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Abstract

A workshop was sponsored by the National Institute of Diabetes and Digestive and Kidney 

Diseases to address the research gaps and opportunities in pancreatic endoscopic ultrasound 

(EUS). The event occurred on July 26, 2017 in 4 sessions: (1) benign pancreatic diseases, (2) high-

risk pancreatic diseases, (3) diagnostic and therapeutics, and (4) new technologies. The current 

state of knowledge was reviewed, with identification of numerous gaps in knowledge and research 

needs. Common themes included the need for large multicenter consortia of various pancreatic 

diseases to facilitate meaningful research of these entities; to standardize EUS features of different 

pancreatic disorders, the technique of sampling pancreatic lesions, and the performance of various 

therapeutic EUS procedures; and to identify high-risk disease early at the cellular level before 

macroscopic disease develops. The need for specialized tools and accessories to enable the safe 

and effective performance of therapeutic EUS procedures also was discussed.

EUS became commercially available in the 1980s with the seminal publications by 

DiMagno et al1 and Hisanaga et al2,3 demonstrating the feasibility and safety of mounting an 

US transducer on the tip of a rigid endoscope and using this to examine the GI wall and 

extraluminal space. Since then, EUS with the addition of FNA has established itself as the 

premier diagnostic tool for staging many GI luminal cancers, evaluating intramural lesions, 

and assessing the immediate extraluminal space. It has assumed particular importance in the 

diagnosis of pancreatic cancers as well as other pancreatic diseases and more recently has 

evolved into a key vehicle for a variety of therapeutic procedures. The National Institute of 

Diabetes and Digestive and Kidney Diseases workshop, “Endoscopic ultrasound and related 

technologies for the diagnosis and treatment of pancreatic disease: research gaps and 

opportunities,” sought to review the latest knowledge and set priorities for future 

investigation.

EUS remains the diagnostic test of choice for diagnosing pancreatic masses. Although some 

advocate for surgical resection without biopsy, sampling these masses to determine the exact 

diagnosis remains important because a significant minority of these patients do not have 

pancreatic adenocarcinoma and those who do are increasingly requiring precision therapy. 

Nearly 15% of pancreatic masses are metastatic lesions, with another 1% to 2% being 

lymphomas and 5% to 11% autoimmune pancreatitis. Neoadjuvant therapy may improve 

outcomes, with 41% of borderline resectable tumors converted to resectable lesions after 

therapy.4 Concerns over the potential spread of malignant cells by performing EUS-guided 
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FNA (EUS-FNA) of pancreatic masses were assuaged by a study demonstrating that EUS-

FNA was not associated with decreased survival.5 The ideal technique to ensure the highest 

diagnostic yield remains unclear and will be discussed in greater detail below. Recent 

innovations in core needles may enable acquisition of increased amounts of tissue required 

for molecular assays compared with conventional FNA needles.

Performance of EUS in pancreatic cysts remains controversial, with several guidelines 

offering, at times, discrepant recommendations for indications of EUS.6–8 This stems from 

the inability of currently available cyst fluid analyses to diagnose and accurately predict the 

malignant potential of these cysts. Therefore, translational research has flourished, with 

investigations involving proteomics, metabolomics, and DNA and RNA analyses all 

demonstrating a variety of promising markers including DNA methylation markers to 

discriminate cysts with malignancy or high-grade dysplasia from those with low-grade or no 

dysplasia.9 Large prospective validation studies are required to establish which markers or 

combination of markers would be most efficacious.

Another problematic area involves the diagnosis of chronic pancreatitis, with the American 

Pancreatic Association practice guidelines concluding that EUS features of chronic 

pancreatitis may represent not only chronic pancreatitis but also pancreatopathy, an 

asymptomatic presence of fibrosis without inflammation caused by a variety of factors 

including aging and exposure to alcohol or smoking.10 Furthermore, interobserver 

agreement among experienced endosonographers for various chronic pancreatitis features 

remains inadequate despite the more recent Rosemont criteria.11,12 Autoimmune pancreatitis 

is another (AP) condition in which EUS may be helpful but remains difficult to diagnose and 

differentiate from pancreatic ductal adenocarcinoma (PDAC).

EUS-guided therapeutics began with celiac plexus neurolysis, which has proven effective 

and durable in treating pancreatic cancer pain. Initial reports of the surgical technique in 

which patients were randomized in a double-blind study to neurolysis with 50% alcohol 

compared with saline solution interestingly demonstrated not only improved pain control 

through 6-month follow-up but also increased survival in these patients, which remains 

poorly understood.13 A randomized trial comparing conventional pain management to EUS-

guided celiac plexus neurolysis also reported improved pain control, although there was no 

difference in quality of life.14

Another well-established therapeutic intervention with EUS is drainage of pseudocysts and 

walled-off pancreatic necrosis. Standard of care in initial management of these conditions 

has dramatically evolved from surgical drainage and debridement to endoscopic and 

percutaneous approaches. However, controversy still exists about when, in whom, and how 

to perform endoscopic necrosectomy. Recent interest has centered around the use of lumen 

