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ABSTRACT
The overall survival of patients with acute myeloid leukemia (AML) has not been 

improved significantly over the last decade. Molecularly targeted agents hold promise 
to change the therapeutic landscape in AML. The nuclear factor kappa B (NF-κB) 
controls a plethora of biological process through switching on and off its long list of 
target genes. In AML, constitutive NF-κB has been detected in 40% of cases and its 
aberrant activity enable leukemia cells to evade apoptosis and stimulate proliferation. 
These facts suggest that NF-κB signaling pathway plays a fundamental role in the 
development of AML and it represents an attractive target for the intervention of 
AML. This review summarizes our current knowledge of NF-κB signaling transduction 
including canonical and non-canonical NF-κB pathways. Then we specifically highlight 
what factors contribute to the aberrant activation of NF-κB activity in AML, followed 
by an overview of 8 important clinical trials of the first FDA approved proteasome 
inhibitor, Bortezomib (Velcade®), which is a NF-κB inhibitor too, in combination with 
other therapeutic agents in patients with AML. Finally, this review discusses the future 
directions of NF-κB inhibitor in treatment of AML, especially in targeting leukemia 
stem cells (LSCs).

INTRODUCTION

The nuclear factor kappa B (NF-κB) is a dimeric 
transcription factor which plays versatile crucial roles 
in a plethora of normal cellular functions by controlling 
a panoply of downstream genes [1-4]. This pro-
inflammatory transcription factor consists of rel family 
proteins, which are related through a highly conserved 
DNA-binding/dimerization domain called the Rel 
homology (RH) domain [5]. Currently, five mammalian 
NF-κB family members have been identified and studied. 
These include NF-κB1 (p50/p105), NF-κB2 (p52/p100), 
RelA (p65), RelB and c-Rel [6-8]. The C-terminal regions 
of RelA, RelB and c-Rel contain a transactivating domain 
that is important for NF-κB-mediated gene transactivation, 
while the C-termini of p105 and p100 contain multiple 

copies of the ankyrin repeats, a 33-residue sequence motif, 
which is also found in Inhibitor of κB family members 
[9-11]. 

In unstimulated state, NF-κB complexes are 
sequestered in the cytoplasm by Inhibitor of kappa-B (I-
κB), which mask the nuclear localization signal (NLS) of 
NF-κB [12-14]. Upon activation of NF-κB, an upstream 
IB kinase phosphorylates IκBs at the critical amino acid 
residues (Ser-32 and Ser-36 of IκBα; Ser-19 and Ser-
23 of IκBβ), which are subsequently ubiquitinated by 
β-transducin repeat-containing protein (βTrCP) and then 
degraded by the 26S proteasome, allowing freed NF-κB 
dimers to translocate to the nucleus and transactivate κB-
responsive elements [3, 15-17]. 

NF-κB signaling can occur through either the 
canonical or non-canonical pathways (Figure 1) [18-21]. 
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These two pathways have different 1) activating stimuli, 2) 
IKK activating complexes, 3) DNA-binding heterodimers 
and 4) gene target [22]. The details of these two pathways 
were summarized in Table 1.

NF-κB signaling pathway has been shown to 
regulate cell survival and apoptosis. Activation of 
inducible nitric oxide synthase (iNOS) to increase nitric 
oxide (NO) has been described as a pro-apoptotic function 
of NF-κB activation [23-25]. However, a study by Brandão 
et.al reported high iNOS expression in blood samples of 
AML patients in comparison to controls, which makes this 
apoptotic pathway questionable [26]. It is possible that 
acute production of NO triggers apoptosis, in contrast, 
the chronic production of NO by constitutively activate 
NF-κB signaling could inhibit the programmed suicide 
[26]. On the other hand, it is generally accepted that NF-
κB activation is responsible for apoptosis resistance, cell 
proliferation and invasiveness [27-29]. Many tumours 
have been reported to show upregulation of a large 
number of NFκB target genes, for examples, FLICE-like 
inhibitory protein (FLIP), Inhibitors of Apoptosis (IAPs) 
and some members of anti-apoptotic Bcl-2 family to 
inhibit apoptosis; cyclin D1, c-myc and c-myb to enhance 

cell proliferation; and cell adhesion molecules (ICAM-
1, E-selectin), matrix metalloproteinases and several 
angiogenic factors such as vascular endothelial growth 
factor (VEGF) to promote cancer cell invasion [27, 30-
35].

