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Abstract: In order to test whether sediment emerging from presently glaciated 13 

areas of Greenland was exposed near or at Earth’s surface during previous interglacial 14 

periods, we measured the rare isotope 10Be contained in grain coatings of sediment 15 

collected at five ice marginal sites. Such grain coatings contain meteoric 10Be (10Bemet), 16 

which forms in the atmosphere and is deposited onto Earth’s surface. Samples include 17 

sediment entrained in ice, glaciofluvial sediment collected at the ice margin, and subglacial 18 

sediment extracted during hot water drilling in the ablation zone. Due to burial by ice, 19 

contemporary subglacial sediment could only have acquired substantial 10Bemet 20 

concentrations during periods in the past when the Greenland Ice Sheet was less extensive 21 

than present. 22 

The highest measured 10Bemet concentrations are comparable to those found in well-23 

developed, long-exposed soils, suggesting subglacial preservation and glacial transport of 24 

sediment exposed during preglacial or interglacial periods. Ice-bound sediment has 25 

significantly higher 10Bemet concentrations than glaciofluvial sediment, suggesting that 26 
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glaciofluvial processes are sufficiently erosive to remove tracers of previous interglacial 27 

exposures. Northern Greenland sites where ice and sediment are supplied from the ice 28 

sheet’s central main dome have significantly higher 10Bemet concentrations than sites in 29 

southern Greenland, indicating greater preglacial or interglacial landscape preservation in 30 

central Greenland than in the south. Because southern Greenland has more frequent and 31 

spatially extensive periods of glacial retreat but nevertheless has less evidence of past 32 

subaerial exposure, we suggest that 10Bemet measurements in glacial sediment are primarily 33 

controlled by erosional efficiency rather than interglacial exposure length. 34 

 35 

Introduction 36 

For ice sheets, such as the Greenland Ice Sheet, the links between climate forcings, 37 

ice sheet response, and resultant sediment fluxes has generally not been well resolved 38 

(Bierman et al., 2016). Past interglacial periods, such as the mid-Holocene and marine 39 

isotope stage (MIS) 5e, had reduced global ice volumes compared to present (Lisiecki and 40 

Raymo, 2005), but it remains uncertain how much of the ice volume change came from 41 

changes to the Greenland Ice Sheet (e.g. Stone et al., 2013). The sediment flux from erosion 42 

under glaciers and ice sheets is highly variable, with some regions experiencing 43 

considerable erosion (Hallet et al., 1996) and others experiencing very little (Bierman et 44 

al., 1999). Over the Quaternary period, substantial volumes of sediment have fluxed from 45 

the Greenland Ice Sheet to the oceans and shelf, although the total volume and chronology 46 

is not well constrained (Laine, 1980; Molnar, 2004). Modeling efforts can produce variable 47 

results depending on the assumed climate forcings (Goelzer et al., 2013) and have only 48 
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limited constraint from the offshore sediment record (Dowdeswell et al., 2014). New 49 

approaches for assessing past changes in ice sheet extent in and erosive response are needed. 50 

Here, we seek to add new constraints on the past exposure history and erosive 51 

behavior of the Greenland Ice Sheet by measuring isotopic and geochemical tracers of 52 

previous surface exposure. Our study is based on the premise that analyses of previously 53 

exposed sediment at the present-day glacial margin can identify up-glacier regions where 54 

the ice sheet was previously absent and subsequent erosion was insufficient to fully remove 55 

such tracers from the landscape and thus from the ice sheet’s sediment load. Meteoric 10Be 56 

(10Bemet) is the primary tracer we employ; it is a long-lived cosmogenic isotope that is 57 

easily incorporated into the grain coatings of sediment and accumulates during periods of 58 

surface exposure (Graly et al., 2010; Pavich et al., 1984). We also report organic carbon 59 

and total nitrogen measurements as indicators of soil formation and thus surface exposure 60 

(Barjes, 1996). We measured the stable isotope composition of water in the ice surrounding 61 

some of our samples in order to infer sediment entrainment mechanisms and therefore 62 

erosional processes (Sugden et al., 1987).  63 

 64 

Background 65 

Glacial-Interglacial History 66 

The Greenland Ice Sheet is assumed to have responded to the same climate forcings 67 

that cause global glacial-interglacial cycles (Huybrechts, 2002), but the differences 68 

between Greenland’s response and global average response are not known (Schaefer et al., 69 

2016). According to the marine benthic stable isotope record, global ice volume was less 70 

than the mid-Holocene level for only ~40,000 of the past 2.1 million years (Bintanja and 71 
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van de Wal, 2008). This brevity of past interglacial global ice volume lows is independently 72 

confirmed by a variety of paleoclimatic indicators, such as speleothems, pelagic dust flux, 73 

and coastal highstand features (e.g. Grant et al., 2014; Rohling et al., 2017). In some cases, 74 

these records suggest even briefer interglacial highstands than the marine benthic stable 75 

isotope record implies (Rohling et al., 2010).  This corresponds with a comparable lack of 76 

evidence of extended surface exposure after ~1.8 Ma in East Greenland’s offshore record 77 

(Bierman et al., 2016). However, other evidence suggests the Greenland Ice Sheet may 78 

have been more responsive to climatic optima than the global records suggest. 79 

Measurement of 10Be and 26Al in cores of the sub-ice rock below the GISP2 ice core are 80 

consistent with either numerous or extensive periods of interglacial exposure in central 81 

Greenland, beginning in the mid-Pleistocene (Schaefer et al., 2016). Organic carbon and 82 

meteoric 10Be in the basal sediment of the GISP2 core suggest preservation of a well-83 

developed preglacial or interglacial soil in central Greenland (Bierman et al., 2014). Mid 84 

to later Pleistocene climatic optima are suggested by the presence of boreal-forest remains 85 

in sub-ice sediment from southern Greenland (Willerslev et al., 2007).  86 

 87 

Meteoric 10Be systematics  88 

High concentrations of 10Bemet are generally found in the chemically weathered 89 

portions of well-developed soils. 10Bemet forms in the atmosphere from the spallation of 90 

nitrogen and oxygen by cosmic rays and has production rates on the order of 106 atoms·cm-91 

