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Abstract: To solve the cost burden caused by delivery tardiness 
for small and medium sized packaging machinery enterprises, 
the assembly-oriented planning and scheduling is studied based 
on the multi-agent technology. Taking into account the due 
date, the planning and scheduling are optimized iteratively with 
the rule-based algorithms complying with the machining and 
assembling process constraints. To make the realistic 
large-scale production planning scheme tailored to fit the 
optimization algorithms, a multi-agent system is utilized to 
conceptually construct a three-layer framework corresponding 
to three planning horizons of different task level. These 
planning horizons are quarter/month of product/subassembly 
level, week of part level, and day of operation level. With the 
strategy of combining top-down task decomposition and 
bottom-up plan update (where the quarterly orders are 
decomposed into the monthly, weekly, and daily tasks 
according to the product processing structure while the 
resulting plans of every layer are updated iteratively based on 
the bottom layer optimization), the proposed framework not 
only addresses the planning but also the periodic and 
event-driven scheduling of the processes. In this paper, a 
gravure printing machine is considered as a test case for 
evaluating the proposed framework. The simulation results 
with the historical data of the orders for this machine 
demonstrate the effectiveness of the proposed scheme on the 
control of the distribution of idle-time. It can also provide a 
resolution to tardiness penalty for small and medium sized 
enterprises. 

I. INTRODUCTION

 Packaging machinery enterprise is one of the discrete 
manufacturing industries characterized by multi-species, 
low-volume, and build-to-order. Most of them are of 
small-and-medium size with less ability to address the 
fluctuations over the periods of boom-and-bust. Moreover, 
without proper connection between the machining shop and 
assembly shop, order turnaround times will be negatively 
impacted for assembly procedures which may have to be 
halted due to a lack of components during peak demand 
periods. The resulting delays mean higher costs. This paper 
attempts to control the tardy time with the self-developed 
Production Management System (PMS) based on the 
multi-agent technology. 
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Multi-Agent system (MAS) has been shown to be effective 
to accommodate complex manufacturing environment [1] [2]. 
Taking advantage of the distributed structure, the 
complicated planning problem can be decomposed into more 
easily solvable sub-problems. The demand of flexibility, 
agility, and reconfiguration ability of production systems can 
be well met with the intelligent mechanism of MAS. Thus, it 
is widely exploited to optimize cooperation of manufacturing 
enterprises, production planning and scheduling, and floor 
shop control [3]. 

For hybrid flow shop scheduling problems, Luo et al. [4] 
proposed two-step model and a genetic algorithm was used to 
solve it combining with clustering algorithm in the condition 
of a set of complicated rules and constraints. For distributed 
and dynamic manufacturing environment, Wang and Lin [5] 
developed an agile manufacturing planning and control 
system with the characteristics of visibility, accountability, 
track ability, responsiveness, and flexibility by the integration 
of RFID technique and MAS. Similarly, for stochastic 
production of mold industry, Liu et al. [6] proposed a 
framework based on MAS to provide a reliable and 
competitive due date quotation significant for delivery 
reliability performance. With a knowledge-based multi-agent 
evolutionary algorithm (KMEA) presented in [7], Wang et al. 
gave a solution to semiconductor final testing scheduling 
problem and demonstrated the effectiveness and efficiency of 
KMEA with numerical simulations. 

