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 ABSTRACT 

Osteogenesis imperfecta (OI) is a genetic disease of Type I collagen and collagen-

associated pathways that results in brittle bone behavior characterized by fracture and reduced 

mechanical properties. Based on previous work in our laboratory showing that raloxifene (RAL) 

can significantly improve bone mechanical properties through non-cellular mechanisms, we 

hypothesized that raloxifene would improve the mechanical properties of OI bone. In experiment 

1, tibiae from female wild type (WT) and homozygous oim mice were subjected to in vitro soaking 

in RAL followed by mechanical tests. RAL soaking resulted in significantly higher post-yield 

displacement (+75% in WT, +472% in oim; p<0.004), with no effect on ultimate load or stiffness, 

in both WT and oim animals. In experiment 2, eight-week old WT and oim male mice were treated 

for eight weeks with saline vehicle (VEH) or RAL. Endpoint measures included assessment of in 

vivo skeletal fractures, bone density/geometry and mechanical properties. In vivo skeletal 

fractures of the femora, assessed by micro CT imaging, were significantly lower in oim-RAL (20%) 

compared to oim-VEH (48%, p=0.047). RAL led to significantly higher DXA-based BMD (p<0.01) 

and CT-based trabecular BV/TV in both WT and oim animals compared to those treated with 

VEH. Fracture toughness of the femora was lower in oim mice compared to WT and improved 

with RAL in both genotypes. These results suggest that raloxifene reduces the incidence of 

fracture in this mouse model of oim. Furthermore, they suggest that raloxifene’s effects may be 

the result of both cellular (increased bone mass) and non-cellular (presumably changes in 

hydration) mechanisms, raising the possibility of using raloxifene, or related compounds, as a 

new approach for treating bone fragility associated with OI. 
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INTRODUCTION 

Osteogenesis Imperfecta (OI), is a heritable disorder of connective tissues caused by 

mutations in Type I collagen or other genes in collagen associated pathways [1,2]. Over 1500 

independent alterations in the primary structure of OI collagen have been identified leading to a 

wide spectrum of clinical severities. The dominant OI phenotype is in bone and is typified by low 

energy fracture, leading to the term “brittle bone” disease. OI compromises the three main 

components that influence bones’ mechanical properties - bone mass, geometry, and bone quality 

[3-8]. The complex changes across multiple-hierarchical levels present unique challenges for 

treatment.  

Several mouse models of OI exist [9]. The Osteogenesis Imperfecta murine (oim) model 

was described in 1993 [10], and is the most characterized of these models. This mouse has a 

single base pair mutation in the 2 gene causing a frame shift of the final 48 amino acids at the 

C-terminus of the propeptide. This shift changes the collagen amino acid sequence and adds an 

extra residue. The resulting 2 chains are non-functional as they can no longer associate with 1 

chains [1]. Homotrimeric 1 collagen molecules result, accumulating in the extracellular matrix 

and disrupting proper fibril assembly. 2 gene mutations are rare in humans, but the homozygous 

oim mouse is considered a good phenotypic model of human type III OI, as it results in a moderate 

to severe OI characterized by spontaneous fractures and limb deformities [11]. 

Current pharmacological interventions for OI incompletely normalize mechanical 

properties. For many forms of OI, pharmacological treatment with bisphosphonates has proven 

effective in reducing, but not eliminating fracture as assessed with cross sectional [12,13] and 

controlled clinical trials [14-19].  When trials were examined with meta-analysis it was clear that 

a treatment gap remains as clear evidence of improved clinical status is lacking  [20].   
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Animal data (using both the oim and Brtl/+ animal models) have documented that 

treatment with bisphosphonates can recover bone mass and architecture to near wild-type levels, 

yet whole-bone mechanical properties remain compromised compared to normal bone [21-23]. 

This is likely due to the lack of positive effect of bisphosphonates on the quality of the bone tissue 

[24]. More recent data with anabolic treatment (anti-sclerostin antibody) have also shown positive 

results in animal models (specifically the Brtl mouse), but again, the data point to drug-induced 

effects on bone mass, but not quality [25]. Thus, current approaches have been able to enhance 

bone mass in the setting of OI but have failed to positively affect bone quality. 