2·a-1; it differs in production location from in situ 10Be, which forms from atomic spallation 92 

within mineral lattices and has depth integrated production rates at sea level on the order 93 

of 103 atoms·cm-2·a-1 (Lal and Peters, 1967). Once formed, 10Bemet sorbs to aerosol 94 
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particles and is transported by atmospheric circulation, eventually coming to Earth through 95 

wet or dry deposition (Graly et al., 2011; Heikkilä et al., 2008). In general, 10Bemet strongly 96 

adsorbs to sediment (You et al., 1989) and accumulates within the soil column (Pavich et 97 

al., 1984). However, Be is mobile, moving between adsorbed, clay, oxide, or oxyhydroxide 98 

phases with evolving soil chemistry (Bacon et al., 2012; Barg et al., 1997), typically 99 

following clay illuviation to accumulate in greatest concentrations within the B-horizon at 100 

depths < 2-3 m (Graly et al., 2010). In deep continental regolith, appreciable concentrations 101 

of meteoric 10Be are found to depths of 10-20 m (Brown et al., 1988).  102 

If similar deeply weathered regolith formed in preglacial Greenland, any regolith 103 

remaining after glaciation likely contains at least some 10Bemet. In contrast, the duration of 104 

brief interglacial periods (<10 ka) is insufficient for substantial clay illuviation or transport 105 

of 10Bemet beyond the top meter of the soil profile (Harden et al., 2002; Pavich and Vidic, 106 

1993). Though the systematics of 10Bemet in soils have been mostly studied in the mid-107 

latitudes, 10Bemet data from high latitudes also show long-term transport of the isotope to 108 

depth (Ebert et al., 2012). High latitude flux of 10Bemet to marine sediment has been 109 

measured in glaciomarine settings near Greenland and Antarctica, though its relationship 110 

to terrestrial soil concentrations is complicated by the scavenging of 10Bemet from ocean 111 

water (Simon et al., 2016; Sjunneskog et al., 2007; Yokoyama et al., 2016).  112 

Past studies have analyzed 10Bemet concentrations in terms of a total soil inventory 113 

that uses the total abundance of the isotope within a soil column to assess surface ages and 114 

erosion rates (e.g. Pavich et al., 1986). The 10Bemet inventory is related to soil exposure age 115 

via:  116 

𝑁𝑁 =  𝑞𝑞
λ

(1 −  𝑒𝑒−λt)          (1) 117 



 6 

where N is the inventory measured in atoms·cm-2, t is the exposure period in years, λ is the 118 

10Be disintegration constant of 5.0·10-7 yr-1 (Korschinek et al., 2010), and q is the average 119 

annual flux (atoms·cm-2·a-1) of 10Bemet atoms into the soil profile. 120 

Holocene 10Bemet deposition rates in central Greenland are approximately 3.5·105 121 

atoms·cm-2·a-1 based on measurements of 10Bemet in ice cores (Finkel and Nishiizumi, 122 

1997). In eastern and southern Greenland, Holocene 10Bemet fluxes are up to 2 times larger, 123 

primarily due to higher mean annual precipitation (Sturevik-Storm et al., 2014). Eemian 124 

(MIS 5e) deposition rates were 30% higher; ~4.2·105 atoms·cm-2·a-1 is recorded in the 125 

NEEM core, in north-central Greenland (Sturevik-Storm et al., 2014). The Eemian 10Bemet 126 

data plot along the same accumulation-flux trend that is seen in the Holocene data, strongly 127 

suggesting that the increase in 10Bemet deposition is precipitation controlled. We do not 128 

know how closely the 10Bemet deposition rates of previous interglacial periods resembled 129 

mid-Holocene or Eemian fluxes. 130 

Because 10Bemet-bearing aerosols and dust are deposited on the ice sheet 131 

(Baumgartner et al., 1997), glacial ice is also a potential source of 10Bemet to the subglacial 132 

environment. In the ice sheet ablation zone, surface meltwater is routed to the bed and 133 

forms high discharge, erosive streams (Alley et al., 1997). Such streams are likely to erode 134 

and transport the subglacial sediment they encounter, and therefore are not likely to be a 135 

major source of 10Bemet to subglacial sediment. In regions where surface melt water does 136 

not readily reach the bed, basal melt is the only source of subglacial water. With geothermal 137 

heat fluxes implying basal melt rates of ~5 mm·a-1 (Greve, 2005), ice density of 0.9 g·cm-138 

1, and Pleistocene 10Bemet concentrations in ice of ~4·104 atoms·g-1 (Finkel and Nishiizumi, 139 

1997), the flux of 10Bemet from basal melt is approximately 1.8·104 atoms·cm-2·yr-1. This 140 
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is more than an order of magnitude lower than the interglacial 10Bemet flux from 141 

precipitation at the ice sheet surface documented in ice cores. Because surface 10Bemet 142 

primarily runs off in erosive meltwater streams that would remove sediments that acquire 143 

the isotope and basal 10Bemet is fluxed to the bed in minimal quantities, we conclude that 144 

10Bemet in sub-ice sediment will predominately accumulate during interglacial surface 145 

exposure or else be inherited from preglacial regolith (Figure 1). 146 

 147 

Subglacial Processes 148 

Soil, sediment, and rock at the ice sheet’s bed may be transported by glaciofluvial 149 

subglacial streams, subglacial till shearing, or by sliding of basal ice that has entrained 150 

debris through refreezing processes (Alley et al., 1997). At the ice sheet margins, sediment 151 

carried by water and bound in ice are the major components of sediment flux (Knight, 1997; 152 

Knight et al., 2002). Subglacial fluvial processes have the greatest erosive power and have 153 

water and sediment residence times of hours to days (Alley et al., 1997; Chandler et al., 154 

2013). Ice-bound sediment is transported by basal sliding, which is typically on the order 155 

of 10 m·a-1, but varies substantially both spatially and temporally, in that major outlet 156 

glaciers and large melting events induce substantial sliding accelerations (Joughin et al., 157 

2008; Joughin et al., 2010). Residence times of sediment in basal ice layers are therefore 158 

on the order of 103 to 104 years when sediment is transported over distances on the scale 159 

of tens to hundreds of km. Sediment is incorporated into the basal ice layer through 160 

regelation (Hubbard and Sharp, 1993; Philip, 1980) or freeze-on (Alley et al., 1998), and 161 

can be released from the basal ice layer if the basal melt rate exceeds the rate of freeze-on. 162 

If the hydrologic and glaciological conditions allow for the transfer of sediment between 163 
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the basal ice layer and underlying till, the total sediment transport time from the point of 164 

origin to the margin may be longer than the transport time of basal ice. 165 

The history and origin of the preglacial or interglacial soil material collected at the 166 

margin differ appreciably between ice-bound and glaciofluvial sediment samples. During 167 

regelation entrainment, ice-bound sediment is not completely homogenized by the 168 

entrainment mechanism, as the freezing front either advances or retreats through a static 169 

sediment profile based on thermal and glaciological factors (Rempel, 2008). This suggests 170 

that the ice-bound sediment samples may represent discrete natural sampling of the 171 

underlying sediment, and a 10Bemet measurement could represent a preserved point in the 172 

soil column from a preglacial landscape. In contrast, glaciofluvial samples are likely to be 173 

integrated from a range of sediment depths and distances from the current ice margin 174 