apposing metal stents (LAMSs) to facilitate these procedures, with some studies suggesting 

increased rates of bleeding associated with LAMS placement.15 Multiple retrospective 

studies have published discrepant findings with respect to success of procedures and need 

for repeat procedures when LAMSs are compared with plastic stents.16–18 Large prospective 

randomized trials are needed to understand the best setting for each type of stent.
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The National Institute of Diabetes and Digestive and Kidney Diseases workshop occurred at 

an important time when EUS of the pancreas has established itself as the optimal diagnostic 

and therapeutic technique for a variety of pancreatic diseases but requires further 

development in several critical areas including pancreatic cystic lesions, chronic pancreatitis, 

fatty pancreas, early detection of high-risk pancreatic lesions, and various therapeutics. The 

lectures and sessions provided expert analyses of the issues facing EUS of the pancreas in 

the 21st century as well as a framework for next steps needed to advance the field forward.

EUS PERFORMANCE AND INTERPRETATION IN BENIGN PANCREATIC 

DISEASES

Overview of the Problem

EUS is a technically challenging procedure that requires advanced training beyond those 

required for performing upper and lower endoscopy. These aspects contribute to operator 

variability that impacts competency and diagnostic interpretation of several benign 

pancreatic disorders including chronic pancreatitis, autoimmune pancreatitis, and fatty 

pancreas.

Assessing Competency in Pancreatic EUS

EUS is taught predominantly by apprenticeship, with competence primarily measured by 

procedure volume. Although the threshold volume varies among societies, the American 

Society for Gastrointestinal Endoscopy has defined this as 225 cases before competency can 

be assessed.19 This target is based on expert opinion and does not account for the different 

rates at which trainees learn. Data from a multicenter study that used a validated skills 

assessment tool—The EUS and ERCP Skills Assessment Tool, with cumulative-sum 

analysis, demonstrated substantial variability among trainees in achieving competence in 

EUS, and suggested that competence is not assured after completing 225 cases.20

These results highlight the limitation of volume-based competency metrics and indicate that 

EUS training needs to evolve toward a curriculum that focuses on competence-based 

medical education—a reform promoted by the Accreditation Council for Graduate Medical 

Education-Next Accreditation System. These reforms would include establishing minimum 

standards for advanced endoscopy training programs that incorporate trainee assessment 

through competency-based milestones of both technical and cognitive skills. It would also 

include education on systematically measuring and monitoring EUS performance against 

defined metrics of a high-quality EUS examination.21 Limited exposure to therapeutic EUS 

techniques during training necessitates the development of specific training strategies to 

address this issue as well.

EUS in Differentiating Normal Pancreas, Minimal Change Chronic Pancreatitis, and Other 
Pancreatopathies

In clinical practice, the diagnosis of chronic pancreatitis is typically made when obvious 

parenchymal and/or ductal changes in the pancreas are apparent on cross-sectional studies, 

that is, CT and/or magnetic resonance imaging (MRI)/MRCP). These changes, however, 

may occur at variable times (sometimes years) after the onset of clinical symptoms. Minimal 
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change chronic pancreatitis is a term used to describe patients who have symptoms 

suggestive of chronic pancreatitis, most commonly chronic abdominal pain, but normal or 

equivocal cross-sectional imaging test results. In these patients, diagnosing chronic 

pancreatitis remains challenging and may be aided by identifying parenchymal and/or ductal 

changes on EUS.

The criteria used to diagnose chronic pancreatitis on EUS includes a non-weighted and 

weighted score that incorporates stricter definitions for minor and major features, which 

appear to reflect pancreatic fibrosis.22 However, establishing a diagnosis of chronic 

pancreatitis solely by using EUS has limitations. EUS may play a role as part of a more 

comprehensive diagnostic model incorporating various risk factors for chronic 

pancreatitis.23 There remains high interobserver variability for individual findings and 

overall scoring among experienced endosonographers.12 Several conditions, including 

increasing age, smoking, alcohol consumption, and diabetes may cause parenchymal and/or 

ductal changes without symptoms (defined by the term pancreatopathy),24,25 making it 

difficult to determine if changes observed on EUS result from chronic pancreatitis or merely 

from these confounding factors. Studies have compared EUS features with MRCP (with or 

without secretin), secretin-stimulated pancreatic function testing, and histology.26 Although 

some comparisons are promising, the lack of a criterion standard and the role of 

confounding factors have not been appropriately addressed.

EUS in Differentiating Mass-Forming Autoimmune Pancreatitis From Pancreatic Cancer

Autoimmune pancreatitis (AIP) is a relatively rare form of chronic pancreatitis that afflicts 

not only the pancreas but also other organs including the bile duct. Both AIP and chronic 

pancreatitis may present with focal mass-forming disease that can mimic PDAC, and 

accurate distinction of these 3 disease processes is important for providing disease-

appropriate care and for enhancing patient outcomes.27 Patients with unrecognized AIP or 

chronic pancreatitis continue to undergo pancreatic resection for presumed malignancy. In 

addition, delayed or failed diagnosis of AIP risks allowing disease progression to chronic 

pancreatitis changes. Although many studies have evaluated the accuracy of EUS for 

diagnosing PDAC and for assessing chronic pancreatitis ductal and parenchymal features, 

there is a paucity of data evaluating EUS features of AIP as well as the ability of EUS to 

distinguish among these disease processes.