Raloxifene, a selective estrogen receptor modulator (SERM), is an FDA-approved agent 

used to reduce fracture risk in osteoporotic patients [26,27]. SERMs are utilized as they effectively 

antagonize estrogen receptors in bone cells (reducing osteoclast development) while not affecting 

other estrogenic tissues.  Recent work has shown that raloxifene, both in vivo and in vitro, 

increases bone through an additional mechanism, specifically through non-cellular effects that 

result in increased skeletal bound water [28,29]. The raloxifene-induced alterations in bound water 

are associated with positive effects on bone mechanical properties [28,29] and these benefits 

have recently been shown to extend to disease models with compromised bone quality [30]. 

Therefore, the goal of this study was to test the hypothesis that raloxifene could produce beneficial 

effects on bone mechanical properties in a mouse model of OI.  

 

RESULTS 

Experiment #1  

 Paired tibiae from WT and oim mice were mechanically tested to failure in 4-point bending 

after ex vivo incubation in either PBS or RAL. Force (yield and ultimate), displacement (yield, 

post-yield and total), stiffness, and work (yield, post-yield, and total) were all significantly lower 
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with oim (Table 1). RAL soaking had a significant main effect, producing higher post-yield 

displacement (p<0.0001), and total displacement (p<0.0001) (Table 1 and Figure 1). This 

indicates that RAL is able to impart benefits to mechanical properties through non-cellular 

mechanisms in both WT and oim mouse bones. For properties that had a significant interaction 

effect, significant differences (p<0.001 for all) in yield force, displacement to yield, stiffness, and 

work to yield were observed with RAL soaking in the WT group, but not in the oim group. Total 

work was significantly different with RAL treatment in both the WT and oim groups. 

 

Figure 1. Ex-vivo soaking of osteogenesis imperfecta bones in raloxifene leads to significantly higher mechanical 

properties.  In this 2x2 study design, both post-yield displacement and total displacement had significant main effects 

of disease and treatment (each p < 0.05) indicating that oim bones were lower than WT for both properties and that 

raloxifene exposure led to significantly higher properties in both wild-type and oim animals. Values are presented as 
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mean  standard deviation. WT- wild-type; oim-osteogenesis imperfecta; PBS-phosphate buffered saline; RAL-

raloxifene.  

 
Table 1: Mechanical properties from 4-point bending of raloxifene-soaked tibiae 
 

 

WT OIM  

Control (n=15) Raloxifene (n=15) Control (n=9) Raloxifene (n=9) 

Yield Force (N) #  18.40 ± 1.25 a b 22.17 ± 2.01 a d 6.77 ± 1.35 b 6.96 ± 1.64 d 

Ultimate Force (N) *+ 23.44 ± 2.92 24.65 ± 1.79 7.28 ± 1.64 8.00 ± 1.65 

Stiffness (N/mm) #  105.2 ± 10.17 a b 94.09 ± 12.42 a d 35.27 ± 35.27 b 36.37 ± 7.27 d 

Deformation to Yield (m) #  213 ± 16 a 272 ± 33 a d 228 ± 23 224  ± 18 d 

Postyield Deformation (m) *+ 398 ± 178 675 ± 192 28 ± 35 163 ± 130 

Total Deformation (m) *+ 611 ± 186  947 ± 210 256 ± 46 387 ± 137 

Work to Yield (mJ) #  2.06 ± 0.20 a b 3.19 ± 0.60 a d 0.83 ± 0.21 b 0.86 ± 0.25 d 

Postyield Work (mJ) *+ 8.12 ± 3.05 14.56 ± 3.96 0.21 ± 0.26 1.18 ± 0.80 

Work to Failure (mJ) #  10.18 ± 3.16 a b 17.75 ± 4.22 a d 1.04 ± 0.39 b c 2.04 ± 0.86 c d 

Values are presented as mean ± standard deviation.  WT- wild-type; oim-osteogenesis imperfecta. In the property column, * 

indicates a main effect of disease, + indicates a main effect of treatment, and # indicates an interaction term (p<0.05). For 

parameters with an interaction term, a posthoc pairwise t-test with Bonferroni correction was used (p<0.0125). a indicates a 

significant difference between WT-Control and WT-Raloxifene, b indicates a significant difference between WT-Control and 

oim-Control, c indicates a significant difference between oim-Control and oim-Raloxifene, and d indicates a significant 

difference between WT-Raloxifene and oim-Raloxifene. 

