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The critical role of dietary foliage 
in maintaining the gut microbiome 
and metabolome of folivorous 
sifakas
Lydia K. Greene  1,2, Erin A. McKenney3,4, Thomas M. O’Connell5 & Christine M. Drea1,2,3

The gut microbiome (GMB) of folivores metabolizes dietary fiber into nutrients, including short-
chain fatty acids (SCFAs); however, experiments probing the consequences of foliage quality on host 
GMBs are lacking. We therefore examined GMB structure and function via amplicon sequencing and 
Nuclear Magnetic Resonance spectroscopy in 31 captive sifakas (Propithecus coquereli) during dietary 
manipulations associated with husbandry. Supplementing standard diets with diverse foliage blends, 
versus with a single plant species, promoted more diverse GMBs, enriched for taxa implicated in 
plant-fiber metabolism, but depleted in taxa implicated in starch metabolism and bile tolerance. The 
consumption of diverse blends was associated with greater concentrations of colonic SCFAs. Abundant 
foliage, via forest access, promoted compositionally distinct and more stable GMBs, but reduced 
concentrations of SCFAs, possibly reflecting selection of high-quality leaves. In 11 subjects denied forest 
access, we examined the temporal pace of microbial shifts when supplemental foliage was abruptly 
switched between diverse blends and single species. The sifaka GMB responded within days, with 
community diversity and composition closely tracking foliage diversity. By providing experimental 
evidence that the folivore GMB is sensitive to minor changes in dietary foliage, we reveal the fragility of 
specialist GMBs, with implications for managing the wellbeing of endangered wildlife.

Animal gastrointestinal tracts are colonized by communities of microorganisms, known as the gut microbiome 
(hereafter ‘GMB’), that profoundly impact the health of their hosts1. Among the most intuitive and critical func-
tions of the GMB is the promotion of host nutrition: GMBs possess a wealth of metabolic machinery, facilitating 
pathways that can promote the digestion of various macronutrients2, satisfy vitamin requirements3 and metab-
olize ingested tannins4 or toxins5. Although hosts characterized by all types of feeding strategies rely on their 
GMBs, the metabolic capacity of the GMB is particularly critical for herbivorous or folivorous animals6,7 (i.e., 
animals that, broadly, consume plant-based diets or, specifically, consume leaf-based diets). This particular reli-
ance owes to ingested plant fiber becoming nutritious only after its conversion, via microbial action, into essential 
nutrients, such as short-chain fatty acids (SCFAs)8,9. Microbially synthesized SCFAs, particularly acetate, propion-
ate and butyrate, nourish host organs and can account for 30–57% of a folivore’s daily energy demands6. To extract 
sufficient nutrients from fibrous diets, herbivores and folivores harbor dense and diverse GMBs that are enriched 
for microbes and metagenomic pathways associated with plant-fiber metabolism and SCFA production10–13.

Given the interdependent relationship between herbivory and the GMB, there has been significant research 
effort toward understanding factors that either promote GMB symbiosis or lead to GMB imbalance (also known 
as dysbiosis)6. Thus far, however, most wildlife studies have been correlational, linking temporal (primarily sea-
sonal) variation in dietary or macronutrient intake to variation in the GMB. For example, in the herbivorous, 
North American bison (Bison bison), the Tenericutes phylum has been shown to track seasonal consumption of 
high-protein plants14. Likewise, folivorous primates that supplement their typically leafy diets with seasonally 
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available fruit concurrently experience major GMB shifts10,15–17, their consortia trading capacity for fiber metab-
olism and SCFA production with that for sugar and carbohydrate metabolism.

GMB structure and function also have been correlated with variation in the host’s habitat quality, which is 
potentially a proxy for diet quality. For instance, leaf-eating primates dwelling in primary rainforests host more 
diverse GMBs than do their peers inhabiting disturbed, fragmented or secondary forests18,19. Captivity also shifts 
the folivore and herbivore GMB, such that, the strong signal of host phylogeny in shaping the GMBs of wild foli-
vores20,21 is weaker among captive populations22. Moreover relative to their wild counterparts, captive hosts har-
bor dysbiotic or even ‘humanized’ communities that are strongly linked to sugar-rich, but fiber depleted diets23,24. 
Nevertheless, access to naturalized enclosures and to increased dietary foliage can help alleviate the effects of 
captivity23,25.

It is increasingly clear that variation in dietary plant fiber, whether occurring across seasons, habitats or hous-
ing conditions, plays a pivotal role in shaping the herbivore and folivore GMB; however, the paucity of experi-
mental evidence has limited our understanding of the causal linkages between these dietary factors and GMB 
dynamics. This gap is particularly evident across narrow (i.e., daily and weekly) timescales (although see4). We 
address this deficit using dietary manipulations in the endangered Coquerel’s sifaka (Propithecus coquereli).

Endemic to Madagascar, sifakas are an excellent, non-traditional group of primates in which to investigate 
the effects of foliage quality on the folivore GMB. In the wild, sifakas consume a largely foliage-based diet, com-
prising hundreds of plant species, as well as seasonally available fruits, seeds, flowers, tree bark and earth26,27. 
Like other folivores, sifakas boast a specialized hindgut gastrointestinal system that includes an enlarged and 
sacculated caecum, and elongated intestines28. Together, these structures stretch to 13–15 times the animal’s body 
length, requiring a 24–48 hour gut-passage time29,30. Similarly specialized, sifaka GMBs are significantly richer 
and more diverse than are those of frugivorous or omnivorous lemurs31 and vary seasonally with fruit availabil-
ity16. Structurally, sifaka GMBs are enriched for microbes that have known cellulose-degrading capabilities31; 
functionally, their consortia have increased capacity for fiber and tannin metabolism, and SCFA production12. 
Compared to non-folivorous lemur GMBs, sifaka GMBs exhibit less inter-individual variation31, indicating that 
they are considerably less flexible and potentially less resilient to perturbation.

