
DESIGN AND DEVELOPMENT OF AN INTELLIGENT ONLINE PERSONAL

ASSISTANT IN SOCIAL LEARNING MANAGEMENT SYSTEMS

A Thesis

Submitted to the Faculty

of

Purdue University

by

Seyed Mahmood Hosseini Asanjan

In Partial Fulfillment of the

Requirements for the Degree

of

Master of Science in Electrical and Computer Engineering

May 2019

Purdue University

Indianapolis, Indiana

ii

THE PURDUE UNIVERSITY GRADUATE SCHOOL

STATEMENT OF THESIS APPROVAL

Dr. Brian King, Chair

Department of Electrical and Computer Engineering

Dr. Ali Jafari

Department of Computer Information Technology

Dr. Zina Ben Miled

Department of Electrical and Computer Engineering

Approved by:

Dr. Brian King

Head of the Graduate Program

iii

To my parents, Houriyeh Farsad and Mohammad Hosseini.

iv

ACKNOWLEDGMENTS

I would like to thank Dr. Ali Jafari for his support throughout this research

project and providing an incredible opportunity to research and develop the proposed

personal assistant.

I would like to appreciate Dr. Brian King for his guidance during my Master’s

program and being part of my thesis committee.

I would like to express my gratitude to Dr. Zina Ben Miled for sharing her

experience and knowledge with me, supporting me in my research projects, and being

part of my thesis committee.

v

TABLE OF CONTENTS

Page

LIST OF TABLES . vii

LIST OF FIGURES . viii

ABSTRACT . ix

1 INTRODUCTION . 1

2 RELATED WORK . 3

2.1 Recommender Systems . 3

2.1.1 Fundamental Approaches . 3

2.1.2 Existing Recommender Systems 5

2.1.3 Link Recommender Systems . 8

2.2 Intelligent Agents in Education . 9

3 COURSENETWORKING . 11

3.1 Introduction . 11

3.2 ePortfolio . 14

3.3 Institutions . 15

4 DESIGN AND DEVELOPMENT . 19

4.1 Introduction . 19

4.2 Architecture . 20

4.2.1 Reasoning Engine . 21

4.2.2 Priority Engine . 22

4.2.3 Database . 24

4.2.4 APIs . 29

4.3 Integration . 31

4.4 Features . 32

4.4.1 Announcements . 33

vi

Page

4.4.2 Job Recommendation . 33

4.4.3 Friend Recommendation . 35

5 CONCLUSION AND FUTURE WORK . 39

REFERENCES . 42

A BACKGROUND TECHNOLOGIES . 46

A.1 PHP . 46

A.2 Laravel . 46

A.3 Docker . 46

A.3.1 Docker Containers . 47

A.4 Indeed . 47

B SOURCE CODE . 49

vii

LIST OF TABLES

Table Page

4.1 APIs . 30

4.2 Friend Recommendation Vector Features 38

A.1 Indeed API . 48

viii

LIST OF FIGURES

Figure Page

3.1 CourseNetworking, an academic social networking site [43] 12

3.2 ePortfolio in CourseNetworking . 14

3.3 Skills in CourseNetworking ePortfolio . 15

3.4 Compliments/Recommendations in CourseNetworking 15

3.5 Institution Administration (CN Channel) in CourseNetworking 16

4.1 Integration with CourseNetworking . 19

4.2 Architecture . 20

4.3 Features . 21

4.4 Priority Engine Flowchart . 22

4.5 Content Learning . 23

4.6 Content Cycle Before and After User Interaction 24

4.7 Users Collection . 25

4.8 Friend Recommendations Collection . 26

4.9 Institutions Collection . 26

4.10 User Interactions Collection . 27

4.11 Announcements Collection . 28

4.12 CourseNetworking Using an API . 29

4.13 Admin . 31

4.14 Admin - Announcements . 31

4.15 Admin - Create an Announcement . 32

4.16 Announcements . 33

4.17 Job Recommendation . 35

4.18 Friend Recommendation . 36

4.19 User connection network in CourseNetworking 36

ix

ABSTRACT

Hosseini Asanjan, Seyed Mahmood. M.S.E.C.E., Purdue University, May 2019. De-
sign and Development of an Intelligent Online Personal Assistant in Social Learning
Management Systems. Major Professor: Brian King.

Over the past decade, universities had a significant improvement in using online

learning tools. A standard learning management system provides fundamental func-

tionalities to satisfy the basic needs of its users. The new generation of learning

management systems have introduced a novel system that provides social networking

features. An unprecedented number of users use the social aspects of such platforms

to create their profile, collaborate with other users, and find their desired career path.

Nowadays there are many learning systems which provide learning materials, certifi-

cates, and course management systems. This allows us to utilize such information to

help the students and the instructors in their academic life.

The presented research work’s primary goal is to focus on creating an intelligent

personal assistant within the social learning systems. The proposed personal assis-

tant has a human-like persona, learns about the users, and recommends useful and

meaningful materials for them. The designed system offers a set of features for both

institutions and members to achieve their goal within the learning system. It recom-

mends jobs and friends for the users based on their profile. The proposed agent also

prioritizes the messages and shows the most important message to the user.

The developed software supports model-controller-view architecture and provides

a set of RESTful APIs which allows the institutions to integrate the proposed intel-

ligent agent with their learning system.

1

1. INTRODUCTION

Since the beginning of the information age, a variety of information technologies have

influenced human lives and shaped social interactions. Online social platforms have

attained numerous numbers of users who interact with each other every day. The

growth in such environments has attracted business leaders to create more efficient

software and platforms for their users. With the overwhelming increase in data,

finding a reliable and useful material has become challenging for the users. This

has enabled researchers and scientists to find different solutions for upcoming issues

within these systems. Leading digital companies such as Apple, Google, and Amazon

have announced their intelligent personal assistants to help their users in their daily

life. Canalys in an article [1] has mentioned that the smart speakers market has

grown 137% from the third quarter of 2017 to the third quarter of 2018. In another

article, Gartner has predicted that the virtual personal assistants market will reach

$2.1 billion by 2020 [2]. The educational area is not an exception. The development

in online learning systems has allowed users to use online platforms for learning and

engaging in a global education environment. The users throughout the world have

been using online platforms to learn and earn their certificates and degrees. Modern

social platforms have enabled users to create their professional and academic profile

to find jobs and pursue their desired career. They also have helped the researchers

to collaborate in a global setting.

The new generation of learning systems allow users to interact with each other

socially and have access to global learning materials. However, creating a learning en-

vironment that the users feel connected to it, and finding a way to provide guidance

is challenging. CourseNetworking as a social learning management system (LMS)

created a platform that enables the users to not only have access to the LMS func-

tionalities but also to interact and collaborate with other global users. The data in

2

such platform allows us to create an intelligent agent that learns about users and

recommends useful content to them. The primary goal of this project is to design

and develop a prototype of Rumi. Cyberlab at IUPUI with the collaboration of

CourseNetworking is conceptualizing, researching and developing an intelligent agent

called Rumi. Rumi’s name is intentionally picked after a Persian poet who was known

for his wisdom, and it reflects the personality of a wise man. This project focuses on

the basic needs and interests of the learning systems, the institutions, and the users

which are as follows:

• Social environments encourage their users to engage in global learning environ-

ments and collaborate.

• Institutions want to inform their members about important messages.

• Students create their ePortfolio within the social platforms and search for their

desired jobs.

This project proposes an intelligent personal assistant which allows the institutions

to communicate with their members in a personalized way, recommends jobs to the

students, and recommends friends to the members.

3

2. RELATED WORK

2.1 Recommender Systems

Nowadays, recommender systems are being used in numerous industrial and aca-

demic areas. The overload of information and resources are sometimes misleading

the user to find his/her desired material. The recommender systems help the users

to find jobs, friends, or items based on their preferences. Users, who can be classi-

fied under educational resource seekers (like students, teachers) can benefit from the

recommender systems. For instance, a student, who is looking for useful materials to

prepare himself/herself for an upcoming exam, or an instructor, who wants to provide

helpful resources to the students, are precisely objectives of recommender systems.