Experiment #2  

Fracture Assessment 

 There were no fractures in the WT animals. In oim vehicle-treated animals, 48% of the 

femurs were fractured, while in the oim raloxifene-treated animals the percentage of fractures was 

significantly lower (20%, p=0.047) (Figure 2). 
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Figure 2. In vivo treatment with raloxifene lead to significantly fewer femoral fractures in animals with osteogenesis 

imperfecta.  In vehicle-treated animals, 48% of the femora (13 of 27) were fractured (one bone was missing from the 

analysis).  In raloxifene-treated animals, 20% of the femora (6 of 30) were fractured.  This represents a significant (* p 

< 0.05) 58% reduction in the number of in vivo fractures. A representative projection image of a fractured bone from 

an oim animals is depicted. 

 

DXA 

 DXA-based BMD in the oim mice was significantly lower for the whole body, L4-L5 

vertebrae, and femur compared to WT (p<0.001 each). RAL treatment resulted in higher BMD in 

both genotypes as indicated by a significantly higher BMD in the whole body (WT: +4%, oim: 

+7%; p=0.0187) and femur (WT: +10%, oim: +13%; p=0.0066). Oim animals treated with RAL 

remained lower than WT controls for all sites (Figure 3).  
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Figure 3. In vivo treatment with raloxifene resulted in higher areal bone mineral density in animals with osteogenesis 

imperfecta.  Following 8 weeks of treatment, total body, lumber spine, and femoral bone mineral density (BMD) from 

dual-energy x-ray absorptiometry was assessed. In this 2x2 study design, all three measures had significant main 

effects of disease (p < 0.05), while whole body and femur also had main effects of treatment (p<0.05), indicating that 

oim bones were lower than WT and that raloxifene exposure led to significantly higher properties in both wild-type 

and oim animals.  Values are presented as mean ± standard deviation.  WT- wild-type; oim-osteogenesis imperfecta; 

RAL-raloxifene. 

uCT 

 Within the cancellous ROI, bone volume per tissue volume (BV/TV), trabecular number 

(Tb.N), trabecular thickness (Tb.Th), trabecular spacing (Tb.Sp), and bone mineral density (BMD) 

were all significantly worse in the oim animals compared to WT (p<0.0001 for all) (Table 2). With 

raloxifene treatment, BV/TV was significantly higher in both genotypes (WT: +5%, oim: +68%; 
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p=0.0381). These effects on BV/TV were mainly driven by differences in Tb.Th. In addition, BMD 

was significantly higher in RAL-treated animals (WT: +2%, oim: +6%; p<0.0001). 

 

 

Table 2: Cancellous architecture in the distal femoral metaphysis 

 

WT OIM 

Control (n=8) Raloxifene (n=8) Control (n=10) Raloxifene (n=12) 

BV/TV (%)*+ 21.19 ± 2.97 22.16 ± 3.97 4.88 ± 3.01 8.20 ± 3.00 

Trabecular thickness (m) *+ 0.0669 ± 0.0023 0.0702 ± 0.0028 0.0544 ± 0.0036 0.0611 ± 0.0031 

Trabecular separation (mm) * 0.189 ± 0.014 0.186 ± 0.013 0.364 ± 0.126 0.300 ± 0.068 

Trabecular number (1/mm) * 3.160 ± 0.401 3.143 ± 0.459 0.880 ± 0.518 1.331 ± 0.459 

Tissue Mineral Density (g/cm3) *+ 0.836 ± 0.015 0.855 ± 0.019 0.768 ± 0.025 0.814 ± 0.027 

Values are presented as mean ± standard deviation. WT- wild-type; oim-osteogenesis imperfecta; BV/TV 

– bone volume/tissue volume. In the property column, * indicates a main effect of disease and + indicates 

a main effect of treatment. 

