increases with increasing BAC 
Hartzler & Fromme, 2003 

Recall 

54-70 mg/dL 
Impaired intoxicated recall when task was learned while 

intoxicated 
Birnbaum et al., 1978; 

Lister et al., 1991 

70 mg/dL 
No effect on intoxicated recall with a long delay after 

sober learning 
Birnbaum et al., 1978 

80 mg/dL 
Enhanced sober recall after 24h when administered 

immediately after sober learning 
Parker et al., 1980 

Recognition 34-80 mg/dL 
Retroactive enhancement when administered 

immediately after sober learning 
Parker et al., 1980; 1981 

Prospective memory 0.6 g/kg Impairs all types of prospective memory Leitz et al., 2009 
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Figure 1:  Potential Brain Region Schematic Underlying the Cognitive Switch Produced by 

Acute Ethanol on Cognition.  The red arrows indicate brain regions impacted by acute ethanol 

exposure while the green arrows indicate brain regions marginally impacted by acute ethanol 

exposure.  The number of red arrows indicate the strength of the impairment in function.  As 

can be seen, acute ethanol exposure strongly impairs the functionality of the medial septum, 

hippocampus and prefrontal cortex/orbitalfrontal cortex brain regions.  This impairment 

reduces an organisms reliance on allocentric cognition.  Concomitantly, acute alcohol produces 

a smaller impairment in dorsal-lateral striatum function and marginal effects in both dorsal-

medial striatum and amygdala function thereby facilitating egocentric cognition.  Given the 

large impairment in the hippocampal/prefrontal cortex system and smaller impairments in the 

striatal system,  acute ethanol exposure can set up an “addiction memory” by facilitating a 

switch to habit based behavior (dorsal-lateral striatum) based on specific cues (doral-medial 

striatum) function. 
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Highlights 

 

Ethanol has selective impairments on learning and memory 

Ethanol facilitates a cognitive switch from goal directed to habit directed memory 