(Walder and Fowler, 1994), and result in 10Bemet concentrations that are spatially averaged 175 

over the catchment area of the subglacial stream. Sampling detrital material imparts only 176 

an imperfect knowledge of the transport and source histories; material we analyzed could 177 

have been sheared as till prior to regelation entrainment, or entrained for a time prior to 178 

basal melting and fluvial transport. 179 

The process of regelation creates ice that is often enriched in heavy stable isotopes 180 

of oxygen and hydrogen compared with the water from which it is derived (Jouzel and 181 

Souchez, 1982). Past studies of marginal basal ice in western Greenland have primarily 182 

found isotopic patterns consistent with regelation entrainment in an open system, with loss 183 

of residual meltwater to the basal hydraulic system (Knight, 1989; Sugden et al., 1987). 184 

Due to the mass difference between heavy and light isotopes of O and H, the open system 185 

regelation enrichment effect is more strongly expressed by δ18O than δ2H, resulting in 186 
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shallower two-isotope slopes than are found in meteoric water (Jouzel and Souchez, 1982). 187 

Experimental and theoretical findings predict that open-system regelation of Greenland Ice 188 

Sheet ice would produce a δ2H/δ18O enrichment trend with a slope of approximately 5.5-189 

6.0, depending on the initial isotopic composition of the ice (Iverson and Souchez, 1996; 190 

Lehmann and Siegenthaler, 1991). Based on the δ2H/δ18O enrichment slope of 8 found in 191 

precipitation (Craig, 1961), deuterium excess is defined as δ2H - 8·δ18O. Excess values of 192 

10 are considered typical of meteoric precipitation (Dansgaard, 1964); excess values found 193 

in regelation enriched ice are well-below meteoric values (Sugden et al., 1987).  194 

 195 

Study Sites 196 

Samples were collected from five study areas in coastal Greenland: Upernavik 197 

(72.6º N, 53.6º W), Illulisat (69.4º N, 50.3º W), Kangerlussuaq (67.1º N, 50.0º W), Tasiilaq 198 

(65.6º N, 38.5º W), and Narsarsuaq (61.2º N, 45.0º W) (Figure 2). Samples from Upernavik 199 

and Ilulissat were collected from flowlines that drain the main dome of the Greenland Ice 200 

Sheet to the west and originate near Summit. The Tasiilaq and Kangerlussuaq samples are 201 

from flowlines that drain the southern dome from the east and west sides respectively; 202 

Narsarsuaq is in the far south. All samples were collected from land-terminating ice. At 203 

sites that contain major marine-terminating outlet glaciers, such as Ilulissat and Tasiilaq, 204 

our samples were collected from smaller, land-terminating sites. 205 

There is substantial variation in topographic character between the five sites. Both 206 

Upernavik and Narsarsauq are characterized by deep fjords dissecting relatively level 207 

uplands. At Upernavik, relief is on the order of 1000 m; at Narsarsuaq, relief is on the order 208 

of 1500 m. Ilulissat and Kangerlussuaq contrast with these sites; they are characterized by 209 
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a low relief (<500 m) landscape of glacially rounded hills. Tasiilaq is intermediate to the 210 

other sites, both in relief and in dissection of the landscape. 211 

The upland areas of the high-relief sites are generally consistent with minimal 212 

glacial erosion. In the Upernavik area, the upland bedrock has a complex in situ 213 

cosmogenic isotope exposure history, indicating subglacial erosion rates insufficient to 214 

remove rock material at appreciable rates (Corbett et al., 2013). Low rates of subglacial 215 

erosion are also suggested by the uplands’ highly weathered rock surfaces, including 216 

exfoliation sheets, tors, and weathering pits. Some of the highest elevation sites between 217 

Kangerlussuaq and the coast also have 105 year in situ cosmogenic isotope histories, though 218 

most of the landscape records only Holocene exposure due to efficient subglacial erosion 219 

during the last glacial period (Rinterknecht et al., 2009; Roberts et al., 2009). Ilulissat lacks 220 

substantial inheritance of in situ cosmogenic nuclides from prior periods of exposure, thus 221 

indicating deep erosion during glaciation, even in upland areas (Corbett et al., 2011). 222 

Though cosmogenic isotope measurements in the upland bedrock of Narsarsuaq suggest 223 

only Holocene exposure, in situ 10Be concentrations in fluvial sediment from non-glaciated 224 

catchments draining upland areas found higher concentrations near Narsarsuaq than near 225 

Tasiilaq or Kangerlussuaq (Nelson et al., 2014). The Narsarsuaq fluvial sediment sample 226 

from the non-glacial stream with the highest in situ 10Be concentration was included in this 227 

study (GLX18). 228 

 Low-lying regions and fjords at all of the study sites appear to have simple 229 

exposure histories that indicate rapid ice sheet retreat between 9 and 11 ka (Carlson et al., 230 

2014; Corbett et al., 2013; Kelley et al., 2013; Roberts et al., 2008), though early to middle 231 

Holocene minor  readvances are suggested at some sites (e.g. Carlson et al., 2014; Levy et 232 
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al., 2012; Young et al., 2013). Where the upland and lowland histories differ, it is likely 233 

that cold-based ice preserved the landscape on the highlands, while warm-based ice carved 234 

the fjords. 235 

The sites also differ in distance from the ice sheet margin to the coast, both presently 236 

and in past interglacial periods. The Kangerlussuaq region is presently the furthest from 237 

the coast (~150 km), and most models show significant retreat in this sector of the 238 

Greenland Ice Sheet both during the mid-Holocene and the MIS 5e interglacial periods 239 

(Stone et al., 2013). The high relief sites (Upernavik and Narsarsuaq) are modeled to have 240 

less interglacial retreat (e.g. Otto-Bliesner et al., 2006) 241 

 242 

Methods 243 

Sampling Strategy 244 

We analyzed three different types of samples: subglacial sediment extracted below 245 

ice boreholes, ice-bound sediment collected at the glacial margin, and glaciofluvial 246 

sediment collected from outlet streams at or near the active ice margin. Samples of 247 

subglacial sediment accessed through hot water drilling at ablation zone sites were 248 

collected in 2011 by independent drill teams working inland from Kangerlussuaq (n=2) 249 

(Graly et al., 2016) and Ilulissat (n=2) (Ryser et al., 2014). The Kangerlussuaq samples 250 

were collected by means of a downhole sampler; the Ilulissat samples were sediment that 251 

clung to the drill stem and were recovered upon its removal from the borehole. 252 

 Ice-bound sediment samples were collected in 2008 from Kangerlussuaq (n=10), 253 

Ilulissat (n=8), and Upernavik (n=16). At one Upernavik site, samples were collected in a 254 

vertical transect across the basal ice layer, allowing comparison of the measured isotope 255 
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data to ice depth. Ice-bound samples were removed with ice axe or chisel, stored in sealed 256 

