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Abstract
Colorectal cancer (CRC) is often diagnosed at an 
advanced stage when tumor cell dissemination has 
taken place. Chemo- and targeted therapies provide 
only a limited increase of overall survival for these 
patients. The major reason for clinical outcome finds 
its origin in therapy resistance. Escape mechanisms 
to both chemo- and targeted therapy remain the 
main culprits. Here, we evaluate major resistant 
mechanisms and elaborate on potential new therapies. 
Amongst promising therapies is α-amanitin antibody-
drug conjugate targeting hemizygous p53 loss. It 
becomes clear that a dynamic interaction with the 
tumor microenvironment exists and that this dictates 
therapeutic outcome. In addition, CRC displays a 
limited response to checkpoint inhibitors, as only a 
minority of patients with microsatellite instable high 
tumors is susceptible. In this review, we highlight 
new developments with clinical potentials to augment 
responses to checkpoint inhibitors.
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Core tip: Therapy resistance has been a culprit for 
colorectal cancer (CRC) treatment. Here, we review a 
novel therapeutic approach using α-amanitin antibody-
drug conjugates inhibiting RNA polymerase Ⅱ against 
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CRC with hemizygous loss of p53. Since its mechanism 
of cell killing is independent of the generally used 
tubulin inhibitors and chemotherapy drugs, this 
approach shows the promise to overcome common drug 
resistance. In addition, we summarize the sensitivity of 
CRC to newly developed immune checkpoint inhibitors. 
While patients with microsatellite instability-high 
CRC remain the sole subgroup responsive to current 
checkpoint inhibitors so far, we highlight potentially 
new developments that may lead to promising results 
in treating patients with microsatellite-stable CRC, 
which constitutes the majority of this disease.

Van der Jeught K, Xu HC, Li YJ, Lu XB, Ji G. Drug resistance 
and new therapies in colorectal cancer. World J Gastroenterol 
2018; 24(34): 3834-3848  Available from: URL: http://www.
wjgnet.com/1007-9327/full/v24/i34/3834.htm  DOI: http://
dx.doi.org/10.3748/wjg.v24.i34.3834

INTRODUCTION
Colorectal cancer (CRC) is ranked third amongst the 
most common cancers affecting both men and women 
worldwide[1]. Over one million new cases are reported 
and around 600000 patients die from the disease 
every year[2]. The five-year survival prognosis is highly 
dependent on the stage of the disease. While displaying 
over 90 percent survival for patients with stage Ⅰ 
CRC, it barely reaches 10 percent for patients with 
stage Ⅳ CRC. Thus, early detection of the disease has 
been a priority. For patients failing to be screened early 
enough, late-stage CRC remains an arduous disease to 
treat. The basis of CRC treatment consists of surgery, 
targeted therapy, neoadjuvant radiotherapy and 
adjuvant chemotherapy. Unfortunately, drug-resistance 
remains one of the deadlocks for the low survival rates 
of CRC patients. A better understanding in the intrinsic 
and acquired therapy resistance will be a great asset 
for drug development. Recently, the impact of the 
tumor microenvironment (TME) has gained attention in 
CRC, prompting the extensive analysis of clinical trials 
to assess immune-cell infiltration as prognostic and 
predictive markers. In addition, a promising avenue of 
clinical research for the treatment of CRC is the use of 
immunotherapy. Currently, encouraging results have 
been obtained with the use of immune checkpoint 
inhibitors in CRC in subgroups of patients. Discovery to 
improve the responsiveness to checkpoint inhibitors is 
one of the major points of focus for CRC treatment and 
will be a point of focus during this review.

Drug resistance in CRC
Since the 1950s, 5-fluorouracil (5-FU)-based chemo-
therapy remains the mainstay of therapy for patients 
with CRC[3,4]. In recent years, chemotherapy drugs such 
as oxaliplatin, irinotecan and capecitabine have been 
developed. Conventional treatment for advanced CRC 

encompasses the combination of 5-FU and leucovorin 
with oxaliplatin or irinotecan[5]. The medical treatment 
in CRC has made great strides with the advent of 
monoclonal antibodies such as Bevacizumab and 
Cetuximab. Despite the improvement in response rates 
with various modulation strategies such as monoclonal 
antibodies combined with chemotherapy, the five-year 
survival rate for metastatic CRC (mCRC) is only slightly 
over 12 percent[1]. One of the major obstacles for this 
observation is due to the appearance of drug resistance. 
Nearly half of mCRC patients are resistant to 5-FU-based 
chemotherapies[6]. With continuous research, multiple 
drug resistance mechanisms are being unraveled, such 
as enhanced DNA repair and increased drug metabolism. 