In spite of the huge amount of reported works on the 
research of MAS and its application, the generic design 
methods are still very limited and the development of 
agent-based production system is rather case-dependent [8]. 
This paper aims at optimizing the assembly-oriented planning 
and scheduling of packaging machinery enterprises with 
multi-agent architecture to solve the delivery tardiness. 
Firstly, in addition to machining processes, assembly 
processes are considered simultaneously as planning 
constraints to guarantee on-demand delivery. Secondly, for 
the assembly-oriented planning characterized by large-scale 
data is NP-hard (non-deterministic polynomial-time) and 
difficult to utilize most optimizing algorithms directly, a 
three-layer framework corresponding to three planning 
horizons is constructed with cooperative agents combining 
top-down task decomposition and bottom-up plan update. By 
top-down task decomposition strategy, the quarterly tasks can 
be divided into the monthly, weekly, and daily ones based on 
the processing structure of products. The developed rules and 
algorithms are applied to optimize the planning of every layer; 
furthermore, the resulting plans are updated with the bottom 
layer optimization till the tardiness can be resolved to a 
satisfactory level, which means the acceptable balance is 
reached between tardy costs (sum of tardiness penalties and 
additional warehouse cost) and outsourcing costs.   
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The paper is arranged as follows: the proposed agent-based 
three-layer framework is introduced in Section II and the 
detailed scheduling model for each layer is described 
focusing on heuristic rules. Section III presents the simulation 
of planning and scheduling processes based on the proposed 
framework with historical data and its effectiveness is 
discussed by comparing with empirical scheduling. Finally, 
the conclusion is summarized in section IV.  

II. AGENT-BASED THREE-LAYER FRAMEWORK 

The realistic floor shop scheduling problem is rather 
challenging due to its characteristics of large scale data, 
complex constraints, and heterogeneous environment. Any 
single optimization method or algorithm is unlikely to be 
sufficient for such scheduling. From this perspective, an 
agent-based floor shop scheduling model — a three-layer 
framework taking advantage of MAS distributed structure is 
proposed as Figure 1, which corresponds to three planning 
horizons, i.e., quarter/month, week, and day. According to the 
machining and assembly processes, the massive quarterly 
task (Usually the contracted orders are managed by quarter in 
this kind of machinery factory) can be decomposed into 
weekly and daily sub-tasks layer by layer under the guideline 
of matching task hours with production capacity. This 
top-down decomposition makes it much easier for weekly 
and daily task agents to choose appropriate optimization 
algorithm, and the local optimal weekly and daily plans are 
employed to update upward and tardy condition will be 
checked up accordingly.  The decomposition and update 
will be implemented iteratively till no tardiness exists or 
tardy costs are balanced against outsourcing costs to an 
acceptable degree, i.e. the sub-global optimization is 
achieved. 

The strategy of top-down decomposition and bottom-up 
update is not only capable of planning, but also adaptable to 
periodic adjustments by monitoring the plan implementation, 
and event-driven adjustments in the case of order changes, 
machine breakdowns, and worker changes etc. Thus, it is 
worth pointing out that the proposed three-layer framework 
can address both planning and dynamic scheduling. The 
execution state can be updated timely through the data 
collection and analysis at quality testing stage of every 
process. Meanwhile, the resource agent is on the alert for any 
incidental events of machines and workers.  

As one can see, with the use of three-layer framework, 
PMS can fulfill the realistic monitoring and control for the 
shop floor production. Within the framework, the task 
decomposition and plan update are implemented depending 
on the autonomy of every agent and interactive cooperation 
amongst agents of same layer and the negotiation among 
those of different layers. 

As shown in Figure 1, hybrid approach is used for agent 
encapsulation [2], in which physical entities are mapped into 
physical agents with reactive architecture, such as order 
agents (OA), product agents (PA), task agents (TA), and 
machine agents (MA), machining unit agent (MUA), etc., 
while system-level functional modules are encapsulated as 
deliberative agents, i.e., scheduling agent (SA) and resource 
agent (RA). The interaction among agents is proceeded by 

messages exchange with agent communication language, 
KQML [9], as illustrated in Figure 2.  