Coupling their specialized feeding strategy with their dwindling habitat, sifakas are among the most endan-
gered vertebrates on Earth32, their diets increasingly comprising fallback foods that have potentially negative 
health consequences33,34. Sifakas are also notoriously difficult to maintain under captive conditions35,36: Currently, 
the Coquerel’s sifaka is the only sifaka species (out of nine) and the only folivorous lemur species (out of 45) that 
can be routinely maintained and bred in captivity, outside of Madagascar. Today, the Duke Lemur Center in 
Durham, North Carolina, maintains the largest captive sifaka breeding population worldwide, where colony suc-
cess can be partially attributed to the use of local foliage to supplement chow-based diets37,38. Greater insight into 
how foliage supplementation might improve the health and longevity of captive wildlife, potentially via improving 
host-microbiome symbioses, has empirical value for improving our understanding of folivore biology and applied 
value for the successful conservation of endangered species.

Under the broad hypothesis that variation in host diet underlies variation in both GMB structure and meta-
bolic function, we conducted two experimental studies to probe sifaka GMB dynamics across broad and narrow, 
temporal scales (Fig. 1). In Study 1, we examined the GMB and colonic metabolome relative to the diversity 
and abundance of foliage included in the animals’ annual diets: Notably in summer, the standard and balanced, 
daily sifaka diet is supplemented with a diverse blend of local foliage (hereafter the ‘diverse-blend’ condition), 
whereas in winter, this same standard diet is supplemented only with winged-sumac (Rhus copallinum) (here-
after the ‘single-species’ condition). We consider this change in supplemental foliage as a shift in foliage diver-
sity. Moreover, temperature permitting, some sifakas gain access to large, forested enclosures in which they may 
semi-free-range and consume additional resources ad libitum (hereafter ‘forest access’), whereas other sifakas 
do not gain forest access (hereafter ‘no forest access’). We consider forest access to reflect foliage abundance. 
We collected faecal samples from the sifakas in summer and winter, when the animals had consistently been in 
the diverse-blend or single-species condition, respectively, and when forest access had been maximal or mini-
mal, respectively (Fig. 1). We predicted that sifakas would host the richest, most diverse and most variable gut 
consortia, enriched for fiber-degrading microbes, when in the diverse-blend condition and when granted forest 
access. We likewise expected foliage diversity and forest access to be associated with an increase in colonic SCFAs, 
notably acetate, propionate and butyrate.

In Study 2, we examined GMB dynamics during narrower (week-long), transitional periods, both in the fall, 
when diverse blends were abruptly replaced with single-species supplements (hereafter ‘fall transition’), and in the 
spring, when diverse blends were abruptly reintroduced (hereafter ‘spring transition’). We collected samples 1–2 
days prior to each dietary switch, as well as 2–4 days and 1 week after each dietary switch, thereby producing two 
sampling time points for each of the four conditions (diverse blend, fall transition, single species, spring transi-
tion; Fig. 1). For sifakas denied year-round, forest access, which controls for dietary variability, we expected GMB 
structure to track the foliage component of the diet, such that microbial community richness, diversity, variability 
and capacity for fiber metabolism would change in step with the loss or gain of foliage diversity.

Results
Study 1: Linking foliage diversity and abundance to the structure and function of folivore 
GMBs. Independent of forest access, the sifakas hosted significantly richer and more diverse GMBs when in the 
diverse-blend condition than when in the single-species condition (Table 1 and Fig. 2a–c). As revealed by Linear 
Mixed Models (LMM), this finding held across all measures of alpha diversity, namely the Chao1, Shannon and Faith’s 
Phylogenetic Diversity (PD) indices that, respectively, capture GMB richness, community evenness and microbial 
phylogenetic representation39. Although we found no main effect of forest access on GMB alpha diversity, for two of 
the indices, Chao1 and PD, there was a significant interaction between foliage condition and forest access. Notably, 
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when diets included single-species supplements and forest access was minimal, sifakas that had gained forest access at 
any point during the study maintained greater GMB diversity than did peers routinely denied forest access.

Using unweighted and weighted UniFrac distance measures of beta diversity, which respectively capture the 
similarity of microbial consortia membership and abundance across pairs of samples40, and Bonferonni-corrected 
student’s t-tests, we found that microbial membership differed between pairs of sifakas depending on foliage con-
dition and forest access (Fig. 2d,e). When diets were supplemented with diverse blends and forest access was most 
consistent, GMBs were less similar (i.e., more variable) for pairs of sifakas in which one member gained and one 
member was denied forest access, than for pairs in which both members either gained (unweighted: t58 = −9.32, 
p < 0.001; weighted: t58 = −14.89, p < 0.001) or were denied (unweighted: t58 = −5.87, p < 0.001) forest access. 
Nevertheless, when diets were supplemented with single species and forest access was most limited, the differ-
ences that had been evident between GMBs from hosts with differential forest access disappeared (unweighted: 
t58 = −9.99, p = <0.001; weighted: t58 = −9.55, p < 0.001).

When in the diverse-blend condition (relative to the single-species condition), the sifakas’ colonic metabo-
lomes had significantly greater concentrations of SCFAs, including acetate and propionate, and modestly greater 
concentrations of butyrate, as revealed by LMMs (Table 2 and Fig. 2f–h). Forest access had no relation to acetate 
concentration, but was significantly and negatively associated with both propionate and butyrate concentrations. 
We found no interaction between foliage condition and forest access for any SCFA.