Nasco whirlpaks, and melted in the field. In the laboratory, the meltwater was decanted, 257 

and the sediment dried. The ice-bound and subglacial samples were not sorted by grain size 258 

but are predominately fine sand and silt  (Graly et al., 2016). 259 

Nine samples of outlet stream glaciofluvial sediment were collected in 2011 and 260 

2012 from Narsarsuaq (n=2), Tasiilaq (n=2), and Kangerlussuaq (n=5). The glaciofluvial 261 

samples have been previously analyzed for in situ 10Be and, in some cases, 26Al (Bierman 262 

et al., 2016; Nelson et al., 2014). The glaciofluvial samples were taken from the 250-800 263 

µm grain size fraction, in which in situ 10Be and 26Al were also measured (Nelson et al., 264 

2014).  265 

 266 

Stable Isotopes 267 

We measured δ18O in the meltwater from the ice-bound samples using equilibration 268 

with CO2 gas (Socki et al., 1992), and measured δ2H using H2 extraction by elemental zinc 269 

(Coleman et al., 1982).  Results are reported using the standard delta (δ) notation, in units 270 

of ‰ relative to Vienna Standard Mean Ocean Water (VSMOW). Organic carbon (C) and 271 

total nitrogen (TN) were analyzed by combusting sediment in sealed tin capsules and 272 

analyzing the gas released in a CE Instruments NC 2500 elemental analyzer calibrated with 273 

OAS B-2152 (1.65% ± 0.02 C, 0.14% ± 0.01 N) and OAS B- 2150 (6.72%±0.17 C, 274 

0.50%±0.01 N) standards and using Eager 200 data handling software. The precision of 275 

the analyzer is ~1% of the quantity measured for C, and ~0.5% for TN.  276 

 277 

10Be measurements 278 
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Meteoric 10Be was isolated using total fusion of sediment pulverized to fine silt, in 279 

a modification of the KHF2 flux method (Stone, 1998); the ice-bound samples were 280 

extracted in 2009 and measured in 2010; the glaciofluvial and drill samples were extracted 281 

and measured in 2017. We added ~300 μg 9Be as a carrier (Tables 1 and 2). The 10Be/9Be 282 

ratio was measured by accelerator mass spectrometry at Lawrence Livermore National 283 

Laboratory and referenced to primary standard 07KNSTD3110, with an assumed 10Be/9Be 284 

ratio of 2.85·10-12 (Nishiizumi et al., 2007). A full process blank was measured with each 285 

batch of 16 samples. The 10Be/9Be of processed blanks was 1.51·10-14 ± 1.22·10-15 for the 286 

samples measured in 2010 (n = 3, average, 1SD) and 2.55·10-14 ± 1.06·10-15 for the samples 287 

in 2017 (n = 1). However, in the batch of samples processed in 2017 (Table 2), five sample 288 

had values below detection limits, have their measured ratios either similar to or less than 289 

the blank. Therefore, to make a blank correction to the other measured ratios in the batch 290 

we used an average of the blank ratio and those of these five samples. In both cases, we 291 

subtracted the average ratio representative of the blank and propagated uncertainties in 292 

quadrature. 293 

 294 

Transport time estimates 295 

At the locations where we sampled ice-bound sediment, we estimated transport 296 

rates along the associated modern flowlines. The estimates are based on two dimensional 297 

geophysical reconstructions of the modern flowlines (Wang et al., 2002) in which each 298 

flowline is derived from 1 km horizontal grid components and 100 vertical layers. Given 299 

that the reconstructed vertical velocity is small compared to the horizontal velocity, only 300 

the horizontal velocity was used to determine transport times. The total time required to 301 
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transport sediment from a position in the interior to the margin was calculated by summing 302 

the inverse of the horizontal flow rates for the basal ice layer along these flowlines. As 303 

noted above, this approach neglects the time the sediment may spend sequestered with 304 

other basal material due to the cycling of sediment between the bed and the overlying ice. 305 

As such, transport times are likely minima. 306 

 307 

Statistical Methods 308 

To compare meteoric 10Be data between sites and sampling techniques, we 309 

determined statistical significance through an unequal-variance, two-tailed, log-normal t-310 

test. We used a maximum likelihood estimation to constrain the maximum 10Bemet 311 

concentration in ice-bound sediment at each of our sites. We did not attempt to constrain 312 

this value for glaciofluvial sediment or subglacial sediment, as the sample size was much 313 

smaller. We considered the ice-bound samples to be discrete and random samples of the 314 

underlying sediment. Assuming a log-uniform distribution of 10Bemet concentration within 315 

a soil profile, the maximum likelihood estimator of the maximum is the observed value 316 

(Ruggles and Brodie, 1947). An unbiased estimate of the maximum was calculated via: 317 

 𝑀𝑀𝑢𝑢𝑢𝑢 = 𝑒𝑒𝑙𝑙𝑙𝑙𝑙𝑙𝑀𝑀+
𝑙𝑙𝑙𝑙𝑙𝑙𝑀𝑀−𝑙𝑙𝑙𝑙𝑙𝑙𝑚𝑚

𝑘𝑘−1           (2) 318 

where 𝑀𝑀𝑢𝑢𝑢𝑢 is the unbiased estimate of the maximum, 𝑀𝑀is the observed maximum, 𝑚𝑚 is the 319 

observed minimum, and k is sample size. Uncertainty was calculated as the difference 320 

between the unbiased (𝑀𝑀𝑢𝑢𝑢𝑢) and maximum likelihood (𝑀𝑀) estimates.  321 

To estimate the 10Bemet inventory of the source soils from our estimates of the soil 322 

maximum 10Bemet concentration, we employed the correlation between maximum 10Bemet 323 

soil concentration and total 10Bemet inventory following Graly and others (2010). Though 324 
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the correlation curve of Graly and others (2010) was constructed using primarily mid-325 

latitude soils, we added recent measurements from arctic soils in Sweden (67˚ N) (Ebert et 326 

al., 2012) and Alaska (70˚N) (Bierman et al., 2014). Errors were propagated from both the 327 

maximum concentration estimate and the correlation with inventory to establish 328 

uncertainty in the 10Bemet inventory of the sources for ice-bound sediment. As past 329 

integlacial 10Bemet fluxes to Greenland have only been assessed at a few, primarily 330 