Well-designed studies are needed to evaluate the capability of EUS for diagnosing and 

distinguishing AIP, chronic pancreatitis, and PDAC based on conventional and potentially 

new EUS imaging criteria and to evaluate EUS-associated technologies such as 

elastography, contrast-enhanced imaging, and computer-aided techniques.28 Understanding 

the potential utility of EUS to distinguish type 1 and 2 AIP and to predict therapeutic 

response is also warranted. Studies that clarify the relative value of EUS-guided cytologic 

versus histologic diagnosis by using an appropriate pathology criterion standard are needed.

EUS and Fatty Pancreas

Existence of fat in the pancreas has been known since the 1930s, although the true 

prevalence remains unknown. Fatty pancreas is a radiologic term that describes the presence 
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of excess intrapancreatic fat (IPF). Different terms have been used to describe fatty pancreas 

including pancreatic steatosis, non-alcoholic fatty pancreas disease, pancreatic lipomatosis, 

lipoatrophy of the pancreas, pancreatic fatty infiltration, and pancreatic fatty replacement. 

Although fatty pancreas is common in certain genetic disorders (eg, Shwachman-Diamond 

syndrome, cystic fibrosis), in the vast majority of patients, it accompanies obesity, advanced 

age, diabetes, and fatty liver.29–31 The pathophysiologic mechanisms that lead to excess 

intrapancreatic fat deposition and the clinical and metabolic implications are only beginning 

to be understood.

The diagnostic criteria for fatty pancreas are subjective and variable. A wide range of 

techniques have been described for imaging intrapancreatic fat, including transabdominal 

US, CT, MRI, and EUS. On CT, fatty pancreas appears hypodense compared with the 

spleen. On EUS, a grading system adapted from radiology incorporating the echotexture of 

the pancreas relative to the spleen as well as the ability to visualize the main pancreatic duct 

and “salt and pepper” dots in the parenchyma has been suggested to assess fatty pancreas.32 

MRI is the test of choice for identifying intrapancreatic fat. However, there are little data 

correlating findings of intrapancreatic fat on EUS or MRI with histology. In addition, the 

effect of excess intrapancreatic fat on pancreatic exocrine or endocrine function and fibrosis 

remains unclear. Intrapancreatic fat may have a role in causing or aggravating metabolic, 

inflammatory, and neoplastic disease processes. Fatty pancreas has been associated with 

increased severity of acute pancreatitis in the setting of obesity,33 likely because of 

proinflammatory cytokine release from injured fat.34 Some evidence suggests that the 

proinflammatory milieu induced by obesity contributes to pancreatic oncogenesis through 

the activation of K-ras signaling pathways.35 Other important implications of fatty pancreas 

appear to be its tendency to create background noise that could obscure small solid lesions 

that would have implications for early detection of pancreatic cancer. Future studies should 

focus on how to distinguish solid lesions within a fatty pancreas by using EUS.

Research Gaps and Opportunities

Research should focus on interventions to ensure EUS competence and systematically 

reduce operator variability in EUS performance. The role of EUS as a diagnostic or 

prognostic tool for chronic pancreatitis, and whether automation that uses new technology 

can improve its ability needs to be clarified. Further studies correlating EUS observations 

with appropriate histologic standards should be conducted as well as the role of tissue 

acquisition in improving EUS clinical utility. Finally, the epidemiology of fatty pancreas, 

whether and how fatty pancreas may increase the risk of pancreatic conditions need further 

study.

Specific priorities include: (1) validation of novel competency-based metrics for EUS 

training; (2) defining the diagnostic and prognostic ability of EUS in chronic pancreatitis by 

using an appropriate criterion standard such as histology or longitudinal follow-up — such 

studies should evaluate the incremental value of integrating clinical and laboratory data into 

EUS performance; (3) establishing a histologic definition for chronic pancreatitis on surgical 

specimens as well as core biopsy specimens obtained during EUS; (4) evaluating the clinical 

utility of novel EUS-associated imaging modalities including elastography, digital image 
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analysis, contrast-enhanced imaging, and computer-aided techniques in differentiating 

PDAC, chronic pancreatitis, and AIP, and reducing interobserver variability; (5) defining 

EUS criteria for diagnosis of AIP; (6) defining the prevalence of fatty pancreas in the 

general population and in patients with metabolic syndrome and determining whether the 

presence of fatty pancreas predicts the presence or risk of cardiovascular disease; (7) 

establishing the role of intrapancreatic fat in causing inflammation and fibrosis and 

associated mechanisms; and (8) determining whether fatty pancreas increases the risk and 

severity of pancreatic diseases, including acute pancreatitis and pancreatic cancer.