It has been well known that Heme oxygenase-1 
(HO-1) is an evolutionarily conserved key enzyme that 
catabolizes free heme [36]. Free heme is lipophilic, so 
it causes damage in lipid bilayers of cellular membrane, 
intracellular organelles [37]. Thus, HO-1 has function 
in protecting cells from apoptosis by escalating free 
heme catabolism. HO-1 promoter region contains NFκB 
responsive element and HO-1 expression is regulated by 
NFκB, in collaboration with other transcription factors 
[38]. In AML, induction of HO-1 expression has been 
reported as the mechanism by which AML cells evade 
tumour necrosis factor-α (TNF)-induced apoptosis [39], as 
well as chemotherapy-induced apoptosis [40]. Therefore, 
it appears an attractive approach by targeting both NFκB 
and HO-1 for anti-AML therapy [41]. 
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Molecular mechanisms of aberrant activation of 
NF-κB in AML

Constitutive activity of NF-κB is frequently 
observed in different types of cancer and has been 
correlated with resistance of cancer cells to radiation 
and chemotherapies [15, 16, 23, 42-46]. Causes of such 
aberrant activity could be due to alterations of genes that 
encode NF-κB and/or its inhibitors that promote NF-κB 
activation; constitutive activation of IKKs that accelerate 
IκB phosphorylation following degradation; or exposure 
to inflammatory stimuli in the tumour microenvironment 
that constantly trigger the signaling pathway. About 40% 
of patients with AML have shown increased activity of 
NF-κB [47]. Here we will discuss various mechanisms 
leading to aberrant activation of this pathway in AML.

ATM

Ataxia Telangiectasia Mutated (ATM) gene encodes 
a serine/threonine protein kinase, which is a master 
regulator of cell cycle checkpoint in response to DNA 
damage for the maintenance of genomic stability [48-
50]. The development of AML involves multiple steps 
of genetic and epigenetic changes, including activation 
of oncogenes and inactivation of tumor suppressor genes 
[51]. These activated oncogenes in AML cells often 
induce oxidative stress (high production of reactive 
oxygen species, ROS) and replication stress, triggering 
DNA damage response (DDR) pathways, which, in turn, 
results in phosphorylation of ATM, CHK-1, CHK-2 and 
H2AX [52, 53]. In AML cells, phosphorylated (activated) 
ATM interacts with NFκB essential modulator (NEMO), 
a subunit of IκB kinase complex, and p53-induced death 
domain protein (PIDD) in the nucleus. Both NEMO and 
PIDD activate NFκB pathway [54]. Treatment of AML 
cells with pharmacological inhibitors of ATM or siRNA 
silencing ATM induces relocalization of NFκB from the 
nucleus to the cytoplasm, resulting in apoptosis of AML 
cells [54]. These results suggest constitutively active ATM 
leads to activate NFκB pathway in AML. 