Holocene locations (Sturevik-Storm et al., 2014), there is insufficient information to assign 331 

an uncertainty to past interglacial or preglacial deposition rates.  So, we used the average 332 

value from mid-Holocene sections of the GISP2 core. Only uncertainty in the value of the 333 

inventory (N) was propagated through equation 1 to solve for exposure time (t). Because 334 

the maximum-inventory correlation was developed on continuously exposed soils, decay 335 

during burial can result in an overestimate of the 10Bemet soil inventory. In determining 336 

whether 10Bemet concentrations could have formed during the interglacial periods of the 337 

past 500,000 years, the effect of decay is inconsequential compared with other uncertainties.   338 

  339 

Results 340 

Measured meteoric 10Be concentrations (n=48) vary from <106 to 2.1·108 atoms·g-341 

1 (Figure 3, Tables 1 and 2). Unequal variance t-tests show that ice-bound sediment 342 

contains significantly more 10Bemet than glaciofluvial sediment (Table 3). Significant 343 

differences between ice-bound and glaciofluvial sediment are also found at Kangerlussuaq 344 

alone, where both types of sediment were collected (Figure 3, Table 3). The glaciofluvial 345 

10Bemet concentrations are significantly lower in Kangerlussuaq than at Narsarsuaq and 346 

Tasiilaq, and the ice-bound 10Bemet concentrations are significantly lower at Kangerlussuaq 347 
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than at Upernavik and Ilulissat. Samples from Upernavik and Ilulissat are not statistically 348 

distinguishable from each other; nor are samples from Tasiilaq and Narsarsuaq (though 349 

n=2 at these sites). The ice-bound sediment at the GISP2 base (Bierman et al., 2014) is 350 

significantly enriched in 10Bemet compared to any of the marginal sites (Figure 3, Table 3). 351 

In the ice-bound samples, the δ18O values of the ice range from -38.9‰ to -24.3‰; 352 

δ2H values range from -273.8‰ to -195.1‰ (Table 4). Average deuterium excess is 3.1‰ 353 

(Table 4). At the Upernavik transect site, the δ2H/δ18O slope is 5.85 ± 0.83 (Figure 4). At 354 

the Upernavik transect site, deuterium excess, organic C concentration, and meteoric 10Be 355 

concentration are highest at top of the basal ice layer and decrease toward the bed (Figure 356 

5). 357 

In most (30 of 40) of the ice-bound sediment samples, organic carbon 358 

concentrations are <0.1%. The remaining samples (n=10) have organic C concentrations 359 

from 0.16% to 1.53% (Table 4). The highest measured 10Bemet concentrations corresponds 360 

to the highest measured organic carbon concentration, and the two values are correlated 361 

within the Upernavik transect site (R2 = 0.88; Figure 5). However other sites, especially 362 

Ilulissat, have considerable 10Bemet concentrations (up to 1.5·108 atoms·g-1) without any 363 

detectable organic carbon. Total nitrogen content also correlates weakly (R2 = 0.55, p=0.05) 364 

with 10Bemet content across the data set (Table 3). In the 10 samples with higher organic C 365 

concentrations, the C/N ratio is 7.5 ± 2.0 (S.E.). 366 

At each of the flowlines for which we analyzed ice-bound sediment, modeled 367 

sediment evacuation times were 103-104 years within ~100 km of the modern ice margin 368 

and increased exponentially to ~105 years if sediment were sourced near the continental 369 

flow divide (Figure 6).  370 
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Using Eq. 2 and the measured maximum 10Be concentrations of 4.63·107, 1.46·108, 371 

and 2.08·108 atoms·g-1 at Kangerlussuaq, Ilulissat, and Upernavik, respectively, we 372 

estimate the maximum 10Be concentration in a uniform source for each site is 6.50 ± 373 

1.90·107, 2.40 ± 0.98·108, and 2.69 ± 0.62·108 atoms·g-1, respectively. 374 

 The strong correlation between maximum 10Bemet concentration and total soil 375 

inventory (Graly et al., 2010) allows us to infer source 10Bemet inventories from the 376 

estimated maximum concentrations (Figure 7). The newly added arctic soil measurements 377 

fit well within the mid-latitude trend. Propagating uncertainty through the correlation, we 378 

infer meteoric 10Be inventories in the source sediment for the ice-bound sediment at 379 

Kangerlussuaq, Ilulissat, and Upernavik of 8.17 ± 3.46·109, 4.18 ± 2.32·1010, and 4.82 ± 380 

1.73·1010 atoms·cm-2, respectively. If deposition rates from the mid-Holocene are taken to 381 

represent conditions during earlier interglacial periods, we infer minimum exposure times 382 

(that do not account for loss to decay during ice cover) of 90-197 ka at Upernavik, 54-195 383 

ka at Ilulissat, and 13-34 ka at Kangerlussuaq. 384 

 385 

Discussion 386 

 Our isotopic data lead to three principal observations: (1) The maximum observed 387 

10Bemet concentrations are comparable to those found in well-developed mid-latitude soils 388 

(Graly et al., 2010). (2) Ice-bound sediment has significantly more 10Bemet than 389 

glaciofluvial samples. (3) Sediment transported by the northern outlet glaciers that drain 390 

the Greenland Ice Sheet’s main dome have significantly higher 10Bemet concentrations than 391 

sediment transported by ice from the ice sheet’s southern dome.  392 

 393 
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Exposure time and erosion estimates for ice-bound samples 394 

The high concentrations of 10Bemet in most ice-bound sediment from Upernavik and 395 

Ilulissat likely developed over extended periods of preglacial and/or interglacial exposure. 396 

The global benthic δ18O record suggests that during the past Ma, global ice volume was 397 

less than present during four brief periods: the mid-Holocene (8 ka – 3 ka), the Eemian 398 

(MIS 5e – 127 ka – 116 ka), MIS 9 (333 ka – 323 ka), and MIS 11 (417 ka – 397 ka) 399 

(Bintanja and van de Wal, 2008). Though there are uncertainties in all global sea level 400 

reconstruction approaches, independent alternate methods indicate comparably brief 401 

interglacial periods in the late Pleistocene (Rohling et al., 2010). The decay-corrected sum 402 

of these periods is equivalent to ~40 ka of continuous exposure, less than the minimum 403 

surface exposure time that we infer from 10Bemet for Ilulissat of 54 ka and far less than the 404 

Upernavik minimum exposure time of 90 ka. This means that the analyzed sediment from 405 

these two sites very likely records an exposure history beyond the global ice minima of the 406 

past million years. 407 

Though it is not possible to attribute the observed 10Bemet concentrations to any 408 

particular exposure, decay, and erosion history, the long minimum exposure times we 409 

calculate suggest that some of the 10Bemet in the ice-bound sediment from Ilulissat and 410 

