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Abstract

Phosphate is critical for many cellular processes and structural functions, including as a key 

molecule for nucleic acid synthesis and energy metabolism, as well as hydroxyapatite formation in 

bone. Therefore it is critical to maintain tight regulation of systemic phosphate levels. Based upon 

its broad biological importance, disruption of normal phosphate homeostasis has detrimental 

effects on skeletal integrity and overall health. Investigating heritable diseases of altered phosphate 

metabolism has led to key discoveries underlying the regulation and systemic actions of the 

phosphaturic hormone Fibroblast growth factor-23 (FGF23). Both molecular and clinical studies 

have revealed novel targets for the development and optimization of therapies for disorders of 

phosphate handling. This review will focus upon the bridge between genetic discoveries involving 

disorders of altered FGF23 bioactivity, as well as describe how these findings have translated into 

pharmacologic application.
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Introduction

The maintenance of serum phosphate concentrations is a multi-organ process involving 

phosphate absorption in the gut, reabsorption in the kidney and storage within the skeleton. 

Endocrine communication between these key sites provides stable phosphate and calcium 

balance. The kidney is the primary organ responsible for maintaining short-term phosphate 

concentrations. PTH action on the kidneys results in reduction of apical membrane 

expression of the proximal tubule Type II sodium phosphate co-transporters NPT2a and 

NPT2c (1), which decreases renal phosphate reabsorption (Figure 1). In parallel, PTH 

increases expression of the renal vitamin D 1-alpha-hydroxylase anabolic enzyme 

(Cyp27b1) which catalyzes the conversion of 25-hydroxy vitamin D to its active form, 

*Corresponding author information: Kenneth E. White, Ph.D., Department of Medical & Molecular Genetics, Indiana University 
School of Medicine, 635 Barnhill Drive, MS5010 (office), 975 West Walnut St., IB130, Indianapolis, IN 46202, Office phone: (317) 
278-1775, Fax: (317) 274-2293, kenewhit@iupui.edu. 

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our 
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of 
the resulting proof before it is published in its final citable form. Please note that during the production process errors may be 
discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

HHS Public Access
Author manuscript
Bone. Author manuscript; available in PMC 2018 September 01.

Published in final edited form as:
Bone. 2017 September ; 102: 31–39. doi:10.1016/j.bone.2017.01.034.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IUPUIScholarWorks

https://core.ac.uk/display/199435533?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1,25(OH)2 vitamin D (1,25D). This elevation in 1,25D increases phosphate and calcium 

absorption in the intestine (Figure 1). 1,25D and serum phosphate increases also elevate the 

production of FGF23 in osteoblasts/osteocytes (2), and like PTH, decreases the apical 

membrane expression of NPT2a. In contrast to PTH, FGF23 reduces the renal vitamin D 1-

alpha-hydroxylase while increasing expression of the catabolic renal 24-hydroxylase 

(Cyp24a1) (3). Cyp24a1 initiates the degradation of 1,25D by hydroxylation of the side 

chain to 24,25D. 1,25D induces Cyp24a1, whereas hypocalcemia, through increased PTH, 

suppresses this enzyme, thus playing an important role in calcium-phosphate homeostasis 

and the vitamin D endocrine system. Importantly, loss of bioactive FGF23 through gene 

knockout experiments in mice or through human mutations involving inactivation of FGF23 

protein, its signaling components, and FGF23 intracellular processing enzymes, has revealed 

that there are no other compensatory proteins for maintaining phosphate levels while 

suppressing 1,25D concentrations (4, 5).

A key finding in the phosphate field was the discovery that FGF23 required a co-receptor, 

αKlotho (KL), to signal within its target tissues (6). KL has highest expression in the kidney, 

a major site of FGF23 bioactivity, however KL also has robust expression in choroid plexus 

and in the parathyroid glands (7) (Figure 1). KL is known to be expressed as a full-length 

transmembrane protein (membrane form, or ‘mKL’) and as a circulating form (known as 

‘cKL’) that arises from cleavage of mKL at the juxta-extracellular domain (8, 9). FGF23 

initiates intracellular signaling through MAPK-related pathways via activation of a 

heteromeric complex, potentially involving pre-assembly of mKL and an FGF receptor 

(FGFR) (10). Although multiple FGFRs can interact with KL in vitro (6, 11), FGFR1 has 

become the leading candidate for in vivo binding to FGF23 and KL. Indeed, mice with 

kidney-specific KO of FGFR1 in the context of tandem deletion of FGFR4 appear to have 

renal resistance to FGF23 activity and manifest elevated serum phosphate and FGF23 (12).