EUS IN HIGH-RISK PATIENTS

Overview of the Problem

Incidental pancreatic cystic lesions are detected ever more frequently because of increased 

use of cross-sectional abdominal imaging. The majority of these cysts are mucinous and thus 

premalignant. Societal guidelines regarding evaluation of pancreatic cysts are controversial 

and based on little evidence. Formal guidelines for screening and surveying high-risk 

individuals with familial pancreatic cancer are lacking.

Cystic Lesions: The Role of EUS, With or Without Other Imaging Technologies For 
Differentiating Benign and Malignant Cysts

Once a cyst has been discovered, the patient should undergo MRI with MRCP to better 

define the cyst and attempt to determine whether it is mucinous or non-mucinous. Mucinous 

cysts (intraductal papillary mucinous neoplasm [IPMN] and mucinous cystic neoplasms) 

may warrant further evaluation depending on size and surgical candidacy. The accuracy of 

MRI for detecting mucinous cysts is 71% to 91%, and for malignant cysts it is 73% to 

91%.36,37 EUS imaging is approximately 50% accurate for differentiating mucinous from 

non-mucinous cysts.38 It may be superior to MRI for detecting small pancreatic masses and 

mural nodules, although interobserver agreement remains an issue with only solid 

component achieving moderately good agreement. Contrast-enhanced EUS may improve the 

ability to diagnose nodules as well as differentiate malignant and benign nodules. However, 

EUS imaging alone remains inadequate for cyst diagnosis. This is confirmed by a study 

demonstrating the superior diagnostic accuracy of the Fukuoka guidelines, which 

incorporate EUS-FNA cytology results for diagnosing malignant cysts compared with the 

Sendai guidelines that rely only on imaging features.39

Cystic Lesions: Cyst Fluid Analysis in the Differentiation of Benign and Malignant Cysts

EUS-FNA of pancreatic cysts enables cyst fluid analysis for diagnostic and prognostic 

purposes. Cyst fluid cytology is very specific for the diagnosis of a malignant cyst, but it 

suffers from poor sensitivity because of paucicellular samples. Carcinoembryonic antigen 

(CEA) measurement in cyst fluid is helpful for the diagnosis of a mucinous cyst, with a 

cutoff value of 192 ng/mL being 80% accurate,38 but the CEA level is not predictive of 

malignancy. Despite inadequate cellularity in most cyst aspirates, DNA and RNA shed into 

the fluid can be analyzed for mutations. Next-generation sequencing is currently being used, 

given its increased sensitivity to detect smaller amounts of DNA and its ability to assay 

multiple genes simultaneously. From a diagnostic standpoint, KRAS is very specific for 
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mucinous cysts (mucinous cystic neoplasms or IPMN), whereas GNAS is specific for IPMN. 

Mutations in TP53, PIK3CA, and PTEN have been associated with advanced neoplasia 

(high-grade dysplasia or invasive cancer) in mucinous cysts, with a sensitivity of 91% and 

specificity of 97%.40,41

Other biomarkers showing promise for diagnosing advanced neoplasia include telomerase, 

microRNA, mucin profiling, and monoclonal antibody (mAb Das-1).

New EUS-guided Technologies for Diagnosis of Cystic Lesions

Needle-based confocal endomicroscopy enables realtime optical biopsies and provides in 

vivo histopathologic assessment during EUS-FNA via a 19-gauge needle.42 Serous 

cystadenomas have been the best studied thus far, demonstrating a typical superficial 

vascular network, whereas IPMNs exhibit papillary projections with an epithelial border and 

vascular core.43 However, the role of confocal endomicroscopy for the diagnosis of 

pancreatic cysts has not been well established. Recently, a microforceps has been developed 

for tissue acquisition from pancreatic cystic lesions. During EUS-FNA, the microforceps is 

introduced through the 19-gauge needle, and pinch biopsies are obtained from the cyst wall, 

septations and nodules, or adjacent masses. In a preliminary study, the tissue acquisition 

yield was 90%, and microforceps histology was superior to EUS-FNA cytology, especially 

for providing a specific pancreatic cyst diagnosis.44 This technology is expected to grow in 

the future, in which real histology could replace cytology, CEA level measurement, and 

diagnostic biomarkers.

The Role of EUS in Screening for Familial Pancreatic Cancer

The goal of pancreatic cancer screening is to detect early cancer and its precursor lesions in 

individuals with inherited genetic susceptibility leading to an increased risk for developing 

pancreatic cancer. These high-risk individuals are defined as either having a family history 

of pancreatic cancer, which includes having at least 2 affected first-degree relatives, or a 

pancreatic cancer-associated genetic syndrome such as Peutz-Jeghers or Lynch syndrome. 

MRI and EUS are suggested as preferred imaging modalities in the hope of detecting 

asymptomatic cancer or high-grade precursor neoplasms (pancreatic intraepithelial 

neoplasms [PanIN-3] or high-grade branch duct IPMNs). Prospective screening in this high-

risk population by using MRI and EUS detects pancreatic lesions in 6% to 42% of 

patients,45,46 with an 8.2% yield for detecting high-grade lesions or incidental cancer.47 

Many questions still remain regarding the optimal method and interval for screening and 

surveillance as well as indications for surgical resection.