Upernavik likely remains from preglacial soils. Alternatively, the Greenland Ice Sheet 411 

might have had substantially longer periods of interglacial exposure than suggested by 412 

global records; exposure length would have to be more than twice the global average to 413 

even reach the Upernavik minimum. Prior to glaciation, continental surfaces probably 414 

developed deep soil profiles with tens of meters of regolith (Lidmar-Bergström, 1997). The 415 

preservation of such preglacial sediment requires integrated Quaternary subglacial erosion 416 
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rates be <10 m·Ma-1 in the source regions of the ice-bound sediment at the northern sites, 417 

Upernavik and Ilulissat.  418 

The last sustained period when global ice volume was reduced below present levels 419 

occurred ~2.7 Ma (Lisiecki and Raymo, 2005), or about two 10Be half-lives ago. If the 420 

meteoric 10Be in the ice-bound sediment is exclusively pre-Quaternary, initial 421 

concentrations in the range of 6-8·108 10Bemet atoms·g-1 would be required to explain the 422 

current inventory, accounting for radioactive decay. If an extensive ice-free period formed 423 

much of the initial 10Bemet inventory during the early or mid-Pleistocene (i.e. Funder et al., 424 

2001; Schaefer et al., 2016), then preglacial 10Bemet concentrations on the order of 3-4·108 425 

10Be atoms·g-1 could have produced the highest concentrations we measured in the ice-426 

bound marginal sediment. In previous studies of deeply weathered soils, 10Bemet 427 

concentrations of the order of  3 to 8·108  atoms·g-1 have been found only in the soil B 428 

horizon (Bacon et al., 2012; Pavich et al., 1985). For a preglacial B horizon at a depth < 2 429 

m to still supply sediment to the margin, subglacial erosion rates of < 1 m·Ma-1 are 430 

necessary for the Quaternary. The record of offshore sedimentation suggests that erosion 431 

rates on that order are unlikely to be widespread (Bierman et al., 2016; Laine, 1980). 432 

Instead, an initial 10Be inventory remaining from the development of deep preglacial 433 

regolith was likely enhanced during subsequent periods of interglacial exposure (Figure 1). 434 

In low erosion rate settings, a small amount of 10Bemet accumulation may also have 435 

occurred from the basal melt of the overlying ice. However, the delivery rates through basal 436 

melting are not sufficient to account for the measured concentration maxima. The flux rate 437 

from basal melt of 1.8·104 atoms·cm-2·yr-1 would take ~10,000 years of melt delivered to 438 

a single g·cm-2 of sediment to obtain concentrations of 2·108 atoms·g-1. If the 10Bemet were 439 
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vertically distributed as it is in a typical terrestrial soil profile, with the isotope distributed 440 

over several m of depth, hundreds of thousands of years of melt are needed to reach even 441 

the concentrations found at Kangerlussuaq. However, if the subglacial sediment cover is 442 

thin (i.e. a few cm) or 10Bemet is not downwardly mobile within a sediment column, a 443 

substantial portion of the meteoric 10Be concentration could come from subglacial melting. 444 

Therefore, we cannot rule out some 10Bemet contribution from sub-glacial melt; though, it 445 

likely represents a small fraction of the total inventory. 446 

 The long potential transport times for ice-bound sediment in the ice sheet basal 447 

layer may play a role in the preservation of sediment with a history of preglacial and 448 

interglacial exposure. Regardless of erosion rate, mid-Holocene sediment from near the 449 

margin and Eemian (MIS 5e) sediment from the interior could still be emerging at the 450 

margin as ice-bound sediment due to the slow rate of ice transport (Figure 6). The idea that 451 

older sediment may source from deeper in the interior of the ice sheet is further supported 452 

by the vertical transect collected at Upernavik (Figure 5). We expect that basal ice layers 453 

grow progressively from the bed, with the top of the layer containing sediment that was 454 

entrained earliest (Rempel, 2008). At the Upernavik vertical transect, the highest 10Bemet 455 

concentrations and organic C concentrations are found at the top of the transect, suggesting 456 

a source of preglacial regolith and/or lower erosion rates deeper in the interior compared 457 

to a more marginal source for the stratigraphically lower samples. 458 

The water stable isotope values of the ice-bound samples also suggest multiple 459 

entrainment events in the formation of the basal ice layers. The slope of stable isotope 460 

enrichment at the Upernavik vertical transect (Figure 4) is consistent with isotopic 461 

enrichment during open-system regelation, which should be approximately 5.5 for ice of 462 
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this isotopic composition (Jouzel and Souchez, 1982; Lehmann and Siegenthaler, 1991). A 463 

single regelation enrichment event decreases the deuterium excess of the ice by ~3 - 7‰, 464 

depending on the proportion of the ice that melts (Jouzel and Souchez, 1982). Assuming 465 

clean glacial ice has deuterium excess near 10‰ (Dansgaard, 1964), most samples 466 

experienced multiple enrichment events (Table 4). The conclusion that basal ice layers 467 

grew progressively through multiple regelation enrichment events is consistent with a long 468 

residence time of the sediment within the upper portions of the basal ice layer. 469 

 470 

Erosion conditions for glaciofluvial and subglacial samples 471 

Glaciofluvial samples have significantly lower 10Bemet concentrations than ice-472 

bound sediment (Figure 3), suggesting that they are sourced from a more erosive portion 473 

of the ice sheet than the ice-bound samples. The average 10Bemet concentration in the 474 

Kangerlussuaq glaciofluvial samples is ~106 atoms·g-1, whereas the ice-bound sediment 475 

there averages 1.3·107 atoms·g-1, a more than ten-fold difference.  476 

The 10Bemet concentrations in glaciofluvial sediment can be explained from 477 

meltwater-driven 10Be addition alone, without any inheritance from preglacial or 478 

interglacial soil development. Assuming the surface ice and snow that feed ablation zone 479 

melt contain 10Bemet concentrations of 2·104 atoms·g-1 (Finkel and Nishiizumi, 1997), a 480 

liter of glacial meltwater contains 2·107 atoms of 10Bemet. Measured concentrations of 481 

suspended sediment in Greenland Ice Sheet meltwaters range from 1 to 10 g·L-1 (Cowton 482 

et al., 2012; Overeem et al., 2017). If most 10Bemet sorbed to sediment grain surfaces during 483 

fluvial transport (You et al., 1989), 10Bemet concentrations of 106 to 107 atoms·g-1 could be 484 

expected in glaciofluvial sediment, simply from the mixing of sediment and surface glacial 485 
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meltwater. The glaciofluvial samples cluster toward the low end of this range, perhaps 486 

implying incomplete partitioning of the meltwater 10Bemet to solids or a preference of the 487 

isotope for fine-grain size fractions underrepresented in these sand-sized samples. If the 488 

10Bemet concentrations measured in glaciofluvial sediment were derived mostly from 489 

meltwater, then these sediments are derived from material that has little or no 10Bemet 490 

remaining from preglacial or interglacial periods. This implies glacial erosion sufficient to 491 

remove previously exposed sediment in the glaciofluvial sediment from Kangerlussuaq and 492 