The recommender systems use prediction methods which utilize the users’ features

like basic information, demographic data, purchase history and ratings, and the items

data like description, price, and sale ranking. There are a variety of challenges such as

sparse data-sets or cold start problem in the development of recommender systems [3].

The fundamental approaches in the design and development of the recommender sys-

tems are described in Section 2.1.1. Some of the existing recommender systems are

mentioned in Section 2.1.2. Section 2.1.3 focuses on the existing methods for link

recommendations and common practices.

2.1.1 Fundamental Approaches

Collaborative Filtering

The name of Collaborative Filtering (CF) is adapted from one of the earliest

recommender systems, Tapestry [4]. The hypothesis of collaborative filtering is if

two users A and B perform similar actions like purchasing the similar items, then

4

they will have similar behavior on other items [5]. The common way to implement

CF is to create two lists of Users and Items and predict the missing values in the

Users − Items matrix [6]. There are variety of challenges for CF recommender

systems. The high number of users and items creates an extremely sparse data-set.

The memory-based CF algorithms that use user data to find similarities between

users or items are highly used in commercial websites [7] [8]. Some of the notable

challenges of the collaborative filtering recommender systems are:

• Data Sparsity: Most of the commercial projects have large databases. This

makes the user-item matrices very sparse and makes the recommendation chal-

lenging. In [9], the authors argue that common data-sets have more than 90

percent sparsity level. Authors in [10] illustrate that Näıve Bayes models per-

form better than other models in highly sparse environments. There are two

common approaches to handle sparse data-sets. First, eliminating zero values

from the data-set [11] [7] [12]. Second, approximating the missing values. Au-

thors in [11] mention that replacing the most frequent value with the missing

values is the most common technique to handle the data sparsity problem.

• Cold Start: Once a new item or a new user is created in the platform, there is

not enough data to display a meaningful recommendation [13]. Some techniques

such as Singular Value Decomposition (SVD) try to reduce the dimension of the

matrix by removing some of the items and the users from the recommendation

process [14]. Such approaches also are challenged by losing essential data about

the discarded users or items, and reduction in recommendation quality [7] [15].

In other approaches such as content-boosted CF [16] and taxonomy-driven rec-

ommender systems [17], hybrid CF methods are proposed that use external

data about the new items or new users. In another approach [18], authors sug-

gest using a probabilistic method to recommend items based on the Gaussian

distribution of the user ratings.

5

Näıve Bayes Model-based Collaborative Filtering

Using the predictive models in the design and development of the intelligent agents

allows the platform to learn from the data, train itself and make intelligent decisions.

Model-based CFs such as Bayesian CF models are researched in several articles [12]

[19]. In a näıve Bayes CF it is assumed that the features are independent of each other,

but they have a direct impact on the class attribute. In this method, the probability

of the class attribute happening is calculated based on the given features [19]. The

author in [12] propose Equation 2.1 to predict a user’s vote on an item. The highest

calculated probability of the user’s vote, given the user’s features, is used as the

predicted result of the recommender system.

predicted = arg max p(classi) Π P (Xo = xo|classi) (2.1)

In [20] the authors compare collaborating filtering and Bayesian classifier models,

and use the same Equation 2.1 to predict the probabilities. The data is transformed

to binary and then to a vector, which makes the prediction model perform faster.

However, this approach may cause loss of data. The same authors used this model

on a data-set that includes only binary data [19].

2.1.2 Existing Recommender Systems

In [7], for each user, Amazons item-to-item collaborative filtering recommendation

system matches purchased and rated items with similar items. By combining similar

items, a recommendation list is created. Similar items are distinguished by extracting

items that users buy together. In this paper, to compute the similarity between two

items, a vector corresponding to an item with M dimensions has been used in which

each dimension is a customer who has bought the item. Considering this, the worst

case time complexity of the algorithm is extremely high O(N2M). Where N is the

6

number of items and M is the number of users. However, as the number of purchased

items for each user is so small, the time complexity becomes closer to O(NM).

The proposed recommender system in [21] extracts data about each book based

on a simple pattern-based information-extraction tool. This tool finds a list of the

sub-strings from each document (fillers) for each specific slot. Slots are the title,

authors, description, published reviews, customer comments, related authors, related

titles, and subject terms. To extract information about a book, at least an abstract

or a review is enough for this method to extract its desired data. To process each

slot, the bag of words technique has been used (a bag for each slot). The Bayesian

text classifier is used as the learning method in the bag of words technique. Näıve

Bayes assumption illustrates that the probability of occurrence a word is dependent

on the document, but it is independent from the word’s location on the document.

Therefore, a multinomial text model can be created which models a document as a

sequence of words. The authors use Laplace to eliminate zero probabilities. To avoid

the arithmetic underflow, the authors use logarithms of the calculated probabilities.

The proposed algorithm in [22], Regression-based Latent Factor Models (RLFM),

can be described as two-stage hierarchical latent factor models which are trying to

find similarities in the given data-set. The primary goal of this algorithm is to predict

users’ ratings on the items. By mapping item features and user features to the specific

ratings, the algorithm learns the relationship between features and the ratings. Then,

the model calculates affinity values based on observed features and latent vectors

corresponded to them. In the first stage of the model, the affinity values is calculated

based on the observed features and latent vectors when they are all known. Then, in

the second stage, a generative model for the latent vectors is determined.

The research in [23] proposes a taxonomy-based recommendation system that uses

available taxonomies to overcome the well-known problems of latent vector models.

First, because of sparsity in purchase history, learning from latent factors is hard.

Second, once new items are added to the catalog, these models won’t be able to learn

correctly about such items (cold start problem). Third, these models struggle in

7

recommending time-related items based on the user’s behavior. The algorithm defines

vector features for each user and item with the dimension of 1 ∗K (K is the model’s

dimensionality). User factor is responsible for capturing long-term interests of the

user. Also, features are created for all of the nodes in the item taxonomy. Therefore,

items under the same sub-category in the item taxonomy have similar features. By

having these, for each user and for each time step the score which is showing the

likelihood that the user purchases an item is calculated. This score is the summation

of the long-term interest and the short-term interest of the user. Being interested in

buying a flash drive after buying a camera is an example of the short-term interest

of a user. Researchers in [24] propose a taxonomy-based recommendation system

that learns and discovers possible taxonomies from raw data. The advantages of this

project that are also mentioned in the paper can be categorized into three major

points. First, in comparison to other approaches, this method is not using human-

created taxonomies. Creating proficient taxonomies can be costly, and most of the

data-sets do not have human-induced taxonomies. Therefore, employing this method

can be useful to extract a proper taxonomy for those data-sets. Second, human-

created taxonomies are stationary and do not change by adding new items to the

catalog. Third, sometimes human errors can cause noises in the taxonomy. Using

automatic taxonomy generator can solve this problem. First, the items is organized

in a tree. Starting from the root, an item is attached to the root with the probability

that is proportional to the item’s frequency. Each item has a latent vector which is

sampled from its parent and has a description based on multinomial distribution based

on its parent’s description. Also, the item includes a popularity measure generated

by a normal distribution.

A Cyberlab graduate assistant fellow, Mirzaeibonehkhater has proposed a dy-

namic recommendation system to personalize educational context with the CourseNet-

working platform [25]. The system’s aim is to deliver a robust recommendation system

that recommends the most relevant posts to the users. The recommended posts are

discovered based on specific course categories that the current user is enrolled in or

8

the topics that he/she has used in his/her posts. The proposed system uses a ground

truth matrix (GTM) and matrix factorization methods to develop the desired plat-

form. The main factors that are considered in the development process are accuracy,

cold start problem, up-to-date results, and self-updating system. The proposed rec-

ommender system uses both user and posts features. The selected features for the

users are the role of the current user (student / instructor), user’s rating on a post,

and user’s reflection. The selected features from the posts are content, creation time,

hashtags, attachments, and a binary value that shows if a given post was chosen as

post of the week. The developed method uses natural language processing (NLP)

methods to analyze the content of the posts. The system performs accurate predic-

tions for user ratings with an accuracy of 98% in the user-post matrix.