Research Gaps and Opportunities

Future research efforts should focus on enhanced cyst imaging, cyst fluid biomarkers, and 

EUS-guided technology to allow differentiation of benign and malignant pancreatic cystic 

lesions and detection of precursor lesions in high-risk individuals. Critical areas of research 

include the following: (1) new radiologic and EUS imaging technology to improve 

differentiation of benign and malignant pancreatic cysts, (2) long-term natural history 

studies of pancreatic cystic lesions, (3) a pancreatic cyst consortium that includes a larger 

surgically confirmed cohort and a longer observation period to perform cyst fluid and tissue 
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biomarker studies and validation studies, (4) determination of the diagnostic yield of 

microforcep biopsies compared with confocal endomicroscopy and standard FNA and/or 

cyst fluid studies for the diagnosis of pancreatic cysts, (5) development of new tissue 

acquisition devices for pancreatic cysts, (6) development and validation of selection criteria 

for surgical resection in high-risk individuals, and (7) definition of the optimal method and 

interval for screening and surveillance in high-risk individuals.

EUS-GUIDED DIAGNOSTICS AND THERAPEUTICS

Overview of the Problem

Although EUS is the preferred method of obtaining tissue for diagnosis of pancreatic 

diseases, and it has become an integral part of patient management as neoadjuvant therapies 

for locally advanced PDACs have evolved, the best technique to optimize diagnostic yield 

remains unclear. Beyond diagnostics, EUS has entered therapeutics in which key issues 

remain regarding lack of appropriate equipment and accessories needed to perform these 

procedures as well as the need to standardize and improve our current techniques for 

endoscopic necrosectomy, EUS-guided pancreatic duct access, and EUS-guided ablative 

therapies.

EUS-guided Tissue Acquisition: Endoscopic and Pathology Considerations

Typically, diagnosis of PDAC has been obtained by using EUS-FNA cytology, which is 

highly accurate, although the advent of newer-generation needles for EUS-guided fine-

needle biopsy has enabled relatively easy and safe core biopsy of the pancreas. At least 13 

different equipment and operator variables may impact the diagnostic yield of EUS-guided 

tissue acquisition: needle size, needle type, specimen handling and processing, presence of 

rapid on-site evaluation, number of passes, number of to and fro movements, fanning, 

central versus peripheral sampling, speed of needle throw, amount and type of suction 

applied, wet versus dry needle, and operator experience. The optimal combination of these 

factors has not been identified. Overall, data do not currently support improved diagnostic 

yield with 25-gauge versus 22-gauge FNA needles, and advantages of the older reverse side-

bevel core biopsy needles compared with standard FNA needles remains unclear, other than 

a likely decreased number of passes needed for diagnosis; suction does appear to improve 

diagnostic accuracy.48–50 Rapid on-site evaluation of EUS-FNA specimens enhances 

diagnostic yield by determining when an adequate tissue sample has been obtained. 

However, rapid on-site evaluation remains expensive, time consuming, unavailable in large 

parts of the world, and is comparable to performing 7 FNA passes into solid pancreatic 

masses.51 Other methods of determining adequacy such as macroscopic on-site evaluation 

require study.

Core biopsy specimens may be required for diagnosis of autoimmune pancreatitis, 

pancreatic lymphoma, and unusual neoplasms such as acinar cell carcinoma. Molecular 

tissue analysis currently guides individualized therapy of many forms of cancer, and it will 

become increasingly relevant to management of PDAC in the near future.52 It is currently 

unclear which tissue acquisition method will most reliably yield adequate tumor DNA 

suitable for molecular analysis.

Lee et al. Page 9

Pancreas. Author manuscript; available in PMC 2018 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



EUS-guided Drainage of Pseudocysts and Walled-off Necrosis

Drainage of symptomatic pancreatic pseudocysts and walled-off necrosis (WON) is now 

typically performed under EUS guidance, which affords increased technical success rates 

with fewer complications than traditional endoscopic transmural drainage techniques.53 

Endoscopic treatment of WON results in better patient outcomes compared with surgery as 

well as an initial percutaneous catheter drainage approach, and it has rapidly become the 

preferred initial treatment.54,55 Although pseudocysts typically respond well to current 

management techniques, treatment of WON may require multiple endoscopic interventions 

and a prolonged treatment course with suboptimal complication rates (morbidity reported as 

high as 26% and mortality up to 7.5%).56,57 This likely reflects considerable variability in 

performance of the procedure. Multiple patient and technical factors may affect outcomes of 

endoscopic WON treatment, including age, size, and morphology of the collection, creation 

of 1 versus multiple drainage sites, choice of stents, choice of lavage solution, use of acid 

suppressive therapies, and degree of necrosectomy performed. A standardized approach to 

performing endoscopic necrosectomy recently demonstrated high success rates, with 98.3% 

of patients requiring only 1 treatment session and 3.3% morbidity with no mortality.57 The 

use of LAMSs for drainage of WON has improved the ease and technical success of 

endoscopic drainage, however, retrospective studies have suggested discrepant results when 

comparing LAMSs to plastic stents.15–18 LAMSs have introduced new concerns, including 

formation of stent-related pseudoaneurysms and segregation of remote areas of WON after 

rapid collapse of the central cavity drained by a LAMS. In order to address the relatively 

high adverse event rate and mortality risk associated with endoscopic necrosectomy, each 

component of the procedure should be analyzed to optimize efficiency and safety. Methods 

regarding access, debridement, lavage, drainage, pancreatic stenting, and nasocystic drainage 

must be rigorously evaluated. Other aspects of care such as timing of the initial procedure, 

medication use, and follow-up strategy also must be evaluated with an attempt at 

standardization.