Considering the above actions of FGF23, elevated FGF23 due to genetic or acquired 

diseases results in a hallmark biochemical phenotype of hypophosphatemia with 

inappropriately normal or low 1,25D. Over the long term, low 1,25D may result in 

secondary hyperparathyroidism. With loss of FGF23 bioactivity in patients and in Fgf23-KO 

mice, this results in the biochemical converse, although patients with familial 

hyperphosphatemic tumoral calcinosis (hfTC) due to loss of FGF23 bioactivity (discussed 

below) may not have elevated 1,25D. In addition to phosphate and 1,25D, and potentially 

PTH, other regulators of FGF23 production that lie outside the ‘typical’ feedback loops 

controlling phosphate and calcium balance have recently been discovered including anemia 

and hypoxia (13, 14). Indeed, the fundamental reasons for their links to FGF23 and 

phosphate metabolism remain to be completely understood, however these pathways may 

reveal novel regulation of phosphate as well as support new or optimized treatments for both 

rare and common syndromes involving FGF23.

Heritable disorders of hypophosphatemia involving FGF23

a. Autosomal dominant hypophosphatemic rickets (ADHR)

FGF23 was originally identified in a collaborative effort as the causative gene for the 

Mendelian disorder of renal phosphate wasting ADHR (OMIM 193100) (15). Consistent 
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with other diseases associated with a common denominator of elevated FGF23 described 

herein, patients with ADHR have biochemical pathologies of hypophosphatemia and 

normocalcemia, with inappropriately normal or low 1,25D. The sustained 

hypophosphatemia leads to rickets in children and osteomalacia in adults, also similar to 

other phosphate-wasting syndromes (16). Unique to ADHR however is incomplete 

penetrance with variable expressivity (16). Upon positional cloning of ADHR, it was 

determined gain of function mutations within the FGF23 subtilisin-like proprotein 

convertase (SPC) proteolytic cleavage site (176RH177T178R179/S180AE) were responsible for 

the ADHR phenotype (Table 1). These missense mutations result in amino acid alterations of 

either of the arginine (R) residues at positions 176 or 179 to glutamine (Q) or tryptophan 

(W) (15). Transfection of FGF23 expression plasmids found that secreted FGF23 protein 

harboring the ADHR mutations was detected primarily as full-length (32kDa) whereas wild 

type (WT) FGF23 protein was detected as N-terminal (20 kDa) and C-terminal (12 kDa) 

fragments (17, 18). It was later confirmed that the full-length form of FGF23 contained the 

bioactive properties whereas the FGF23 N-terminal and C-terminal fragments were unable 

to elicit signaling with the FGFR/Klotho receptor complex (19).

These various forms of FGF23 can be detected in the circulation using FGF23 specific 

enzyme-linked immunosorbent assays (ELISAs) for humans and rodents (Kainos, Inc (20) 

and Qidel, Inc (21)). Intact FGF23 measurements utilize two antibodies that bind at both the 

N- and C-terminal portions of the full-length, bioactive form of the hormone (or ‘iFGF23’). 

‘C-terminal’ FGF23 (‘cFGF23’ or ‘Total FGF23’) human- (22) or rodent-specific (13) 

ELISA measurements represent levels of iFGF23 plus its proteolytic fragments in plasma. In 

this instance, both ELISA antibodies recognize peptides that lie within the C-terminal side 

of the SPC-cleavage site.

ADHR differs from the other hereditary disorders of hypophosphatemia, due to the fact that 

those with ADHR FGF23 mutations can exhibit either an early or delayed onset of disease 

presentation (16, 23). In some instances, patients clearly documented with high FGF23 and 

hypophosphatemia had a reversal of the phosphate wasting phenotype with minor 

therapeutic intervention (24). Based upon these key observations, novel aspects of the 

underlying molecular mechanism were identified in human and pre-clinical mouse models 

linking FGF23 with iron-handling. Indeed, patients with late onset ADHR were more often 

women and began exhibiting symptoms during puberty, a state often associated with anemia 

(16, 24). From this observation, Imel et al tested the association between serum FGF23 and 

serum iron levels in ADHR patients and normal individuals. A significant negative 

correlation was found in both normal and ADHR patients between iron and cFGF23 (25). 

Interestingly, a negative correlation between serum iron and iFGF23 was only found in 

ADHR patients. These findings suggested that while low iron concentrations dictated 

increased production of FGF23, patients with normal FGF23 alleles cleaved the protein to 

maintain proper serum phosphate levels. On the other hand, ADHR patients appeared to be 

resistant to FGF23 cleavage and inactivation, thus promoting the accumulation of bioactive 

hormone. These results were recapitulated in mice containing ADHR R176Q-Fgf23 knock-

in alleles. Adult mice homozygous for the R176Q mutant (ADHR mice) and WT mice were 

placed on a low iron diet for 8 or 12 weeks. The low-iron diet elevated cFGF23 serum levels 

in both genotypes, however iFGF23 only increased in a significant percentage of the ADHR 
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mice, which had decreased serum phosphate leading to osteomalacia (13). These studies 

revealed that the control of circulating iFGF23 during anemia occurs by increasing bone 

Fgf23 mRNA. Further, the processing of FGF23 was discovered to occur post-

translationally, within a dynamic system that could potentially be important for sensing and 

modifying short term serum phosphate concentrations (see ARHR type 3).