Overall, the sifaka GMB was dominated by members of the Bacteroidetes and Firmicutes phyla, with smaller 
contributions from Cyanobacteria, Proteobacteria, and Tenericutes (see Supplementary Material S1), and the 
abundance of specific microbial genera varied with foliage diversity. An analysis using Linear Discriminant 
Analysis Effect Size (LEfSe)41 revealed that 28 microbial genera (i.e., OTUs) varied with the sifakas’ access to 
diverse blends versus single species of foliage (Fig. 3), 18 of which remained significant, or trending towards 

AprMay JanJun DecJul NovSep OctAug MarFeb

Daily diet

Foliage condition spring transition

Study 1: Subjects and sampling points

forest access

Single species

no forest access

Study 2: Subjects and sampling points
fall transition

forest access

no forest access

Diverse blend

Figure 1. Schematic illustrating the diets received by sifaka subjects relative to the timing of sampling. All of 
the sifakas received a ‘daily diet’ across the calendar year. This standard fare was supplemented by one of two 
‘foliage conditions’, namely a diverse blend in spring through fall or a single species in winter. Study 1 involved 
all 31 subjects, including those that gained (squares) or were denied (circles) forest access. Faecal sampling 
occurred once in midsummer and midwinter when all of the animals were provisioned with diverse blends 
(light green) versus single species (dark green), respectively. Study 2 involved only those 11 subjects that were 
denied year-round forest access. Sampling occurred an additional three times each in fall and spring, including 
pre-transition (circles), as well as both 2–4 days and 1 week (triangles) post transitions, when the provisioned 
foliage abruptly changed between the diverse-blend and single-species conditions. This sampling regimen 
resulted in two data points for each of the four conditions (diverse blend, fall transition, single species, spring 
transition). Images provided by S. Bornbusch.

Effect Trend

Chao1 Index Shannon Index
Phylogenetic 
Diversity

z p z p z p

foliage diverse blend > 
single species 3.45 <0.001 1.99 0.046 2.88 0.004

forest access no effect 0.34 0.73 0.51 0.61 1.31 0.19

foliage*
forest access

yes > no
on single species 2.95 0.003 0.13 0.90 2.15 0.032

Table 1. Alpha diversity measures of the sifaka gut microbiome relative to dietary foliage and forest access in 
Study 1. Note. Significant findings are bolded.
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Figure 2. Diversity and short-chain fatty acid (SCFA) concentrations in the sifaka gut microbiome and 
metabolome relative to foliage diversity and forest access in Study 1. Pictured are measures of alpha diversity, 
including the (a) Chao1, (b) Shannon and (c) Phylogenetic Diversity indices, beta diversity, as captured by  
(d) unweighted and (e) weighted UniFrac distances for all pairwise comparisons (shown by paired symbols), 
and SCFA concentrations, including (f) acetate, (g) propionate and (h) butyrate. Each measure is graphed 
relative to the sifakas’ foliage condition, including diverse blends (light green) and single species (dark green), 
and forest access, including those sifakas that gained forest access at any point during the study (squares), and 
those that were denied forest access throughout the study (circles). *p < 0.05; **p < 0.01; ***p < 0.001.

Effect Trend

Acetate Propionate Butyrate

z p z p z p

foliage diverse blend > 
single species 3.65 0.004 2.30 0.022 1.93 0.053

forest access no > yes 1.54 0.12 2.17 0.030 2.70 0.007

foliage*forest access no effect 1.03 0.30 0.88 0.38 1.37 0.17

Table 2. Sifaka colonic short-chain fatty acid concentrations relative to dietary foliage and forest access in Study 
1. Note. Significant findings are bolded and trends are italicized.
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significance, after applying a correction factor for multiple testing (see Supplementary Material S2). Whereas 
many members of the Clostridiales order and Lachnospiraceae family were enriched when sifakas received 
diverse blends, Oscillospira, Rikenellaceae members and Bilophila were notably enriched when sifakas received 
the single species. Many of these enriched genera were also those that co-varied with SCFA concentrations 
(Fig. 3). Overall, correlation analysis indicated that SCFA concentrations co-varied with 12 microbial gen-
era, regardless of foliage diversity (see Supplementary Material S3). Notably, acetate correlated positively with 
Lachnospiraceae members, such as Blautia and Lachnobacterium, but negatively with Oscillospira, Bilophila and 
Prevotella (Kendall’s tau = −0.284, p = 0.016). Propionate was likewise negatively correlated with Oscillospira, 
whereas butyrate was negatively correlated with Sutterella, but positively correlated with Lachnobacterium.

Study 2: The effect on the GMB structure of transitioning foliage diversity. We found that the 
sifaka GMB responded within mere days to abrupt dietary manipulations. By collapsing the ‘duplicate’ sam-
pling points in each of the four dietary conditions (diverse blend, fall transition, single species, spring transition; 
Fig. 1), we found that alpha diversity decreased with reduced foliage diversity and was regenerated with increased 
foliage diversity (Table 3 and Fig. 4a–c). Nevertheless, the magnitude of change varied with each diversity met-
ric: Notably, richness was more extreme during transitional periods (i.e., lowest and greatest during fall and 
spring transitions, respectively) than during periods of consistent foliage supplements (Fig. 4a); evenness was 
greatest when animals received diverse blends, was intermediate during transitions, and was lowest when ani-
mals received single-species supplements (Fig. 4b); and phylogenetic diversity during each transitional period 
converged to match that of its respective foliage-diversity condition during more consistent periods (Fig. 4c). 
Consequently, hosts consuming the same diversity of foliage, whether for two days or several months, harbored 
comparably diverse consortia.