C/EBPα

CCAAT/enhancer-binding protein alpha (C/
EBPα) consists of three transactivation domains (TAD1, 
TAD2 and TAD3) in the amino terminus (N-termal) 
and a basic leucine zipper domain (bZIP) at its carboxy 
terminus (C-termal) for DNA binding. C/EBPα is a 
bZIP transcription factor, which plays a critical role in 
myeloid development [55-57]. The expression of C/
EBPα is tightly regulated during myeloid hematopoiesis. 
C/EBPα expresses at low level in the HSC and terminal 
differentiation stage, but high at the transition stage: 

common myeloid progenitor (CMP) and the granulocyte-
monocyte progenitor (GMP) [55, 56]. Consistent with 
this expression pattern, the study of C/EBPα knock-out 
mice shows that deletion of C/EBPα selectively blocks 
myeloid differentiation at transition stage and reduces 
formation of neutrophils and monocytes [58]. Mutations 
in the C/EBPα gene have been detected in 10 - 15% of 
patients with AML [59]. Except for some rare types of 
mutations, C/EBPα mutations can be classified into two 
main categories: (1) N-terminal mutations that lead to 
premature termination of protein translation, resulting 
in translation of a dominant negative, short C/EBPα p30 
isoform; (2) C-terminal mutations that disrupt the bZIP 
region, resulting loss of DNA binding capacity [60, 61]. 
The majority of AML patients with C/EBPα mutations 
have double mutations, i.e., two allele carrying different 
types of mutations. However, some patients harbor 
single mutation on one allele only. Of note, only double 
mutations, but not single mutation of C/EBPα, are 
associated with favorable prognosis [59, 62]. C/EBPα and 
its mutant forms, harboring with N-terminal mutations or 
C-terminal mutations, interact with NFκB components in 
AML cells [63]. Several lines of evidence indicate that C/
EBPα, as well as its mutant variants, interacts with NFκB 
p50 and induces a subset of NFκB target genes, including 
pro-survival Bcl-2, FLIP, through promoter binding [63, 
64]. Saturating mutagenesis analysis shows that some 
key residues in the basic region of bZIP domain of C/
EBPα is critical for the interaction with NFκB p50 [65]. 
The expression of C/EBPα is 3-fold lower in NFκB p50 
knockout cells and p50 binds to the promoter of C/EBPα 
αand regulates its expression [66]. On the other hand, C/
EBPα and its mutant forms can replace histone deacetylase 
1 to 3 on the p50 promoter, inducing p50 expression and 
activating NFκB activity in AML [67].

RUNX1

RUNX1 (runt-related transcription factor 1) is 
heterodimeric transcription factor belonging to RUNX 
gene family (RUNX1, 2, 3). RUNX1 plays a pivotal role 
in development of definitive hematopoiesis and primitive 
hematopoiesis [68-71]. Chromosomal abnormalities 
or point mutation involved in RUNX1 gene define a 
prognosis and biology distinct subset of AML patients [72, 
73]. In mouse RUNX-1 deficient hematopoietic progenitor 
cells, both canonical and noncanonical pathways of NF-
κB signaling are constitutively increased as evidenced 
by increased nuclear localization of p65 and p52 
proteins [74]. Wild type RUNX1 binds to IKK complex 
in the cytoplasm and attenuates its kinase activity, thus 
repressing NFκB signaling. However, mutant RUNX1 
forms lose the ability to inhibit IKK, leading to aberrant 
activation of NFκB pathway in AML cases with RUNX1 
abnormalities [74]. 
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Figure 1: Canonical and non-canonical NF-κB signaling pathways. Canonical pathway involves activation of IκB kinase [125] 
complex, which subsequently phosphorylates IκBα for ubiquitin mediated proteolysis, enabling phosphorylation and transient nuclear 
translocation of p65/p50 NF-κB heterodimer. Non canonical pathway depends on NF-κB inducing kinase [126] and IKKα complex to 
achieve phosphorylation–induced p100 processing, leading to RelB/p52 complex.
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TNF-α

Tumor necrosis factor-alpha (TNF-α) is a type II 
transmembrane protein and the soluble form of TNF-α 
is secreted by immune systems including macrophages, 
monocytes, neutrophils, T-cells, nature killer (NK)-cells 
in response to inflammatory stimulation [75, 76]. TNF 
binds two TNF receptors (TNFR1 and 2) and activates the 
canonical NFκB pathway [16]. In an AML mouse model, 
leukemia-initiating cells (LICs) or leukemia stem cells 
(LSCs) exhibit autocrine TNF-α secretion, which causes 
constitutive activation of NFκB activity in this unique cell 
population [77]. This finding is further supported by the 
positive correlation between NF-κB activity and autocrine 
TNF-α in human AML samples [77].