A model of early onset ADHR was also tested in which pregnant females were placed on a 

low-iron diet at 14 days of gestation, mimicking anemia in the last trimester of pregnancy. In 

this model, both the WT offspring in addition to the ADHR pups showed a significant 

increase in iFGF23 when the dams received the low iron diet (14). These data demonstrated 

a robust link between iron and FGF23 levels in that the normal inhibitory feedback of low 

phosphate on FGF23 production is negated by iron deficiency anemia. Thus both genetic 

and environmental elements contribute to the development of ADHR, with stimuli outside of 

the normal feedback loops for phosphate handling acting as powerful inducers of FGF23 

expression.

b. X-linked hypophosphatemia (XLH)

The commonest heritable form of phosphate wasting is XLH (OMIM 307800) which occurs 

in 1:20,000 births, with over 325 loss of function mutations characterized from patients 

within the PHEX gene (phosphate-regulating gene with homologies to endopeptidases on 

the X chromosome) (26) (Table1). The XLH clinical features are characterized by a 

biochemical profile of elevated FGF23 with hypophosphatemia and normocalcemia, with 

inappropriately normal or low 1,25D. Similar to ADHR, XLH patients have osteomalacia/

rickets due to the prevailing hypophosphatemia, but in contrast to ADHR, XLH is fully 

penetrant and onset is from birth. PHEX is an ectoenzyme exhibiting high expression levels 

in bone and teeth with lower levels also observed in skin, muscle and brain (27). Whereas 

the mechanism of PHEX actions in vivo are incompletely understood, patients with XLH 

have elevated iFGF23 (20, 22). It has been postulated that the PHEX mutations cause a cell 

differentiation defect, as osteoblasts isolated from Hyp mice (animal model of XLH; (27)) 

are unable to mineralize properly (28, 29). The interactions between FGF23 and PHEX are 

indirect as FGF23 is not a PHEX substrate (30, 31). Further, the increased Fgf23 mRNA 

levels in Hyp bone support that the increase in serum FGF23 in XLH is due to both over 

production by skeletal cells, as well as potentially a decrease in FGF23 proteolysis (32). The 

knowledge that iFGF23 is elevated in XLH from birth has led to clinical trials using an 

antibody-based therapy to nullify circulating FGF23 (see below).

c. ARHR Type 1, loss of function DMP1 mutations

Autosomal recessive hypophosphatemic rickets type 1 (ARHR-1) is a disorder with elevated 

serum FGF23 and osteomalacia (OMIM 241520), and was found to be due to inactivating 

mutations in Dentin Matrix Protein-1 (DMP1) (Table 1). DMP1 is highly expressed in 

osteocytes and as a member of the Small Integrin-Binding LIgand, N-linked Glycoprotein 

(SIBLING) family may aid in hydroxyapatite nucleation (33). In consanguineous ARHR 

families, genetic analyses identified mutations in the DMP1 start codon, far C-terminus, as 

well as in exon splicing sites (34, 35). Examination of the Dmp1-null mouse model 

demonstrated that homozygous loss of Dmp1 causes defective osteocyte maturation, leading 
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to elevated iFGF23 expression and pathological changes in bone mineralization through an 

undefined mechanism (34). This differentiation defect appears to phenocopy the Hyp mouse 

(32). Collectively, the work supports the hypothesis that PHEX and DMP1 influence 

overlapping pathways during osteocyte maturation and to downstream inappropriate 

expression of FGF23. It has been postulated that SIBLING proteins may interact with PHEX 

and suppresses FGF23 expression, however the molecular mechanisms underlying this 

finding have yet to be fully determined (36). DMP1 is found in the bone extracellular matrix 

as N-terminal (37 kDa) and C-terminal (57 kDa) fragments and its processing appears to be 

important for maintaining function. The inability of Dmp1 to be cleaved due to introduction 

of a D213A mutation resulted in a bone phenotype similar to the Dmp1-null mouse (37). 

Conversely, over-expression of the DMP1 57 kDa C-terminal fragment on the Dmp1-null 

background rescued the bone phenotype (38).

d. ARHR Type 2, loss of function ENPP1 mutations

Loss of function mutations in ectonucleotide pyrophosphatase/phosphodiesterase-1 (ENPP1) 

lead to the development of ARHR type 2 (OMIM 613312) (Table 1) (39–41). ENPP1 is the 

‘reciprocal’ enzyme to alkaline phosphatase and converts inorganic phosphate to 

extracellular inorganic pyrophosphate (PPi), a potent inhibitor of skeletal mineralization. 

Indeed, hypophosphatemia is observed downstream of elevated serum iFGF23 in patients 

with recessive ENPP1 mutations which is paralleled in the Enpp1-null mouse (42). This 

leads to weakened long bones with reduced trabecular number, trabecular volume and 

cortical thickness in both patients and Enpp1-null mice. ENPP1 is responsive to extracellular 

inorganic phosphate (Pi) and helps maintain proper Pi/PPi ratios for appropriate skeletal 

mineralization, thus this enzyme may provide signals for the control of FGF23 production. 