2.1.3 Link Recommender Systems

The objective of the recommender systems varies based on the business perspec-

tive. The recommender systems are widely used in recommending movies, books, and

music. The growth in the social networking area created a new domain of research

studies [26]. In [27], the authors argue that link recommendations are one of the

standard features in social networking websites. Social networks can be described

as graphs in which the vertices are the users, and the edges indicate an association

between the users. The goal of link recommender systems is to find the likelihood

of a potential link between two users. The research [28] defines link prediction as a

graph G(V,E) where e = (v, u) ∈ E shows an association between v and u at time

t(e). As G[t, t′] is a subgraph of G, we can formulate the training set and testing set

as G[t0, t
′
0] and G[t1, t

′
1] respectively where t′0 < t1.

Model-based recommendation methods create a model from existing data and

learn the patterns based on the existing links. The goal of the model-based methods

is to predict the linkage likelihoods based on the created model. In a social network,

we can export the data based on the existing features and class attribute. As it is dis-

9

cussed in [29] and [30], topological features such as the shortest distance between two

users and the number of mutual neighbors are commonly used model-based recom-

mender systems. It is also common to use nodal information such as users’ locations,

age, and education in such models. A variety of machine learning (ML) techniques

have been used in link prediction models. In [29] authors use logistic regression on

the data from CiteSeer and Enron data-sets to predict the likelihood of the users in-

teracting with each other. The researchers in [31] employ both logistic regression and

Markov random field methods on DBLP and PubMed data-sets to predict the likeli-

hood of collaborations between the authors. In [32], the authors use DBLP data-set

to predict co-authorship likelihood between the users by using decision tree classifiers.

The authors in [33] use support vector machine (SVM) to predict links within the

Google+ platform.

Some other methods use the proximity between the users as the main factor of their

recommendation systems. In [34], the authors argue that similar users have a higher

likelihood to interact with each other. In [35], the proposed link recommender system

uses keywords to find similarities between the users. Some of the used similarity

calculation functions are as follows:

• Manhattan Distance: The Manhattan distance between two nodes M and P is

calculated by d(M,P) = |Mx − Px|+ |My − Py|

• Cosine Similarity: The cosine similarity of two vectors A and B is calculated

by cos(θ) = A.B
||A||||B||

• Jaccard Index (Coefficient): The Jaccard similarity coefficient of two vectors A

and B is calculated by J(A,B) = A∩B
A∪B

2.2 Intelligent Agents in Education

An intelligent agent program is a software that can collect data and analyze and

process the information to act autonomously [36]. Today, the agents are individ-

10

ualistic applications which can be connected to other online or offline applications

and databases, learn about their environment, and do something purposeful in re-

turn [37]. Such systems help the users to interact with the current software in a

better way. Also, the agent personalizes its actions based on the users’ preferences.

As it is mentioned in [37], an agent software’s can behave like a human secretary

or an assistant, who can prioritize the tasks based on their importance, and make

decisions on behalf of the users. Negroponte in Being Digital defines the best agents

as a ”digital sister-in-law” [38] and explains that the best agents not only have a

comprehensive knowledge in a certain area but also consider the user’s precedencies.

In [39] and [40] the authors categorize an intelligent agent’s characteristics into nine

categories:

• Reactivity: collecting and perceiving data, and acting accordingly.

• Autonomy: acting objectively and independent.

• Collaborative behavior: collaborating with other agents to accomplish a partic-

ular purpose.

• Communication: interacting with humans and connecting with other agents.

• Inferential capability: using previous data and user’s preferences to reach a

better result.

• Temporal continuity: being consistent with previous actions.

• Personality: being human-like and displaying such features as emotion.

• Adaptivity: learning, training and adapting itself.

• Mobility: being able to transfer itself to another platform.

Considering above-mentioned categories, scientists categorize the agents in other

different classification layouts. This allows us to distinguish the importance of the

different features of an agent and improve the design and development process of the

agent software.

11

3. COURSENETWORKING

3.1 Introduction

As it is elaborated in the CourseNetworking’s white paper [41], CourseNetwork-

ing is a social learning platform, that is focused on creating the next generation of

the learning management systems (LMS.) Today’s standard learning management

systems’ main goal is to create a course management platform that allows the in-

stitutions to deliver courses and manage them. However, as [42] illustrates, using

social networking in higher education increases the students’ sense of connection to

the other students. Besides, it shows that the students in higher ed., who use social

networking, seem to have better feelings towards their learning process. To address

the gap between old generation learning management systems and the current needs

in academia, CourseNetworking is built with a commonly accepted approach in social

networking platforms. Jafari in [41] indicates that CourseNeworking’s approach is to

create an environment that is rewarding, engaging and entertaining for the current

generation.

The CourseNetworking (CN) platform is an integration between traditional learn-

ing management systems and social networking environments. As it is shown in

Figure 3.1, the users have access to CN through the cloud. The users can use any

device that is connected to the internet to use CN’s functionalities. CN’s learning

model includes unique features that are explained as follows:

• Social Network: CourseNetworking offers a global social environment for users

with similar fields of study to collaborate. It enables the users to use CN’s tool

to share their desired content and interact with the other users.

12

Fig. 3.1. CourseNetworking, an academic social networking site [43]

• Common LMS Tools: CourseNetworking’s platform also covers most of the

learning management systems’ tools. It includes tasks (modules), assignments,

quizzes, grade-book, files, roster, calendar, and so forth.

• Anar Seeds: CN’s rewarding system enables the learning platform to be more

engaging and enjoyable. The users will collect Anar seeds (pomegranate seeds

in Persian) for a variety of reasons such as: finishing an assignment, posting,

interacting on others’ posts, and so forth.

• Task Tool: Task tool is one of the most sophisticated tools that enables the

instructors to create learning schemes and activities based on their needs. It

allows the instructors to design an outline for their course. For instance, a

teacher can assign an assignment to the students, use other learning tools,

attach a file, and monitor the students’ interaction.

• Lifelong Access: CourseNetworking give the users a lifelong profile. The users

can access their content even if they graduate or move to another institution.

13

CourseNetworking as a student-centered learning system provides a set of tools

for the users to interact with each other. As CN’s focus is to create a global learning

platform in the educational area, its functionalities operate socially. Some of the main

characteristics of CN as a social learning system are as follows:

• ePortfolio: CN allows the users to create their ePortfolio within the CN plat-

form. The users have life-long access to their ePortfolios with a unique ID.

Section 3.2 discusses the ePortfolios comprehensively.

• Posts: The users in CN use posts feature to write and share their desired content

with the other users. The posts can contain title, content, links, attachments,

images, YouTube videos, and SCORM packages. The users can control the

visibility settings of the posts and the related keywords. The posts can also be

attached to the users’ profiles.

• Polls: This feature can be used to create a question in CN. The poll types can

be multiple choice, short answer, true or false, or scale 1-5. The users can also

define the correct answer for the given poll.

• Events: The users can create an event in CN to set up a meeting or a group

activity. The users can use other content like images and attachments in the

events.

• Social Interactions: The users can interact with the other users within the CN

platform. They can like a post, leave a comment on a post, follow other users,

or chat with them.

• Hashtags: The hashtags are associated with keywords with social activities.

The users can use both predefined hashtags within the courses or networks that

they are enrolled in, or define their hashtags. This allows the users to create

and follow a certain topic throughout the CN platform.