 

 Analysis of a standard cortical ROI indicated that oim mice had significantly lower total 

cross sectional area (p<0.001), cortical area (p<0.001), cortical thickness (p<0.001), periosteal 

and endocortical bone perimeters (p<0.001 and p=0.002, respectively), and moment of inertia in 

the maximum and minimum directions (p<0.001 for both) versus WT (Table 3). RAL treatment 

resulted in significantly higher cortical thickness in both genotypes (p=0.0185).  

 

Table 3: Cortical geometry at the femoral mid-diaphysis 

 

WT OIM  

Control (n=8) Raloxifene (n=8) Control (n=10) Raloxifene (n=12) 

Cross Sectional Area (mm2)  * 1.992 ± 0.189 1.985 ± 0.225 1.427 ± 0.211 1.380 ± 0.129 

Marrow Area (mm2) 0.867 ± 0.132 0.794 ± 0.101 0.806 ± 0.170 0.726 ± 0.111 
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Cortical Area (mm2) * 1.126 ± 0.105 1.191 ± 0.133 0.622 ± 0.111 0.654 ± 0.090 

Cortical Thickness (mm) * + 0.273 ± 0.022 0.293 ± 0.017 0.171 ± 0.026 0.184 ± 0.027 

Periosteal Perimeter (mm) * 5.784 ± 0.261 5.768 ± 0.290 4.981 ± 0.352 4.967 ± 0.272 

Endocortical Perimeter (mm)* 4.274 ± 0.330 4.086 ± 0.277 3.863 ± 0.371 3.715 ± 0.263 

Imax (mm4) * 0.375 ± 0.078 0.392 ± 0.085 0.146 ± 0.050 0.152 ± 0.030 

Imin (mm4)  * 0.175 ± 0.027 0.179 ± 0.040 0.086 ± 0.022 0.081 ± 0.020 

Tissue Mineral Density (g/cm3) 1.271 ± 0.016 1.278 ± 0.018 1.281 ± 0.032 1.284 ± 0.036 

Values are presented as mean ± standard deviation. WT- wild-type; oim-osteogenesis imperfecta; Imax-

Maximum moment of inertia; Imin-Minimum moment of inertia.  In the property column, * indicates a main 

effect of disease and + indicates a main effect of treatment. 

 

Whole Bone Mechanical Testing 

 At both the structural and tissue level, oim bones exhibited significantly lower mechanical 

properties compared to WT (p<0.024 for all properties) (Table 4). There were no significant effects 

of raloxifene treatment for any parameter.  

 

 

Table 4: Tibial mechanical properties from 4-point bending 

 

WT OIM 

Control (n=7) Raloxifene (n=8) Control (n=8) Raloxifene (n=7) 

Yield Force (N) * 24.35 ± 4.75 27.66 ± 3.99 8.97 ± 2.57 8.79 ± 3.02 

Ultimate Force (N) * 27.29 ± 3.87 28.62 ± 4.48 10.61 ± 2.95 10.87 ± 3.53 

Displacement to Yield (µm) * 184 ± 28 209 ± 18 175 ± 23 169 ± 21 

Postyield Displacement (µm) * 314 ± 113 263 ± 160 102 ± 55 97 ± 18 

Total Displacement (µm) * 498 ± 132 471 ± 170 277 ± 69 266 ± 26 

Stiffness (N/mm) * 137.78 ± 13.24 141.26 ± 14.93 53.30 ± 20.38 55.24 ± 22.96 

Work to Yield (mJ) * 2.38 ± 0.82 2.98 ± 0.62 0.80 ± 0.23 0.77 ± 0.27 

Total Work (mJ) * 8.81 ± 2.96 7.88 ± 3.58 1.67 ± 0.40 1.74 ± 0.60 
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Yield Stress (MPa) * 127.47 ± 33.29 160.61 ± 26.97 83.44 ± 17.83 79.32 ± 18.20 

Ultimate Stress (MPa) * 141.64 ± 27.35 166.00 ± 28.60 98.65 ± 20.20 98.74 ± 23.88 