Previous studies demonstrated osteoblasts lacking Enpp1 display an aberration in their 

ability to differentiate. Maturation markers including osteocalcin (OCN), bone sialoprotein 

(BSP) and tissue non-specific alkaline phosphatase (TNAP) fail to increase in osteogenic 

media with either a knockdown or deletion of Enpp1 (43). While these studies did not 

directly measure PHEX or DMP1 levels, the presence of the differentiation defect may 

contribute to the over production of FGF23 in ARHR-2 in a similar manner to that observed 

in XLH or ARHR-1. Whereas hypomineralization occurs within bone with the loss of 

ENPP1, ectopic calcification is evident within tissues such as aorta and kidney and 

hyperostosis is radiologically detected within the joints. The role of ENPP1 as an inhibitor 

of tissue calcification is underscored by the fact that additional, distinct mutations are 

pathogenic in idiopathic infantile arterial calcification (IIAC), as well as ossification of the 

posterior longitudinal ligament of the spine (OPLL)(41).

e. ARHR Type 3, loss of function FAM20C mutations

Family with sequence similarity 20, member C (FAM20c) loss of function mutations give 

rise to ARHR-3, also known as Raine syndrome. Originally thought to be lethal, especially 

when the mutations arise in the conserved C-terminal domain of FAM20C (Table 1), some 

mutations have been described in surviving Raine syndrome patients (44–46). Clinical 

manifestations include craniofacial malformation and osteosclerosis of the skull and long 

bones. In one case a non-lethal mutation in FAM20C (R408W) also displayed a rachitic 

phenotype. Indeed, the patient was hypophosphatemic due to high serum iFGF23 driving 
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renal phosphate wasting. Iliac crest bone biopsies showed pronounced osteomalacia, likely 

contributing to the patient’s shortened stature (47). Mutational analysis of FAM20C in a 

single case also revealed co-manifestion of sclerosing and hypophosphatemic rickets 

phenotypes (48). Functional studies demonstrated FAM20C is a casein kinase and 

phosphorylates secreted proteins containing an S-X-E recognition sequence (49). Deletion of 

Fam20c in mice resulted in a significant rise in serum iFGF23 along with a phosphate 

wasting phenotype and severe tooth defects (50). Tagliabracci et al found the SIBLING 

family member of proteins, including DMP1, are substrates for FAM20c phosphorylation 

activity. Despite the reduced levels of DMP1 in FAM20C knockdown cells (68), crossing a 

Dmp1-transgene onto the Fam20c conditional knockout mouse failed to rescue the bone 

phenotype and elevated FGF23 (51). Thus, loss of FAM20C, in part, may block or reduce 

functional DMP1 which phenocopies the Dmp1-null mice.

The FAM20C loss of function mutations in Raine syndrome patients with elevated iFGF23 

also gave rise to the idea that there may be more direct interactions between these genes. Of 

note, the Fam20C S-X-E recognition sequence is found within the FGF23 protein at the SPC 

cleavage site R179/S180-A181-E182. In vitro data demonstrated that the FAM20C-mediated 

phosphorylation of FGF23 S180 blocked GALNT3 mediated O-glycosylation at FGF23 

residue T178, thereby promoting furin cleavage of FGF23 (52). Conversely, mutation of the 

S180 residue inhibited FGF23 phosphorylation, permitting GALNT3 glycosylation and 

stabilization of FGF23. Introduction of a Raine-mutant FAM20C cDNA demonstrated 

reduced efficiency of FGF23 phosphorylation and thus partial stabilization of FGF23, 

explaining the increased iFGF23 and hypophosphatemia in some ARHR-3 patients (52). It 

was noted that an S-x-E/D site at S212 within FGF23 is a target of FAM20C 

phosphorylation yet it is unclear whether this modification affects the processing or function 

of the intact hormone (53). Further studies are needed to examine the various FAM20C 

mutations as disparities remain between the severe osteosclerosis documented in patients 

with ARHR-3 compared to the rachitic bone phenotype observed Fam20c-null mice.

Genomic and acquired influences on FGF23 expression

a. Tumor induced osteomalacia (TIO)

Soon after the positional cloning of FGF23 as the gene mutated in ADHR, it was reported 

that a rare, mesenchymal tumor type that caused an XLH- and ADHR-mimetic biochemical 

syndrome, tumor induced osteomalacia (TIO; OMIM 605380), produced high levels of 

FGF23 (3, 54). These tumors were histologically classified under the collective term of 

‘phosphaturic mesenchymal tumor, mixed connective tissue variant (PMTMCT)’ or 

‘phosphaturic mesenchymal tumor’ (55). In studies performed in parallel to the ADHR 

genetic work, SAGE analysis identified FGF23 as a highly expressed transcript in PMTMCT 

and functional studies identified the FGF23 actions of reducing kidney NPT2a expression 

and the renal 1-alpha-hydroxylase mRNA (3). With the development of the first FGF23 