Tassiilaq. 493 

The glaciofluvial samples in which we measured 10Bemet were previously analyzed 494 

for in situ cosmogenic isotopes (Nelson et al., 2014). The measured concentrations are very 495 

low for both in situ (103 atoms g-1) and meteoric 10Be (< 106 atoms g-1) and no significant 496 

correlation between the two is observed in the samples of solely glacial origin (Table 2). 497 

The measured in situ concentrations do not necessarily imply surface exposure, as muons 498 

are capable of producing small quantities of 10Be at up to 100 m depth (Heisinger et al., 499 

2002; Nelson et al., 2014). We interpret the combined in situ and meteoric 10Be data in 500 

glaciofluvial sediment as implying very little or no previous exposure of this sand-sized 501 

sediment at or near Earth’s surface. 502 

In contrast to Kangerlussuaq and Tassiaq, two fluvial samples from Narsarsuaq 503 

suggest possible preglacial or interglacial surface exposure. One sample from a non-504 

glaciated fluvial system has a 10Bemet concentration of 1.3·108 atoms·g-1 (Table 2). Due to 505 

higher precipitation than elsewhere in Greenland, the meteoric 10Be deposition rate at 506 

Narsarsuaq is ~106 atoms·cm-2·a-1 (Heikkilä and Von Blanckenburg, 2015). If the 507 

measured non-glacial fluvial concentration represents the average 10Bemet content of a 508 
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steadily developing soil profile, it would take 15-30 ka to develop the source soil, probably 509 

exceeding what developed in the 11 ka since deglaciation (Carlson et al., 2014). Narsarsuaq 510 

also has the highest 10Bemet value we measured in a glaciofluvial sample (Table 2). These 511 

two datapoints are consistent with some preglacial or interglacial exposure preserved in the 512 

Narsarsuaq area. Comparatively large in situ 10Be concentrations were also observed in 513 

some of the sediment from Narsarsuaq (Nelson et al., 2014). The high topographic relief 514 

in the Narsasuaq area may be a factor in preserving low erosion, highland regions capable 515 

of preserving interglacial or preglacial sediment. 516 

The differences between the glaciofluvial samples and the ice-bound samples are 517 

very likely due to erosive power of subglacial streams, which far exceed the erosive power 518 

of ice entrainment processes (Alley et al., 1997). If sediment from low erosion rate 519 

subglacial regions (represented by ice-bound sediment samples) is present in subglacial 520 

streams, it comprises an undetectably small fraction. At Kangerlussuaq, the order of 521 

magnitude difference between ice-bound and glaciofluvial sediment requires that <10% of 522 

the ice-bound sediment could be mixed into the glaciofluvial sediment, even assuming that 523 

glaciofluvial processes introduced no 10Bemet through delivery by water. It is therefore 524 

likely that the ice-bound sediment with high 10Bemet concentrations is sourced from a region 525 

outside of the influence of glaciofluvial processes, either beyond the marginal region (at 526 

most, a few 10s of km wide) that supports subglacial conduits (Dow et al., 2014) or from 527 

an area disconnected from glacial hydrologic system. 528 

The subglacial samples collected from hot water boreholes could be comparable to 529 

glaciofluvial sediment or ice-bound sediment, depending on the conditions at the bed. At 530 

Kangerlussuaq, subglacial samples collected from the ablation zone have very low 10Bemet 531 
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levels, comparable to glaciofluvial samples collected at the margin (Table 2). At Ilulissat, 532 

10Bemet concentrations are comparable to the ice-bound sediment collected at the margin. 533 

Both subglacial sampling sites are located within the ablation zone, near where moulins 534 

actively contact the bed (Andrews et al., 2014). This could imply that, at least at Ilulissat, 535 

spatial heterogeneity in the glaciohydrological system permits low erosion zones to exist 536 

in the ablation zone. 537 

 538 

Context of Greenland erosion and sediment flux 539 

Proglacial regions with erosion rates low enough to preserve rock surfaces over 540 

multiple glacial cycles are observed in several marginal regions of Greenland, including 541 

Thule (Corbett et al., 2016), Upernavik (Corbett et al., 2013), Jameson Land (Håkansson 542 

et al., 2008), and Sukkertoppen (Beel et al., 2016). Similar regions under the ice may be 543 

the source of the ice-bound and subglacial sediment with high 10Bemet concentrations. 544 

However, ice-bound sediment like those we measured still must have been subjected to 545 

warm-based subglacial processes in order to become entrained and transported to the ice 546 

margin, whereas currently proglacial regions could have been cold-based, and therefore 547 

non-erosive, for their entire glacial histories. 548 

The large difference in 10Bemet concentrations between glaciofluvial and ice-bound 549 

samples at Kangerlussuaq mirrors large differences in contemporary sediment fluxes from 550 

the region. Contemporary ice-bound sediment fluxes in the Kangerlussuaq area are ~20 551 

m3·m-1·a-1 (Knight et al., 2002), suggesting an average of ~40 m·Ma-1 of subglacial erosion 552 

over the 340 km flowline (assuming rock is 50% denser than sediment). Erosion rates 553 

calculated from glaciofluvial sediment flux at the Leverett Glacier (also in the 554 
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Kangerlussuaq area) are on the order of 1000 m·Ma-1 (Cowton et al., 2012), sufficient to 555 

strip the evidence of even a mid-Holocene interglacial exposure. Contemporary sediment 556 

fluxes in the Kangerlussuaq area are among the highest observed in Greenland (Overeem 557 

et al., 2017), although contemporary sediment flux data are not necessarily representative 558 

of the long-term. Such sediment flux rates are consistent with ice-bound sediment sourcing 559 

from material capable of preserving a memory of interglacial exposure and glaciofluvial 560 

sediment sourcing from material where erosion rates are too high to maintain this memory. 561 

The long residence time of ice-bound sediment may also play a role in preserving an 562 

exposure signal in 10Bemet concentrations (i.e., Figure 6).  563 

The thicknesses of glacial sediment as measured by offshore cores generally 564 

suggest far lower long-term erosion rates than the contemporary fluxes observed at 565 

Kangerlussuaq. Several cores in the Disko Bugt region (near Ilulissat) have background 566 

sedimentation rates around 100 m·Ma-1 that spike to ~2,000 m·Ma-1 during periods of 567 

deglaciation (Cofaigh et al., 2013). If the regions of erosion and deposition are equal in 568 

area, the background sedimentation rate is equivalent to 50 m·Ma-1 of subglacial erosion 569 

(though the channeling of ice into distinct outlets implies that the true value is lower). 570 