EUS-guided Pancreatic Duct Access

EUS-guided pancreatic duct access is performed to facilitate stenting of obstructed 

pancreatic ducts not accessible by ERCP. The pancreatic duct is punctured with a 19-gauge 

or 22-gauge needle from the stomach or duodenum under EUS guidance. Several variations 

in this procedure have been described, including passage of a guidewire via the EUS needle 

across the ductal obstruction, with subsequent ERCP performed over the guidewire 

(rendezvous procedure), and EUS-guided transmural antegrade placement of stents into the 

pancreatic duct.58 The technique can successfully facilitate endoscopic treatment of 

pancreatic duct obstruction in about 69% to 90% of patients who might otherwise require 

surgical pancreatic resection. However, significant adverse events are seen in 14% to 60% of 

patients. Techniques and accessories require further development and refinement to reduce 

adverse event rates and improve success. At present, these procedures should be performed 

only by highly experienced interventional endosonographers at tertiary-care centers.
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EUS-guided Ablation of Cysts and Tumors

Endoscopic ablation of solid and cystic pancreatic neoplasms has been investigated for over 

15 years, but with some exceptions, it has yet to become a standard of care. Modalities that 

ablate any tissue (including ethanol and radiofrequency ablation) and those that selectively 

target neoplastic cells (such as paclitaxel injection and photodynamic therapy) have been 

studied. Multiple phase 1 studies as well as 1 phase 3 trial of EUS-guided fine-needle 

injection therapies of PDAC have demonstrated the safety of these techniques but have failed 

to show a survival advantage.59 Case series suggest that EUS-guided ethanol injection of 

functional pancreatic neuroendocrine tumors effectively treats symptoms caused by these 

tumors.60

Ablation of cystic neoplasms by EUS-fine-needle injection has shown promise, with 

sequential ethanol and paclitaxel injection demonstrating cyst resolution in two-thirds of 

treated cysts compared with only about one-third resolution after ethanol ablation alone.61 

However, studies have relied on surrogate endpoints, mainly change in cyst volume, rather 

than assessing cancer prevention, and the risk-benefit ratio of these interventions is unclear, 

with reported pancreatitis rates up to 10%.

Research Gaps and Opportunities

Research gaps and opportunities include: (1) create a multicenter EUS-FNA/fine-needle 

biopsy registry to determine optimal methods of EUS-guided pancreatic tissue sampling and 

the impact of these methods on patient outcomes; (2) assess methods of EUS-guided 

sampling for optimal DNA recovery and molecular characterization of pancreatic cancer 

tissue; (3) develop ex vivo models that accurately predict clinical performance of novel EUS 

tissue acquisition devices; (4) develop methods that improve the efficiency, safety, and cost 

in EUS-guided tissue acquisition (such as macroscopic on-site evaluation); (5) develop and 

complete prospective multicenter randomized trials of endoscopic treatment of WON, 

evaluating various aspects of technique (for example, LAMSs vs plastic stents) as well as 

timing of procedure and follow-up; (6) determine best approaches to evaluation and 

management of disconnected pancreatic duct syndrome in patients with pancreatic necrosis; 

(7) develop novel endoscopic devices and techniques for endoscopic drainage and 

debridement of WON, EUS-guided pancreatic duct access and stent placement, and ablation 

of pancreatic cystic and solid neoplasms; (8) assess the impact of local ablative therapies on 

the biology, stage, and treatment responsiveness of PDAC; (9) develop and validate 

surrogate endpoints for prevention of malignancy in pancreatic cystic neoplasms, possibly 

including biomarkers of advanced neoplasia; and (10) assess promising EUS-guided ablative 

methods in prospective, multicenter, adequately powered studies evaluating clinically 

important endpoints.

EUS AND NEW TECHNOLOGIES

Overview of the Problem

The interpretation of EUS images requires expertise, and there is a high rate of variance 

between endosonographers. To overcome these limitations, several image-enhancement 

techniques, such as contrast-enhanced EUS (CE-EUS), elastography, and digital image 
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analysis have been developed recently. More experimental techniques to improve EUS 

imaging and diagnosis of malignancy, including molecular imaging by using microbubbles 

and photoacoustic imaging, hold promise but require further refinement and study in 

humans, whereas the detection of portal venous circulating tumor cells via EUS-FNA may 

allow more accurate staging and management of patients with PDAC.

Can CE-EUS, Elastography, and Digital Imaging Analysis Differentiate Solid Lesions of the 
Pancreas?