Strain to Yield (µ) * 13699 ± 2730 15814 ± 2902 10456 ± 2494 11214 ± 1873 

Total Strain (µ) * 37290 ± 11853 36561 ± 15556 16269 ± 3909 17704 ± 2953 

Modulus (GPa) * 9.60 ± 1.14 11.01 ± 1.81 8.26 ± 2.65 7.60 ± 2.27 

Resilience (MPa) * 0.95 ± 0.42 1.33 ± 0.43 0.45 ± 0.13 0.46 ± 0.13 

Toughness (MPa) * 3.47 ± 1.37 3.55 ± 1.92 0.95 ± 0.30 1.05 ± 0.34 

Values are presented as mean ± standard deviation. WT- wild-type; oim-osteogenesis 

imperfecta. In the property column, * indicates a main effect of disease and + indicates 

a main effect of treatment. 

 

Fracture Toughness Testing 

 Oim mice had significantly lower stress intensity factors at yielding (Kinit), maximum load 

(Kmax load) and failure (Kinst) compared to WT (p<0.0001). Treatment with RAL led to a significantly 

higher Kmax load (p=0.0458) in both genotypes (+8.43% in WT and +4.19% in oim; Table 5). 

 

Table 5: Fracture toughness of the femoral midshaft (𝑴𝑷𝒂√𝒎𝒎) 

 

WT OIM 

Control (n=8) Raloxifene (n=7) Control (n=9) Raloxifene (n=11) 

Initiation Toughness* 3.85 ± 0.27 4.10 ± 0.37 2.04 ± 0.20 2.10 ± 0.42 

Maximum  Load Toughness * + 4.51 ± 0.33 4.89 ± 0.38 2.15 ± 0.19 2.24 ± 0.43 

Instability Toughness * 5.22 ± 0.91 5.27 ± 0.94 2.89 ± 0.59 2.56 ± 0.60 

Values are presented as mean ± standard deviation. WT- wild-type; oim-osteogenesis imperfecta. In the 

property column, * indicates a main effect of disease and + indicates a main effect of treatment. 

 

DISCUSSION 

Osteogenesis imperfecta (OI) is a debilitating musculoskeletal condition that presents 

unique treatment challenges due to the combination of bone mass, geometry, and material 
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property deficits. The predominant pharmacological approach for addressing skeletal fragility has 

been to enhance bone mass/geometry and although successful in some regards, the preclinical 

literature clearly shows that adding bone mass is insufficient to completely normalize bone 

mechanical properties [12,13,21-23,25,31,32]. In the current study we demonstrated that 

raloxifene, which is known to improve bone mass/geometry and quality, positively affects oim 

bone through both cellular and non-cellular mechanisms. This suggests a novel approaches for 

offsetting the skeletal fragility of OI. 

Ex vivo mechanical testing of 12 week old female mouse femurs in experiment 1 confirmed 

what numerous other papers have documented -  the presence of significant mechanical deficits 

in oim mice compared to wild-type animals [8,10,21,25,33-35]. To test the hypothesis that 

raloxifene could rescue this mechanical phenotype, contralateral tibia were soaked in raloxifene, 

based on previous studies showing this was sufficient to increase skeletal hydration and 

mechanical properties through non-cellular mechanisms [28]. Soaking produced minimal effects 

on ultimate load or stiffness, but significant main effects on total displacement and energy to 

fracture (Figure 1 and Table 1). This is consistent with our previous work showing that raloxifene 

exposure mainly affects post-yield properties [28,36]. These data provide evidence that oim bone, 

like normal bone, can be positively affected by raloxifene through a non-cellular mechanism as 

the previously frozen tissue is void of viable cells. Based on our previous work we hypothesize 

that these beneficial effects within the matrix are the result of alterations in hydration.  Hydration 

is known to play a key role in mechanical properties [37-39] and is modulated both in vitro and in 

vivo by raloxifene [28,29].   Unfortunately, hydration was not assessed in these bones due to 

technical challenges of working with such small amounts of tissue in the mouse bone.  Future 

work should aim to assess hydration properties with and without interventions in pre-clinical 

models and hydration in patients through non-invasive methods [40,41].  

