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SUMMARY
Thymic epithelial tumors (TETs) are one of the rarest adult malignancies. Among TETs, thymoma is the
most predominant, characterized by a unique association with autoimmune diseases, followed by thymic
carcinoma, which is less common but more clinically aggressive. Using multi-platform omics analyses on
117 TETs, we define four subtypes of these tumors defined by genomic hallmarks and an association with
survival and World Health Organization histological subtype. We further demonstrate a marked prevalence
of a thymoma-specific mutated oncogene, GTF2I, and explore its biological effects on multi-platform
analysis. We further observe enrichment of mutations in HRAS, NRAS, and TP53. Last, we identify a
molecular link between thymoma and the autoimmune disease myasthenia gravis, characterized by tumoral
overexpression of muscle autoantigens, and increased aneuploidy.
INTRODUCTION

Thymic epithelial tumors (TETs) represent the most common

neoplasms of the anterior mediastinum, but are among the

rarest of all cancers, with an incidence of 0.15 cases per
Significance

Neoplasms of the thymus are among the rarest of malignancie
These tumors have a unique biology, including a strong associa
pure red cell aplasia, and hypogammaglobulinemia), and a lack
amulti-omic platform approach as part of TheCancerGenome
tumors. These results provide a comprehensive resource to u
development studies. Taken together, this effort represents
thymic epithelial tumors to date.
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100,000 person-years (Engels, 2010; Engels and Pfeiffer,

2003). TETs exhibit a wide spectrum of clinical behaviors

with 30%–40% of patients with thymoma exhibiting co-existent

autoimmune disorders, in particular thymoma-associated

myasthenia gravis (TAMG). In advanced disease, 5-year median
s but the most common cancer of the anterior mediastinum.
tion with autoimmune disorders (such asmyasthenia gravis,
of specific therapeutic targets for metastatic disease. Using
Atlas, we define themutational landscape of thymic epithelial
nderstand the biology of TETs and inform subsequent drug
the largest and most comprehensive molecular analysis of
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survival is 69% in thymoma and only 36% in thymic carcinoma

(TC) (Scorsetti et al., 2016). The most commonly used histologi-

cal classification and clinical staging systems are the World

Health Organization (WHO) and theMasaoka-Koga, respectively

(Koga et al., 1994; Travis et al., 2015). Surgery is the cornerstone

of treatment for early-stage TETs. Completeness of surgical

resection represents the most important clinical factor

influencing recurrence rates and prognosis. Other risk factors

associated with recurrence include histology, clinical stage,

and molecular signatures (Detterbeck et al., 2011a; Gokmen-

Polar et al., 2013). Although various systemic treatment options

exist for patients with locally advanced or metastatic disease,

none are curative.

The etiology of TETs is unknown, with limited knowledge of

the genomic underpinnings of thymoma and TC. Immunohisto-

chemical analyses have revealed overexpression of EGFR,

HER2, KIT, IGF-1R, and neurotrophin receptors (Scorsetti

et al., 2016). However, mutations in EGFR and KIT are uncom-

mon (Scorsetti et al., 2016). A number of previous studies have

performed molecular analyses of TETs using different platforms

(Badve et al., 2012; Girard et al., 2009; Lee et al., 2007; Sasaki

et al., 2002). Girard et al. (2009) documented that histological

subtypes of thymoma exhibited differential molecular profiles,

with TCs displaying more chromosomal gains and losses and

occasionally harboring somatic mutations in KIT. Badve et al.

(2012) also reported the association of distinct molecular

clusters with different histological subtypes, which ultimately

led to the development of a nine-gene expression signature

(DecisionDX Thymoma) that predicts the likelihood of metastasis

(Gokmen-Polar et al., 2013). Exome sequencing has revealed a

high frequency of recurrent mutations in the GTF2I gene in

type A and AB thymomas (Petrini et al., 2014). More recent

data have demonstrated overexpression of a large microRNA

(miRNA) cluster on chromosome 19 in type A and AB thymomas,

which is associated with PI3K/AKT activation (Radovich et al.,

2016). There have been few attempts at more comprehensive

molecular analyses of TETs and these studies have utilized a

limited number of molecular platforms (Ganci et al., 2014; Huang

et al., 2013; Lopez-Chavez et al., 2015; Petrini et al., 2013; Wang

et al., 2014). Nevertheless, these efforts have helped identify

unique molecular changes in TETs, such as an anti-apoptotic

gene signature and mutations in genes involved in histone

modification, DNA methylation, and chromatin remodeling in
TCs (Bellissimo et al., 2017; Huang et al., 2013; Petrini et al.,

2013; Wang et al., 2014). Despite these discoveries, attempts

to use molecular-targeted agents for treatment of TETs have

met with limited success thus far (Chen et al., 2014). Herein,

we present a multi-platform, comprehensive analysis of TETs

as part of The Cancer Genome Atlas (TCGA) project to uncover

the integrated genomic landscape of these rare tumors.

RESULTS

Clinical Outcomes and Demographics
The clinical and pathological characteristics of patients and the

117 samples included in this study are shown in Table 1 and

Table S1. Histological subtypes for each sample were evalu-

ated by WHO criteria. These include the A and AB subtypes

defined by spindle/oval epithelial cell morphology (AB includes

dense lymphocytic foci); B1, B2, and B3, which have epithelial

cells with an epithelioid shape with a gradation of lymphocyte

infiltration (B1 = lymphocyte rich to B3 = lymphocyte poor);

micronodular thymoma (MN-T); and TC, which is defined as

TC with histological features common of epithelial cancers

(Dadmanesh et al., 2001; Travis et al., 2004). Myasthenia gravis

(MG) was reported in 32 patients (27%) and 7 patients (6%) had

other autoimmune diseases. Younger patients were more likely

to have been diagnosed with an autoimmune disease, including

MG (p = 0.031; median ages for patients with and without

an autoimmune disease are 52 and 62 years, respectively).

Consolidated histological subtypes were associated with diag-

nosis of MG (p = 0.00015), and lymphocyte component pattern

(p = 0.027). MG was associated with each of the histological

thymoma categories A and B but not with TC (p = 0.0015).