14

3.2 ePortfolio

CourseNetworking like most of the social networking websites such as Facebook,

Twitter, and LinkedIn allows the users to create their profile. The user profiles in the

CN platform are specifically designed for educational purposes, where the users can

share their resume, showcases, files, experience, and skills.

Fig. 3.2. ePortfolio in CourseNetworking

Figure 3.2 shows an example of an ePortfolio in CN. The users can add the logos

of the institutions that they are involved in. The institutions can verify the users,

and the verified institution logs will have a green check-mark on their logo.

The ePortfolio shows the number of Anar seeds that the user has achieved in CN.

The side-bar menu has different functionalities which are as follows:

• Menu: The menu button allows visitors to navigate through the profile.

• Job Search: This enables the users to search for jobs in their field of study and

location in the Indeed platform.

• Versions: The users can create different versions of their ePortfolio. This allows

the users to emphasize their strength in certain areas based on the jobs that

they are looking for.

• Share: The users can share their ePortfolio on other social media, with an email,

or with a unique link.

15

• Visitor Tracking: This feature tracks interactions of the visitors. The users can

track which aspect the visitors viewed in their profiles. It stores the visitors’

internet protocol (IP) and their location.

Fig. 3.3. Skills in CourseNetworking ePortfolio

As Figure 3.3 shows, the users can add their skills to their ePortfolio. This unique

feature allows the users to pick from the predefined skills in the CN system or create

their own. The users can see the other users who use the same skills, which enables

them to collaborate globally with other users.

Fig. 3.4. Compliments/Recommendations in CourseNetworking

Figure 3.4 shows an example for compliments that the users can write on other

users’ ePortfolio. The current user’s followers can also endorse compliments.

3.3 Institutions

Institutions that purchase the CN platform license and use it as their main learning

management system have access to CN channel. CN channel is the institution admin

panel that offers several tools and features that allow the institutions to manage their

learning environment.

16

Fig. 3.5. Institution Administration (CN Channel) in CourseNetworking

The CN channel allows organizations to use all of CourseNetworking’s function-

alitie and offers the following features:

• Channel Information: This section provides basic information about the insti-

tution. It includes start and end date of the license, the number of the total,

active, logged in users, the number of the active courses, and total campus

billboard posts.

• Personal Assistant: The institutions can control the personal assistant within

CN. The institutions can also use the announcement engine to interact with

their users. This is discussed in Chapter 4.

• User Management: This tool enables organizations to create, edit, and delete

users. The users can be imported from other learning platforms and exported

as a standard CSV file. The institutions can create email templates and send

17

emails. This feature offers additional labels to help the institutions to orga-

nize members such as categorizing the members based on the schools and the

departments.

• Course Management: The institutions can use this tool to create, import and

export their courses. The users can be assigned to different courses.

• Network Management: It enables the organizations to create, import and export

CN networks.

• Settings and Controls: This tool offers a variety of controls for the institutions

such as controlling the course access, course invitation, viewing sharing public

posts, enabling the users to change their names, calendar, and LTI settings.

• Branding and Customization: CN allows the organizations to customize the

look and feel of their learning system. The institutions can edit the logo, header

name, fonts, and colors.

• Badges, Certificates, and Transcripts: This tool offers the institutions to create

their badges. The badges can be used within the courses in an institution. The

certificates can be used to on user ePortfolios. The users who accomplish a task

or finish a course can obtain a certificate. The organizations can upload and

export the transcripts for their members.

• CN ePortfolio: This tool can be used to change the certified institution logo

that appears on the members’ profile. The institutions can create predefined

skill tags and showcases. The ePortfolio sections can be managed by this tool.

• Manage Question Banks: This tool can be used to create and manage ques-

tion banks. The instructors can use the questions banks to create quizzed in

their courses. The admins can import IMS global’s standard question and test

interoperability (QTI) packages [44].

18

• Reports and Analytics: This feature offers a variety of reporting systems such

as institution reports, ePortfolio reports for skills, badges, showcases, and rec-

ommendations, course reports, students’ information and Anar reports, and

instructor reports. The institutions can view previous reports and create new

reports.

• Integration: CN allows the institutions to integrate other platforms to CN by

using RESTful APIs. The consumer key and secret keys are assigned to the or-

ganizations. CN is integrated with lightweight directory access protocol (LDAP)

and Google, and the institutions can use this feature to set up their authen-

tication service by using the single sign-on method. Other external tools can

be added by using this tool. CN can also be used as an external learning tools

interoperability (LTI) package in other learning systems. A former Cyberlab

graduate assistant, M. AboualizadehBehbahani, has created CN post, which

offers some of CN’s features as CN’s LTI external package [45]. Any learning

system that supports LTI 1.0 standard can add CN post to their environment.

CN post connects the users who use the traditional learning management sys-

tems to a social learning environment. The users can use CN’s global courses

within their host LMS and connect to other users throughout the world.

19

4. DESIGN AND DEVELOPMENT

4.1 Introduction

The intention behind this project is to research, design and develop an online

intelligent agent that helps the students and instructor in their academic life. As it is

discussed in the previous chapters, the focus of the intelligent agents in the learning

system is to create an environment that is beneficial for the users. The proposed

personal assistant has a character that the users can feel connected to. As it is illus-

trated in Section 2.2, there are 9 important factors that an intelligent agent can have.

The personal assistant in this project is created to be reactive. It can extract data,

learn from data and user interactions, and perform autonomously. The agent collab-

orates with other learning systems like CourseNetworking. It consistently interacts

with users over time. Machine learning techniques allow the personal assistant to be

adaptive and learn from user interactions. Other learning systems can integrate this

project with their system and use it within their platform.

Fig. 4.1. Integration with CourseNetworking

20

This project as an independent software can be integrated with any learning sys-

tem that provides adequate data for machine learning techniques. As Figure 4.1

shows, this agent can be accessed through its website. This enables the users to

use the agent’s functionalities through their learning management system like CN or

independently. The proposed software has its database and runs on Amazon web

services (AWS) cloud platform.

4.2 Architecture

This project like other modern web platforms has a database, a back-end, and a

front-end. The software design follows model-controller-view (MVC) architecture.

Fig. 4.2. Architecture

The users can access the proposed system through its website or within the other

platforms like CourseNetworking. Other LTI consumers can use the personal assis-

tant through their connection with the host platform. The recommendations and

announcements are computed and handled in Reasoning engine, which is fully de-

scribed in Section 4.2.1. Priority engine is the decision maker component of this

project, where it prioritizes the features and decides what message should the user

21

see first. Section 4.2.2 comprehensively explains the priority engine. Section 4.2.3

demonstrate the architecture of the database. Section 4.2.4 explains how the sys-

tem’s APIs work. In Section 4.3, the integration process of this personal assistant

with a learning management system is explained. The proposed prototype’s back-

end is written in PHP 7.1 and uses Laravel framework to support MVC architecture.

Docker containers are used for development and testing purposes, which allow the

researchers and the developers to see the project from the same point of view and

eliminates the potential cross-platform errors.

4.2.1 Reasoning Engine

Reasoning engine is responsible for collecting data, analyzing and returning con-

tent to the next layer. Each of the features compute contents for the current user.

The features are described in 4.4. Reasoning engine includes a set of controllers which

are responsible for computing the required response for each API request.

Fig. 4.3. Features

22

4.2.2 Priority Engine

This layer controls the importance of each content. When a user logs into the

learning platform, the priority engine is responsible for deciding what content has the

highest priority. The system creates a vector for each user that contains the priority

of all the features or the given user. The default values are all the same, and the

announcements that come from the institutions have the highest priority. This allows

the institutions to make sure that their users see the announcements.

Fig. 4.4. Priority Engine Flowchart

As Figure 4.4 shows, once an API is requested from the learning management

system, the agent returns the announcements if there is any. If not, and if it is past

12 hours from the last time that the personal assistant has communicated with the

user, it will return a useful content based on the priorities. A 12-hour time span is

the default value between two different messages. This allows the personal assistant

to be connected to the users. Institutions can change the default value. Based on the

content priority vector, this project creates a cycle for each user. Within the given

cycle, the contents will be sorted based on their priority and return each of them at

each API call. There are three specific fields in the users collection which store the

data for Priority engine:

• Priorities: The priorities of all of the features for each user.