ELISA, it was discovered that most patients with TIO had elevated serum FGF23, which 

was reduced following tumor resection (22). Using this tool, FGF23-producing tumors have 

also been localized in patients with venous sampling (56–58). Others have had modest 

success using tracers such as radiolabeled octreotide and octreotide therapy (59) as well as 
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MRI (57), computed tomography(CT) (60), whole body sestamibi scanning (61), and Ga68-

DOTA-octreotide PET/CT imaging (62). A key clinical issue with PMTMCTs is that many 

are small in size and can arise in difficult places to image such as the nasal cavities and the 

base of the skull. Considering the difficulty with localization, a plausible approach for 

treating TIO patients until the tumor is found and removed could be using the anti-FGF23 

antibody therapy KRN-23 (see below). Indeed, this strategy is currently being evaluated in 

an ongoing clinical trial (clinicaltrials.gov).

It has recently come to light that in a group of 15 TIO tumors analyzed through next-

generation RNA sequencing, that a fibronectin (FN1)-FGFR1 fusion gene was detected in 9 

of the tested samples (63) (Table 1). Interestingly, the PMT-associated FN1-FGFR1 fusion 

protein is predicted to retain at least some of the three extracellular FGF-binding (Ig-like) 

domains (63), therefore overexpression of most of FGFR1 as well as ligand-activated 

receptor signaling could potentially occur. Whether the fusion gene is responsible for 

tumorigenesis or is a consequence of the cancer phenotype is not established. Since 

activating mutations in FGFR1 are associated with elevated FGF23 in some patients with 

osteoglophonic dysplasia (OGD), a disease of dwarfism as well as craniosynostosis (64), and 

in multiple cancers (65–67), another potential therapy could be the use of FGFR inhibitors. 

Although in terms of patient treatment there could be concern that FGFR1 is ubiquitously 

expressed, it is possible that reducing FGFR activity could provide some benefit. This 

regimen, potentially in combination with anti-FGF23, may reduce possible autocrine 

signaling through FGFR1, as well as inhibit bioactivity of circulating FGF23.

b. αKLOTHO balanced translocation

The molecular interactions between FGF23, KL, and FGFRs are critical to systemic 

phosphate handling, as highlighted by the fact that disruptions in any of these genes results 

in loss of the phosphaturic actions of the kidney. A case report described a patient with a 

9:13 translocation who was negative for FGF23, FGFR1 and DMP1 mutations (68), but had 

the hallmark clinical symptoms of markedly increased serum FGF23 during prevailing 

hypophosphatemia, with inappropriately normal 1,25D and secondary hyperparathyroidism. 

Diagnostic genomic probes and DNA sequencing reveled that this patient had a fusion of the 

APRIN (a paralog of the cohesin-associated Pds5 gene lineage that may regulate chromatin) 

and αKLOTHO genes, leading to elevated plasma cKL levels versus normal controls (68). 

Although KL has been associated with direct reduction of proximal tubule NPT2a 

expression (69), due to its known renal actions the sustained highly elevated FGF23 likely 

contributed to the hypophosphatemic phenotype observed in this patient.

To test the mechanisms whereby over expression of cKL would affect phosphate handling, 

an approach using sustained delivery cKL adeno-associated virus 2/8 and a liver-specific 

promoter was undertaken in normal mice. Upon delivery of cKL for 8 weeks, there was a 

dose-dependent increase in plasma FGF23, as well as hypophosphatemia and hypocalcemia, 

similar to the KLOTHO translocation patient (70). Bone Fgf23 mRNA was stably, and 

highly expressed in the AAV-cKL treated mice versus control animals. This increase in 

FGF23 was associated with enhanced renal signaling including up-regulated Egr1 mRNA, 

and down regulation of NPT2a (70). In vitro, co-expression of cKL and FGFR1 with FGF23 
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elicited positive p-FGFR1 and p-ERK1/2 activation supporting stimulation of the 

heteromeric signaling complex, potentially eliciting FGF23 actions in kidney and FGFR1-

mediated FGF23 production in bone (70).

c. Linear sebaceous nevus syndrome, Schimmelpenning-Feuerstein-Mims (SFM); also 
Epidermal nevus syndrome (ENS)

Linear sebaceous nevus syndrome or Schimmelpenning-Feuerstein-Mims (SFM) disease are 

more specific terms for Epidermal nevus syndrome (ENS; OMIM 163200), and are defined 

by skin lesions that have been previously associated with hypophosphatemia in some cases. 

Elevated FGF23 was linked with this syndrome as the likely cause of the low serum 

phosphate in later studies (71, 72). Mutation analyses of skin biopsies showed that these 

patients can have somatic mosaicism for mutations in FGFR3, PIK3CA, and in 

Schimmelpenning-Feuerstein-Mims (SFM) syndrome the RAS genes, including KRAS, 

HRAS, and NRAS (Table 1), which were not found in biopsies of normal adjacent tissue. 