 The encouraging results from the soaking experiment translated to the in vivo experiment 
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in which wild type and oim animals were treated with raloxifene for eight weeks. Much to our 

surprise, nearly half of the vehicle-treated oim animals had fractured femora at the time of sacrifice 

(16 weeks of age). In contrast, only 20% of the femurs in raloxifene-treated animals were fractured 

– representing a statistically significant, and in our opinion clinically meaningful, 58% reduction in 

the incidence of fracture. Spontaneous fractures are described in the homozygous oim mouse 

[10,42], and have been characterized in several studies [42,43,44]. Although we did not count 

fractures at 8 weeks when treatment began, other studies which did characterize femoral fractures 

at 8 weeks of age suggest that between 22% and 27% of bones were fractured [43,44]. These 

numbers are close to the numbers seen in our RAL-treated mice at 16 weeks (6 of 30 bones, 

20%). Assuming that the oim mice allocated to each treatment group had comparable numbers 

of fractures at 8 weeks, this suggests that RAL may have prevented most additional fractures 

which would have occurred during the treatment period. Given that spontaneous fracture is 

exactly the phenotype we are most interested in treating clinically, our finding of significant 

reductions with a pharmacological treatment (raloxifene) represents a novel and exciting result.  

 Our imaging-based assessment of skeletal properties confirm work of others by showing 

oim animals have lower DXA-based BMD and CT-based trabecular bone volume and cortical 

bone area. Eight weeks of raloxifene treatment resulted in higher total body and femoral BMD, 

and higher trabecular bone volume in both genotypes (Figure 3). There were no significant 

interactions for any imaging measure, indicating that raloxifene was similarly effective in both wild-

type and oim animals. Although raloxifene resulted in significantly higher bone mass compared 

to vehicle-treated oim animals, the values remained below those of untreated wild-type animals. 

This is in contrast to work with both bisphosphonates and anti-sclerostin antibody which have 

been shown to normalize bone mass back to wild-type levels in the oim [22,23,42,45] and Brtl/+ 

models of OI [21,25]. Bisphosphonates are a more potent anti-resorptive agent compared to 

raloxifene, and anti-sclerostin antibody is a potent anabolic agent – thus the ability of these agents 

to enhance bone mass to a greater degree than raloxifene is not surprising.  The potential to 
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combine raloxifene with a more potent enhancer of bone mass represents an exciting next step. 

 The mechanical phenotype of oim animals, based on both four-point bending of the tibia 

and fracture mechanics testing of the femur, were consistent with previous work – showing 

reduced values for almost all parameters [8,21-23,25,33,34]. Overall, the effect of in vivo 

raloxifene treatment on the ex-vivo mechanical phenotype was unimpressive (Tables 4 and 5). 

While there was a significant main effect of raloxifene on Kmax load, indicative of a bone that 

necessitates a higher load to propagate an existing crack, this appears mainly driven by wild-type 

animals. The results of our four point bending tests contrast with the fact that there was a 

significant reduction in fracture.  Although we do not have a clear explanation for these contrasting 

results, we present several hypotheses that could be tested in future studies. First, it’s possible 

that the lower number of fractures in raloxifene-treated animals is a spurious result, yet given the 

effects seen in experiment 1, and the previous work with raloxifene, this seems unlikely.  An 

alternative explanation is that the effects observed in the two experiments are unrelated – the in 

vitro experiment changes being due to altered hydration and the in vivo experiment results being 

driven by some other change (altered activity level of mice, small changes in cortical thickness as 

two examples).  This is a plausible explanation as the mechanisms could differ between males 

and females, or the local concentration of drug exposure could be different. 

 Raloxifene is an FDA approved therapy for treatment of post-menopausal osteoporosis. 