Chemotherapy resistance and their potential mechanisms
In addition to the above-mentioned general resistance 
mechanisms, 5-FU also has its unique drug resistance. 
5-FU is a synthetic fluorinated pyrimidine analog that 
inhibits DNA replication. This leads to the replacement 
of thymidine by fluorinated nucleotides into the DNA, 
hereby causing cell death. Therefore, it is not surprising 
that 5-FU resistance is closely related to the expression 
of thymidylate synthase (TS). Since TS is the primary 
target of 5-FU, patients with low TS expression display 
a better overall survival (OS) than patients with higher 
TS expression in tumor tissue[7,8]. As TS is encoded 
by the TYMS gene, the level of TYMS gene expression 
offers significant prognostic value[9]. Thymidine 
phosphorylase (TP), uridine phosphorylase (UP), orotate 
phosphoribosyl transferase (OPRT) and dihydropyrimidine 
dehydrogenase (DPD) are all involved in the metabolism 
and degradation of 5-FU. The relationship between their 
activity and the sensitivity of CRC to 5-FU has been 
demonstrated in several studies. Higher expression of 
TP, UP and OPRT levels displayed enhanced sensitivity to 
5-FU therapy[10-12]. Similarly, as DPD contributes to the 
degradation of 5-FU, its expression level was inversely 
correlated with chemosensitivity[11]. Collectively, inhibition 
of the activity of these enzymes could allow enhanced 
sensitivity to 5-FU. 

In 1996, irinotecan (CPT-11) was approved by 
the FDA for CRC treatment. Irinotecan is a semi-
synthetic camptothecin derivative that selectively 
inhibits topoisomerase Ⅰ (Topo Ⅰ). In the cell, CPT-11 
undergoes intracellular modifications such as the 
removal of the C10 group through carboxylesterase 
catalysis, and then is metabolized to become 7-ethyl-
10-hydroxycamptothecin (SN-38). SN-38 possesses 
100 to 1000 times stronger anticancer activity than 
CPT-11[13]. CPT-11 or its active metabolite SN-38 forms 
a topoisomerase-inhibitor-DNA complex affecting the 
DNA function. Therefore, the higher the concentration 
of Topo Ⅰ, the more sensitive the cells becomes to 
irinotecan[14,15]. Carboxylesterases (CES), uridine 
diphosphate glucuronosyltransferase (UGT), hepatic 
cytochrome P-450 enzymes CYP3A, β-glucuronidase 
and ATP-binding cassette (ABC) transporter protein are 
involved in the uptake and metabolism of irinotecan. 
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Consequently, they stand out as major players that 
determine drug resistance[16,17]. Additionally, targeting 
the MAPK signal transduction pathway via the inhibition 
of FGF2, FGF9, MECOM, PLA2G4C and PRKACB could 
also potentially improve responsiveness to irinotecan[18]. 
Epigenetic changes take part in development of 
irinotecan resistance. A change in histone acetylation, 
such as H4K16 acetylation, is associated with the 
resistance to irinotecan. Combinatory therapy with 
histone deacetylase (HDAC) inhibitors holds promise in 
overcoming irinotecan resistance[19].

Oxaliplatin, a platinum-based chemotherapeutic 
drug, is approved for the treatment of CRC. Itis most 
commonly combined with 5-FU and leucovorin, a 
folinic acid. The combination of these drugs as a 
treatment regimen is referred to as FOLFOX and has 
been the first-line chemotherapy strategy for mCRC. 
The chemical structure difference between oxaliplatin 
and other platinum-based chemotherapeutic drugs is 
that oxaliplatin possesses a 1,2-diaminocyclohexane 
ligand (DACH). DACH together with its platinum 
compound causes DNA to be more difficult to repair, 
hereby improving its tumor cell killing potential[20]. 
Oxaliplatin resistance is related to the nucleotide 
excision repair (NER) pathway. Gene expression 
levels of ERCC1, XRCC1 and XDP are correlated with 
resistance to oxaliplatin, and can be used together as a 
drug sensitivity predictor index[21]. In addition to NER, 
the WBSCR22 protein represents a novel oxaliplatin 
resistance biomarker as well as a possible drug target 
for therapeutic development[22]. Transforming growth 
factor-β1 (TGF-β1) is secreted abundantly by a variety 
of cells within the TME. TGF-β1 is thought to help the 
induction of resistance to oxaliplatin through epithelial 
to mesenchymal transition (EMT)[23]. Thus, interfering 
with TGF-β1 to abrogate EMT could potentially sensitize 
tumor cells towards oxaliplatin cell-mediated killing.

Capecitabine is the first oral chemotherapy drug for 
CRC. It is metabolized in the body and converted to 
5’-deoxy-5-fluorocytidine (5’-OFCR) and 5’-deoxy-5-
fluorouridine (5’-DFUR). Hereafter, 5’-DFUR is eventually 
hydrolyzed by TP to 5-FU, which will exert its cytotoxic 
effect. Many of the resistance mechanisms involved in 
5-FU resistance are shared. In particular, TP, which is an 
essential enzyme for the conversion of capecitabine to 
5-FU, plays a central role in its resistance. Patients with 
higher expression levels of TP will have better responses 
to capecitabine, while loss of function confers the 
resistance[24,25].The multinational phase Ⅲ trial provided 
evidence for capecitabine and irinotecan combination 
therapy (XELIRI) with or without Bevacizumab as a 
second-line treatment option of mCRC[26,27].

In addition to the above described mechanisms, 
there is tremendous heterogeneity within CRC cells. 
The discovery of cancer stem cells and their therapy 
resistance as well as their self-renewal capacity has 
driven the attention towards this peculiar cell population. 
This specific subset of tumor cells has been shown to 
be prognostic for patients[28,29]. So far, CRC stem cells 

have been reported to be enriched for specific surface 
markers such as CD133, EphB2high, EpCAMhigh, CD44+, 
CD166+, ALDH+, LGR5+ and CD44v6+[30]. Aside from 
surface markers, cancer stem cells can be characterized 
through molecular features such as hyperactivated 
β-catenin pathway and functional traits such as self-
renewal[31,32]. Another functional phenotype is their 
expression of efflux pumps such as the ATP binding 
cassette (ABC) family members, including ABCG2[28]. 
The presence of efflux pumps promotes the transport of 
drugs, such as chemotherapeutic compounds, outside 
the cell. Therefore, cancer stem cells are in part more 
resistant to chemotherapy. Cancer stem cells have 
shown an ability to respond to therapy challenges such 
as chemotherapy, radiotherapy and more recently 
immunotherapy[33-35]. 