Analysis of weighted and unweighted UniFrac distances via Bonferonni-corrected student’s t-tests also 
revealed that sifaka GMBs responded to dietary manipulations (Fig. 4d,e). As captured by pairwise comparisons, 
variation in both taxonomic representation and abundance between individuals was significantly greater when 
sifakas were in the diverse-blend condition compared to (1) the fall transition (unweighted: t88 = 3.98, p = 0.005, 
Fig. 4d; weighted: t88 = 4.23, p = 0.002, Fig. 4e) and (2) the single-species condition (unweighted: t88 = 3.98, 
p = 0.005, Fig. 4d; weighted: t88 = 7.17, p < 0.001; Fig. 4e). We failed to find a difference between the fall transition 
and the subsequent single-species condition, indicating that the loss of inter-individual variation between the 
diverse-blend and single-species conditions occurred within just one week of changing dietary foliage diversity. 
Likewise, this inter-individual variation in taxonomic representation re-emerged within just one week of diverse 

diverse blend
single species

Operational Taxonomic Unit
phylum family genus

Tenericutes 

Log(LDA)
0 1 2 3 4 p

SCFA correlation
SCFA tau p

Unknown Unknown

Propionate

Bacteroidetes Sphingobacteriaceae Unknown

Firmicutes Erysipelotrichaceae Unknown
Clostridiaceae Unknown

Anaerofustis
Ruminococcus

Proteobacteria Desulfovibrionaceae Unknown
Actinobacteria Coriobacteriaceae Adlercreutzia

Dorea

Sarcina

Unknown

Blautia

Bacteroidetes Rikenellaceae Unknown
Firmicutes

Ruminococcaceae Oscillospira
Lachnospiraceae Unknown

Proteobacteria Alcaligenaceae Sutterella
Actinobacteria Coriobacteriaceae Unknown
Proteobacteria Desulfovibrionaceae Bilophila
Bacteroidetes Rikenellaceae Unknown
Firmicutes SyntrophomonadaceaeSyntrophomonas

Eubacteriaceae
Lachnospiraceae

Clostridiaceae

Lachnospiraceae

Clostridiaceae

Lachnospiraceae

< 0.001

0.019
< 0.001

0.003
0.012

0.025
<0.001

< 0.001
0.018

0.002
0.029

0.021

0.002

< 0.001

< 0.001

0.005
< 0.001

0.012

0.003

0.006

Acetate 0.257 0.030

Acetate 0.254 0.032

Bacillaceae Bacillus

Firmicutes Erysipelotrichaceae Catenibacterium

Proteobacteria Unknown Unknown
Tenericutes Unknown Unknown
Firmicutes
Tenericutes Anaeroplasmataceae Anaeroplasma
Firmicutes

LachnobacteriumLachnospiraceae

Cyanobacteria Unknown Unknown

0.043
0.003
0.018

< 0.001

< 0.001
0.029
0.004

Acetate 0.278 0.038

Acetate -0.281 0.018

Acetate 0.284 0.031

Acetate -0.395 < 0.001

Acetate 0.408 < 0.001

Acetate -0.227 0.059

Butyrate -0.268 0.04

Proprionate 0.250 0.035

-0.250 0.035

Butyrate 0.393 0.003

Figure 3. Microbial taxa in the sifaka gut microbiome, at the phylum, family and genus levels, that are 
significantly enriched relative to foliage condition in Study 1. Shown are taxa for diverse blends (light green) and 
single species (dark green) that are correlated to short-chain fatty acid (SCFA) concentrations, including acetate, 
propionate and butyrate.
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blends being reintroduced, such that we also failed to find a difference between the spring transition and the 
diverse-blend condition (unweighted: t88 = 0.55, p = 1.0). With regard to microbial taxonomic abundance (rather 
than taxonomic representation), variation between individuals remained low during the spring transition relative 
to when the sifakas received diverse blends (weighted: t88 = −7.67, p < 0.001).

Comparison

Chao1 Index Shannon Index Phylogenetic Diversity

z p z p z p

diverse blend vs. single species −2.58 0.009 −5.0 <0.001 −2.75 0.006

diverse blend vs. fall transition −6.08 <0.001 −1.97 0.049 −2.6 0.009

diverse blend vs. spring transition 5.49 <0.001 −2.25 0.025 0.49 0.63

single species vs. fall transition −3.47 <0.001 3.07 0.002 0.16 0.87

single species vs. spring transition 8.28 <0.001 2.98 0.003 3.38 <0.001

Table 3. Alpha diversity measures of the sifaka gut microbiome relative to dietary foliage across the four 
experimental periods of Study 2. Note. Significant findings are bolded.
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Consistent with Study 1, the sifaka GMB across Study 2 was dominated by the same microbial genera 
within the Firmicutes, Bacteroidetes, Cyanobacteria, Proteobacteria and Tenericutes phyla, as well as by the 
Akkermansia genus from the Verrucomicrobia phylum (see Supplementary Material S1), and specific genera 
of microbes responded rapidly to dietary manipulations. Notably, LEfSe identified 7 taxa that were significantly 
enriched at particular sampling time points (see Supplementary Material S2). The taxa that were enriched when 
diets were consistently supplemented with diverse blends (compared to all other dietary conditions) included 
Lachnospiraceae members, like Blautia (Log(LDA) = 3.08, p = 0.004, Fig. 4f), Dorea (Log(LDA) = 3.27, p < 0.001) 
and Ruminococcus (Log(LDA) = 3.46, p < 0.001, Fig. 4g), and unknown genera within the Clostridiales order 
(Log(LDA) = 2.95, p = 0.002) and the Alphaproteobacteria class (Log(LDA) = 2.91, p = 0.007). In contrast, the 
taxa that were significantly enriched when diets were consistently supplemented with the single species (compared 
to all other dietary conditions) included Oscillospira (Log(LDA) = 4.16, p < 0.001, Fig. 4h) and an unknown genus 
within the Lachnospiraceae family (Log(LDA) = 4.15, p < 0.001, Fig. 4i). No microbial taxon was enriched dur-
ing the transition periods. Four of these taxa (Dorea, Ruminococcus, Oscillospira, and the unknown Clostridiales 
OTU) remained significant after further correcting for multiple testing (see Supplementary Material S2).