After a median follow-up period of 38.3 months, there were

ten recurrences and eight deaths; in half of these recurrent

cases, local-regional recurrences were observed and presented

primarily as pleural involvement (80%). Improved progression-

free survival was associated with earlier Masaoka stage

(p = 0.000058), lower T stage (p = 0.0018), and non-Hispanic

ethnicity (p = 0.000375). Improved overall survival (OS)

was associated with higher tumor lymphocyte component

(p = 0.018; lower quantile has worse OS), histology subtypes A

and B1-2 (p = 0.008), and younger age at diagnosis (p = 0.017)

(Figure S1). The presence of MG or other autoimmune disease

was not significantly associated with survival.
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Table 1. Demographics and Clinical Parameters of Our Patient

Population

Parameter Total (%)

Total number 117

Age (years), median (range) 60 (17–84)

Gender

Male 61 (52)

Female 56 (48)

Race

White 97 (83)

Black 6 (5)

Asian 12 (10)

Data missing 2 (2)

Ethnicity

Hispanic 9 (8)

Non-Hispanic 94 (80)

Data missing 14 (12)

Masaoka stage

I 36 (31)

IIA 39 (33)

IIB 19 (16)

III 15 (13)

IVA 1 (1)

IVB 5 (4)

Data missing 2 (2)

Histological subgroup:

Thymoma (total 105)

Type A 10 (9)

Type AB 48 (41)

Type B1 12 (10)

Type B2 25 (21)

Type B3 10 (9)

Thymic carcinoma (TC) (total 10)

Squamous cell carcinoma 4 (3)

Undifferentiated carcinoma 4 (3)

Large cell neuroendocrine carcinoma 1 (1)

Thymic carcinoma, NOS 1 (1)

Micronodular thymoma (MNT) 2 (2)

Underwent surgery

Median sternotomy 72 (61)

Clamshell sternotomy 1 (1)

Lateral thoracotomy 22 (19)

Video-assisted thoracoscopic surgery (VATS) 14 (12)

Type of surgery not specified 8 (7)

Extent of surgical resection

R0 (no residual tumor) 97 (83)

R1 (microscopic residual tumor) 9 (8)

R2 (macroscopic residual tumor) 4 (3)

RX (presence of residual tumor

cannot be assessed)

2 (2)

Data missing 5 (4)

Adjuvant radiation therapy 39 (33)

Table 1. Continued

Parameter Total (%)

Adjuvant systemic therapy (total 14)

Platinum- and/or anthracycline-containing

combination

6 (43)

Other systemic therapy 4 (29)

Targeted therapy 2 (14)

Data missing 2 (14)

Recurrence of thymic tumor (total 10)

Locoregional recurrence 5 (50)

Locoregional recurrence and

distant metastasis

3 (30)

Distant metastasis 2 (20)

Autoimmune disease (total 39)a

Myasthenia gravis only 32 (82)

Non-myasthenia gravis autoimmune

disease only

7 (18)

Data missingb 6 (5)

Onset of myasthenia gravis (total 32)

Myasthenia gravis diagnosed prior

to thymoma

20 (62.5)

Myasthenia gravis and thymoma

diagnosed simultaneously

7 (22)

Myasthenia gravis diagnosed

after thymoma

4 (12.5)

Data not available 1 (3)

Secondary malignancy (total 22)

Diagnosed after thymic tumor 10 (45)

Diagnosed prior to thymic tumor 9 (41)

Diagnosed synchronously 3 (14)

See also Table S1 and Figure S1. NOS, not otherwise specified.
aOne patient with type AB thymoma had acetylcholine receptor

antibodies in serum but no clinical evidence for myasthenia gravis.

This case has not been included among patients with autoimmune

disease.
bData on both myasthenia gravis and other autoimmune disease are not

available in one case and data on non-MG autoimmune disease alone are

not available in five cases; these represent 5% of 117 cases.
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The Mutational Landscape of TETs
Whole-exome sequencing was performed on 117 tumor-normal

pairs. After filtering one hypermutated sample and 16 samples

with few mutations, 100 pairs were used to identify significantly

recurrent somaticmutations. MutSig2CV (Lawrence et al., 2013)

identified four significantlymutated geneswith q < 0.1 (Figure 1).

GTF2I was the most significant gene and had a high mutation

frequency (39%), particularly in type A and AB thymomas.

HRAS, TP53, and NRAS were recurrently mutated at lower fre-

quencies. The vast majority of mutations in HRAS and NRAS

occurred at known gain-of-function codons (HRAS at codon

12, 13, 117; NRAS at codon 61). In TP53, all mutations were

known pathogenic loss-of-function mutations. Clonality anal-

ysis using PyClone revealed that all four of the significantly

mutated genes were predominately clonal (Figures S2A and

S2B). This suggests that mutations in GTF2I, HRAS, NRAS,

and TP53 are most likely founder mutations occurring at the



Figure 1. The Landscape of DNA Mutation in TETs

The matrix in the center of the figure represents individual mutations in TET patients, color coded by type of mutation, for the significantly mutated genes, which

include GTF2I, HRAS, NRAS, and TP53. The rate of synonymous and non-synonymous mutations for each sample is displayed at the top of the matrix. The bar

plot on the left of the center matrix shows the number of mutations in each gene. The bar plot to the right of the matrix displays the q values for the most

significantly mutated genes. The bottom half of the figure depicts the arm-level sCNAs for each sample color coded by the type of CNA. The bar plot on the left

depicts the number of total sCNAs for each sample. See also Figures S2 and S3.
onset or very early in tumor development. To further assess the

potential mutational causes of thymoma, a non-negative matrix

factorization analysis was used to find enrichment of mutational

signatures. As seen in Figure S2C, we observed an enrichment

of C > Tmutations that occurred within CpG di-nucleotides. This

mutational signature is known to be associated with aging, and

is congruent with the late-onset (median age = 60 years)

demographic of this disease. A further survey of the data

revealed a relatively low mutational burden in the vast majority

of samples. When compared with 21 other cancers profiled by

the TCGA, TETs have the lowest average tumor mutation

burden (TMB) among adult cancers (average of 0.48 mutations

per megabase), with only two pediatric cancers having a lower

average TMB (rhabdomyosarcoma and medulloblastoma)

(Figure 2).

Given the low mutational burden seen in TET, we analyzed

the data to determine the prevalence of somatic copy number

alterations (sCNAs). We observed that the majority of patients

had none or few sCNAs, whereas samples that harbored

events had predominantly large-scale, whole- and arm-level

sCNAs that occurred predominantly in tumors without recur-

rently mutated genes (Figures 1 and S3A). The burden of

arm-level sCNA is enriched in histological type B2 and B3

thymomas, and TC (Wilcoxon rank-sum test, p = 1.8 3 10�9)