CE-EUS uses the unique characteristics of the interaction of gas-filled microbubbles injected 

intravascularly with US energy to image vascularized structures. There are several types of 

microbubble-based US contrast agents (UCAs) with different features, which remain 

unavailable in the United States. The first-generation UCAs were used to perform CE-EUS, 

whereas second-generation UCAs are used with dedicated contrast harmonic algorithms in 

EUS. CE-EUS is the generic term that encompasses all contrast-enhanced techniques 

involved with EUS, whereas contrast harmonic EUS and contrast-enhanced harmonic EUS 

refer to low mechanical index techniques used in CE-EUS. A typical heterogeneous hypo-

enhanced sonographic pattern strongly suggests malignancy, although chronic pancreatitis 

with severe fibrosis produces a similar pattern. Hyperenhancement or iso-enhancement has 

strong negative predictive value for pancreatic cancer.62 Reviews of the utility of UCAs for 

the diagnosis of PDAC reported promising results.63,64 The addition of CE-EUS to EUS 

tissue acquisition may improve the diagnostic accuracy of pancreatic masses and help target 

areas for biopsy. Recent developments include tumor-specific UCAs with antibodies to 

specific entities such as CA 19-9 and nano-bubbles, which unlike microbubbles, can leave 

the vascular space and penetrate tumor tissue. Both of these advancements may increase 

tumor sensitivity and are areas of active investigation.

EUS elastography is an imaging technique that displays in color the differences in tissue 

hardness, thus estimating elasticity distribution in normal and target areas. For quantitative 

analysis, the strain ratio, which numerically expresses elasticity in the target area relative to 

a reference soft tissue area, is used. However, a meta-analysis showed low pooled specificity 

of 67% for the diagnosis of solid pancreatic masses, suggesting difficulties in the setting of 

severe fibrosis.64 Therefore, computer-assisted technology will likely be needed to improve 

accuracy.

Digital image analysis has been developed to improve diagnostic accuracy and shorten the 

interpretation process. This is a method to quantify and analyze image information by 

mathematic or statistical methods by using artificial intelligence with learning algorithms 

such as artificial neural networks or support vector machines. Digital image analysis can 

increase the diagnostic rate of not only B-mode but also CE-EUS or elastography.65,66 

Further development of digital image analysis requires randomized multicenter trials, a data 

registry to enable data mining, and the development of user-friendly programs that can be 

incorporated into clinical care.
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US-guided Microbubble Techniques for Molecular Imaging and Drug Delivery

Molecular imaging by using US builds on the technique of CE-EUS by using ligands 

attached to the surface of the microbubble that have affinity for specific endothelial 

molecular targets.67,68 By attaching ligands such as antibodies to the surface of gas-filled 

microbubbles, foci of abnormal endothelium can be imaged by using US. In a genetic mouse 

model of pancreatic cancer, Pysz et al69 demonstrated the ability of microbubbles that target 

vascular endothelial growth factor type 2 receptors to enhance the signal of small foci of 

pancreatic cancer by 27-fold. This study demonstrated the feasibility of performing 

molecular imaging by using US. Proteomic analysis identified thymocyte differentiation 

antigen 1, a marker of neovasculature in human PDAC. UCAs labeled with anti-human 

thymocyte differentiation antigen 1 antibody demonstrated an increased US signal in mice 

with pancreatic cancer compared with mice with chronic pancreatitis and wild-type 

controls.70 Although this has yet to be tested in humans for detection of PDAC, it has been 

demonstrated to be safe and feasible in patients with both breast and ovarian lesions.71

Microbubbles also can be used to enhance drug delivery in a targeted fashion.72 Various 

mechanisms have been investigated for US-enhanced drug delivery including sonoporation, 

intravascular cavitation, extravascular cavitation, and the use of temperature-sensitive 

liposomes. Microbubbles in an US field can disrupt cell membranes and endothelial gap 

junctions, and microbubble cavitation can release drugs that are loaded into liposomes 

coadministered intravascularly. US that is delivered at sufficient peak-negative pressures can 

cause tissue destruction without the need for administered microbubbles. This has the 

benefit of being able to disrupt the stromal matrix in pancreatic tumors, without disrupting 

the vasculature, enhancing the ability of drug to penetrate into tumors.73 Lastly, US can be 

used to create local hyperthermia, allowing for drug-loaded temperature-sensitive liposomes 

or other photosensitizers to release their payload within a targeted region.74 Clinical 

translation of these methods awaits the development of a high-intensity focused US 

endoscope.75

Photoacoustic Imaging of the Pancreas—Lessons Learned From Other Malignancies

Photoacoustic imaging of targeted biomarkers is a promising technique for noninvasive 

molecular imaging to accurately diagnose and stage pancreatic tumors. Photoacoustic 

imaging or optoacoustic technology is a state-of-the-art medical imaging modality that 

provides quantitative optical contrast by using energy conversion from absorbed short-pulse 

light energy to acoustic waves in the tissue.76 With the aid of photoacoustic imaging optical 

contrast agents that bind to diagnostic and prognostic biomarkers of pancreatic cancer, 

photoacoustic imaging holds great potential as a noninvasive imaging tool that will enable 

visualization of clinically important pathologic changes at early stages of tumor 

development.77 Combined with conventional EUS by adding a laser light delivery system, 

photoacoustic imaging can provide anatomic and functional information for more reliably 

differentiating and staging a tumor.