Taken together, many chemotherapeutic regimens 
are currently being adopted for the treatment of CRC. 
However, this disease displays specific mechanisms 
rendering a lower therapeutic benefit (Figure 1). In-
depth study of drug resistance and targeting the cancer 
stem cell population will eventually improve the clinical 
outcome.

Hurdles and new avenues for targeted therapy
Targeted therapies including monoclonal antibodies 
and small molecule inhibitors are effective treatments 
following chemotherapy. With the apparition of mono-
clonal antibodies against vascular endothelial growth 
factor (VEGF) and epidermal growth factor receptor 
(EGFR), the OS for CRC increased up to three years[36-38]. 
Targeted therapies display significantly lower side effects 
as compared to chemotherapy. Bevacizumab is the first 
anti-angiogenic drug that can precisely target VEGF, 
leading to reduced tumor growth[39]. Kabbinavar and 
colleagues showed improved response rates and OS 
from data obtained from three clinical trials comparing 
patients treated with fluorouracil/leucovorin alone or 
in combination with Bevacizumab[40]. However, the 
survival benefit of anti-VEGF therapy in mCRC patients 
is limited to a few months due to acquired resistance. 
During Bevacizumab exposure, VEGF-A is decreased, 
but increased levels of VEGFR1 result in drug resistance. 
Decreased hepatocyte growth factor (HGF) levels 
are observed during acquired resistance, suggesting 
the potential implementation of strategies to counter 
HGF-ligand inhibition[41]. Findings by Carbone et al[42] 
propose a role for the transcription factor HOXB9 as 
one of the key mechanisms of anti-VEGF resistance. 
Silencing HOXB9 is thought to be a promising approach 
to modulate this resistance. Despite these few findings, 
the major mechanism of drug resistance to anti-VEGF 
therapy is not fully elucidated. Further research on 
drug resistance mechanisms, as well as on predictive 
biomarkers, is therefore essential.

EGFR is a key component involved in the regulation 
of cell proliferation. Anti-EGFR antibodies, such as 
Cetuximab and Panitumumab, inhibit downstream 
signaling pathways. This leads to an inhibition of 
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showed that Regorafenib treatment could improve the 
OS by 1.4 mo and 2.5 mo[56,57]. Even though these drugs 
are approved, they display limited progression free sur-
vival (PFS) and OS due to resistance[44,58]. Their major 
advantage is that they have limited toxicity side effects 
as compared to chemotherapeutic drugs. 

CRC development and progression is associated with 
acquired genomic events. The amount of mutations and 
genomic alterations is extensive. One of the main drivers 
for cancer development is gene copy number variation, 
such as the amplification of oncogenes or the deletion 
of tumor suppressor genes. Over the years, significant 
work has been done to tackle the tumor suppressor p53 
activity in cancer therapies. Usually, promotion of cancer 
development can occur when a tumor suppressor gene, 
such as p53, undergoes a two-hit modification, being 
the mutation of the gene and the hemizygous loss of its 
other counterpart on the other arm of the chromosome. 
Unfortunately, no effective drug has reached the clinic 
due to its complex signaling pathway[59]. We demonstrate 
that genomic deletion of p53 frequently encompasses 
neighboring essential genes, rendering cancer cells 
with hemizygous p53 deletion vulnerable to further 
suppression of such genes. POLR2A is identified as such 
a gene that is always co-deleted with p53 in human 
cancers. Hemizygous loss of p53/POLR2A occurs in 
53% of CRC. POLR2A encodes the largest and catalytic 
subunit of RNA polymerase Ⅱ complex. It is specifically 
inhibited by α-amanitin, a cyclic 8-aa peptide toxin found 
in the death cap mushroom (Amanita phalloides)[60,61]. 
Suppression of POLR2A selectively inhibits proliferation, 
survival and tumorigenic potential of CRC cells with 
hemizygous p53 loss. Previous clinical applications of 
α-amanitin have been limited due to its liver toxicity. 
Free α-amanitin causes apoptosis and necrosis of 
hepatocytes by interacting with the hepatocyte-specific 
transporting protein OATP1B3[62]. However, α-amanitin 
is no longer a substrate for OATP1B3 when coupled to 
antibodies[63]. Therefore, α-amanitin-based antibody 
drug conjugates (ADCs) are highly effective therapeutic 
agents with significantly reduced toxicity. Our study has 
shown that low doses of α-amanitin-conjugated anti-
epithelial cell adhesion molecule (EpCAM) antibody 
leads to complete tumor regression in murine models of 
human CRC with hemizygous deletion of POLR2A (Figure 
2)[64]. The preclinical studies provide the foundation for 
future clinical trials. The major advantage for the use of 
such targeted therapy is that the function of POLR2A is 
essential for cell survival. Thus, no alternative “escape” 
pathway can be recruited, leading to drug resistance. 
In addition, this mode of action is not related to the 
proliferation of cancer cells. Cancer stem cells would be 
also targeted via this approach, leading to a potentially 
more pronounced therapeutic benefit. However, 
hypothetically, resistance could occur if the remaining 
POLR2A allele would undergo mutations, amplification or 
transcriptional activation as well as post-transcriptional 
or post-translation enhancement. In addition, tumor 
cells could downregulate the EpCAM receptor on their 