To relieve the burden of data storage and exchange of 
every agent, a unified database is developed to manage 
related data, such as the orders, the product processing 
structure, and the resources, whereas only the corresponding 
database addresses are saved in the knowledge base of agents. 
When the sensor component of functional agent (FA) 
perceives the task instruction, such as sequencing or resource 
allocation, from the effector of physical entity agent (PEA), it 
will be handled by the analyzer and decision-maker based on 
its own rule library and knowledge base. This process is 
assisted by accessing database to get necessary data and 
update them simultaneously. Finally, the FA effector would 
tell the sensor of PEA what action has been done and which 
database address should be accessed to get the expected 
result. 
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Figure 1. Agent-based three-layer framework 
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Figure 2. Agent architecture and communication  

A. Quarterly/monthly planning with ATC rule  
For quarterly planning, the sensor of OA of this quarter 

will firstly get the percept of the manufacturing task 
assignments. The weight of every order is decided by analytic 
hierarchy process (AHP) [10] based on the knowledge of due 



data urgency and customer level. The weighted orders are 
further decomposed into weighed products through the 
interaction with PAs. Finally, the decision-maker allows the 
effector of OA to send perform instruction of sequencing 
weighed products to the sensor of SA. 

Priority rule of Apparent Tardiness Cost (ATC) [11] of the 
rule library permits SA to make the connection from percept 
to action, i.e., sequencing weighted products iteratively by 
the calculation of processing sequence index (PSI) and the 
product with the highest PSI chosen every time till all are 
scheduled. As a dynamic composite rule, ATC inherits the 
metrics of Weighted Shortest Processing Time (WSPT) and 
Minimum Slack (MS) with greedy heuristics, and extends 
them by a “look-ahead” feature through parameterization. 
The near- optimal solution can be achieved with minimizing 
weighted tardiness cost as the performance, and exhibiting 
robustness in most load conditions.  

As shown in equation (1), the PSI of 𝑗𝑗th (𝑗𝑗 = 1,2, …𝑁𝑁) 
of N weighted products at the instance t is computed based on 
its weight 𝑤𝑤𝑗𝑗 , processing time 𝑝𝑝𝑗𝑗 , due date 𝑑𝑑𝑗𝑗 , and the 
average processing time 𝑃𝑃�  of all unscheduled weighted 
products. The exponential discounting is used to account the 
influence of slack on the maximum tardiness cost wj/pj. The 
looking-ahead parameter K can be set as equation (2) when 
the due dates have the uniform distribution, i.e., taking into 
consideration only the influence of due date range factor R 
and ignoring the tightness factor τ [12]. 

           𝐼𝐼𝑗𝑗(𝑡𝑡) =
𝑤𝑤𝑗𝑗
𝑝𝑝𝑗𝑗
𝑒𝑒𝑒𝑒𝑒𝑒 �−

max (𝑑𝑑𝑗𝑗−𝑝𝑝𝑗𝑗−𝑡𝑡,0)

𝐾𝐾𝑃𝑃�
�        (1) 

             �𝐾𝐾 = 4.5 + 𝑅𝑅,   𝑅𝑅 ≤ 0.5
𝐾𝐾 = 6 − 2𝑅𝑅,   𝑅𝑅 > 0.5             (2) 

              𝑅𝑅 = (𝐷𝐷max − 𝐷𝐷min) 
𝐶𝐶max
�           (3) 

The sequenced products constitute the quarterly plan, 
which is decomposed into corresponding monthly tasks by 
the rule of matching task working hours against shop 
production capacity (task-capacity-matching, TCM). Through 
communicating with PA based on the knowledge of SA, the 
effector will tell monthly task agents (MTA) of the monthly 
tasks in the form of subassembly. Meanwhile, the total tardy 
time (TTT) of quarterly orders is computed as:  

      𝑇𝑇 = ∑ 𝑇𝑇𝑖𝑖𝑀𝑀
1 = ∑ [max(0,𝐶𝐶𝑖𝑖 − 𝐷𝐷𝑖𝑖)]𝑀𝑀

1           (4) 

𝑖𝑖 = 1,2, … ,𝑀𝑀,𝑀𝑀 ∈ [3, 5]     

Where 𝑇𝑇𝑖𝑖  ,𝐶𝐶𝑖𝑖 and 𝐷𝐷𝑖𝑖  are the tardy time, completion 
time and due date of the 𝑖𝑖th order respectively.  