It’s efficacy in fracture risk reduction in this patient population is clear, and appears to be due to 

a combination of traditional mechanisms (reduction of bone resorption) [26-28] and non-traditional 

mechanism (altered skeletal hydration) [26-28]. Despite this, there are also notable side effects 

(thrombosis and estrogenic features) that could pose challenges for translation into patients with 

OI (particularly children) [46]. Yet the results of the current study show, for the first time, the 

conceptual framework for a novel approach to treating OI – targeting the collagen matrix with a 

pharmacological agent. Ongoing work in our lab is aimed at developing novel compounds that 

impart benefits to matrix properties without having any estrogen receptor interaction. We 
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hypothesize that such a compound, perhaps combined with an agent that suppresses osteoclast 

activity such as bisphosphonates, could represent a viable treatment regimen that targets both 

bone quantity and quality in OI.  

 There are some limitations of our study. We treated animals that were still actively growing, 

thus all of our effects are due to interactions between drug treatment and growth. We chose this 

timeline to match other OI interventional treatments and to mimic an intervention in children with 

OI. Fracture incidence was not assessed at 8 weeks when the study began and, as such, it is 

possible that the oim treatment groups were unintentionally unbalanced at the start of the study. 

However, the number of fractures in untreated oim mice at 16 weeks of age here (13 or 27 or 

48%) is comparable to the number seen in untreated mice in a previous study at 12 weeks of age 

(53%, [43]). Regardless, future studies will include a baseline measure of fracture prior to 

treatment. We studied only one dose of raloxifene, and only one sex for the in vivo treatment 

study. These are clearly variables that could be modified in future work and it is possible that the 

disparate results in mechanics between experiments 1 and 2 are due to the different sexes or 

drug exposures used for those studies. We chose our in vivo raloxifene dose based on matching 

the mg/kg dose used in humans and the in vitro dose based on our previous work showing efficacy 

– yet we do not know that these provide similar drug exposure to the bone.  While our sample 

size was sufficient to detect significant effects in many parameters, it may be necessary to have 

larger groups in order to detect differences in traditional mechanical properties. Finally, more 

detailed skeletal analyses, such as histological measures and those of bone quality 

(hydration/collagen/mineralization) would have been useful, yet these were beyond the scope of 

this early proof-of-concept study. 

In conclusion, the current study shows beneficial effects of raloxifene exposure to bone 

properties in the setting of OI. Although the direct mechanism is unclear, changes translate to a 

significant reduction in the number of long bone fractures in this animal model of osteogenesis 

imperfecta.  
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EXPERIMENTAL PROCEDURES 

All animal procedures were performed with prior approval from the Indiana University Purdue 

University Science Animal Research Center (SARC) and Indiana University School of Medicine 

Institutional Animal Care and Use Committee (IACUC). 

 

Experiment Design #1: Ex vivo Effects of Raloxifene 

Freshly frozen tibiae from a previous study [8] were used to assess non-cellular effects of 

raloxifene. Paired tibiae from 12 week old homozygous oim (B6C3Fe a/a-Col1a2oim/Col1a2oim; 

n=9) and WT (B6C3FeF1/J a/a; n=15) female mice [10] were incubated at 37C in PBS or 2 µM 

raloxifene supplemented with 1% Pen/Strep for 13 days (solution changed every 2-3 day) as 

previously described [28]. After soaking, the bones were mechanically tested to failure in four-

point bending (9 mm bottom support and 3 mm loading span) at a displacement rate of 0.025 

mm/sec following standard protocols [47]. Bending occurred in the medial-lateral direction with 

the medial side in tension. Samples remained hydrated with PBS while testing. 

 

Experiment Design #2: In vivo Effects of Raloxifene 

Seven week old homozygous oim (B6C3Fe a/a-Col1a2oim/Col1a2oim) and WT 

(B6C3FeF1/J a/a) male mice were obtained from Jackson Laboratory. After one week of 

acclimation, mice were injected 5 days per week for eight weeks with saline vehicle (VEH; n=8 

WT and n=14 oim) or 0.5 mg/kg raloxifene (RAL; n=8 WT and n=15 oim). This dose was chosen 

to approximate the clinical dose on a mg/kg basis and have been used previously in pre-clinical 

studies [29,36]. At 16 weeks of age, the mice were euthanized by CO2 inhalation. Dual-energy X-
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ray absorptiometry (DXA) was performed with the whole body, femur, and L4-L5 vertebrae as 

regions of interest (ROI). Following DXA, the femurs and tibiae were removed, wrapped in saline-

soaked gauze, and stored at -20 °C until analysis. 