(Figures S3B–S3D). Lastly, analyses of RNA sequencing

(RNA-seq) data revealed no recurrent fusion events or viral/

bacterial components associated with TETs.
Integrated Clustering to Identify Molecular Subtypes
Traditionally, histological subtyping of TETs has been

challenging because of histological complexity, inter-observer

inconsistency, and lack of prognostic consistency. Integrating

the multiple TCGA platforms clustering results, we identified

distinct molecular subtypes of TETs by a modification of the

cluster-of-clusters-assignments (COCA) approach (Cancer

Genome Atlas Network, 2012b). We utilized the centroids of

platform-specific cluster assignments from the sCNV, mRNA,

miRNA, DNA methylation, and reverse phase protein array

(RPPA) data (Figures S3–S5) to develop a fuzzy assignment

weighted matrix for each sample to each platform subtype

centroid (Figure 3A). This matrix was then used as the input

to consensus clustering of all samples, allowing us to identify

integrated molecular subtypes. We identify four molecular sub-

types by this approach (Figure 3A) with high relatedness to a

blinded pathologic review of WHO histopathologic subtypes

(p < 0.0005). Subtype 1 is primarily represented by type B, sub-

type 2 by type TC, subtype 3 is primarily type AB, and subtype

4 is a mix of types A and AB (Figure 3B). As expected, subtype

1 (mostly type B) was heavily enriched for cases that were

associated with MG. We also tested relationships between sur-

vival and molecular subtype and demonstrated an inferior OS

for patients in subtype 2, which is predominantly comprised

of TC cases (p < 0.01) (Figure 3C). We observed that cases

in subtypes 1 and 3 are associated with higher lymphocyte

content (p < 0.01), GTF2I mutation is predominantly seen in
Cancer Cell 33, 244–258, February 12, 2018 247



Figure 2. TMB in TETs (THYM) Compared with 21 Other Cancers Profiled by the TCGA

The proportional presence of mutational transitions and transversions by cancer lineage are depicted in the histograms at the bottom of the figure.
subtypes 3 and 4, and HRAS mutation is predominantly

observed in subtype 4.

We also employed a complementary approach known as

TumorMap, which generates a map of samples for interactive

exploration, statistical analysis, and data visualization using the

Google Maps API (application program interface). Samples are

arranged on a hexagonal grid based on similarity: samples with

similar genomic profiles are placed near each other in the map,

whereas dissimilar samples are placed further away. Clusters of

samples that appear as ‘‘islands’’ in the map indicate groups of

samples that share genomic features. This analysis, similar to

COCA, revealed four distinct molecular clusters that were highly

correlated with WHO histological subtype and COCA classifica-

tions (Figure 3D). We performed single-platform analyses as

well as multi-platform PARADIGM analysis (copy number + RNA

expression) to identify unique pathways and genomic hallmarks

overlaidontotheTumorMaptodifferentiatetheclusters(Figure3D).

Single-platformanalysesdemonstrated that typeAandAB tumors

are characterized by GTF2I mutations and overexpression of a

large miRNA cluster on chromosome 19q13.42 (Figures 3D and

S4B). Type C tumors are characterized by loss of chromosome

16q (Figure 3D). Examination of the PARADIGM findings revealed

upregulation of tumor suppression (p53) and downregulation of

oncogenes (MYC/Max,MYB,andFOXM1) in theA-likecluster (Fig-

ure 3D). The opposite is seen in the AB-, B-, and C-like clusters

where tumor suppression is downregulated (p53, and TAp73a),

and oncogenes are upregulated (MYC/Max, MYB, FOXM1, and

E2F1) (Figure3D).Theseresultsare in linewiththeknownincreased

clinical aggressiveness observed in type B and TC TETs.

GTF2I, a Thymoma-Specific Oncogene
Given thepredominanceofGTF2Imutations in typeA andAB thy-

momas,we utilized ourmulti-platformdata to further characterize
248 Cancer Cell 33, 244–258, February 12, 2018
GTF2I-mutated tumors. All of the mutations occur at a single

codon (L424H), a behavior potentially consistent with an onco-

genic mutation (Figure 4A). GTF2I mutations are very rare in

cancer, with no observed L424H mutations in any other of the

�10,000 tumor samples profiled by the TCGA (Figure 4B). There

are occasional (<1%)GTF2Imutations in other cancers and these

are exclusively at sites other than L424H. We examined the tran-

scriptional responseassociatedwithGTF2ImutationsusingRNA-

seq data analysis (Figure 4C). We identified a set of genes that

could predict wild-type and mutant status with 100% specificity

and 77% sensitivity. Ten GTF2I mutant samples were misclassi-

fied by our predictor as wild-type and all had a low variant allele

frequency, concordant low tumor purity, and high lymphocyte

grade (Figure S2B). The GTF2I mutants had higher expression

of genes involved in cell morphogenesis, receptor tyrosine kinase

signaling, retinoic acid receptors, neuronal processes, as well as

theWNTandSHHsignaling pathways. DNAmethylation changes

that associatedwithGTF2Imutationswere indistinguishable from

changes associated with histological type and lymphocyte grade

(Figure 4D). RPPAdatawere available for 42 thymoma samples of

types A or AB, of which 32 exhibited GTF2I mutations. After cor-

recting for multiple hypothesis testing, we found 91 proteins to

be significantly downregulated in the GTF2I mutant tumors.

Pathway analysis demonstrated lower expression of the

apoptosis, cell cycle, DNA damage response, hormone receptor

signaling, breast hormone signaling, RAS/MAPK, RTK, and

TSC/mTOR pathways in GTF2I mutant tumors (Figure 4E). Tran-

script gene expression data for the same proteins used in the

RPPA pathway analysis were in good concordance (Figure S5C).

Autoimmunity
In agreement with previous observations (Cufi et al., 2014; Travis

et al., 2015), thymoma-associated MG (TAMG) was more
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Figure 3. Integrative Unsupervised Clustering of Subtypes from Five Data Platforms

(A) Consensus clustering separated TET samples into four molecular subtypes (n = 117). The blue and white heatmap at the top shows sample consensus.

The blue and yellow heatmap in the center shows the correlation to each individual data type cluster membership centroid. The bottom displays the presence

(black) or absence (gray) of a mutation in one of the four significantly mutated genes.

(B) Summary of samples in each cluster by WHO histological subtype.

(C) Survival differences across molecular subtypes. Survival data were missing for a sample in cluster 3.

(D) Map of samples generated from TumorMap colored by pathology status. Samples are placed according to similarities in their genomic profiles integrating

all the platforms. For each cluster, single-platform hallmarks are listed above the thin line, whereas PARADIGM results are listed below the thin line. See also

Figures S3–S5.
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Figure 5. Patterns of sCNA and Gene Expression Associated with Autoimmunity

(A and B) The prevalences of altered chromosome arms were compared between the positive (MG+) and negative (MG�) status of myasthenia gravis for all

samples across histology types (A) and only the subset of samples in B1, B2, B3 histology types (B). For the boxplots: line in the box indicates the median; lower

and upper hinges correspond with the first and third quartiles; upper and lower whiskers extend to 1.53 interquartile range; outlier data are shown as points.

(C) Gene-level sCNA frequency landscape for samples with B1, B2, B3 histology, comparing between the history of myasthenia gravis status. The c2 test of

independence was applied to arm-level sCNA for each chromosome arm to determine significantly enriched events between MG+ and MG� status. False

discovery rates (q) less than 0.05 (�log q value = 3) are shown for gains (red) and deletions (blue).