In general, there are great similarities among 
subassemblies and their parts of packaging printing machine. 
For instance, the number of color printing units of gravure 
can be customized, but each of these units for certain gravure 
can be the same. Accordingly, the batching rules are 
employed to simplify the planning at the level of 
subassembly and parts [13]. With the assumption that their 
due dates decided by back forwarding rule and assembly 
constraints are consistent, the identical subassemblies among 
monthly tasks will be grouped together as a subassembly 
batch with the processing priorities of the highest among 

them, whereas there should be more concern for the batching 
period of the part batches of the same type parts. Thereafter, 
the resulting monthly plans will be decomposed downward 
into weekly tasks with the TCM rule and perceived by 
weekly task agents (WTA). 

B. Weekly planning with part batching rule 
Part batching is good for time-saving of setups and 

logistics cost reducing. Nevertheless, large batching size may 
lead to the idleness and the lower utilization of resources 
(machines and workers) due to the existence of processing 
constraints, which is detrimental for the balanced production. 
For the batching size is time period dependent, the key of 
Part batching (PB) rule is how to determine an appropriate 
batching period for weekly tasks to make feasible and 
cost-saving plan.  

According to the field study, a feasible and proper weekly 
plan is one that does not need extra work hours beyond 9 
(3×3 overtime pattern). Thus, with the condition of resulting 
weekly plans being reasonable, the batching size should be 
maximized within the selected period. Accordingly, a proper 
batching period should be an integer value with the infimum 
as 1 day and the supremum 6 days. In other words, there are 
only 6 possible elements for the batching period set. To 
simplify the decision process, the planning with PB rule can 
be performed by selecting the batching period iteratively over 
the set in descending sequence till practicable weekly plans 
within one month resulted.    

 Furthermore, there are kinds of parts that require large 
work hours beyond 100 with the number of processes of over 
50 ranging from 1 to 3. Based on the field statistics, the 
percentage of large-work-hour (LWH) part is around 5% and 
the average make-span is one to two weeks due to the 
processing constraint. In accordance with longest processing 
time (LPT) rule [14], the priorities of LWH parts should be 
adjusted higher and leave those of small-work-hour (SWH) 
parts with work hours less than 100 unchanged.  

With the aid of PB rule and LPT rule implemented 
through the cooperation among WTA, SA and PA, the 
weekly plans can be determined. Subsequently, in line with 
TCM rule, the sequenced weekly job queue will be divided 
into segments with each assigned the corresponding 
resources, i.e. machining unit (MU) by the interaction of 
WTA, RA and MUA. Then, within every MU the queue can 
be further split into the daily task in the form of processes, 
which will be told to daily task agents (DTA).  

C. Daily planning with GA and MU dynamic reconfiguration 
For the quantity of jobs to be scheduled within MU in 

daily planning has been greatly reduced, genetic algorithm 
(GA) can be adopted to optimize the schedule with 
minimizing the maximum completion time of daily task as 
the objective function. The chromosome of operation-based 
representation is made up of operations sequencing of job and 
allocated machines, while the initial population size is around 
100. For every iteration, the roulette wheel method is used in 
the selection step, and precedence operation crossover (POX) 
probability set as 0.8 and mutation probability as 0.1 to 
produce the new generation. The generational process will 
terminate if the make span is not shortened any more for the 
last two generations or the number of generation up to 20. 

https://en.wikipedia.org/wiki/Genetic_algorithm
https://en.wikipedia.org/wiki/Crossover_(genetic_algorithm)
https://en.wikipedia.org/wiki/Mutation_(genetic_algorithm)


In general, the set of active schedules is frequently much 
smaller than that of all feasible schedules and contains a 
subset of schedules to which all optimal schedules must be 
equivalent [15]. With this in mind, we adopt the decoding 
algorithm with greedy insertion in the decoding process to 
produce active schedule [16], in which the jobs can be 
scheduled at their earliest feasible time in the assigned 
machine. However, there may be no time slot available to 
schedule operation for certain machine within the allocated 
MU for two reasons [13]. One is that the machine requested 
belongs to the bottleneck set, which can only be attached to 
certain MU at the processing interval on demand of DTA and 
intermediated by RA through negotiating with MA and MUA. 
The other is the required machine is overload due to the 
processes constraint though the capabilities of MU in total 
work hours is consistent with daily task according to TCM 
rule. In this case, the same type machine or the machine 
capable of performing the asked operation of other MUs 
needs to be evaluated by RA to confirm whether it can be 
assigned to this MU temporarily or not.  