When considering only the fall or spring transitions, alpha diversity varied significantly in the predicted direc-
tion (Table 4 and Fig. 5a–c). Notably, compared to samples collected immediately prior to the fall transition 
(when the sifakas received diverse blends), those collected 2–4 days afterwards had significantly lower richness 
and diversity (Fig. 5a,c). The change in PD became even more pronounced one week after the fall transition 
(Fig. 5c). Although similar changes were evidenced by the Shannon index, they failed to reach statistical signifi-
cance (Fig. 5b). Compared to the samples collected immediately prior to the spring transition (when the sifakas 
received single-species supplements), those collected 2–4 days afterwards were significantly greater in their rich-
ness and evenness, with the difference becoming even greater after one week (Fig. 5a,b). The increase in PD dur-
ing the spring transition reached statistical significance at the one-week sampling point (Fig. 5c).

Specific microbial genera also varied significantly within the week-long fall and spring transitions (Fig. 5d–g). 
LEfSe identified two unknown taxa from the Enterobacteriaceae family that were significantly enriched in sam-
ples collected immediately prior to the fall transition, (Log(LDA) > 2.84, p < 0.02 for both), whereas immediately 
after the fall transition, LEfSe identified seven genera that were enriched, including Oscillospira (Log(LDA) = 3.90, 
p = 0.001, Fig. 5e), Prevotella (Log(LDA) = 4.36, p < 0.001) and unknown genera within the Ruminococcaceae 
(Log(LDA) = 2.88, p = 0.009), Lachnospiraceae (Log(LDA) = 3.66, p = 0.014) and Coriobacteriaceae families 
(Log(LDA) = 2.83, p = 0.018; see Supplementary Material S2). Likewise, seven taxa were enriched in samples 
collected immediately prior to the spring transition, including Oscillospira (Log(LDA) = 4.03, p = 0.005, Fig. 5e), 
Phascolarctobacterium (Log(LDA) = 2.89, p = 0.026), Clostridium (Log(LDA) = 3.80, p = 0.021) and Bilophila 
(Log(LDA) = 2.39, p = 0.044, Fig. 5g), whereas another six taxa were enriched immediately after the spring tran-
sition, including Blautia (Log(LDA) = 2.51, p = 0.041, Fig. 5d) and Ruminococcus (Log(LDA) = 2.47, p = 0.001, 
Fig. 5f) from the Lachnospiraceae family, Adlercreutzia (Log(LDA) = 2.45, p < 0.001), and unknown genera from 
the Mogibacteriaceae (Log(LDA) = 2.80, p = 0.008) and Desulfovibrionaceae (Log(LDA) = 2.38, p = 0.022) fam-
ilies (see Supplementary Material S2). No taxa remained significant across either transitional period after further 
correcting for multiple testing (see Supplementary Material S2).

Discussion
Identifying the nutritional requirements that support the symbiosis between folivores and their GMBs is a bur-
geoning research aim within conservation and microbial ecology. Here, we contribute to this endeavor by show-
ing that the diversity, variability, membership and function of the folivore GMB change dramatically with even 
minor shifts in dietary foliage. In omnivores, altering the GMB typically requires extreme dietary perturbation, 
including experimentally pushing the diets of human volunteers or laboratory rodents to the limits of health42,43. 
Yet, for folivores and herbivores, their complex and specialized gastrointestinal systems may promote the estab-
lishment of microbial communities that are susceptible to even small-scale perturbation. Thus, feeding strategy, 
reflecting the host’s degree of dietary specialization versus generalization, may ‘set up’ the relative resilience or 
intransigence of the host’s GMB to dietary shifts. Recognizing the relationships between feeding strategy and 
GMB integrity has implications for our understanding of how microbes can drive vertebrate evolution, including 
niche specialization and adaptive radiation.

Overall, we found that the diversity of dietary foliage was strongly associated with the diversity of gut consor-
tia. Compared to sifakas that consumed single species, sifakas that consumed diverse blends of foliage exhibited 
GMBs that were richer, showed greater evenness and had greater representation from diverse microbial lineages, 
as captured by the Chao1, Shannon and PD indices. Contrary to our expectations, forest access and, thus, the 
opportunity to forage freely and perhaps select a diverse or high-quality diet did not produce more diverse GMBs; 

Season Comparison

Chao1 Index Shannon Index
Phylogenetic 
Diversity

z p z p z p

fall transition
pre-fall vs. 2–4 days post −4.17 <0.001 −1.56 0.12 −1.99 0.047

pre-fall vs. 1-week post −2.63 0.009 −1.45 0.15 −2.79 0.005

spring transition
pre-spring vs. 2–4 days post 4.73 <0.001 2.24 0.025 0.257 0.13

pre-spring vs. 1-week post 5.54 <0.001 3.44 <0.001 1.99 0.046

Table 4. Alpha diversity measures of the sifaka gut microbiome relative to dietary foliage across the week-long 
transitions of Study 2. Note. Significant findings are bolded.
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nevertheless, the significant interaction between forest access and foliage diversity suggests that those sifakas that 
had even minimal forest access better maintained representation from more microbial genera and more phyloge-
netic lineages as their diets lost foliage diversity. In ecosystem and microbial ecology, community diversity is gen-
erally seen as beneficial because it underlies stability by providing multiple or redundant functions44. Supporting 
this ‘diversity begets stability’ framework, the GMBs hosted by sifakas that had forest access were also those that, 
across the period of study, exhibited the most stability (or least variability) in the various diversity metrics. These 
results indicate that dietary diversity may indeed underlie GMB stability in this system.