(D) Log2 normalized gene expression of selected differentially expressed genes.

See also Figure S6.
common in type B than type A and AB thymomas and absent in

TC andmicronodular thymomas (MNTs). Excluding TC andMNT

from further MG-related analyses, an observation was the higher

prevalence of aneuploidy among MG+ thymomas (Figures 5A,

5B, and S6A–S6F). The MG association of aneuploidy among

type B thymomas suggests that aneuploidy might not just be a

surrogate marker of the more often aneuploid and MG-prone

type B thymomas (Zettl et al., 2000) but might be of pathogenetic

relevance for TAMG. The association of aneuploidy with MGwas

irrespective of whether MG was detected before, at the time, or

after thymoma detection (Figures S6G and S6H). However,

which gains and losses are functionally important could not be

assessed as none of the observed arm-level and gene-level

somatic copy number alterations at 6p, 7, 9, 12, 14, and 21

were significantly enriched in MG+ thymomas (Figure 5C).

Furthermore, MG status was not associated with mutations in
Figure 4. Multi-platform Analysis of the Thymoma-Specific Oncogene

(A) Lollipop plot of GTF2I demonstrating all the mutations observed in GTF2I. Gr

(B) The frequency of somatic mutations in GTF2I in other cancer lineages compa

(C) GTF2I mutational gene expression signature in thymoma type A and AB.

(D) GTF2I methylation signature in type A and AB. Ten misclassified samples are

(E) Boxplots of pathway scores of GTF2I mutant (red) and wild-type (blue) tumo

represent the interquartile range, outliers are marked with dots, and p values are
any single gene (including GTF2I) or with any methylation signa-

ture or miRNA profile (data not shown).

Supervised clustering of all expressed genes revealed no

MG-associated gene expression signature in type A/AB/B

thymomas. Similarly, genes with a role in immunity and tolerance

induction were not differentially expressed, including major

histocompatibility complex (MHC) class I and II genes; proteases

with a role in T cell selection; co-receptors, signaling and

checkpoint molecules; apoptosis-related genes; or expression

levels of surrogate genes of T cell subsets. We further could

not confirm overexpression of type I interferons and TLR3 in

MG+ thymomas, as previously reported (Cufi et al., 2014).

Abnormally low expression levels of self-antigens in the

thymus underlie autoimmunization against them in many auto-

immune diseases (Pugliese et al., 1997; Vafiadis et al., 1997).

This prompted analysis of intratumoral transcript levels of the
GTF2I

een boxes mark the GTF2I-like repeat regions.

red with TETs.

also reported, based on the RNA-seq data.

rs. Boxplot display the median value, upper and lower quartiles, the whiskers

based on the ANOVA test.
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major autoantigens proposed in TAMG: the acetylcholine recep-

tor (AChR) a-subunit (Masuda et al., 2012; Wilisch et al., 1999);

striational muscle antigens, titin, and ryanodine receptors type

I and II (RYR1, RYR2) (Huemer et al., 1992; Mygland et al.,

1994); and cytokines (type I interferons, IL17, IL22) (Wolff et al.,

2014). Expression levels of the AChR a-subunit gene (CHRNA1)

were 3.0-fold higher (false discovery rate [FDR] = 0) in the 32

MG+ than 72MG� cases, while levels of the other subunit genes

were largely unchanged. By contrast, genes with sequence

similarities with CHRNA1, TTN, and RYR1/RYR2 were over-

expressed in TAMG. Expression levels of themedium-sized neu-

rofilament, NEFM, which exhibits immunogenic similarities with

the AChR a-subunit (Schultz et al., 1999) and titin (Marx et al.,

1996; Mencarelli et al., 1991), were 23.8-fold higher in MG+

compared with MG� thymomas and even higher (30-fold) in

the MG+ type A/AB subset (FDR = 0) (Figure 5D). Furthermore,

the mainly neuronal RYR3, which shares homology with

muscular RYR1 and cardiac RYR2, was upregulated in MG+

thymomas (5.5-fold; FDR = 0), with the highest upregulation

in the B1/B2/B3 subset (Figure 5D). Taken together, MG in

thymoma patients was associated with intratumoral overexpres-

sion of genes that show limited (NEFM) or extensive (RYR3)

sequence similarity with major autoimmune targets.

Thymic Carcinomas
TCs are a less common subset of TETs that entail a more

aggressive clinical course. These tumors histologically resemble

common epithelial tumors. To better understand this subset, we

performed a focused analysis on the TC samples within our data-

set (n = 10). Mutational analysis did not identify any recurrently

mutated genes in this subset (Figure 6A). When looking at arm-

level sCNAs, however, we did observe 8 of 10 samples having

a loss of chromosome 16q. This observation has been previously

reported in TC (Zettl et al., 2000). Evaluation of the Sanger

Gene Census revealed several tumor suppressors in this region,

including CYLD, CBFB, CDH1, CDH11, CTCF, and ZFHX3.

When comparing the TMB between TC and all other thymoma

histologies, we observed a significant increase in TMB in TC

samples (p = 5.73 10�5) (Figure 6B). Of distinct interest, a single

TC sample exhibited an exceptionally high TMB (21.29 muta-

tions per megabase), and was excluded from the analysis in Fig-

ure 6B to avoid skewing the results. However, a further analysis

of this sample revealed a characteristic mutation pattern of sin-

gle nucleotide variants (SNVs) most similar to COSMIC signature

6 (cosine similarity = 0.91; http://cancer.sanger.ac.uk/cosmic/

signatures) and a significant enrichment of 1-base indels (19%

versus 5% in remaining samples), which is associated with

microsatellite unstable tumors with defective DNA mismatch

repair (Figure 6C). Interestingly, this sample has a pathogenic

nonsense mutation (E37*) in MLH1 (https://www.ncbi.nlm.nih.

gov/clinvar/variation/89641/) with a concomitant loss of MLH1

mRNA expression (2.6-fold downregulation against the median).

To our knowledge, this is the first report of a microsatellite

unstable TC.

DISCUSSION

The traditional classification of TETs has been based on the

histological appearance of the neoplastic epithelial cells and
252 Cancer Cell 33, 244–258, February 12, 2018
the relative abundance and type of lymphocytes. The WHO his-

tological classification has been shown to correlate with clinical

outcomes such as tumor stage, clinical behavior, and prognosis.

However, with the exception of the differential expression of

several epithelial and lymphocyte markers, the molecular basis

of this classification system has not been completely explored

(Travis et al., 2015). Our analyses demonstrate that broad

histological subtypes (A, AB, B, and TC) strongly associate

with multiple classes of aberrations occurring at different levels.