• Priority cycle: Sorted list of the features based on their priorities.

23

• Priority next index: Index of the next feature in the priority cycle list.

For instance, for a user the above-mentioned fields can look like:

” p r i o r i t i e s ” : {

” fr iend recommendat ion ” : 0 . 85 ,

” job recommendation” : 0 . 8

} ,

” p r i o r i t y c y c l e ” : [

” f r iend recommendat ion ” ,

” job recommendation”

] ,

” p r i o r i t y n e x t i n d e x ” : NumberInt (1)

Listing 4.1 An example of Priority engine fields in the database

Where the user has more interest in friend recommendations than job recommenda-

tions. The user interactions will have impact on the priority of each feature with a

0.1 learning rate.

Fig. 4.5. Content Learning

Figure 4.5 shows the flowchart of the learning process. Once a user interacts with

any of the recommendations, the priority of it increases. For instance, if the user in

4.1 viewed a recommended job, the priority of the job recommendation feature will

become 0.88 in the next cycle.

24

(a) A 12 Hour Content Cycle

(b) Updated Content Cycle Based on User Inter-
action on Job Recommendation

Fig. 4.6. Content Cycle Before and After User Interaction

At the end of each cycle, the features are sorted based on their priorities. The

learned values based on user preferences show their impact in this stage. The user

interaction increases the priority of a job recommendation, and it becomes the most

important feature in the next cycle.

4.2.3 Database

The proposed agent uses MongoDB as its database management system (DBMS)

for several reasons. First, to keep the personal assistant’s database consistent with

CourseNetworking. Second, NoSQL databases perform better in social networking

websites [46]. Third, MongoDB stores data in JSON documents format that makes

RESTful API support easier. The database contains several collections:

Users The schema includes:

• Cn id: Unique user identifier in the CN platform.

• Institution id: ID of the institution that the user belongs to.

• Role: Role of the user.

25

• Cn number: Unique string assigned to the user in the CN platform.

• View count: Number of the times that the user has viewed a message from the

personal assistant.

• Job recommendation config: Configuration of the job recommendation feature

for this user.

• Friend recommendation config: Configuration of the friend recommendation

feature for this user.

• Priorities: Priorities of the features.

• Last view: Timestamp of the last time that the user has seen a message from

the agent.

• Priority cycle: Sorted array of the features.

• Priority next index: Index of the next feature in the priority cycle array.

• Deleted friend recommendations: Array of IDs of the deleted friend recommen-

dations.

• Visited announcements: Array of IDs of the visited announcements.

Fig. 4.7. Users Collection

26

Friend Recommendations Recommended friends’ data for each user is stored in

this collection.

• Cn id: Unique user identifier in the CN platform.

• Recommended cn id: Recommended user’s ID in CN.

• Score: Score of the recommendation.

• Causes: Array of the recommendation’s reasons.

• User user skills: Array of the matching skills between the current user and the

recommended user.

Fig. 4.8. Friend Recommendations Collection

Institutions The agent uses this collection to store the institutions’ settings.

• Institution id: Unique institution identifier in the CN platform.

• Settings: Document of the features with a binary value for each that shows if

the feature is enabled.

Fig. 4.9. Institutions Collection

27

User Interactions This is the collection of user interactions that contains data for

job views, feedback, and interactions with friend recommendations.

• Cn id: Unique user identifier in the CN platform.

• Interaction type: Type of the interaction. This field can contain one of follow user

or delete user values, and defines another field based on its value.

• Followed cn id*: If the value of interaction type is follow user, this field will

contain CN ID of the followed user.

• Deleted cn id*: If the value of interaction type is delete user, this field will

contain CN ID of the deleted friend recommendation.

Fig. 4.10. User Interactions Collection

Announcements The institution-generated announcements are stored in this col-

lection.

• Institution id: Unique institution identifier in the CN platform.

• Institution name: Name of the institution.

• Logo url: URL of the institution’s logo.

• Title: Title of the announcement.

• Body: Main text of the announcement.

28

• Start time: Timestamp that stores start time of the announcement. The users

who log in before this time will not see this announcement.

• End time: Timestamp that stores end time of the announcement. The users

who log in after this time will not see this announcement. If the announcement

does not expire, this field is left empty.

• Ctime: Timestamp of the creation time of the announcement.

• Audience: Array of the audience of the announcement. This field can contain

one or more values of admin, instructor, and student.

• Priority: The importance of the announcement in the scale of (1 Low priority -

10 High priority).

Fig. 4.11. Announcements Collection

Skills This collection is created to store the user IDs which use the same skills. A

document is created for each skill, and stores the user IDs for the given skill. This

enables the agent to compute skill matching with a higher performance.

29

4.2.4 APIs

The agent supports RESTful API architecture to perform high-quality data trans-

mission. The online learning systems can use the APIs to have access to the agent’s

data and computational components. To use the APIs, the user must have a token

from the host learning system (CourseNetworking).

Fig. 4.12. CourseNetworking Using an API

In this project, every request API request goes through a middle-ware. This en-

ables the system to filter the requests before computing the features. The CNHandshake

middle-ware is defined in this project that allows the agent to validate if the requests

are coming from an authenticated user. As Figure 4.12 shows, first, the user authen-

ticates with CN. Then, CN sends an API request to the personal assistant to get

the most important content. The request has a unique 32 character token set in its

header. In the CNHandshake middle-ware, the agent validates the given token with

CN. If the given token is valid for the given user, the API request will be routed

through the software. Once the API request is routed to the specified controller, the

agent creates and returns a standard JSON response to CN. The content view within

the CN platform will be rendered after CN receives the API response. Following

Algorithm 1 shows the validation process of an API request before it being handled.

30

Algorithm 1: CNHandshake Middle-ware

Receive API request from CN :
if token is not set then

Response Error.

Request Validate token with CN :
if token is not valid then

Response Invalid token.

Handle set a session for the user

Following Table 4.1 shows the APIs and their available methods. All of the APIs

go through the middle-ware before entering the software. As in every API request

token of the current user is set, the agent can access the user data based on the given

token.

Table 4.1.
APIs

API Description Methods
getCNOne The most important message GET

announcement Institution announcements GET
recommendFriends Recommended friends GET
recommendFriend Recall recommendFriends (limit 1) GET
recommendJobs Returns the recommended jobs GET
recommendJob Recall recommendJobs (limit 1) GET

deleteFriendRecommendation Delete friend recommendation POST
userInteration Store user interaction POST

j Job view GET
admin/announcement View/create/edit announcements GET,POST

admin/settings Edit settings POST

The deleteFriendRecommendation API requires a deleted cn id parameter, which

must include a valid CN ID for a user. The userInteraction API requires a interaction−

type parameter which identifies type of the user interaction. This API can contain

more fields based on the interaction type.

31

4.3 Integration

As it is mentioned in Table 4.1, the institution can use the personal assistant’s

APIs to integrate it with their learning system. This project provides a set of func-

tionalities that the channels (institutions) can control. The institution admins can

enable/disable any of the features in their system. The institutions can manage the

announcements within their system. It allows the institution admins to view, delete,

or edit previously created announcements, or create a new announcement.

Fig. 4.13. Admin

Fig. 4.14. Admin - Announcements

32

Fig. 4.15. Admin - Create an Announcement

As Figure 4.15 shows, channel admins can create the announcements through the

admin panel. The channel admins can control title, announcement text, the audience

of the announcement (Channel Admins/Instructors/Students), the priority of the

announcement(1 Low priority/10 High priority), start date, and end date (optional)

in the announcement creation panel. If the end date of an announcement is not

defined, the audience of the announcement will see the message in their first visit

after the start date.