Although the links between dietary quality and GMB diversity in Study 1 occurred across a broader, seasonal 
scale and could have been correlational, the results from the more narrowly focused Study 2 suggest causality in 
this relationship. Notably, in our second dietary manipulation, the transitions from the diverse foliage blends of 
summer to the foliage-limited diets of winter, and vice versa, were abrupt, with the shifts in sifaka GMBs being 
equally swift. Within a mere two days, a period corresponding to the sifaka’s gut-retention time30, GMBs began 
to converge on the stable state that characterized the sifakas during the following season: In the fall, when diverse 
blends were substituted with a single species, GMBs immediately lost diversity, whereas in the spring, when 
diverse blends were reintroduced, GMB diversity was rapidly regenerated.
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Figure 5. Alpha diversity and the percentages of key microbial genera in the sifaka gut microbiome, relative to 
each sampling point in Study 2. Pictured here are measures of alpha diversity, including the (a) Chao1,  
(b) Shannon and (c) Phylogenetic Diversity indices, as well as (d) Blautia, (e) Oscillospira, (f) Ruminococcus 
from the Lachnospiraceae family and (g) Bilophila. Each measure is graphed relative to foliage condition, 
including diverse blends (light green) and single species (dark green), as well as the timing of sampling, 
including during periods of consistent foliage supplements (circles), and during the week-long transitions when 
foliage condition was abruptly switched in fall (downward-pointing triangles) and spring (upward pointing 
triangles). *p < 0.05; **p < 0.01; ***p < 0.001.
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The different diversity measures revealed how community structure changed during the week-long transi-
tions: Community richness fluctuated somewhat dramatically, whereas phylogenetic breadth more immediately 
converged onto the following stable state. These results indicate that the loss of foliage diversity in the fall resulted 
in GMBs that lost representation of specific microbial genera and, indeed, entire lineages. Yet, in the spring, 
the reintroduction of foliage diversity caused sifaka GMBs to recuperate these microbes, suggesting that these 
taxa either derive from the plants themselves or potentially persist in low (i.e., methodologically undetectable) 
abundances until their preferred metabolic substrates are reintroduced. Compared to community richness and 
phylogenetic diversity, community evenness exhibited a slower adjustment during the transitions, suggesting that 
whereas the presence of specific microbes immediately shift in response to dietary manipulations, the relative 
abundances of these taxa require longer than one week to settle into a climax community.

Microbial membership likewise varied with dietary foliage. When the subjects of Study 1 consumed diverse 
blends, their GMBs were enriched for many Clostridiales taxa, predominantly within the Lachnospiraceae family. 
These microbes included the Blautia, Dorea, Lachnobacterium and Ruminococcus genera that are known for their 
metabolic capacity to ferment plant fibers into SCFAs13,45,46. These taxa were also among those that were signifi-
cantly and positively correlated to SCFA concentrations, further indicating their functional contribution to host 
energetics10,47. In contrast, when foliage diversity was limited, sifaka GMBs were more suited to starch and protein 
metabolism, as well as to fat and bile tolerance, as evidenced by the increase in Oscillospira, Bilophila and mem-
bers of the Rikenellaceae family48–50. These genera were generally negatively correlated to SCFA concentrations, 
further indicating a tradeoff in plant-fiber (i.e., cellulose) metabolism. Many of the key microbial genera detected 
in Study 1 were also those that significantly and immediately gained or lost dominance when we transitioned 
foliage diversity in Study 2: Whereas the abundance of fiber-specializing Lachnospiraceae became more abundant 
with increasing foliage diversity, microbes like Oscillospira, Prevotella and Bilophila concurrently lost abundance. 
Importantly, the dietary substrates used in microbial starch, protein and fat metabolism were always included in 
the daily diets of captive sifakas; however, during periods of increased foliage consumption, the microbes special-
izing on these macronutrients may have been outnumbered and outcompeted by fiber specialists.

Microbial composition, as captured by UniFrac distances, was also associated with the sifakas’ access to for-
ested enclosures, a result that is consistent with our predictions based on previous research23. During cold spells, 
when forest access was restricted, the sifakas hosted a GMB that was relatively homogenized across individuals. 
By contrast, in summer, those subjects granted forest access harbored distinct consortia from those subjects that 
were denied forest access. Contrary to our expectations, however, the GMBs of the former, forest-access subjects 
were associated with lower concentrations of propionate and butyrate than were those of the latter subjects denied 
forest access. Differences in leaf maturity between our subjects’ diets may help explain the patterns of SCFA pro-
duction observed. For instance, subjects that were granted forest access may have preferentially selected young, 
tender and immature leaves38 that have low fiber and tannin content, but high sugar and protein content51–53, 
thereby limiting the need for fermentative metabolism, which in turn limited SCFA production. By contrast, 
animals denied forest access were typically fed mature browse37, the metabolism of which requires significant 
microbial fermentation and may produce SCFAs as byproducts. The microbial metabolism of low-quality leaves 
into SCFAs that can fulfill energy demands has been suggested as a coping mechanism for folivorous primates 
during periods of resource scarcity or enhanced resource requirement10. Therefore, SCFA production may be one 
means whereby sifakas that are limited to consuming low-quality, mature leaves meet their energetic demands.