Importantly, this demonstrates that A/AB-type, B-type, and

C-type tumors are very distinct biological entities and do not

represent a histological continuum of diseases. A recent publica-

tion by Lee et al. (2017) using the publicly available TCGA TET

dataset also demonstrated separation of TETs into four clusters

defined by GTF2I mutations, T cell signaling, chromosomal

stability, and chromosomal instability.

GTF2I L424H mutations are unique to TETs and are the most

common mutation in this tumor type. This mutation was

observed in 100% of the type A and 70% of type AB thymomas.

Mutations in GTF2I have been described rarely in other tumor

types and are present at different codons. RNA-seq identified

higher expression of genes involved in cell morphogenesis,

receptor tyrosine kinases, retinoic acid receptors, neuronal pro-

cesses, as well as the WNT and SHH signaling pathways in the

GTF2I mutant tumors. These results are similar to those

observed when Gtf2ird1 was knocked out in a mouse model

(Corley et al., 2016). GTF2IRD1 is a GTF2I family member,

located near GTF2I, which was also upregulated in our dataset

inGTF2Imutants. From this study, we also observe clonal, recur-

rent drivers in HRAS and NRAS. These potent oncogenes may

play a role in determining prognosis, to be assessed in future

studies with longitudinal follow-up. Also of note, we do not

observe any viral etiology as reported before.

Autoimmunity is a hallmark of thymomas, with TAMG occur-

ring in close to 30% of cases (Zekeridou et al., 2016). Thymoma

represents the only TCGA tumor type to be analyzed that has a

strong association with an autoimmune disease. This analysis

demonstrates a significant association of aneuploidy with a can-

cer-associated autoimmune disease. However, still unknown is

why TAMG patients have a limited spectrum of autoantibodies

to the AChR, titin, and ryanodine receptors (RYR1, RYR2) (Gilhus

et al., 2016; Klein et al., 2013; Zekeridou et al., 2016). In non-

thymic cancers, paraneoplastic autoimmune diseases typically

emerge from immune processes directed to autoantigens that

are common to the cancer and the target organ (Dalmau et al.,

1992). By contrast, thymomas do not express bona fide com-

plete AChR, titin, and RYR proteins (Marx et al., 1992; Mygland

et al., 1995; Siara et al., 1991) but rather proteins with cross-

reacting AChR, titin, and RYR epitopes (Marx et al., 1996;

Mygland et al., 1995; Romi et al., 2002; Schultz et al., 1999). In

this study, we confirm the TAMG-associated overexpression of

themid-size neurofilament gene,NEF, which harbors sequences

coding for AChR and titin epitopes (Marx et al., 1996; Schultz

et al., 1999). We also find that CHRNA1 and RYR3 are

overexpressed in MG+ thymomas. With the observed over-

expression of autoantigens in neoplastic thymic epithelial cells,

defective negative T cell selection as the sole autoimmunizing

mechanism is unlikely. In the absence of enrichment of any

immunological signature or evidence of lymphocyte activation

http://cancer.sanger.ac.uk/cosmic/signatures
http://cancer.sanger.ac.uk/cosmic/signatures
https://www.ncbi.nlm.nih.gov/clinvar/variation/89641/
https://www.ncbi.nlm.nih.gov/clinvar/variation/89641/


Figure 6. Genomic Analysis of Thymic Carcinomas

(A) The landscape of DNA mutation in type TC tumors. The matrix at the top of the panel depicts clinical information. The center of the panel depicts individual

mutations in type TC tumors, color coded by type of mutation, for the previously identified significantly mutated genes and focal copy number changes.

The bottom half of the panel depicts the arm-level sCNAs for each sample color coded by the type of CNA. The bar plot on the left depicts the number of total

sCNAs for each sample.

(B) A boxplot demonstrating the TMB of samples by histology. Lines in the boxes indicate the median; lower and upper hinges correspond with the first and third

quartiles; upper and lower whiskers extend to 1.53 interquartile range; outlier data are shown as points. In order to avoid skewing the results, one hypermutated

TC sample and one TC sample with TMB = 0 were excluded.

(C) The normalized profile of COSMIC signature 6 (microsatellite unstable tumors) and the SNV mutation spectra of the hypermutated TC sample

(TCGA-ZB-A966) along 96 base substitution types in tri-nucleotide sequence motifs (top) and the heatmap of cosine similarity between the mutation spectra in

TCGA-ZB-A966 and 30 curated COSMIC signatures.
in MG+ thymomas, it appears more likely that ‘‘false-positive

selection’’ driven by MHC-bound, autoantigen-derived peptides

is operative or prevailing in MG+ thymomas to explain the

focused anti-muscle autoimmunity in TAMG (Willcox, 1993).

Asmentioned previously, themutational burden in TETs is low,

except for some TC samples. This low frequency of actionable

mutationsmay in part explain the paucity of effective molecularly

targeted therapies in these tumors (Loehrer et al., 2004; Palmieri
et al., 2002; Thomas et al., 2015). Whereas sunitinib (in TC),

somatostatin receptor inhibitors (in TET patients expressing

somatostatin receptors), everolimus (in thymomas and TCs),

and anti-IGF1R (in thymomas) have shown some activity, other

agents, including small-molecule inhibitors of EGFR, KIT, SRC,

and cyclin-dependent kinase, histone deacetylase inhibitors,

and anti-angiogenic drugs, have shown little to no clinical activity

(Chen et al., 2014; Scorsetti et al., 2016; Zucali et al., 2017). Even
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when present, the significantly mutated genes in TETs (GTF2I,

HRAS, NRAS, and TP53) are not targetable at this time. An

exception is the finding of a microsatellite unstable TC, which

may suggest the use of immune checkpoint therapy for these

very rare cases (Le et al., 2015). Given the proportion of patients

that we observed with no driver mutations or copy number

alterations, future use of whole-genome sequencing may reveal

structural variation or noncoding drivers of this disease.

In summary, TETs are a rare, histologically and molecularly

heterogeneous group of tumors driven by a limited number of

genomic events. A hallmark of these tumors is their association

with autoimmunity linked through overexpression of muscle

epitopes. Incorporation of molecularly defined subtypes for

histological diagnosis, as well as drug development based on

these genomic data, particularly targeting mutant GTF2I, may

have significant clinical implications for patients with TETs.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