This dynamic reconfiguration of MU can be implemented 
with the combination rule of SPT/WINQ [17]. WINQ (Least 
Work In Next Queue) is a kind of assignment rule directed at 
balancing machine workload to implement the concept that it 
is when the idle-time occurs can be determined though the 
amount of idle-time cannot be affected by priority assignment 
[18]. By looking at the sum of the processing times of the 
same operation of the same type part of remaining daily task 
queues, the available machine will be assigned to certain MU 
corresponding to the queue with the shortest. Meanwhile, 
SPT (Shortest Processing Time) can also achieve satisfactory 
performance on the aspect of machine utilization as a rule for 
operation sequencing. The combination rule considers the 
amount of work remaining as well as the current processing 
time, and allows the weighting coefficient to vary 
dynamically according to the function of current shop 
balance. With this metric, SPT/WINQ is of great value to 
ensure the utilization in the decoding process of GA and 
result with the reduced lead time.  

III. PLANNING SIMULATION WITH THREE-LAYER 
FRAMEWORK 

To show the validity of the three-layer framework of 
planning and scheduling, the historical quarterly order data 
obtained from Huaying Printing Machinery Manufacturing 
Enterprise, Shantou, China is used for planning simulation 
with the self-developed PMS. The system is programmed 
with C# under the environment of Microsoft Visual Studio 
2010. The database is set up with Microsoft Access 2000 and 
the query language is SQL. 

 There are 4 orders for second quarter including 10 
customized gravure printing machines. Orders 1 and 2 are 
permitted a maximum of 7 days tardy, while orders 3 and 4 
must be delivered on time. The amount of non-standard parts 
of ordered products reaches 45,000, which needs a total 
630,000 task hours, whereas the actual shop floor quarterly 
capacity is only 600,000 man-hours though there are 49 
machines with around 850,000 work hours, i.e., the average 
capacity utilization is about 70% due to process constraints.  

Roughly speaking, the quarterly orders will be delayed for 
the task exceeding the capacity by 9%. It is true that there 
was the penalty for the tardiness of one week over the 
permitted deadline when the production was supervised by 
the head of the shop floor. The fact is the assembly processes 
had to be halted because the parts of headstock of gravure 
had not been machined on time. Compared with the manual 
planning, the effectiveness of PSM is shown by the following 
simulation with the proposed three-layer framework. 

At the first layer, the resulted quarterly plan of ordered 
products sequencing with ATC rule is shown in Figure 3, and 
the detailed value of internal states of OAs are listed as Table 
I. It is obvious that the upper limit of TTT is exceeded for 3 
days due to the serious tardiness of order 1. Though the tardy 
phenomenon is not avoided, this result is a bit superior to that 
of manual planning, and the credit should be given to the 
application of ATC rule. 

  

Figure 3. Interface for second quarter planning simulation 

The planning scale is further reduced by part batching 
undertaken at the second layer. When the batching period is 
selected as the largest 6, only the resulted weekly plans of 
June are feasible. Then with the batching period decreased to 
5, those of May also become feasible and only April does not. 
Finally, illustrated as Figure 4, the highest batching size 
amounts to 116 in the first two weeks plan of April with the 
batching period chosen as 3.  