4.4 Features

The Figure 4.3 shows that the proposed agent provides several features. The

purpose of each of the features is to provide a meaningful and helpful message for the

user. Each feature can use the data which is available from the integrated learning

platform’s system and construct a robust model that helps the users in their academic

journey. As it is shown in Figure 4.3, the personal assistant uses the main banner

location in the CN platform to communicate with the users.

33

4.4.1 Announcements

Announcements are the core elements of the relationship between institutions

and their students. Institutions can use the announcements feature to deliver their

important messages to the students and the instructors. This allows the institutions

to keep their users notified with the latest notifications and keep track of the users

that see the announcements.

Fig. 4.16. Announcements

4.4.2 Job Recommendation

As it is mentioned in Chapter 3, the users can create their portfolio within the

CourseNetworking platform. Skills, major and location of the users are the primary

data that the agent uses for job recommendations. This is done by integrating the

proposed system with Indeed through its application programming interface (API).

The API requests and responses are handled with the standard JSON format. The

major interests and the location of the user are selected and sent as the parameters

of an API request to Indeed. The default number of job recommendations in CN is

3, but it can be changed in the configurations.

34

Algorithm 2: Job Recommendation

if job settings is not set then
if field of study is set then

KEYWORDS = keywords from field of study.
else

KEYWORDS = 5 most used skills of the user.
LOCATION = current city and state.
Store KEYWORDS and LOCATION as job settings.

Request jobs from Indeed :
if if returned jobs then

Response jobs from Indeed

{

” cn id ” : ”4 f67936a91d408bf2a000002 ” ,

” recommendations” : {

”77 c95f2a908103b3 ” : {

”name” : ”Communication Inte rn ” ,

” d e s c r i p t i o n ” : ”The Communication Inte rn . . . ” ,

”company name” : ” Indiana Un ive r s i ty ” ,

” u r l ” : ”www. indeed . com/viewjob ? jk=77c95f2a908103b3 ” ,

” source ” : ” Indiana Un ive r s i ty ” ,

” address ” : ” Ind i anapo l i s , IN” ,

” date pos ted ” : ”Thu , 28 Mar 2019 19 : 24 : 28 GMT” ,

” formatted data ” : ”21 days ago”

}

} ,

” content type ” : ” job recommendations ” ,

” f a c e t ype ” : ” neu t ra l ”

}

Listing 4.2 An example of a job recommendation API response

35

Fig. 4.17. Job Recommendation

4.4.3 Friend Recommendation

Friend recommendation is currently the most sophisticated feature of the proposed

system. The agent recommends potential connections within the learning system and

enables the users to connect to the other users. The connections can be in each

user’s interest from different aspects. For instance, for a user who wants to connect

with his/her classmates, the agent will learn from their actions and recommend more

people with the same characteristics. For the users who would be interested in global

collaboration with the users who share similar skills, recommended friends will be

related to the user’s skill-set. The default number of recommended friends is 3.

Link recommendation is one of the most important features of modern social

media websites [27]. CourseNetworking as a social learning system encourages its

users to collaborate in global classrooms. This creates a unique space for the agent to

recommend friends to the users and help them grow their network. The connections

network in CN is a directed graph. The users can follow other users, be followed, or

both.

Figure 4.19 shows the connections in the CN platform. The solid black links show

the existing connections and the gray dashed links show the potential connections.

This feature’s goal is to find the best potential connections that a user might be

interested in considering it. To develop a friend recommender system, this project

36

Fig. 4.18. Friend Recommendation

Fig. 4.19. User connection network in CourseNetworking

uses a hybrid method that uses both nodal proximity or structural proximity features.

This is done by creating a vector of for each user, which includes the probabilities of

the user following another user, given the corresponding feature. For instance, if an

arbitrary user A has written a recommendation within CourseNetworking platform

for another arbitrary user B, the vector for user A will contain a value for that feature.

As following Equation 4.1 shows, the value of each attribute is the direct cause of

the link likelihood of a link based on having that attribute. Where vi is the value

of feature i in each vector. It contains normalized value of the probability of a user

following another user (h) with given the effect (ei) as a feature.

vi = P (h|ei) (4.1)

37

The features are assumed to be independent from each other. The probability

values are exported from CN, and the features are picked based on their value. The

features that have smaller normalized values than 0.01 are assumed to be insignificant

based on their low impact on the likelihood of a linkage. The selected features of each

vector:

• Wrote recommendation: If the current user A wrote a compliment / recommen-

dation for user B.

• Got recommended: If user A got a recommendation from user B.

• Visited profile: If user A has visited user B’s profile.

• Got visited: If user A’s profile got visited by user B.

• Colleague: If user A and user B were colleagues in a course or a network.

• Follow back: If user B follows user A, but user A doesn’t follow user B back.

• Followings of follower: If user B is following one or more of user A’s followings.

• Followings of following: If user B is followed by one or more of user A’s follow-

ings.

• Skill match: Number if matching skills between user A and user B.

Following Algorithm 3 is used to extract probabilities of the features, and Table

4.2 shows the normalized value of each exported feature. Equation 4.2 is used to

calculate the score of user A following user B. Where SAB is sum of the values of

existing features F between them user A and user B.

SAB =
∑
i∈F

fi (4.2)

38

Algorithm 3: Probability Values Extraction for Friend Recommendation

Extract existing links based on the features:
visited following = links where user A has visited user B
visitor following = links where user B has visited user A
recommended following = links where user A has recommended user B
got recommended following = links where user B has recommended
user A

colleague following = links where user A and user B were colleagues
skills following = links where user A and user B have common skills
follow back = followers of A where A does not follow them
/* if B follows A but A does not follows B, then B is in this

array */

following followers = followers of users that current user follows
/* if A follows B and C follows B, then C is in this array */

following following = followings of users that current user follows
/* if A follows B and B follows C, then C is in this array */

Calculate probabilities of the features:
prob skill match = skills following / total links
prob visited profile = visited following / total links
prob got visited = visitor following / total links
prob colleague = colleague following / total links
prob wrote recommendation = recommended following / total links
prob got recommended = got recommended following / total links
prob follow back = follow back / total links
prob following following = following following / total links
prob following follower = following followers / total links

Table 4.2.
Friend Recommendation Vector Features

Feature Value
Skill match 0.05

Visited profile 0.06
Got visited 0.01
Colleague 0.13

Wrote recommendation 0.26
Got recommended 0.26

Follow back 0.06
Followings of following 0.06
Followings of follower 0.06

Total 1

39

5. CONCLUSION AND FUTURE WORK

This research project proposes design and development of an intelligent online per-

sonal assistant for a social learning system. The proposed personal assistant is inte-

grated with an existing learning management system, CourseNetworking. It allows

the institutions to communicate with their members using a human-like persona.

This agent is integrated with the most used job searching website, Indeed, to help

the users to find their desired jobs. A hybrid link recommender system is developed

that helps the members to find other friends and connect with other users within the

platform. This project as an intelligent software platform provides the infrastructure

for other researchers to contribute to the current system. The users’ needs in social

learning systems are constantly changing, and the available data can be used to make

the current system better. Following features can be added to the proposed agent’s

functionalities:

• Post Recommendation [25]: The proposed post recommender system can be

used in this project. The standard way that the proposed personal assistant

interacts with each member creates the opportunity for the other users’ posts

to be seen by other users.

• Resource Recommendation: The growth of open and free resources provides

accessible data for the researchers to apply natural language processing (NLP)

techniques on their content and recommend them to the users. This will enable

the members to find materials in their field of study.

• Certificate, Degree, and Credential Recommendation: The students who are

looking for a career path can benefit from this feature. This agent can recom-

mend useful information about the existing certificates and degrees based on

the users’ preferences.

40

• Skill Recommendation: By learning the patterns about the skill-set that certain

careers or job descriptions require, the personal assistant can recommend useful

skills which a user can consider. For instance, for computer science students

who are looking for software engineering jobs and do not have some of the most

important programming languages like Java in their skill-set, this agent can

recommend the missing skills.