proliferation and induction of apoptosis. KRAS or NRAS 
mutations are well-known predictors of resistance to 
anti-EGFR therapy[43]. The efficacy of Cetuximab was 
demonstrated in the CRYSTAL trial for patients with wild 
type KRAS in combination with FOLFIRI (leucovorin + 
5-FU + irinotecan) or FOLFOX regimen. In this trial, the 
median OS was extended for more than three months. 
However, patients with CRC carrying KRAS mutations 
did not benefit from the combination therapy[36,44]. 
In addition, several clinical trials proved that either 
Cetuximab or Panitumumab significantly improved the 
OS in wild-type KRAS patients. The effect was more 
pronounced in wild-type RAS mCRC, delineating that 
RAS mutation could be a negative predictive marker for 
Panitumumab[45-47]. However, the G13D KRAS mutation 
in exon 2 codon 13 deserves particular attention. In 
several studies, patients harboring the G13D KRAS 
mutation as well as wild-type KRAS, significantly 
benefited from the addition of Cetuximab based on 
OS[48-50]. Some studies pointed out that BRAF, PTEN and 
PIK3CA (like KRAS) have predictive value for anti-EGFR 
treatment efficacy[36,51-54]. All of the clinical trials support 
KRAS and BRAF mutation assessment for mCRC patients 
before initiation of treatment with anti-EGFR therapy. 
In addition to the above-described targeted therapies, 
Regorafenib, a multikinase inhibitor, is also approved for 
the treatment of mCRC. It can inhibit the function of fms-
related tyrosine kinase 1 (FLT1), kinase insert domain 
receptor (KDR), TEK receptor tyrosine kinase, KIT proto-
oncogene receptor tyrosine kinase, Raf-1 proto-oncogene 
and serine/threonine kinase[55]. Two phase Ⅲ clinic trails 

TopoⅠ      CES    ABC protein

β-glucuronidase

UGT

HDAC

CYP3A

TS            TP             UP

OPRT

DPD

NER

TGF-β1TP

5-FUIrinotecan
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Figure 1  Potential mechanisms of resistance to chemotherapy agents. 
In this schematic representation, the grey boxes highlight major contributors 
to chemotherapy resistance of irinotecan, 5-FU, capecitabine and oxaliplatin. 
TopoⅠ: TopoisomeraseⅠ; CES: Carboxylesterases; UGT: Uridine diphosphate 
glucuronosyltransferase; CYP3A: Hepatic cytochrome P450 enzymes; 
HDAC: Histone deacetylase; ABC protein: ATP-binding cassette transporter 
protein; TP: Thymidine phosphorylase; NER: Nucleotide excision repair; 
TGF-β1: Transforming growth factor β1; TS: Thymidylate synthase; UP: 
Uridine phosphorylase; OPRT: Orotate phosphoribosyl transferase; DPD: 
Dihydropyrimidine dehydrogenase.
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surface, hereby avoiding the binding of the ADC.

TUMOR MICROENVIRONMENT, MICROBE 
BIOFILM, AND THEIR CONTRIBUTION TO 
DRUG RESISTANCE AND TUMORIGENESIS
CRC is often diagnosed at a later stage when tumor cell 
dissemination has taken place. Over the last decades, 
metastatic disease, occurring in almost half of the 
patients, has been a challenge for clinicians to treat 
and remains an incurable disease. Unfortunately, most 
of the promising preclinical approaches have proven 
scarce in clinical translation. The metastatic process 
has been extensively investigated but has yet to be 
linked with specific genetic alterations of epithelial CRC 
cells[65]. Nevertheless, it has become clear that one of 
the key issues relies on the TME[66]. Therefore, blockage 

of cancer immunity and tumor-promoting inflammation 
have become hallmarks of cancer[67]. The TME plays a 
critical role at the different stages of the disease from 
a physiological colonic epithelium to an adenomatous 
polyp and eventually to a mCRC. The TME confers to 
CRC cell survival, immune evasion and a favorable 
environment to grow and metastasize. 

The TME consists of a variety of cells that are 
continuously interacting with each other in a dynamic 
manner: Immune cells, extra-cellular matrix, cancer 
associated fibroblasts, endothelial cells, endothelial 
progenitor cells, platelets and mesenchymal stem cells, 
to name a few. The initial attraction of these cell types is 
mediated through inflammation, leading to the secretion 
by both the tumor cells and stromal cells of a variety 
of cytokines and chemokines. Stromal inflammation 
was shown to promote the evolution of adenomas 
to adenocarcinomas in nude mice[68]. Ultimately, the 

Figure 2  Working model of α-amanitin antibody-drug conjugates. Genomic deletion of p53 frequently encompasses neighboring essential genes such as 
POLR2A. Colorectal cancer (CRC) cells displaying this loss are vulnerable to α-amanitin. The figure summarizes the different steps in α-amanitin-based antibody 
drug conjugate (ADC) killing of CRC cells with hemizygous p53 loss. (1) The ADC binds to CRC cells expressing epithelial cell adhesion molecule (EpCAM). (2) 
Hereafter, the ADC is internalized via receptor-mediated endocytosis. After fusing with lysozyme (3) the α-amanitin is released in the cytoplasm (4), leading to 
inhibition of the catalytic subunit of RNA polymerase Ⅱ complex (5). Suppression of POLR2A will ultimately lead to cell death (6). 
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tumor breaches the equilibrium and the tumor becomes 
uncontrollable. At this stage tumor cells will abuse 
stromal cells to promote tumor survival, proliferation 
and metastasis. 