Seasonal variation in the GMB has been shown to occur in wild folivores and herbivores, for which the mem-
bership and function of gut consortia reflect seasonally available, young leaves, fruits and proteins10,14–17. As in 
prior studies, we likewise sampled sifakas across seasons16; however, the majority of the dietary variation in our 
study was correlated to, but did not result from, seasonality. Our sifakas always had access to a standard, balanced 
and complete diet that included chow optimized for leaf eaters, starch-rich potatoes and corn, protein and fat-rich 
nuts and beans, as well as fiber and vitamin-rich domesticated greens and vegetables. We manipulated only the 
diversity or abundance of the wild plant species supplementing this standard fare. The strength of our study stems 
from this direct manipulation of diet and forest access and, thus, our ability to infer causality in host-microbe 
interaction. Although the benefits of working with captive animals include control in experimental design and 
feasibility of sampling, researchers have primarily explored the microbial consequences associated with life in 
captivity versus life in the wild23,54. Dietary manipulations that causally probe the GMB of captive wildlife are 
rare, but could significantly advance our understanding of diet-induced regulation of GMBs across diverse host 
systems.

In addition to the empirical value of studying and manipulating host-microbe symbioses, research on the 
GMBs of endangered wildlife is also poised to make significant contributions to conservation and husbandry 
strategies55. Relative to hearty omnivorous hosts, folivorous and herbivorous hosts, like sifakas, face more ten-
uous survival in the wild32 and in captivity35,36,56, potentially because of their more ‘fragile’ GMBs; folivores and 
herbivores are likely more susceptible and, thus, less resistant to dietary and habitat perturbation. Indeed, that 
feeding strategy may dictate GMB flexibility, resilience or fragility provides a potential mechanism for predicting 
how wild populations may cope with increasing dietary, habitat or climate change. For the Coquerel’s sifaka, spe-
cifically, future studies comparing the GMBs of wild and captive populations should be a research priority. With 
regard to animal husbandry, more broadly, we suggest that facilities housing folivorous species promote access to 
forested enclosures whenever possible or prioritize access to a diversity of dietary foliage year round.

Materials and Methods
Subjects and housing. The subjects included 31 healthy Coquerel’s sifakas (18 females, 13 males) housed in 
10 social groups at the Duke Lemur Center (DLC) in Durham, NC. The subjects ranged in age from 6 months to 
23 years: Although our youngest subjects (<4 years) may not have been sexually mature at the time of sampling36, 
sifaka GMBs converge on the adult host’s profile prior to 6 months of age31.
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The subjects received a once-daily diet, comprising folivore chow (Mazuri Leaf-Eater Primate Diet Mini-Biscuit, 
No. 5672), nuts or beans, sweet potato or corn, vegetables and kale or collard greens. This standard diet was supple-
mented with local foliage, harvested from nearby forests and rinsed in 10% bleach. From spring through fall, the 
sifakas received a diverse blend of fresh foliage that contained minimally winged sumac (Rhus copallinum), red bud 
(Cercis canadensis), tulip poplar (Liriodendron tulipifera), mimosa (Albizia julibrissin), sweet gum (Liquidambar 
styraciflua) and grapevine (Vitis spp.). In winter, the sifakas received only defrosted sumac, harvested and fro-
zen during the previous summer. The nutritional content of the plant species fed to the sifakas is presented in 
the Supplemental Material (S4). The transitions between summer’s ‘diverse blends’ and winter’s ‘single species’ 
occurred abruptly during fall and spring, with the precise timing depending on the availability of local foliage. 
Water was always freely available.

Each sifaka group habitually occupied an indoor/outdoor pen (146 m2/animal), year-round. Six groups addi-
tionally gained forest access (0.6–5.8 ha) when ambient temperatures remained reliably above 5 °C. Warmer tem-
peratures in recent winters resulted in the sifakas gaining forest access intermittently throughout the winter of our 
study. A seventh group gained forest access only in the summer. The remaining three groups were always denied 
forest access. With forest access, subjects consumed additional resources ad libitum38, and, anecdotally, were seen 
eating various leaves, poison ivy (Toxicodendron radicans) and oak (T. diversilobum), grasses, vines, bark and clay.

Lemurs at the DLC are maintained in accordance with the U.S. Department of Agriculture regulations and the 
National Institutes of Health Guide for the Care and Use of Laboratory Animals. The research protocols for this 
study were approved by the Institutional Animal Care and Use Committee of Duke University (protocol number 
A171-09-06).

Study design and sampling. We collected faeces from the sifakas, all of which were individually iden-
tifiable via distinguishing markings, at eight time points between July 2015—March 2016 (Fig. 1). For Study 1, 
we sampled all 31 sifakas once in midsummer and once in midwinter, when their diets were consistently sup-
plemented with diverse blends or single species, respectively. For Study 2, we focused on 11 sifakas that lacked 
year-round forest access, including from the three social groups that were always denied forest access and from 
the group that gained forest access only in the summer. These subjects were sampled at six additional times, 
including 1–2 days before, 2–4 days after and 1 week after the abrupt transitions in fall (i.e., from diverse blends to 
single species in October) and spring (i.e., from single species to diverse blends in March). We collected samples 
in the morning (6:30–10:30 H), post voiding, immediately placed them in sterile tubes on ice and stored them at 
−80 °C within 2 hours of collection.

Sequencing and bioinformatics. We extracted genomic DNA from faeces using the MoBio Powersoil 
DNA Isolation Kit (Carlsbad, California, USA) and sent aliquots to Argonne National Laboratory (Lemont, 
Illinois, USA) for sequencing of the v4 region of the 16S rRNA gene using established methods57,58. Sequence data 
are available in the NCBI Sequence Read Archive under accession numbers SRP158783.