The RAS mutations occur in ‘hot spot’ mutational domains, and have been previously 

associated with increased cell proliferation (72). Conceptually, SFM appears to be similar to 

TIO, where ectopic expression of FGF23 leads to elevated plasma levels and 

hypophosphatemia. Interestingly, a case report suggested that the skin lesions affects the 

underlying bone, which was the source of elevated circulating FGF23 (71).

Hyperphosphatemic Familial Tumoral Calcinosis (hfTC)

a. hfTC due to loss of function FGF23 mutations

Familial hyperphosphatemic tumoral calcinosis (hfTC; OMIM 211900) is characterized by 

elevated serum phosphate and ectopic and vascular calcifications, often occurring as 

periarticular. This disorder is the ‘biochemical reciprocal’ to XLH, ADHR, and TIO, and has 

a wide range of severity. hfTC is genetically heterogeneous. In this regard, recessive 

missense mutations in FGF23 are associated with altered intracellular processing of the 

mature, bioactive iFGF23 (73–77) (Table 1). The locations of the FGF23 mutations occurred 

within the N-terminus, which is largely conserved among the FGF family members. The 

patients with these mutations had ‘signature’ FGF23 ELISA assay profiles; analysis of 

patients using the cFGF23 ELISA demonstrated markedly elevated serum cFGF23, but the 

iFGF23 ELISAs showed normal, or low, serum concentrations (74, 75). Co-modifying the 

RXXR/SAE furin cleavage site with an ADHR R176Q mutation produced hfTC-mutant 

FGF23 proteins that were stabilized, supporting that the missense mutations either slightly 

altered glycosylation (see GALNT3-hfTC below) or potentially exposed the mature FGF23 

to intracellular SPC degradation (73, 77). The unique serum FGF23 ELISA pattern supports 

the concept of a positive feedback loop where the hyperphosphatemia increases FGF23 

transcription, but the hfTC mutations inhibit iFGF23 production and thus activity, further 

driving FGF23 expression.

b. GALNT3-hfTC and Hyperostosis-hyperphosphatemia syndrome (HHS)

The gene encoding the GalNac-transferase 3 (GALNT3) is an ER and trans-Golgi network 

protein that O-glycosylates target substrates. FGF23 is predicted to have multiple GALNT3 

recognition motifs, with a key site on T178 within the R176H177T178R179/S180AE motif. 
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Loss of function mutations in GALNT3 are responsible for hfTC that is essentially 

indistinguishable from FGF23-hfTC (78, 79) (Table 1). Interestingly, the signature ELISA 

profile that predicts FGF23-hfTC is the same in GALNT3-hfTC, with high cFGF23 and low 

or normal iFGF23, supporting a direct relationship between these genes. Work using the 

Galnt3-null mouse further demonstrated that bone Fgf23 mRNA was elevated whereas 

serum iFGF23 was normal (80). The similarities between FGF23- and GALNT3-hfTC 

suggested that at the protein level, T178 protects FGF23 from SPC degradation, which was 

confirmed through in vitro analyses (81). Interestingly, a form of hfTC, Hyperostosis-

hyperphosphatemia syndrome (HHS), was found to be caused by mutations in GALNT3 
(81–83). Prior to genetic identification of the GALNT3 mutations in HHS, patients were 

diagnosed with this form of hfTC if they presented with radiographic findings of periosteal 

reaction and cortical hyperostosis in the long bones. Whether genetic background is the 

determinant of the long bone involvement remains to be determined.

c. hfTC due to an αKLOTHO loss of function mutation

A case of hfTC in a child with numerous ectopic calcifications, including in brain, was 

reported in which the serum values for hfTC were ‘atypical’. In this regard, ELISA results 

showed elevated iFGF23 and cFGF23, suggesting a molecular pathogenesis distinct from 

FGF23- and GALNT3-hfTC, and end organ resistance to iFGF23 (84). Upon DNA 

sequencing of this patient, a missense mutation (H193R) in the predicted extracellular 

domain of the αKLOTHO gene was discovered (Table 1). When expressed in vitro, this 

alteration led to a mature mKL form that was poorly expressed at the cell membrane, and 

unable to fully transmit intracellular MAPK signaling when exposed to FGF23 (84). These 

findings supported that the patient was producing excess FGF23 due to the inability to fully 

activate the mutant KL and maintain proper renal phosphate balance.

Novel therapies based upon clinical and genetic discoveries

a. KRN-23 neutralizing antibody

The standard of care for diseases associated with elevated FGF23 are suboptimal and is 

comprised of phosphate repletion and low dose calcitriol. This current therapy has a high 

burden of treatment, including being medicated 3–5 times per day, diarrhea, risk of 

nephrocalcinosis, as well as secondary/tertiary hyperparathyroidism. Additionally, multiple 

painful surgeries are often required to correct bowed or fractured limbs. Whereas the genetic 

basis of the hypophosphatemic diseases described above varies, the ultimate result is 

elevated serum bioactive iFGF23 causing renal phosphate wasting and suppressed 1,25D 

concentrations. Since FGF23 has no compensatory molecules and considering the 

complications associated with current treatments, it was hypothesized that an antibody based 

therapy would be advantageous in FGF23-related hypophosphatemic disorders. Two 

monoclonal antibodies were developed by Kirin-Hakko-Kyowa Pharma and found in vitro, 

using Egr-1 gene activity as downstream readout for FGF23-Klotho signaling, that a 

combination of antibodies blocked the induction of Egr-1 in a dose dependent manner (85). 