Analysis of authigenic 10Be/9Be in a sediment core from the center of Baffin Bay suggests 571 

slightly higher erosion rates for the entire region, with background rates near 80 m·Ma-1 572 

that approximately double during Heinrich events (Simon et al., 2016). Rates of sediment 573 

deposition in the near shelf of central East Greenland are similar to those measured in West 574 

Greenland, though deposition rates in fjords are an order of magnitude higher (Andrews et 575 

al., 1994). Andrews and others (1994) suggest these sedimentation rates imply Holocene 576 

erosion on the order of 10 m·Ma-1. If erosion rates between 10-50 m·Ma-1 are taken as 577 
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typical, the variation between high and low erosion regions suggest Quaternary erosion 578 

rates on the order of 5-10 m·Ma-1 are plausible for portions of the subglacial environment.  579 

The existence of glaciofluvial outlet systems capable of performing most of the 580 

erosion and sediment transport to the shelf may explain the differences in in situ 581 

cosmogenic isotopes observed in Greenland’s onshore (Schaefer et al., 2016) and offshore 582 

(Bierman et al., 2016) records. The lack of evidence for surface exposure during the past 583 

1.8 Ma in marine sediment cores (Bierman et al., 2016) may be in part because the vast 584 

majority of the sediment comes from subglacial streams too erosive to preserve an 585 

interglacial exposure record. However, the more minimally erosive regions of the ice sheet, 586 

both preserved in central Greenland at the base of the GISP2 ice core (Bierman et al., 2014; 587 

Schaefer et al., 2016) and at the marginal sites presented here, do contain a record of 588 

extensive pre-glacial or interglacial exposure. 589 

 The southwest region of the Greenland ice sheet, where Kangerlussuaq is located, 590 

has been modeled by many as the ice sheet’s most responsive sector to changing climate 591 

(Helsen et al., 2013; Stone et al., 2013). The source regions for Kangerlussuaq’s marginal 592 

sediment likely had more total exposure than any other site, and yet have significantly less 593 

10Bemet. Upernavik, by contrast, is located in one of the most stable sectors of the ice sheet 594 

(Otto-Bliesner et al., 2006) and yet has the highest 10Bemet observed in marginal sediment. 595 

Sediment from the stable center of Greenland has higher concentrations still (Bierman et 596 

al., 2014) (Figure 3). Differences in 10Bemet concentrations between sites appear to be 597 

primarily controlled by erosion rates and not necessarily duration of interglacial exposure.  598 

 599 

Conclusions 600 
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We measured 10Bemet in ice-bound, glaciofluvial, and subglacial sediment collected 601 

from five marginal Greenland Ice Sheet sites. In the ice-bound sediment at the two 602 

northernmost sites, we found maximum 10Bemet concentrations that are comparable to those 603 

measured in well-developed soils, evidence that these sediments were subject to 104 to >105 604 

years of interglacial and preglacial exposure. Glaciofluvial sediment has very low 10Bemet 605 

concentrations and do not preserve a signal of past interglacial or preglacial exposure. One 606 

site, Kangerlussuaq in central west Greenland, has significantly lower 10Bemet 607 

concentrations for all sample types. Because this site has both unusually high sediment flux 608 

and a history of substantial interglacial ice retreat, it implies erosion is more influential 609 

than exposure in controlling 10Bemet flux to the ice margin in sediment. Variation in 610 

subglacial processes (particularly regelation entrainment vs. glaciofluvial entrainment of 611 

sediment) causes erosion rates to vary across the subglacial landscape. Erosion rates low 612 

enough to preserve preglacial material may be confined to regions of the ice sheet that are 613 

lacking widespread influence of glaciofluvial processes. 614 
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 898 
Figure Captions 899 
 900 
Figure 1: Conceptual model of development of 10Bemet soil profiles over glacial and 901 
interglacial conditions. A) Prior to glaciation, high concentrations and large inventories of 902 
10Bemet develop in a deep regolith layer. B) During glacial periods, upper portions of this 903 
regolith are entrained in basal ice and removed from the landscape, while remaining 10Bemet 904 
is reduced by radio decay. C) During interglacial periods, sediment is again exposed to 905 
10Bemet deposition and new 10Bemet is added to the previous 10Bemet inventory that remains. 906 
This process of glacial-period 10Bemet loss and interglacial period replenishment repeats 907 
over glacial/interglacial cycles.  908 
 909 
Figure 2: Location maps. A) Source regions of sediment delivered to sampling regions at 910 
the modern margin of the Greenland Ice Sheet based on modeled flowlines (Wang et al., 911 
2002)  B-F) Satellite imagery (Google Earth) of our sampling locations at each site.  912 
 913 
Figure 3: Bar and whisker plots of 10Bemet concentrations across all Greenland Ice Sheet 914 
sampling sites. Boxes represent 2nd and 3rd quartiles of the data. Whiskers go to the 915 
minimum/maximum or 1.5 times the interquartile range (whichever is closer to the 916 
median). Outliers beyond the whiskers are marked with an x. Data from sediments in the 917 
GISP2 ice core (Bierman et al., 2014) are shown for comparison. 918 
 919 
Figure 4:  δ18O and δ2H from the Upernavik transect site. The slope is lower than the 920 
slope of meteoric water, suggesting refreezing with mass dependent fraction as meltwater 921 
is lost to the subglacial system (Sugden et al., 1987). 922 
 923 
Figure 5: Upernavik transect site data with depth of the basal ice layer. A) 10Bemet 924 
concentration, organic carbon concentration, and deuterium excess vs. transect distance. 925 
B) Image of the transect site, black arrow indicates direction of deeper basal ice, white 926 
bags are sampling locations, Bell 212 helicopter for scale. 927 
 928 
Figure 6:  Total time necessary to transport ice-bound sediment to the Greenland Ice 929 
Sheet margin from a given distance in the interior based on model results of Wang et al. 930 
(2002). 931 
 932 
Figure 7:  Derivation of 10Bemet inventories in source soils from the maximum measured 933 
10Bemet concentration at each site. The relationship between maximum 10Bemet 934 
concentration and total 10Bemet inventory in mid latitude and arctic soils is used as a 935 
calibration. Mid latitude data are from Graly et al. (2010); Alaska data are from Bierman 936 
et al. (2014); Sweden data are from Ebert et al. (2012). 937 
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 938 
Table Captions 939 
 940 
Table 1. 10Bemet data for Greenlandic Ice-bound Samples (analyzed 2010) 941 
 942 
Table 2. 10Bemet data for Greenlandic Glaciofluvial and Subglacial Samples (analyzed 943 
2017) 944 
 945 
Table 3.  P values for two tailed t-test of log-normal distributions of various subsets of 946 
the 10Bemet data. P-values <0.05 are bold. 947 
 948 
Table 4. Stable Isotope and C/N Data  949 
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