Dendritic cells (DCs) are considered the most 
professional antigen presenting cells (APCs) and are 
essential to generate a proper adaptive immune 
response[69]. Ideally, DCs within the TME will engulf 
tumor associated antigens (TAAs) and migrate towards 
the draining lymph nodes, where they will elicit T-cell 
mediated responses. In CRC, no correlation was 
found between the frequency of DCs in the tumor and 
patient survival[70]. O'Toole et al[71], however, could 
link the capacity of tumor conditioned media to inhibit 
the lipopolysaccharide (LPS)-induced maturation of 
DCs with patient survival. The suppression of DCs 
was independent of the stage of the disease. Thus, 
the outcome could be rather linked with the potential 
functionality of DCs than their presence in the TME. 
DCs are very versatile based on their environment. 
In a suppressive environment that hampers their 
maturation, they become tolerogenic or regulatory 
DCs, which promote tumor cell survival. On the other 
hand, well-activated DCs will induce immunity and Th1 
immune cell responses.

The role of tumor associated macrophages (TAMs) 
is of particular interest in CRC. Usually in most types 
of solid cancers, the infiltration of TAMs is linked with 
a poor survival and enhanced metastasis. However 
in CRC, the infiltration of TAMs is linked with better 
prognosis[72,73]. Recently, Zhang et al[74] conducted a 
meta-analysis of 55 studies with a total of 8692 patients 
in which they correlated the survival with the infiltration 
of TAMs using the pan-macrophage marker CD68. 
Strikingly, only in CRC were favorable clinical outcomes 
correlated with their infiltration. Moreover, TAM-rich 
tumors are accompanied with a lower amount of both 
lymph node and distant metastases[74]. 

A variety of chemoattractants are involved in the 
recruitment of monocytes in the TME. Chemokines such 
as C-C motif chemokine ligand-2 (CCL-2), CCL-5 and 
C-X-C motif chemokine ligand 12 (CXCL-12), cytokines 
such as colony stimulating factor1 (CSF-1) and VEGF 
family members, and complement components such 
as C5a contribute to the recruitment of macrophages 
in the TME[75-77]. These factors also lead to a differential 
activation status of macrophages[78]. TAMs can be 
subdivided into two categories based on their activation 
status: M1 (classically activated) or M2 (alternatively 
activated). Classically activated M1 TAMs are driven 
by interferon-γ (IFN-γ), whereas alternative M2 TAMs 
are driven by interleukin-4 (IL-4) and IL-13[75]. This 
nomenclature is based on the Th1 and Th2 concept, 
and thus reflects their role in adaptive immunity. 
Therefore, in most cases M2 TAMs are considered 
pro-tumorigenic through their contribution to tumor 
vascularization and dampening of adaptive immune 
responses, while M1 macrophages possess antitumor 
activities. To address the potential influence of TAMs in 

improved patient survival, Malesci et al[79] studied the 
impact of high TAM infiltration in stage Ⅲ CRC patients 
treated with the adjuvant 5-FU chemotherapeutic 
drug. Their results showed a clear benefit of TAM 
infiltration when associated with 5-FU, while no benefit 
was observed in the untreated group. In addition, the 
effect of high-density TAM in metastatic lymph nodes 
is more pronounced in patient survival compared to 
the high TAM infiltration in the primary tumors. In vitro 
experiments pointed out that treatment with 5-FU 
resulted in M1 polarization of the macrophages[79]. 
However, further research into which subtype of 
macrophages is critical for patient outcome in CRC 
remains to be defined. 

The correlation of T-cell infiltration on the OS at 
different stages of CRC has been well documented but 
remains controversial[80-86]. Numerous studies were made 
to assess the correlation of distinct T-cell populations 
(Including: CD3+, CD4+, CD8+, CD45RO+ and FoxP3+) 
with the clinical outcome. Most studies point out that T-cell 
infiltration is unlikely a predictive factor in CRC patients. 
The majority of studies encompassed only a low number 
of patients, which leads to debatable interpretation of 
the tumor-infiltrating lymphocytes (TILs) and specific 
subpopulations thereof on the clinical outcome. This has 
prompted the meta-analysis of TILs and their correlation 
with survival. Nosho et al[87] analyzed 768 CRC cases 
ranging from stage Ⅰ to Ⅳ. They concluded that the 
density of memory T cells (CD45RO+) in the tumors 
was associated with improved survival. In addition, 
assessment was done on molecular alterations such as 
microsatellite instability (MSI), CpG island methylator 
phenotype (CIMP), BRAF, KRAS, PIK3CA and LINE-1 
hypomethylation. The high-frequency of MSI (MSI-H) 
and high LINE-1 methylation were correlated with higher 
CD45RO+ cell density. These data are in accordance 
with previously published data showing the relationship 
between MSI and TILs. MSI is thought to induce 
truncated peptides that cause immunogenicity of tumor 
cells[85], which in turn contributes to the stimulation 
of adaptive immune responses. Taken together, the 
predictive value of TILs in CRC remains unclear. 