• Entertainment: Next generation of the learning systems can provide entertain-

ment tools. It will enable the users to feel more connected to their personal

assistant and will help them enjoy their learning experience.

Figure 4.17 shows that the proposed personal assistant will show job title, location

and the description of the recommended jobs to the user, and there are several ways

that the user can interact with the recommended jobs:

• View: View the recommended job.

• Feedback: Positive or negative feedback for the recommended jobs can be spec-

ified for the following characteristics of the job.

– Job title

– Company

– Description

– Location

– Salary

In the future, user interactions help the system to learn about the users’ prefer-

ences. As the search query for each recommendation are stored in the database, user

interactions can have an impact in the future queries. This helps the users to find their

desired jobs based on their interest and proffered location. Figure 4.18 shows that

there are 4 options for the user to interact with the given friend recommendations:

• Follow: Current user follows the recommended user.

• Delete: Deletes the recommended user from recommendation database. The

deleted users are avoided in the recommendation process.

41

• Thumbs Up: A good feedback about the recommendation.

• Thumbs Down: A bad feedback about the recommendation.

In the future, a näıve Bayesian network model can be created for each user that

learns based on the users’ interactions with each friend recommendation. It can allow

the personal assistant to make recommendations that are biased towards the users’

preferences.

In addition, to include the time parameter in the learning process, a modification

can be made in the algorithm. It will allow the users’ latest interactions to have more

impact on the learning process. In [47] authors illustrate that media causes changes

in social networks. Social mood of a user can change over time, and adding a time

factor in the learning procedure can help the recommendations to adapt the users’

behavior.

REFERENCES

42

REFERENCES

[1] “Canalys newsroom,” https://www.canalys.com/newsroom/amazon-reclaims-
top-spot-in-smart-speaker-market-in-q3-2018, [online] Last Date Accessed: 2019-
02-20.

[2] “Gartner,” https://www.gartner.com/en/newsroom/press-releases/2016-10-03-
gartner-says-worldwide-spending-on-vpa-enabled-wireless-speakers-will-top-2-
billion-by-2020, [online] Last Date Accessed: 2019-02-20.

[3] C. C. Aggarwal et al., Recommender systems. Springer, 2016.

[4] D. Goldberg, D. Nichols, B. M. Oki, and D. Terry, “Using collaborative filtering
to weave an information tapestry,” Communications of the ACM, vol. 35, no. 12,
pp. 61–71, 1992.

[5] K. Goldberg, T. Roeder, D. Gupta, and C. Perkins, “Eigentaste: A constant
time collaborative filtering algorithm,” information retrieval, vol. 4, no. 2, pp.
133–151, 2001.

[6] B. N. Miller, J. A. Konstan, and J. Riedl, “Pocketlens: Toward a personal rec-
ommender system,” ACM Transactions on Information Systems (TOIS), vol. 22,
no. 3, pp. 437–476, 2004.

[7] G. Linden, B. Smith, and J. York, “Amazon. com recommendations: Item-to-
item collaborative filtering,” IEEE Internet computing, no. 1, pp. 76–80, 2003.

[8] T. Hofmann, “Latent semantic models for collaborative filtering,” ACM Trans-
actions on Information Systems (TOIS), vol. 22, no. 1, pp. 89–115, 2004.

[9] G. Adomavicius and J. Zhang, “Stability of collaborative filtering recommenda-
tion algorithms,” citeseer, doi, vol. 10, no. 1.221, p. 7584, 2012.

[10] X. Li, C. X. Ling, and H. Wang, “The convergence behavior of naive bayes on
large sparse datasets,” ACM Transactions on Knowledge Discovery from Data
(TKDD), vol. 11, no. 1, p. 10, 2016.

[11] A. Sharma, N. Mehta, and I. Sharma, “Reasoning with missing values in multi
attribute datasets,” International Journal of Advanced Research in Computer
Science and Software Engineering, vol. 3, no. 5, 2013.

[12] J. S. Breese, D. Heckerman, and C. Kadie, “Empirical analysis of predictive
algorithms for collaborative filtering,” in Proceedings of the Fourteenth conference
on Uncertainty in artificial intelligence. Morgan Kaufmann Publishers Inc.,
1998, pp. 43–52.

43

[13] G. Adomavicius and A. Tuzhilin, “Toward the next generation of recommender
systems: A survey of the state-of-the-art and possible extensions,” IEEE Trans-
actions on Knowledge & Data Engineering, no. 6, pp. 734–749, 2005.

[14] D. Billsus and M. J. Pazzani, “Learning collaborative information filters.” in
Icml, vol. 98, 1998, pp. 46–54.

[15] B. Sarwar, G. Karypis, J. Konstan, J. Riedl et al., “Analysis of recommendation
algorithms for e-commerce,” in EC, 2000, pp. 158–167.

[16] P. Melville, R. J. Mooney, and R. Nagarajan, “Content-boosted collaborative
filtering for improved recommendations,” Aaai/iaai, vol. 23, pp. 187–192, 2002.

[17] C.-N. Ziegler, G. Lausen, and L. Schmidt-Thieme, “Taxonomy-driven computa-
tion of product recommendations,” in Proceedings of the thirteenth ACM inter-
national conference on Information and knowledge management. ACM, 2004,
pp. 406–415.

[18] B. M. Kim and Q. Li, “Probabilistic model estimation for collaborative filtering
based on items attributes,” in Proceedings of the 2004 IEEE/WIC/ACM inter-
national conference on web intelligence. IEEE Computer Society, 2004, pp.
185–191.

[19] K. Miyahara and M. J. Pazzani, “Improvement of collaborative filtering with
the simple bayesian classifier,” Information Processing Society of Japan, vol. 43,
no. 11, 2002.

[20] K. Miyahara and M. Pazzani, “Collaborative filtering with the simple bayesian
classifier,” in Pacific Rim International conference on artificial intelligence.
Springer, 2000, pp. 679–689.

[21] R. J. Mooney and L. Roy, “Content-based book recommending using learning
for text categorization,” in Proceedings of the fifth ACM conference on Digital
libraries. ACM, 2000, pp. 195–204.

[22] D. Agarwal and B.-C. Chen, “Regression-based latent factor models,” in Proceed-
ings of the 15th ACM SIGKDD international conference on Knowledge discovery
and data mining. ACM, 2009, pp. 19–28.

[23] B. Kanagal, A. Ahmed, S. Pandey, V. Josifovski, J. Yuan, and L. Garcia-Pueyo,
“Supercharging recommender systems using taxonomies for learning user pur-
chase behavior,” Proceedings of the VLDB Endowment, vol. 5, no. 10, pp. 956–
967, 2012.

[24] Y. Zhang, A. Ahmed, V. Josifovski, and A. Smola, “Taxonomy discovery for per-
sonalized recommendation,” in Proceedings of the 7th ACM international con-
ference on Web search and data mining. ACM, 2014, pp. 243–252.

[25] M. Mirzaeibonehkhater, “Developing a dynamic recommendation system for per-
sonalizing educational content within an e-learning network.” Master’s Thesis,
Purdue University, Indiana University-Purdue University Indianapolis, 2018.

[26] X. Zhou, Y. Xu, Y. Li, A. Josang, and C. Cox, “The state-of-the-art in personal-
ized recommender systems for social networking,” Artificial Intelligence Review,
vol. 37, no. 2, pp. 119–132, 2012.

44

[27] T. H. Davenport and D. Patil, “Data scientist,” Harvard business review, vol. 90,
no. 5, pp. 70–76, 2012.

[28] D. Liben-Nowell and J. Kleinberg, “The link-prediction problem for social net-
works,” Journal of the American society for information science and technology,
vol. 58, no. 7, pp. 1019–1031, 2007.