The current endoscopic photoacoustic device used in animal studies needs to be adapted for 

clinical applications.78 Although technical concerns with endoscopic photoacoustic imaging 

due to light attenuation are significant, the most challenging obstacle to imaging a large 
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portion of pancreas will be how to deliver enough laser power through an optical fiber. For 

photoacoustic imaging to visualize biomarkers of PDAC, molecular probes must be 

developed and evaluated for extravasation, binding efficiency, excretion, and toxicity.79 

Early stage preclinical applications in pancreatic cancer animal models support the value of 

photoacoustic imaging for early detection of PDAC,80 pending further development of 

operational and visualization techniques.

EUS-guided Aspiration of Portal Venous Circulating Pancreatic Tumor Cells

The fact that tumor cells intravasate into the vascular system and appear in the peripheral 

blood has been known for over 100 years, but techniques to reliably capture and identify 

circulating tumor cells (CTCs) have been developed only since 2000.81 CTC analysis 

requires cell capture and cell detection systems to concentrate the CTC sample, because 

there is roughly 1 CTC for every 107 circulating blood cells.82 The number of CTCs is low 

in early stage disease and, until recently, has been thought to be too low to contribute to the 

detection and assessment of upper GI tract malignancies including PDAC. In 2004, Allard et 

al83 were able to detect CTCs in 6 of 16 patients with PDAC, and subsequent refinements in 

cell capture technologies have resulted in a growing number of observations including the 

finding that circulating pancreatic epithelial cells can be detected in the presence of 

premalignant cystic disease.84

Pancreatic venous effluent in the portal venous system is an obvious potential source of large 

numbers of CTCs in PDAC, and in 2015, Catenacci et al85 demonstrated that EUS-guided 

transhepatic aspiration of portal venous blood was safe and yielded relatively large numbers 

(~ 100 CTCs per 7.5 mL blood) of PDAC CTCs. Further, these CTCs contained the same 

mutations as seen in regional lymph nodes of patients who later underwent surgery. 

Subsequently, this group reported that the number of portal vein CTCs (PV-CTCs) correlated 

with the metastatic status of the PDAC.86 This predictive or stage-confirming utility of the 

analysis of PV-CTCs has been confirmed by others.87,88 EUS-guided capture of PV-CTCs 

may allow early detection of PDAC, guide treatment strategies, and enable further 

understanding of the biology of PDAC.

Research Gaps and Opportunities

These technical advances in EUS-guided detection and treatment technologies require 

further development and validation. Specific research priorities include: (1) clinical trials of 

contrast-enhanced EUS for the discrimination of benign and malignant disease; (2) further 

development of US contrast agents that are tissue-specific or cell-specific; (3) studies that 

combine digital imaging analysis with standard EUS, contrast-enhanced EUS, and elastogra-

phy in patients with benign and malignant disease; (4) further development of safety studies 

to support U.S. Food and Drug Administration approval of molecular markers of PDAC to 

allow clinical studies of EUS microbubble methods for PDAC diagnosis and cell-directed 

therapy; (5) development of a clinically useful high-intensity focused US endoscope; (6) 

development of a clinically useful endoscopic photoacoustic delivery system; and (7) 

prospective clinical studies to assess the value of PV-CTC capture and analysis for PDAC 

staging and clinical management, and standardization of CTC isolation and enrichment 

platforms with validation studies.
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CONCLUSIONS

This workshop addressed the research gaps and opportunities in the field of pancreatic EUS. 

Diagnostic and therapeutic EUS as applied to both benign and malignant diseases of the 

pancreas has vastly expanded over the last 40 years. Further advances will be possible only 

through the interdisciplinary and multicenter collaboration of endosonographers, clinical 

pancreatologists, biomedical engineers, and laboratory scientists. Priority areas for research 

focus on the following 3 areas: improved methodology of specimen acquisition and 

molecular testing, especially given the rapid growth of personalized medicine; advances in 

sonographic technology and intravenous agents to enable accurate differentiation of benign 

and malignant pancreatic neoplasms by using EUS; and development of novel and 

specialized accessories to make therapeutic EUS procedures safer and more effective. There 

is clearly a need for consortia for clinical trials as well as biospecimen collection and 

processing. These efforts will hopefully translate into better and discriminating use of 

pancreatic EUS.
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Abbreviations

AIP autoimmune pancreatitis

CEA carcinoembryonic antigen

CE-EUS contrast-enhanced EUS

CTC circulating tumor cell

EUS-FNA EUS-guided FNA

IPMN intraductal papillary mucinous neoplasm

LAMS lumen-apposing metal stent

MRI magnetic resonance imaging

PDAC pancreatic ductal adenocarcinoma

PV-CTC portal vein circulating tumor cell

UCA ultrasound contrast agent

WON walled-off necrosis
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