The gut microbiome regulates the homeostasis of 
the digestive tract in a very dynamic way. Disruption in 
the latter can thus disturb this balance and cause major 
environmental changes leading to diseases such as 
inflammatory bowel disease (IBD) and cancer[88]. The 
gut microbiota consists of trillions of micro-organisms 
such as bacteria, viruses and fungi[89,90]. Recent studies 
have investigated the presence and functional roles of 
certain bacteria in CRC[91-96].

In the last three years, the gut microbiome has 
emerged as a potential key player in cancer immuno-
therapy. Initial findings by Vetizou et al[97] showed that 
the checkpoint inhibitor (CPI) ipilimumab (anti-cytotoxic 
T-lymphocyte antigen-4: Anti-CTLA4) could treat 
specific pathogen free (SPF) mice, but not germ-free 
mice. In addition, the anti-tumor effects of ipilimumab 
could be deteriorated by antibiotics. Analysis of murine 
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feces revealed significant changes in the microbiome, 
leading to a decrease in the bacterial species Bac
teroidales and Burkholderiales. Supplementation of 
these missing microbes could restore the anti-tumor 
effects of ipilimumab. In the same vein, Sivan et al[98] 
showed that mice obtained from two different providers 
responded distinctly to anti-programmed death-1 
receptor ligand (anti-PD-L1) treatment. These mice 
were shown to harbor a different microbiome, and fecal 
transplants could reverse the treatment discrepancies. 
In their case, Bifidobacterium showed a positive 
correlation with anti-tumor T-cell responses.

Future research could potentially link different 
species of bacteria with an alternate immune cell 
infiltration. For instance, certain bacteria could po-
tentially shape macrophage polarization towards a 
distinct phenotype and thus be used as a potential 
predictive marker for CRC patients. It could also be 
that the presence of bacteria species would be distinct 
based on the stage of the disease. Interestingly, the 
right or proximal colon more frequently exhibits MSI 
tumors, whereas the left or distal colon displays more 
chromosomal instability (CIN)[99]. It might be that the 
proximal or distal colon display different type of bacteria 
leading to these genetically different tumors. We expect 
that in the future, intestinal microbiota might serve as a 
standard of care biomarker for immunotherapies such 
as CPIs. Moreover, fecal transplant or supplementation 
of certain species of bacteria could potentially be co-
administered with CPI, leading to improved responses 
towards CPI. Taken together, better understanding of 
the microbiota dysbiosis could serve as prognostic and 
predictive marker in CRC.

Immunotherapy development 
Several types of cancers have undergone a complete 
revolution thanks to immunotherapy. This has led 
the editors of Science calling cancer immunotherapy 
the “breakthrough of the year” in 2013[100]. None-
theless, CRC has so far been a poor candidate for 
immunotherapy. Initial studies lacked objective clinical 
responses with nivolumab in unselected patients[101,102]. 
Previous observations noticed that immunotherapy 
works better in tumors containing a high mutational 
load as illustrated in melanoma and lung cancer. To 
further emphasize the importance of the mutational 
load in lung cancer, smoking patients displayed a better 
response rate to CPI compared to non-smokers[103]. 
Increased amount of mutations is associated with the 
production of neoantigens, which in turn enhance the 
tumor immunogenicity[104]. The better predictive value 
of smoking lung cancer patients to CPI was linked with 
an increased amount of neoantigens.

Consequently, this has prompted the application 
of CPI in patients with MSI-H CRC. In MSI, frameshift 
mutations in protein-coding sequences possess the 
capacity to generate different peptides with potential 
neoepitopes recognized as foreign by the immune 

system[85]. To further illustrate this, Saeterdal et al[105] 
found an immunogenic peptide derived from a frameshift 
mutation in transforming growth factor β receptor type Ⅱ 
(TGFβRⅡ) referred to as p538. This peptide is expressed 
in over 90 percent of tumors with DNA mismatch repair 
(dMMR), suggesting it is highly applicable in the field. 
Many of such genes in MSI-H tumors are shared by a 
majority of patients as they are thought to be part of the 
carcinogenesis process[105]. Therefore, both prophylactic 
for patients with a genetic predisposition and therapeutic 
cancer vaccinations could be done using such peptides.

Interestingly, the number of TILs is increased in 
MSI tumors compared to microsatellite stable (MSS) 
tumors[84,106,107]. Furthermore, TILs display an enhanced 
CD8+CD103+ phenotype[108]. CD103+ TILs were found in 
27-fold higher amounts within the same patient tumor 
compared to normal epithelium. Increased objective 
response (OR), stable disease (SD) and PFS were 
observed in a phase Ⅱ clinical trial using pembrolizumab 
(anti-PD-1) to treat MSI-H patients. Similarly, when 
nivolumab (anti-PD-L1) was administered to MSI-H 
patients, a clear benefit was observed which led to the 
approval for these selected patients. As for melanoma 
and other cancers, the combination of ipilimumab 
and nivolumab is currently being tested for MSI-H 
metastatic CRC patients[109].