Injections of these antibodies in vivo in WT mice demonstrated an increase in serum 

phosphate due to elevated proximal tubule Npt2a. Serum 1,25D also increased in treated 

animals from a reversal of the FGF23 directed effects on Cyp24a1 and Cyp27b1 (85). Thus, 
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these data supported that specific antibodies had the ability to neutralize FGF23 activity by 

interrupting FGF23/FGFR/Klotho interactions. The antibodies were next tested in the Hyp 
XLH mouse model. Single subcutaneous injections of either low (4 mg/kg) or high doses 

(16 mg/kg) of anti-FGF23 significantly improved serum phosphate levels out to 3 days post 

injection due to a reduction in urine phosphate excretion (86). 1,25D levels were also 

dramatically increased and maintained for up to 7 days post injection for the high dose 

treatment. Performing weekly injections beginning at 4 weeks of age demonstrated an 

increase in femur and tibia length about one month later compared to the control injected 

mice, with BV/TV% returning to near WT levels in the anti-FGF23 treated Hyp mice (86). 

Osteomalacia is a well characterized feature of Hyp long bones due to the lack of mineral 

content for hydroxyapatite deposition. The amount of non-mineralized bone was 

significantly reduced in the treated mice and approached WT levels in the Hyp mice 

receiving high dose anti-FGF23. These data, in conjunction with bone specific flox-Fgf23 
knockout studies in Hyp mice (21), demonstrated the key driver of the hypophosphatemia 

phenotype is FGF23 and therefore validates the anti-FGF23 antibody treatment regimen.

A humanized anti-FGF23 antibody (KRN23) was taken into phase I clinical trials and tested 

in adult XLH patients. The trial design tested several concentrations of KRN23 through 

either subcutaneous (s.c.) or intravenous (i.v.) injection versus placebo in a total of 38 

patients (87). This study recapitulated the observations in the preclinical Hyp model where a 

single administration of KRN23 potently improved serum phosphate levels in a dose 

dependent manner. Compared to i.v. administration, activity of KRN23 was sustained within 

the s.c. group and phosphate remained above baseline up to 50 days post treatment. 1,25D 

levels also increased after treatment, but returned to baseline in 8 and 29 days after 

administration in the i.v. and s.c. groups, respectively (87). Importantly, calcium levels were 

not found to be dramatically altered in this study regardless of administration route and the 

therapy was well tolerated. In a follow-up study, 28 patients were given KRN23 

subcutaneously every 28 days for a total of 16 doses. The first four doses contained 

increasing KRN23 concentrations (considered the escalation phase) whereas the extension 

phase doses were only adjusted on a patient basis to prevent hyperphosphatemia (88). Serum 

phosphate peaked 7 days after KRN23 dosing but did not return to the patient baseline in 

between doses during the extension phase. Serum 1,25D levels displayed a similar pattern 

with KRN23 dosing, however the peak levels declined further into the extension phase. Of 

note, nephrocalcinosis did not arise in the patients treated with KRN23, a common adverse 

event when this patient population is given the current regimen of combined calcitriol and 

phosphate therapy. These initial studies show pharmacological inhibition of FGF23 in 

hypophosphatemic disorders can function to maintain serum phosphate levels in a normal 

and therapeutic range that is likely beneficial to XLH patients (Figure 2). One aspect of the 

bone phenotype observed in Hyp mice and XLH patients includes a grossly disrupted 

growth plate. 1,25D is important for hypertrophic chondrocyte apoptosis and thus growth 

plate maturation. Lui, et al found that daily injections of 1,25D in Hyp mice beginning at 2 

days of age rescued Hyp phenotypes similarly, if not better than anti-FGF23 (89). Thus, 

additional studies could potentially address combinations of anti-FGF23 and 1,25D.
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b. Iron repletion for ADHR

As described above, iron deficiency anemia and hypoxia are known to increase FGF23 in 

mice and humans, and in the context of a stabilizing ADHR FGF23 mutation, results in 

elevated iFGF23 and hypophosphatemic bone disease (25). Considering this effect of anemia 

on FGF23 and the fact that iron supplementation to ADHR mice rescued the low serum 

phosphate (14), a case was reported using iron replacement therapy to treat ADHR. The 

family under study was positive for an R176Q FGF23 mutation, and had an affected father 

and daughter with a history of disease onset and remission (90). The child was removed 

from standard therapy and placed on iron II sulfate, which corresponded with improvement 

of the renal phosphate leak as well as elevated plasma 1,25D (90). Over a six month period, 

her serum iron stabilized and after all treatments ceased, serum FGF23 normalized. 