RPPA antibodies RPPA Core Facility,

MD Anderson Cancer Center

https://www.mdanderson.org/research/research-resources/

core-facilities/functional-proteomics-rppa-core.html

Biological Samples

Tumor and normal

tissue samples

TCGA Network See experimental methods and https://gdc.cancer.gov/

Critical Commercial Assays

DNA/RNA AllPrep kit Qiagen 80204

mirVana miRNA Isolation Kit Ambion/Thermo Fisher AM1560

QiaAmp DNA Blood Midi kit Qiagen 51185

AmpFLSTR Identifiler Applied Biosystems/

Thermo Fisher

A30695

RNA6000 Nano assay Agilent 5067-1511

Illumina Infinium HM450 array Illumina WG-314-1003

Zymo EZ DNA methylation kit Zymo Research D5004

lllumina mRNA TruSeq kit Illumina RS-122-2001

Nimblegen SeqCap EZ

Exome Kit v3.0

Nimblegen 06465692001

Affymetrix SNP 6.0 arrays Affymetrix/Thermo Fisher 901182

Deposited Data

Raw genomic and

clinical data

NCI Genomic Data Commons https://gdc.cancer.gov/

TCGA GAF2.1 TCGA https://gdc-api.nci.nih.gov/v0/data/a0bb9765-3f03-485b-

839d-7dce4a9bcfeb

Software and Algorithms

ConsensusClusterPlus (Wilkerson and Hayes, 2010) http://bioconductor.org/packages/release/bioc/html/

ConsensusClusterPlus.html

pheatmap v1.0.2 NA https://www.rdocumentation.org/packages/pheatmap/versions/1.0.2

samr v2.0 (Li and Tibshirani, 2013;

Tusher et al., 2001)

https://www.rdocumentation.org/packages/samr/versions/2.0

MatrixEQTL v2.1.1 (Shabalin, 2012) https://www.rdocumentation.org/packages/MatrixEQTL/versions/2.1.1

miRTarBase V6.0 (Hsu et al., 2014) http://mirtarbase.mbc.nctu.edu.tw/

TargetScan 7.0 (Agarwal et al., 2015) http://www.targetscan.org/vert_71/

MapSplice 0.7.4 (Wang et al., 2010b) http://www.netlab.uky.edu/p/bioinfo/MapSplice2

V2_MapSpliceRSEM workflow TCGA https://tcga-data.nci.nih.gov/tcgafiles/ftp_auth/distro_ftpusers/

anonymous/tumor/thym/cgcc/unc.edu/illuminahiseq_rnaseqv2/

rnaseqv2/unc.edu_THYM.IlluminaHiSeq_RNASeqV2.mage-tab.1.0.0/

DESCRIPTION.txt

survival R package NA https://www.rdocumentation.org/packages/survival/versions/2.41-2

DAVID annotation database (Huang et al., 2007a, 2007b) https://david.ncifcrf.gov/

ClaNC R package (Dabney, 2006) http://www.stat.tamu.edu/�adabney/clanc/

VirusSeq (Chen et al., 2013) http://odin.mdacc.tmc.edu/�xsu1/VirusSeq.html

Array-Pro Analyzer Media Cybernetics NA

SuperCurveGUI (Hu et al., 2007) http://bioinformatics.mdanderson.org/Software/supercurve

MicroVigene VigeneTech, Inc. NA

BioBloomTools

(BBT, v1.2.4.b1)

(Chu et al., 2014) http://www.bcgsc.ca/platform/bioinfo/software/biobloomtools

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

ABySS v1.3.4 (Simpson et al., 2009) http://www.bcgsc.ca/platform/bioinfo/software/abyss

Trans-ABySS v1.4.8 (Robertson et al., 2010) http://www.bcgsc.ca/platform/bioinfo/software/trans-abyss

DrL (Martin et al., 2011) http://www.cs.sandia.gov/�smartin/software.html

TumorMap v0.5 NA https://tumormap.ucsc.edu/

RADIA (Radenbaugh et al., 2014) https://github.com/aradenbaugh/radia/

bwa v0.5.9 (Li and Durbin, 2009) https://github.com/lh3/bwa

Samtools v0.1.16 (Li et al., 2009) https://github.com/samtools/samtools

Picard NA https://github.com/broadinstitute/picard

SomaticSniper v1.0.4 (Larson et al., 2012) https://github.com/genome/somatic-sniper

Strelka v0.4.6.2 (Saunders et al., 2012) https://sites.google.com/site/strelkasomaticvariantcaller/

VarScan v2.2.6 (Koboldt et al., 2012) http://dkoboldt.github.io/varscan/

joinx v1.9 NA https://github.com/genome/joinx

bam-readcount v0.4 NA https://github.com/genome/bam-readcount

GATK 1.0.5336 (McKenna et al., 2010) https://software.broadinstitute.org/gatk/

Pindel v0.2.2 (Ye et al., 2009) https://github.com/genome/pindel

ContEst (Cibulskis et al., 2011) http://archive.broadinstitute.org/cancer/cga/contest

MuTect (Cibulskis et al., 2013) https://github.com/broadinstitute/mutect

Oncotator (Ramos et al., 2015) http://www.broadinstitute.org/cancer/cga/oncotator

SnpEff (Cingolani et al., 2012) http://snpeff.sourceforge.net/

Atlas2 Suite (Challis et al., 2012) https://sourceforge.net/projects/atlas2/files/

ANNOVAR (Wang et al., 2010a) http://annovar.openbioinformatics.org/en/latest/

ABSOLUTE (Carter et al., 2012) http://archive.broadinstitute.org/cancer/cga/absolute

PyClone (Roth et al., 2014) http://compbio.bccrc.ca/software/pyclone/

TITAN (Ha et al., 2014) https://github.com/gavinha/TitanCNA

GISTIC 2 (Mermel et al., 2011) http://software.broadinstitute.org/software/cprg/?q=node/31
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to andwill be facilitated by the Lead Contact, Patrick

J. Loehrer (ploehrer@iu.edu).

EXPERIMENTAL MODELS AND SUBJECT DETAILS

Sample Acquisition
The TCGA THYM study accepted samples from patients diagnosed with thymic epithelial tumors. Samples were submitted to the

TCGA Biospecimen Core Resource (BCR) from the following: Analytical Biological Services, Inc.; Barretos Cancer Hospital, Brazil;

Baylor College of Medicine; Cleveland Clinic; Emory University; Greenville Health System; Hospital Louis Pradel; Indiana University

School of Medicine; International Genomics Consortium; MD Anderson Cancer Center; Memorial Sloan-Kettering Cancer Center;

PrincessMargaret Hospital; Regina ElenaNational Cancer Institute; Roswell Park Cancer Institute; St. Joseph’s Hospital andMedical

Center (Phoenix, AZ); Thoraxklinik Universit€atsklinikum Heidelberg; University of Mannheim; University of New Mexico; Valley

Hospital; and Yale University. Primary tumor samples and matched germline control DNA (blood or blood components, including

DNA extracted at the submitting site; non-neoplastic solid tissue) were obtained from patients who had received no prior treatment

for their disease (chemotherapy or radiotherapy). Specimens were shipped overnight to the Biospecimen Core Resource using a

cryoport that maintained an average temperature of less than -180�C.
TCGA Project Management has collected necessary human subjects documentation to ensure the project complies with

45-CFR-46 (the ‘‘Common Rule’’). The program has obtained documentation from every contributing clinical site to verify that IRB

approval has been obtained to participate in TCGA. Such documented approval may include one or more of the following:

d An IRB-approved protocol with Informed Consent specific to TCGA or a substantially similar program. In the latter case, if the

protocol was not TCGA-specific, the clinical site PI provided a further finding from the IRB that the already-approved protocol is

sufficient to participate in TCGA.

d A TCGA-specific IRB waiver has been granted.
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d A TCGA-specific letter that the IRB considers one of the exemptions in 45-CFR-46 applicable. The two most common exemp-

tions cited were are that the research fall under 46.102(f)(2) or 46.101(b)(4). Both exempt requirements for informed consent

because the received data and material do not contain directly identifiable private information.

d A TCGA-specific letter that the IRB does not consider the use of these data and materials to be human subjects research. The

was most common for collections in which the donors were deceased.