Of note, colon cancer cell lines derived from MSI 
tumors display a loss in human leukocyte antigen (HLA) 
class Ⅰ expression[110]. This is due to genetic mutations 
in the β2m, which is an essential part of the HLA class 
Ⅰ complex. The presentation of TAAs is considered 
a prerequisite for successful T-cell responses[111]. 
Therefore, it is thought that these surviving tumors 
were exposed to high selection pressure to escape 
T-cell surveillance. In many cancers, treatment with 
CPI fails to reach satisfying results[112,113]. Consequently, 
there is a growing interest in combining CPI together 
with chemotherapies or targeted therapies (Figure 3). 
The rationale is that certain chemotherapeutic drugs or 
targeted therapies could enhance the immunogenicity 
of the tumors. This process is dependent on induction of 
immunogenic cell death (ICD) of tumor cells[114]. When 
killed in an immunogenic way, tumor cells will express 
surface makers such as calreticulin and will secrete 
factors such a high-mobility group box 1 (HMGB1) in the 
extracellular milieu, hereby allowing the spontaneous 
generation of an adaptive immune response that 
might benefit from CPI. Preclinical evidence supported 
the oxaliplatin-induced immunogenic cell death in the 
murine BALB/c colon carcinoma model CT26[115].

Furthermore, a few ongoing clinical trials hold 
the promise to improve the outcome of PD1/PD-L1 
blockade. VEGF, leading to angiogenesis, is frequently 
upregulated in CRC and is linked with poor OS. The 
latter can also influence the maturation of DCs. As 
described above, the DC maturation capacity was 
correlated with patient survival[70]. Therefore, blockage 
of VEGF through Bevacizumab could potentiate immune 
responses. In a phase Ib clinical trial, the combination 
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of Bevacizumab and Atezolizumab displayed a 
clear benefit of the combination therapy for MSI-H 
patients[116]. Similarly, in the NCT02997228 clinical trial, 
439 patients with MSI-H CRC will be treated with either: 
Atezolizumab as monotherapy; Atezolizumab combined 
with FOLFOX (a chemotherapy regimen consisting of 
folinic acid + 5-FU + oxaliplatin) and Bevacizumab; or 
FOLFOX and Bevacizumab. FOLFOX will also be tested 
with and without Atezolizumab in over 700 MSI-H CRC 
stage Ⅲ patients (NCT02912559).

In addition to Bevacizumab, several targeted 
therapies have been approved for the treatment 
of CRC. Amongst them, Cetuximab was shown to 
display antibody-dependent cellular cytoxicity (ADCC). 
Interestingly, Cetuximab could induce antigen-spreading 
in head and neck cancer patients[117]. Antigen-spreading 
is a therapy induced phenomenon where secondary 
to therapy more antigens are released and can trigger 
the generation of antigen-specific immune responses 
against a broader number of antigens[118]. As tumor cells 
are known to evolve and “protect” themselves against 
any form of therapy, they will ultimately try to down-
regulate immune responses against a single antigen. 
Therefore, the generation of immune responses against 
several epitopes could lead to robust and long-lasting 
immune responses, which encouraged the clinical 
evaluation for the combination of Cetuximab with 
Pembrolizumab (NCT02713373).

Unfortunately, the presence of MSI solely accounts 
for 15% of CRC cases, while the frequency of MSI-H is 

even lower at 5.9% of the patients[119-122]. The amount 
of MSI-H varies only slightly based on the stage of 
the disease (0-I: 5.9%; Ⅱ: 8.9%; Ⅲ: 4.0% and Ⅳ: 
3.7%). The overwhelming majority of CRC patients 
would thus remain out of scope for CPI. Ebert et al[123] 
studied the potential combination of mitogen-activated 
protein kinase kinase (MEK) inhibition using the MEK 
inhibitor G-38963, which is considered similar to the 
clinically used Cobimetinib, together with anti-PD-L1 in 
CT26 tumor-bearing mice[123-125]. Treatments with only 
MEK inhibitors lead to an initial delay in tumor growth. 
However, upon analysis of these tumors, an increased 
amount of antigen-specific T cells were present with a 
distinct T-bethigh phenotype. Therapeutic combination of 
MEK inhibition and PD-L1 blockage led to an impressive 
long-term survival, whereas single agents only 
displayed an initial delay of tumor growth. This MEK 
inhibitor was furthermore shown to act on the post-
naïve stage of T-cell differentiation. Antigen-specific 
CD8+ T cells expressed Nur77, which is associated with 
exhaustive T-cell death. MEK inhibition was shown to 
counter the expression of Nur77 and thus could rescue 
T-cell exhaustion. This effect seemed to be in parallel 
with the PD-1 axis; therefore, a therapeutic rescue 
might only be possible in the case of blocking the PD1/
PD-L1 axis. A potential risk to this strategy might be the 
prolonged exposure to MEK inhibition. The latter could 
lead to a depletion of the T-cell population. To address 
this issue, a period of two days without MEK treatment 
was introduced, which could bring back the amount of 
T-bethigh antigen-specific T cells to normal. Based on the 
findings that MEK inhibition leads to enhanced T-cell 
infiltration, synergy with blockade of the PD-1/PD-L1 
axis and an upregulation of MHC class Ⅰ on tumor cells 
clinical efficacy was assessed[123,126-129]. Phase Ib clinical 
results (NCT01988896) indicated a potential benefit 
for the combination of PD-L1 inhibition (Atezolizumab) 
and Cobimetinib on proficient MMR (pMMR), which is 
the equivalent of MSS tumors that were previously 
unresponsive to CPI. These data have prompted 
the more in depth analysis of this combination and 
is currently evaluated in a phase Ⅲ clinical trial 
(NCT02788279). Such combination therapy trying to 
render MSS tumors sensible for CPI might open the 
avenue for CRC sensitivity towards CPI, and thus, long-
term benefits.