Oncogenic kinase activation

RAS protein family includes H-RAS, N-RAS and 
K-RAS, which are small GTPase proteins [78]. RAS 
proteins transmit signals from extracellular growth factors 
by cycling between inactive GDP-bound and active 
GTP-bound states. N-RAS or K-RAS mutations occur 
in approximate 20% of AML cases [79, 80]. However, 
aberrant RAS signaling has been detected in 40% of cases 
in addition to RAS mutation, primarily due to is somatic 
mutations in the other receptor tyrosine kinase like FLT3 
and c-Kit [79, 80]. 

Birkenkamp and co-workers observed a significant 
association between constitutive NFκB DNA-binding 
activity and persistent RAS signaling in AML blasts [81]. 
In ex vivo experiments, AML blasts with high NFκB 
DNA-binding activity underwent less or no spontaneous 
apoptosis, compared to AML cases with no or low nuclear 
NFκB expression. By using small molecular inhibitor 
Ly294002 targeting PI3K/AKT pathway, L-744832 
targeting RAS, PD98059 targeting ERK/MAPK signaling 
and AG1296 targeting FLT3, the authors found that NF-
κB DNA-binding activity was inhibited only by RAS and 
PI3K/AKT inhibitors, thus concluded that increased NF-
κB activity was regulated by RAS signaling, but not ERK 
and FLT3 pathways [81]. In contrast, several other studies 
clearly demonstrated that either FLT3 overexpression or 
FLT3 mutation increased NFκB activity in AML [82, 83]. 
Takahashi and colleagues showed that overexpression of 
FLT3 in BaF3 cells activated NFB reporter and increase 
level of IL-6, a NFκB target gene [82]. They also showed a 
modest positive correlation between FLT3 and IL-6 mRNA 
expression in AML samples [82]. Similarly, Grosjean-
Raillard et al. reported that constitutive activation of FLT3 
signaling resulted in activation of NF-κB, while inhibition 
of FLT3 signaling either by small molecule inhibitor or 
knockdown of Flt3 with RNAi reduced NF-κB activity 
and induced apoptosis in AML cell lines and CD34+ 
primary AML cells [83]. Furthermore, comprehensive 

biochemical experiments revealed the underlying 
mechanism of NF-κB activation in which FLT3 kinase 
physically bound and phosphorylates IKK2, an upstream 
regulator of canonical NF-κB pathway [83]. In addition, 
Internal tandem duplications of FLT3 (FLT3-ITD), one of 
the most common genetic abnormalities in AML [84, 85], 
induced expression of RelB and p52/NF-B heterodimers, 
thus promoting non-canonical NF-κB pathway [86]. In 
summary, activation of both canonical and non-canonical 
NF-κB pathways appears to be an important event 
contributing to the leukemic transformation initiated by 
some crucial oncogenic kinases. 

NF-κB as a target for anti-AML therapy

Because a large body of evidence supports the 
important role of NFκB as a “hallmark of cancer”, there 
has been tremendous focus on the development of NFκB 
inhibitors for cancer treatment in both the academic 
community and the pharmaceutical industry [87-89]. 
Different NFκB inhibitors have been classified into 
8 groups according to their chemical nature and have 
been reviewed in details [90-92]. Here, we focus on the 
proteasome inhibitor, Bortezomib (Velcade®, Millennium 
Pharmaceuticals) and other promising NFκB inhibitors in 
clinical trials for treatment of AML. 