 

Microcomputed Tomography (uCT) Analysis of Femurs 

Both femurs from each mouse were scanned while hydrated at a 9.8 µm voxel size using 

a Bruker 1172 uCT system (176 mA, 0.5 mm Aluminum filter). Calibration was performed daily 

using two hydroxyapatite phantoms to convert grayscale values into g/cm3. Images were then 

reconstructed for cortical and trabecular analyses. The projection scans of both left and right 

femora were used to assess the incidence of fracture. Three of the four authors examined the 

projection views and scored them as intact or fractured. When projection images were ambiguous 

of fracture, the reconstructed images were used for determination. Bones with fractures were 

excluded from further CT and mechanical analysis. For cortical analysis, a standard ROI was 

analyzed at 40% of the bone’s length measured from the distal end. At this location, seven 

transverse slices were analyzed (approximately 69 µm in length). Tissue mineral density (TMD) 

was calculated using vendor-supplied software (CTan). A standard binary threshold was then 

applied to the slices and geometric properties were calculated using a custom MATLAB code, as 

previously described [48]. Trabecular analysis was performed in the distal metaphysis on an ROI 

defined as 10% of the total bone length, beginning at the proximal end of the distal growth plate 

and extending proximally. Within that region, cancellous bone was segmented from the cortical 

shell using a custom MATLAB script. Geometric parameters were determined using vendor-

supplied software (CTan). 

 

Fracture Toughness Testing of Femurs 
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 Following uCT, fracture toughness of the femurs was assessed following a linear elastic 

fracture mechanics approach [33,49]. Due to the incidence of fracture in the oim groups, a 

combination of left and right femurs was used. However, only one bone was tested per mouse. A 

notch was made on the anterior surface of the femur using a scalpel blade pasted with a 100 µm 

diamond suspension. The notch entered the medullary cavity, but did not extend past the mid-

point of the bone. Notched femurs were then tested to failure in 3 point bending at 0.001 mm/sec 

with the loading point located directly above the notch. Following testing, bones were cleaned of 

marrow and dehydrated through graded ethanol (70-100%) for scanning electron microscopy 

(SEM). SEM images of the fracture surface were used to obtain crack angles which, in conjunction 

with geometric properties from the uCT data, allowed for the calculation of fracture instability at 

5% secant (Kinit), maximum load (Kmax load), and failure load (Kinst). 

 

Whole Bone Mechanical Testing of Tibiae 

 Prior to whole bone mechanical testing, the left tibia from each mouse was scanned by 

uCT (16.8 µm voxel size) using methods described above. A lower resolution was used for the 

tibia as only cortical properties were of interest to allow for normalization of force-displacement 

data. The bones were then tested to failure in four-point bending as described in experiment 1. 

Following fracture, the location of the site of fracture was recorded and the µCT data were used 

to obtain geometric properties at the fracture location. A 5% loss in secant stiffness was used to 

define the yield point. Force-displacement data were normalized to stress-strain using standard 

beam bending equations and the data were analyzed using a custom MATLAB script, as 

previously described [48].  

 

Statistical Analysis 
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 All data were checked for assumptions of normality and homogeneity of variance, and 

violations were corrected using transformations. For in vitro soaking experiments, statistics 

consisted of a repeated measures ANOVA to observe within-subject (main effect of treatment) 

and between-subject (main effect of disease) results (p<0.05). In the case of interactions, pairwise 

t-tests (paired for effect of treatment; unpaired for effect of disease) were performed and a 

Bonferroni correction was applied (p<0.0125 was considered significant). For the in vivo treatment 

experiments, a two-Way ANOVA was performed to assess the main effects of disease and 

treatment (p<0.05 was considered significant). Because of the staggered arrival of animals in our 

facility, the date of arrival was blocked as a nuisance factor. For the fracture assessment data, a 

Fisher’s Exact Test was used to compare the proportion of fractures in oim VEH versus RAL as 

none of the WT mice exhibited fractures. 
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