Assessing a change in the TME is one of the major 
targets for current immunotherapeutic approaches. 
Depletion of myeloid-derived suppressor cells (MDSCs) 
using anti-CSF1R and anti-CTLA4 improved the 
survival of CT26 tumor-bearing mice[130]. Similarly, 
a decrease in the granulocyte fraction of the MDSCs 
was found to be a favorable factor for patients treated 
with FOLFOX and Bevacizumab[131]. Another option 
would be the local delivery of drugs directly in the 
TME to reduce the toxicity of the delivered drugs. 
The effectiveness of the local delivery also possesses 
multiple advantages[132-134]. Local delivery can induce 
systemic immune responses, leading to the eradication 

Microbiota
supplementation

Checkpoint
inhibitors

Targeted
therapy

Stromal therapy Anti-VEGF

Chemo-
therapy

Figure 3  Combination therapies for the development of durable colorectal 
cancer responses. Durable cancer responses are impeded by a dysfunctional 
immunological control. Strategies aiming to boost T cell-mediated immune 
responses will most likely need the combination of therapies that counter the 
tumor and their environment-mediated escape mechanisms avoiding T-cell 
recognition as well as down-regulation of T-cell mediated functions. In this 
figure, we list potential interesting combinations leading to durable T-cell 
mediated killing for CRC. CRC: Colorectal cancer; VEGF: Vascular endothelial 
growth factor.

Van der Jeught K et al.  New therapeutic avenues in CRC



3842 September 14, 2018|Volume 24|Issue 34|WJG|www.wjgnet.com

of tumors on multiple locations[135]. This phenomenon 
is also known as the abscopal effect. Aside from 
targeting cells within the tumors, it is also possible 
to modulate soluble factors such as cytokines and 
chemokines[133]. TGF-β, for example, is a very well-
studied factor in CRC, which is linked with a poor 
prognosis[136,137]. Its function is somewhat controversial 
in CRC. In early stages, it possesses tumor suppressive 
properties, whereas in a later stage of the disease, it 
will promote tumor progression. TGF-β will initially lead 
to a cytostatic effect on epithelial cells. Calon et al[136] 
evidenced that pharmacological inhibition of stromal 
TGF-β signaling blocks metastasis. Local neutralization 
of soluble factors such as TGF-β have been previously 
reported[138]. Currently, intratumoral approaches for 
CRC are being tested, such as intratumoral injection of 
autologous activated DCs. The latter is being tested in 
a phase Ⅰ clinical trial by Northwest Biotherapeutics 
(NCT01882946) using their DCVax-Direct. Another 
currently tested approach is the intratumoral injection 
of the adenoviral vector coding for the human IL-12 
(cDNA) by Mount Sinai School of Medicine National 
Cancer Institute (NCI) for liver metastases secondary to 
colorectal cancer (NCT00072098).

The major drawback for the local injection remains 
the involvement of a surgical procedure, thus impai-
ring large scalability of similar immunotherapeutic 
approaches. An elegant solution to avoid local injection 
is the use of tumor targeting antibodies linked with 
the component of interest. In the past, preclinical 
results were obtained using tumor targeting moieties 
such as anti-CD20, anti-Neu or anti-EGFR to name a 
few[139,140]. In CRC, an interesting clinical trial is ongoing 
using a T-cell bispecific (TCB) antibody targeting 
carcinoembryonic antigen (CEA) on CRC tumor cells 
and CD3 on T cells (NCT02324257 and NCT02650713). 
This molecule simultaneously binds to T-cells and 
tumor cells. This bispecific antibody is currently being 
tested both as a monotherapy and in combination with 
Atezolizumab in a majority of MSS patients. Preliminary 
results show promising disease control and stable 
disease with only a minority of progressive disease[141]. 
A better understanding in cancer immunotherapy drugs 
leading to an improved survival in the MSS subgroup 
of CRC will help further development of this currently 
unfavorable subset of patients constituting the majority 
of CRC patients. 

CONCLUSION
The CRC field has been evolving over the last decades. 
Nevertheless, therapy resistance and unresponsiveness 
to immunotherapy remain major obstacles. Recent 
findings might give hope for targeted therapy resistance 
thanks to ADCs using RNA polymerase Ⅱ inhibition as 
a different killing mechanism as compared to tubulin 
inhibitors. Less resistant mechanisms are expected; 
however, the future will tell us whether this holds true.

The potential use of CPI to treat CRC has been 

successful in a minority of patients displaying MSI-H 
tumors. However, recent findings point towards new 
avenues leading to potential enlargement of the CPI 
sensitive pool. Currently, a tremendous effort is being 
made in understanding the effects of the TME and 
microbiome on the outcome of CPI therapy. However, it 
has become clear that combination therapy will lead to 
tremendous benefits for patients in the future.
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