Nevertheless, from the data of Table II, the weekly 
planning makes the TTT reach the worst of 18.625 days with 
orders 3 and 4 also delayed. The main reason is that there is 
no sufficient consideration of constraints of machining and 
assembly processes when tasks divided with TCM rule. The 
idle-time ignored lengths the completion time and makes the 
utilization lowered to 67.5%. It should be paid attention that 
TCM rule is one of the key rules used in manual scheduling. 
It is this factor that makes the tardy problem severe. 

The optimization algorithm GA with the parameter setting 
shown in Figure 5 is applied for daily planning to solve the 
problem issued by TCM rule. Moreover, the dynamic 
reconfiguration of MU is also implemented in the decoding 
process to balance machine load and result with the 
utilization increased to 73%. 



 

Figure 4. Simulation result of part batching for weekly 
planning within April of second quarter 

Except the individual machining center regarded as a MU, 
usually two to four kinds of machines constitute one MU 
with the number of every kind machine ranging from one to 
four. The operations of shaping and cutting are not 
commonly used and the number of machines are rather 
limited. These kinds of bottleneck machines are affiliated 
with certain MU only at the operation interval decided by RA 
with STP/WINQ rule. While the machines of general process 
of turning, milling, and grinding are slightly sufficient, they 
are also allocated among MU by RA, MA and MUA in the 
case of heavy load of certain operation within one MU. When 
applying STP/WINQ rule, the standard of shop balance is 
defined as the difference of machine load kept within the 
range of 5% to 10%. 

Through the iterative bottom-up update less than 20 times 
in the second quarter planning, the checkup TTT finally is 
reduced below the upper limit with the tardy time of order 1 
controlled within the permit while other orders completed a 
bit early as shown in Table II. 

 
Figure 5. Operator parameter setting of GA for daily 

planning 

IV. CONCLUSION 
To solve the problem of tardiness penalties for 

small-and-medium-sized packaging machinery enterprises, a 
large-scale planning and scheduling is considered and a 
three-layer framework based on multi-agent technique is 
proposed in this paper to decompose the complex task into 
subtasks suitable for optimization algorithms. Based on the 
autonomy of agents and coordination mechanisms for agents, 
the planning model is developed for each layer by the 
application of proposed rules and algorithms. The simulation 
results with the historical data of gravure printing machine 
orders shows the effectiveness of the three-layer framework 
controlling the tardy time, thereby reducing the tardy cost. 
The framework can also handle the dynamic scheduling. The 
future work will focus on the pattern recognition for various 
event-driven scheduling to make the system more intelligent 
and agile. 

 
Table I. Quarterly plan with TTT checkup 

No. Product code DD MTP OU CL Weight Priority  CT TT  No.: Order number 
 
DD: due date(day)   
 
MTP: Max tardiness permitted 
(day)  
 
OU: Order Urgency level, which 
declines gradually in alphabetical 
order 
   
CL: Customer level. The larger, the 
less important 
 
CT: completion time (day)   
 
TT: Tardy Time(day) 
 
MCT: Max. completion time(day) 
 
LN: Lateness(day) 

1 

YA-850AW 

74 7 D 4 3.475 

8 

84 10 

 

YA-850AW 9  

YA-1050A II 10  

2 

YA-850AW 

34 7 C 3 3.925 

1 

25 0 

 

YA-850AW 2  

YA-1050A II 3  

3 
YA-850AW 

62 0 A 1 4.375 
4 

41.5 0 
 

YA-1050A II 5  

4 
YA-850AW 

68 0 B 2 4.025 
6 

58 0 
 

YA-1050A II 7  

TTT 10   

 



Table II. TTT checkup based on the plan updated by weekly planning and daily planning 

No. 
Weekly planning Daily planning 

MCT DD MTP TT TTT MCT DD MTP TT LN TTT 

1 87.75 74 7 13.75 

18.625 

80.5 74 7 6.5 6.5 

6.5 
2 69.75 68 7 1.75 64.375 68 7 0 -3.625 

3 63.75 62 0 1.75 58.5 62 0 0 -3.5 

4 35.75 34 0 1.375 32.75 34 0 0 -1.25 
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