 Bortezomib is the first-in-class proteasome 
inhibitor, which has been approved by FDA (USA) to 
treat multiple myeloma and now relapsed mantle cell 
lymphoma too [93-95]. Although the models of action by 
proteasome inhibition are not fully elucidated, one of the 
important mechanisms associated with the anti-myeloma 
functions of Bortezomib is its ability to suppress the NF-
κB signaling pathway [96]. IκB, a cellular inhibitory 
protein of NFκB, is targeted by ubiquitin-proteasome 
pathway for degradation when it is phosphorylated at 
serine residue 32 and 36. Inhibition of the proteasome 
pathway by Bortezomib has been shown to block the 
degradation of IκBα, thus sequestering NFκB in the 
cytoplasm and preventing NFκB nuclear translocation 
and activation of NFκB target genes [97-99]. Because of 
its ability to inhibit NFκB activity, it provides a rationale 
to examine the effectiveness of Bortezomib either used 
alone or in combination with other drugs against AML in 
various clinical trials. Early phase I trial in AML evaluated 
Bortezomib as monotherapy in refractory or relapsed acute 
leukemias. As a monotherapy, the maximum tolerated 
dose (MTD) of Bortezomib was 1.25 mg/m2, and was 
shown to have transient hematological improvements in 
some patients [100]. In the subsequent trials in AML, 
Bortezomib was further investigated in combination with 
other agents. Eight clinical trials that enrolled majority 
of patients with AML aimed to evaluate the benefit of 
combination of Bortezomib with other drugs (Table 1) 
[101-108]. Two trials that combined the use of Bortezomib 
with Cytarabine and Anthracyclines (Idarubicin or 
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Doxorubicin) showed a complete remission (CR) rate of 
61% and 65%, respectively, and a good safety profile [101, 
102]. One study of Bortezomib with Idarubicin in high 
risk of AML patients achieved a CR rate of 20% [106]. 
The other five trials that co-administrated Bortezomib 
with other targeted drugs or epigenetic drugs did not 
produced encouraging CR rate. But, one important note 
should be taken into consideration is that the subjects in 
these trials were high-risk patients with either refractory 
or relapsed AML or older than 60 years. These may be 
confounding factors that adversely impact on the clinical 
benefits of these combination therapies. In general, if 
these combination regimes are well tolerated, they should 
be further evaluated in standard risk patients. When new 
generation of inhibitors are developed, they might be 
tested in the combination regimes too. 

CONCLUSIONS

Over the last decade, our understanding of 
NFκB signaling and our ability to target it has evolved 
significantly. Although there are now 8 different classes 
of more than 700 NFκB inhibitors, only a few of them 
have advanced into clinical trials for treatment of AML. 
At the same time, a growing body of evidence suggests the 
existence of leukemia stem cells (LSCs) in AML leading 
to the potential relapse of disease and treatment failure 
[109-111]. LSCs reside mostly in a quiescent cell cycle 
state, which is similar to their counterparts, the normal 
hematopoietic stem cells [112-114], thus escaping from 
the effects of standard chemotherapy drugs which usually 
target proliferative cells. NF-κB activity is aberrantly 
increased in primitive human leukemia cells compared 
to normal primitive bone marrow cells [47, 77, 115, 
116], thus it provides a novel concept to treat AML by 
targeting the difference between HSCs and LSCs as 
exemplified by the different NF-κB activity between 
them. [117-120]. In fact, the small molecule NF-κB 
inhibitor dimethylaminoparthenolide (DMAPT /LC1) 
has been shown to selectively eradicate AML LSCs in the 
laboratory [92, 121-123] and is currently evaluated in a 
phase I-II ‘first in man’ clinical study at Cardiff University, 
UK (http://medicine.cf.ac.uk/person/dr-steven-knapper/
research/). Hopefully, the result of this much anticipated 
trial will demonstrate effectiveness of NF-κB inhibitor in 
AML patients.  
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