Cases were classified by the submitting institution in accordancewith theWorld Health Organization (Travis et al., 2004) categories

of type A, AB, B1, B2, B3, or TC. Pathology quality control was performed on each tumor specimen from a frozen section slide

prepared by the BCR. H&E (H&E) stained sections from each sample were subjected to independent pathology review to confirm

that the tumor specimen was histologically consistent with the reported thymic epithelial tumor type. The percent tumor nuclei,

percent necrosis, and other pathology annotations were also assessed. Tumor samples with R60% tumor nuclei (with exception

for WHO Type B1 tumors which have high lymphocytic infiltration obviating the ability to have R60% tumor nuclei) and %20%

necrosis were submitted for nucleic acid extraction.

Sample Processing
DNA and RNA were extracted and quality was assessed at the central BCR. RNA and DNA were extracted from tumor using a modi-

fication of the DNA/RNA AllPrep kit (Qiagen). The flow-through from the Qiagen DNA column was processed using a mirVana miRNA

Isolation Kit (Ambion). This latter step generated RNA preparations that included RNA <200 nt suitable for miRNA analysis. DNA was

extracted from blood using the QiaAmp DNA Blood Midi kit (Qiagen).

RNA samples were quantified by measuring Abs260 with a UV spectrophotometer and DNA quantified by PicoGreen assay. DNA

specimens were resolved by 1% agarose gel electrophoresis to confirm highmolecular weight fragments. A custom Sequenom SNP

panel or the AmpFISTR Identifiler (Applied Biosystems) was utilized to verify that tumor DNA and germline DNA representing a case

were derived from the same patient. Five hundred nanograms of each tumor and germline DNA were sent to Qiagen (Hilden,

Germany) for REPLI-g whole genome amplification using a 100 mg reaction scale. RNA was analyzed via the RNA6000 Nano assay

(Agilent) for determination of an RNA Integrity Number (RIN), and only analytes with a RINR7.0 were included in this study. Only cases

yielding a minimum of 6.9 mg of tumor DNA, 5.15 mg RNA, and 4.9 mg of germline DNA were included in this study.

Sample Qualification
The BCR received tumor samples with germline controls from a total of 200 cases, of which 124 cases qualified and were sent for

further genomic analysis. Of the 76 that disqualified, 29 were disqualified during prescreening at the BCR for either prior treatment

(22 cases) or a tissue sample that did not meet entry requirements (7 cases). The remaining cases did not pass quality control checks

at the BCR, including 18 cases for insufficient tumor nuclei (<60%), 3 for insufficient tumor nuclei and excessive necrosis (>20%), 1 for

unacceptable diagnosis during pathology review. Molecular quality control checks of the extracted nucleic acids resulted in the

disqualification of 19 cases for insufficient germline DNA yield, 3 for RNA integrity scores of <7.0, 2 for insufficient germline DNA yields

and low RIN score, and 1 did not have genotypically matched tumor and germline samples.

Ninety cases had sufficient residual tumor tissue following extraction of nucleic acids for proteomics assays. A 10 to 20mg portion

of snap-frozen tissue adjacent to the tissue used for molecular sequencing and characterization was submitted to MD Anderson for

reverse phase protein array (RPPA) analysis.

Clinical Data
The clinical data collected included patient age, sex, race, ethnicity, height, weight, tumor anatomic location, World Health

Organization (Travis et al., 2004) histologic classification, Masaoka staging, history of myasthenia gravis, history of prior cancers,

synchronous cancers and subsequent cancers including distant metastasis or second primary cancers, date and kind of treatments,

vital status, date of death, and date of last contact.

METHODS DETAILS

Expert Pathology Committee Histologic Evaluation
A panel of 8 histopathologists with expertise in thymic pathology evaluated digital slides of the 127 thymic epithelial tumors that

qualified for this study. These images were made available by Biospecimen Core Resource’s Virtual Imaging for Pathology,

Education & Research application (VIPER). Slides consisted of H&E stained frozen sections of the cryomaterial that was used for

themolecular studies, and H&E stained sections from the formalin-fixed paraffin embedded tumours scanned at 400Xmagnification.

Histomorphologic features evaluated included the histotype according to the 2015 version of the WHO classification of thymic

tumors (Travis et al., 2015); the estimated tumour content per area and proportion of lymphocytes per all cells in a given section

(in 10% increments); the quality of tissue preservation, and the identity or (rarely) discrepancy between the paraffin and frozen section

in each case. If available, immunohistochemical findings were retrieved from pathology reports and used to refine tumor classifica-

tion. Tumor stage according to the Masaoka-Koga system (Detterbeck et al., 2011b) and the provisional TNM system proposed by

ITMIG (Detterbeck et al., 2014) were checked on the basis of the pathology reports. Further group discussion and reviews allowed for

consensus determination on the above histological and staging features.
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DNA Methylation
Sample Preparation and Hybridization

The Illumina InfiniumHM450 array (Bibikova et al., 2011) was used to assay 117 TCGA TET samples using standard protocols. Briefly,

genomic DNA (1000 ng) for each sample was treated with sodium bisulfite, recovered using the Zymo EZ DNA methylation kit

(Zymo Research, Irvine, CA) according to the manufacturer’s specifications and eluted in 18 ul volume. After passing quality control,

bisulfite-converted DNA samples were whole genome amplified followed by enzymatic fragmentation and hybridized overnight to

BeadChips followed by a locus-specific base extension with labeled nucleotides (cy3 and cy5). BeadArrays were scanned and

the raw data were imported into custom programs in R computing language for pre-processing and calculation of DNA methylation

beta value for each probe and sample. Quality control and probe exclusions were done using standard protocols as previously

described in (Cancer Genome Atlas Research Network, 2014a).

Clustering Analysis

We carried out an unsupervised consensus clustering as implemented in the Bioconductor package ConsensusClusterPlus

(Wilkerson and Hayes, 2010), with Euclidean distance and partitioning around medoids (PAM). Consensus clustering was applied

to the DNA methylation data from the entire cohort, using the most variable 1% of CpG probes.