We processed sequences using the Quantitative Insights into Microbial Ecology (QIIME) package (v1.9.1)57, 
using a published analytical workflow58. We retained samples that were sequenced to a depth of 10,000 reads and 
ultimately discarded two samples from downstream analyses. We picked Operational Taxonomic Units (OTUs) 
using the de novo UClust method and based on 97% sequence similarity. OTU taxonomy was assigned using the 
Greengenes database (v13_8). We used OTUs to calculate alpha-diversity measures, including Good’s Coverage, 
Chao1, Shannon and Faith’s Phylogenetic Diversity (PD) indices. Good’s Coverage, which estimates what percent 
of the total number of OTUs in the original community are represented by the sequencing effort, was >95% for all 
samples. Chao1 captures OTU richness, PD accounts for the relatedness between OTUs, and the Shannon index 
reflects community evenness39. We likewise used OTUs to calculate beta diversity, including unweighted and 
weighted UniFrac distances. UniFrac distances measure the phylogenetic dissimilarity between pairs of samples, 
with unweighted measures relying on the presence of OTUs and weighted measures taking into account their 
relative abundance40.

Nuclear Magnetic Resonance (NMR) spectroscopy. We analysed the colonic metabolome via NMR 
spectroscopy in a subset of 35 samples from Study 1 using previously established methods59 optimized for 
lemurs12. These samples were equally split between midsummer and midwinter, and represented sifakas that 
gained or were denied forest access. We specifically targeted concentrations of three SCFAs, notably acetate, pro-
pionate and butyrate. Spectra were acquired at 600 MHz using a standard Nuclear Overhauser Effect Spectroscopy 
(NOESY) preset experiment. SCFA concentrations are available in the Supplementary Material (S5).

Statistical analyses. To assess the influence of foliage diversity and forest access on alpha diversity and 
SCFA concentrations in Study 1, we implemented Linear Mixed Models (LMM), using the glmmADMB package 
(version 0.8.3.360) in Rstudio (version 0.99.90261). For alpha diversity, we ran three models in which the depend-
ent variable was the Chao1, Shannon or PD index. For SCFAs, we ran three models in which the dependent vari-
able was acetate, propionate or butyrate concentration. We included the sifaka’s identity as a random term and, as 
explanatory variables, we included foliage condition (two classes: diverse blends or single species), forest access 
(two classes: yes or no) and their interaction. We considered the sifakas to have forest access if they could semi 
free-range at any time during the year, even if they were not concurrently in their forested enclosure at the time of 
sampling. We reran these models including sex as a third explanatory variable and the individual nested within its 
social group as our random term; however, sex was always an insignificant predictor and neither variable changed 
the results. We ultimately report the values from the simplified models.

For Study 2, we computed three suites of LMMs on alpha-diversity metrics. In all suites, we ran three models, 
one for each diversity metric, but we retained only the 11 sifakas that were sampled during the foliage transitions. 
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In the first suite, we used foliage condition as an explanatory variable, but to boost power, we collapsed ‘duplicate’ 
sampling points into the following four categories: (1) diverse blends (summer and pre-fall transition), (2) single 
species (winter and pre-spring transition), and (3) the fall and (4) spring transitions (each transition sampled at 
2–4 days and 1-week post abrupt foliage switches). In the second and third suites, we retained only the samples 
from the fall or spring transition (pre transition, 2–4 days and 1-week post abrupt foliage switches), to examine 
if alpha diversity changed across these one-week periods. For all LMMs, we retained the individual sifaka as a 
random term. We re-computed all models with sex as an additional explanatory variable and, when possible, the 
individual nested within its group as a random term; however, as with the larger models above, sex was always 
an insignificant predictor and neither variable changed the results. We report on findings from the simplified 
models.

To assess the influence of foliage quality on beta diversity, we calculated pairwise comparisons of unweighted 
and weighted UniFrac distances using QIIME and Bonferonni-corrected t-tests. For Study 1, we compared pair-
wise distances within and between sifakas that gained or were denied forest access, and that received diverse 
blends or single species. For Study 2, we compared pairwise distances within and between sifakas during periods 
of consistent foliage supplements vs. during week-long transitions by collapsing sampling points in the same four 
categories as earlier: (1) diverse blends and (2) single species, and (3) the fall and (4) spring transitions.

We used Linear Discriminate Analysis Effect Size (LEfSe)41 to determine which OTUs varied with foliage 
condition. Because one cannot examine the interaction between explanatory variables with LEfSe, we examined 
the influence of foliage condition in Study 1, but not of concurrent forest access. For Study 2, we computed LEfSe 
to compare transition periods to those when the sifakas consistently received diverse blends or single species. We 
then used LEfSe analysis to compare communities within the fall and spring transitions, with the pre-transition 
samples being compared to the other sampling points. To be conservative in our interpretation of LEfSe results, 
we additionally applied the Benjamini and Hochberg correction factor for multiple testing62 using the p.adjust 
command in RStudio. We include both the uncorrected and corrected results in the Supplemental Material (S2).

To identify which microbes correlated with SCFA concentrations, we computed Kendall’s tau correlations 
using the cor.test function in Rstudio. To avoid spurious correlations, we retained a subset of 38 OTUs that repre-
sented either major taxa (i.e., minimally 1% of an individual’s GMB, on average) or varied by foliage supplements 
(as identified by LEfSe). The results from the full Kendall’s tau correlations are presented in the Supplemental 
Material (S3).

Data Availability
All sequence data are available in the NCBI Sequence Read Archive under accession numbers SRP158783. SCFA 
concentrations and associated host metadata are available in the Supplementary Material (S5).
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