Although the patient was followed for almost a decade, the potential use of iron therapy in 

anemic ADHR patient could provide additional benefit considering the side effects of the 

current treatment regimen involving phosphate and 1,25D provision. In a clinical study, 

although mean plasma FGF23 was elevated in patients with XLH compared to normal 

controls, it was reported that FGF23 correlated negatively with serum iron in both patients 

and normal controls (91). Thus, elevated iFGF23 is the common denominator in ADHR, 

XLH, ARHR, TIO, KL-translocation, and ENS, however iron therapy likely applies solely to 

ADHR as it is the only FGF23-related disorder with clear late-onset associated with 

physiological situations of anemia.

c. Innovative therapies for hfTC

The treatment option for the heritable forms of hyperphosphatemia were previously very 

limited. Surgical removal or drainage of surface calcifications often results in temporary 

relief, with the lesions recurring with time. Groups have reported success in some patients 

with the carbonic anhydrase inhibitor acetazolamide in reducing calcifications with limited 

reductions in serum phosphate (79), suggesting that pH may be critical for development of 

the calcinosis phenotype. Similarly, the use of restricted phosphate diet and phosphate 

binders for management may also produce variable relief. Theoretically, the most relevant 

therapy for FGF23- and GALNT3-hfTC would likely be recombinant iFGF23 to restore 

kidney phosphate excretion and reduce serum levels. Additionally, it is possible that the 

ADHR-mutant form of recombinant FGF23 could be favorable due to the more stable nature 

of this species versus wild type protein (17, 92). Of significance, a topical treatment 

containing sodium thiosulfate was recently developed and virtually ablated the surface 

ectopic calcifications in confirmed FGF23- and GALNT3-hfTC patients (93). This analog is 

not favorable for clinical use through oral administration as it produces side effects of 

digestive symptoms, and metabolic acidosis. Although the exact mechanisms of action are 

unknown, it is hypothesized that the calcifications may have been eliminated due to the 

compound’s ability to chelate calcium salts. Radiological images of three patients showed a 

dramatic improvement in joint calcifications between 5 to 8 months after starting the 

regimen, as well as improvement in overall limb mobility and flexibility (93). In this small 

study it was also noted that the patients did not suffer any adverse effects typically observed 

with oral or intravenous administration of sodium thiosulfate, thus potentially deriving a 

very promising step forward for care of these patients (Figure 3).
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Summary

In summary, the study of Mendelian and acquired disorders of renal phosphate handling 

involving FGF23 continues to reveal important mechanisms dictating the systemic control of 

phosphate. The dovetailed combinations of molecular genetic, clinical and translational 

science have been important for the advancement of these findings from the laboratory to 

practical application. There is still much to be learned in both rare and common diseases of 

mineral metabolism, however the studies to date have fostered development of innovative 

therapies as well as potential optimization of current treatment paradigms which are 

providing high impact to patient care.
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Highlights

• Phosphate is critical for nucleic acids, cellular energy, and bone 

hydroxyapatite.

• Heritable disorders revealed critical insight into FGF23 and Klotho actions.

• Genetic/clinical findings have led to novel therapies targeting phosphate 

diseases.
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Figure 1. 
FGF23 regulatory systems. FGF23 is produced in bone and secreted into the circulation, 

potentially in response to increased phosphate (Pi), 1,25D, and PTH. FGF23 acts in the 

kidney through αKlotho to decrease Npt2a and Npt2c expression and decrease 1,25D 

production, resulting in hypophosphatemia. 1,25D acts in the intestine to increase calcium 

(Ca) and Pi absorption. FGF23 acts in the parathyroid glands to reduce PTH. 

Hypophosphatemia and reduced 1,25D complete the feedback loop and inhibit FGF23 

production.
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Figure 2. 
Emerging therapeutics for heritable hypophosphatemias. The genetic discovery of the 

underlying pathogenesis of diseases associated with gain of FGF23 bioactivity has resulted 

in new therapeutic approaches. In theory, all of the heritable and acquired disorders of 

elevated iFGF23, including ADHR, XLH, TIO, ENS, KLOTHO translocation, and ARHR1–

3 may benefit from anti-FGF23 therapy (KRN23). In anemic ADHR patients, iron 

supplementation may reduce serum FGF23. The blue boxes indicate diseases under 

evaluation or recruiting clinical trials (www.clinicaltrials.gov), with KRN23 for XLH, ENS, 

and TIO; and iron supplementation for ADHR.
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Figure 3. 
Emerging therapeutics for heritable hyperphosphatemias. Treatments for hfTC currently lag 

behind those for the genetic hypophosphatemias and are often combination therapies of 

phosphate binders and low phosphate diet to attempt to reduce serum phosphate that occurs 

from lack of iFGF23 production or loss of KL signaling. In FGF23- and GALNT3-hfTC, 

patients have benefited from topical sodium thiosulfate as well as the carbonic anhydrase 

inhibitor acetazolamide to reduce calcification burden.
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