[29] J. OMadadhain, D. Fisher, P. Smyth, S. White, and Y.-B. Boey, “Analysis and
visualization of network data using jung,” Journal of Statistical Software, vol. 10,
no. 2, pp. 1–35, 2005.

[30] R. N. Lichtenwalter, J. T. Lussier, and N. V. Chawla, “New perspectives and
methods in link prediction,” in Proceedings of the 16th ACM SIGKDD interna-
tional conference on Knowledge discovery and data mining. ACM, 2010, pp.
243–252.

[31] C. Wang, V. Satuluri, and S. Parthasarathy, “Local probabilistic models for link
prediction,” in Seventh IEEE international conference on data mining (ICDM
2007). IEEE, 2007, pp. 322–331.

[32] N. Benchettara, R. Kanawati, and C. Rouveirol, “Supervised machine learning
applied to link prediction in bipartite social networks,” in 2010 International
Conference on Advances in Social Networks Analysis and Mining. IEEE, 2010,
pp. 326–330.

[33] N. Z. Gong, A. Talwalkar, L. Mackey, L. Huang, E. C. R. Shin, E. Stefanov,
D. Song et al., “Jointly predicting links and inferring attributes using a social-
attribute network (san),” arXiv preprint arXiv:1112.3265, 2011.

[34] M. McPherson, L. Smith-Lovin, and J. M. Cook, “Birds of a feather: Homophily
in social networks,” Annual review of sociology, vol. 27, no. 1, pp. 415–444, 2001.

[35] D. Shen, J.-T. Sun, Q. Yang, and Z. Chen, “Latent friend mining from blog
data,” in Sixth International Conference on Data Mining (ICDM’06). IEEE,
2006, pp. 552–561.

[36] N. Jennings, N. R. Jennings, and M. J. Wooldridge, Agent technology: founda-
tions, applications, and markets. Springer Science & Business Media, 1998.

[37] A. Jafari, “Conceptualizing intelligent agents for teaching and learning,” Edu-
cause Quarterly, vol. 25, no. 3, pp. 28–34, 2002.

[38] N. Negroponte, Being digital. Vintage, 1996.

[39] O. Etzioni and D. S. Weld, “Intelligent agents on the internet: Fact, fiction, and
forecast,” IEEE expert, vol. 10, no. 4, pp. 44–49, 1995.

[40] S. Franklin and A. Graesser, “Is it an agent, or just a program?: A taxonomy
for autonomous agents,” in International Workshop on Agent Theories, Archi-
tectures, and Languages. Springer, 1996, pp. 21–35.

[41] “Coursenetworking, white paper,” https://www.thecn.com/aboutus, 2012, [on-
line] Last Date Accessed: 2019-02-20.

45

[42] H.-T. Hung and S. C.-Y. Yuen, “Educational use of social networking technology
in higher education,” Teaching in Higher Education, vol. 15, no. 6, pp. 703–714,
2010.

[43] “Coursenetworking,” https://www.thecn.com/, [online] Last Date Accessed:
2019-02-20.

[44] “Ims global learning consortium — better learning from better learning technol-
ogy,” http://www.imsglobal.org/, [online] Last Date Accessed: 2019-02-20.

[45] M. AboualizadehBehbahani, “Proposing a new system architecture for next
generation learning environment.” Master’s Thesis, Purdue University, Indiana
University-Purdue University Indianapolis, 2016.

[46] S. Kanoje, V. Powar, and D. Mukhopadhyay, “Using mongodb for social network-
ing website deciphering the pros and cons,” in 2015 International Conference on
Innovations in Information, Embedded and Communication Systems (ICIIECS).
IEEE, 2015, pp. 1–3.

[47] C. Haythornthwaite, “Social networks and internet connectivity effects,” Infor-
mation, Community & Society, vol. 8, no. 2, pp. 125–147, 2005.

[48] “W3techs - web technology surveys,” https://w3techs.com/technologies/details/
pl-php/all/all, [online] Last Date Accessed: 2019-02-20.

[49] “Google trends,” https://trends.google.com/trends/explore?q=laravel,Symfony,
CodeIgniter,CakePHP,Zend, [online] Last Date Accessed: 2019-02-20.

[50] “Docker,” https://www.docker.com/, [online] Last Date Accessed: 2019-02-20.

[51] “What is docker? — opensource.com,” https://opensource.com/resources/what-
docker, [online] Last Date Accessed: 2019-02-20.

[52] “Indeed — https://www.indeed.com/about,” https://www.indeed.com/about,
[online] Last Date Accessed: 2019-02-20.

APPENDICES

46

A. BACKGROUND TECHNOLOGIES

A.1 PHP

Hypertext Preprocessor (PHP) is a programming language that is used for a va-

riety of computer software. PHP is widely used in web development. It offers a

command line interface (CLI) and can be integrated into HTML code. PHP is the

most used programming language on the web which is used by 79% of the users [48].

A.2 Laravel

Laravel is a free, open-source, and the most popular framework written for PHP

[49]. Laravel uses model-controller-view (MVC) method and allows the users to use

other software packages within the framework.

A.3 Docker

Docker is a platform that eliminates the barrier of technology mismatches and

enables organizations to build, develop and deploy their desired software. [50] By us-

ing docker containers, developers can design the application infrastructure, based on

their needs. Containers can include a variety of technologies such as operations sys-

tems, back-end and front-end development languages, database management systems,

libraries, and dependencies and so forth. As it is mentioned in [51], this allows the

developers to develop the software as one package with their personal configurations.

47

A.3.1 Docker Containers

Containers are blocks of software that include the code, libraries and related ma-

terials. Each docker container is a stand-alone unit that can run on any computing

structure. This allows the developers to have lightweight packages which include

their desired tools and settings and can run reliably on any environment [50]. Docker

containers are the abstraction of the software layer. Several containers can run on

the same computer and share the operation system. Each container is a stand-alone

package and requires less space than virtual machine packages. Containers are made

from container images when they are being used in the Docker Engine. This makes

the Dockerized (containerized) programs run identically on any Linux, Mac OS or

Windows machines. Containers are isolated software units, and they share the host

operating system. It enables docker containers to have smaller packages which makes

them easier to deliver and reduces the server sizes and licensing costs. Docker en-

gine is a layer on top of the host operating system that creates the environment for

the containers to run on any infrastructure. It is available for most of the common

operating systems including Linux, Windows, and Mac OS.

A.4 Indeed

Indeed is the leading job searching and posting website in the world, and the

research shows that it has 250 million unique monthly visitors [52]. Indeed offers a

job searching API for publishers. Users need to request a publisher API key to have

access to the job posting data. Table A.1 shows the detailed description of its APIs.

48

Table A.1.
Indeed API

Parameter Type Required Description Default
publisher string Yes Indeed publisher key –

v int Yes Indeed API version –
userip sting Yes End-user’s IP –

useragent sting Yes End-user’s browser details –
format string No Response format (json/xml) xml

callback string No Javascript callback function –
q string No Search query –
l string No Search location –

sort string No Results sort (relevance/date) relevance
radius int No Maximum distance from location –

st string No Website type (employer/jobsite)
jt string No Job type(fulltime/parttime) –

start int No Start ID of the jobs –
limit int No Maximum number of jobs –

fromage int No Maximum lifetime of the job –
highlight int No Highlight the keywords (1/0) 0

filter int No Filter the duplicate jobs (1/0) 1
latlong int No Geographic information (1/0) 0

co string No Country of the job us
chnl string No Channel group –

49

B. SOURCE CODE

The source code of the proposed personal assistant is provided in a CD as an attach-

ment which is accessible in the /agent folder. To develop this software, an open source

framework, Laravel, is used. Most of the developed algorithms are in /agent/app

folder, which are developed by the author of this thesis. Laravel includes other pub-

lic packages in the /agent/vendor folder, which are not the results of this research

project. The development environment is created based on Docker standards. The

source code of this environment is in /docker folder.