Epigenetically Silenced Genes

To identify epigenetically silenced genes we applied method previously described in (Cancer Genome Atlas Research Network,

2014b). Specifically, we first identify promotor CpG sites that meet several criteria: (a) at least 90% of normal samples should be

clearly unmethylated (b <= 0.1) at that site, (b) at least 5% of tumor samples should clearly methylated (b >= 0.3) and (c) a t-test

comparing expression levels in methylated (b >= 0.3) and unmethylated tumor samples (b < 0.1) should be significant at an

FDR < 0.01. A gene is defined as epigenetically silenced if at least 25% of the promotor CpG sites meet all of these criteria. A total

of 120 normal samples were used for this analysis including 10 each drawn at random from the 12 TCGA projects that include normal

samples, such lung adenocarcinoma (Cancer Genome Atlas Research Network, 2014a), breast invasive carcinoma (Cancer Genome

Atlas Network, 2012b), colon adenocarcinoma (Cancer Genome Atlas Network, 2012a), and others.

Estimation of Leukocyte Fraction

We estimated leukocyte fraction using an approach described in Carter et al (Carter et al., 2012). As a source of leukocyte DNA

methylation level, we used DNA methylation data of peripheral blood mononuclear cells (PBMC) from six healthy donors (Reinius

et al., 2012) (GSE35069).

Additional Analyses
Fisher’s exact test was used to test for associations of DNA methylation clusters with mRNA expression clusters and significantly

mutated genes. Analyses described above as well as plots including heat maps and scatterplots were carried out in R using standard

methods and customized routines.

miRNA
microRNA Libraries and Sequencing

We generatedmicroRNA sequence (miRNA-seq) data for 117 tumor samples usingmethods described previously except that 1ug of

total RNA (at 250ng/uL) was used as input instead of mRNA-depleted RNA (Chu et al., 2016). Briefly, reads were aligned to the

GRCh37/hg19 reference human genome, and read count abundance was annotated with miRBase v16 stemloops and mature

strands. While the read counts included only exact-match read alignments,.bam files at CGHub (cghub.ucsc.edu) (Wilks et al.,

2014) include all sequence reads. We used miRBase v20 to assign 5p and 3p mature strand (miR) names to MIMAT accession IDs.

Unsupervised Clustering of miRNA Mature Strands

To identify subtypes within the THYM cohort we used hierarchical clustering with pheatmap v1.0.2 in R. The input was a reads-per-

million (rpm) data matrix for the 303 (top 25%) miRBase v16 5p or 3pmature strands that had the largest variances across the cohort.

We transformed each row of thematrix by log10(rpm + 1), then used pheatmap to scale the rows.We usedWard.D2 for the clustering

method with Pearson correlation and Euclidean as the distance measures for clustering the columns and rows respectively.

Differentially Abundant microRNAs

We identified miRs that were differentially abundant using unpaired two-class SAM analyses (samr v2.0) with an rpm input matrix and

an FDR threshold of 0.05 (Li and Tibshirani, 2013).

miR Targeting

We assessed potential miRNA-gene targeting for all tumor samples by calculating miR-mRNA Spearman correlations with

MatrixEQTL v2.1.1 (Shabalin, 2012), using gene-level normalized abundance RNA-seq (RSEM) data. We calculated correlations

with a P value threshold of 0.05, then filtered the anticorrelations at FDR<0.05. We extracted miR-gene pairs that corresponded

to functional validation publications (luciferase reporter, qPCR, western blot) reported by miRTarBase V6.0 (Hsu et al., 2014).

We used TargetScan 7.0 for predicted targeting (Agarwal et al., 2015).

RNAseq
RNA Library Construction, Sequencing, and Analysis

One mg of total RNAwas converted tomRNA libraries using the llluminamRNA TruSeq kit (RS-122-2001 or RS-122-2002) following the

manufacturer’s directions. Libraries were sequenced 48x7x48bp on the Illumina HiSeq 2000 as previously described (Cancer Genome
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Atlas Research Network, 2012). FASTQ fileswere generated byCASAVA. RNA readswere aligned to the hg19 genome assembly using

MapSplice 0.7.4 (Wang et al., 2010b). Gene expression was quantified for the transcript models corresponding to the TCGA GAF2.1

(http://tcga-data.nci.nih.gov/docs/GAF/GAF.hg19.June2011.bundle/outputs/TCGA.hg19.June2011.gaf), using RSEM (Li and Dewey,

2011) and normalized within-sample to a fixed upper quartile. For further details on this processing, refer to Description file

at the DCC data portal under the V2_MapSpliceRSEM workflow (https://tcga-data.nci.nih.gov/tcgafiles/ftp_auth/distro_ftpusers/

anonymous/tumor/thym/cgcc/unc.edu/illuminahiseq_rnaseqv2/rnaseqv2/unc.edu_THYM.IlluminaHiSeq_RNASeqV2.mage-tab.1.0.0/

DESCRIPTION.txt) or our alignment pipeline summary at CGHUB (https://cghub.ucsc.edu/docs/tcga/UNC_mRNAseq_summary.pdf).

Quantificationof genes, transcripts, exonsand junctions canbe foundat theTCGADataPortal (https://tcga-data.nci.nih.gov/tcga/).

Unsupervised Clustering

A set of genes that were both highly expressed and variably expressed was identified and used for clustering. After restricting to

genes with at least 75% non-zero RSEM values, the genes with the 1000 highest median absolute deviation (MAD) values were

chosen. RSEM values identically equal to zero were replaced into smallest non-zero value. Then a log2 transformation was applied

and the valuesweremedian centered by gene and divided byMADexpression of each gene. Consensus clusteringwas applied using

the ConsensusClusterPlus R package (Wilkerson and Hayes, 2010). Output from ConsensusClusterPlus along with gene expression

heatmaps, principal components analysis, and silhouette plots suggested the presence of four expression subtypes: class one

(n = 48), class two (n = 18), class three (n = 12), and class four (n = 46). The statistical significance of differences in overall survival

times between the expression subtypes was assessed using the log rank test, as implemented in the survival R package. R 3.0.1

(R Core Team) was used to perform all statistical analyses and create all figures.

Differential Expression Analysis

The SAMRR package (Tusher et al., 2001) was used to identify differentially expressed genes between different expression subtypes

and groups of patients defined by clinical characteristics using 1000 permutations. We then used the DAVID annotation database

(Huang et al., 2007a, 2007b) to identify enriched pathways.

Supervised Clustering

The ClaNC R package (Dabney, 2006) was used to identify genes whose expression patterns characterize the RNA subtypes.

Gene Fusion Detection

In addition to quantifying gene expression, RNA sequencing can detect structural variants, including alternate splicing, intra-

chromosomal fusions, and inter-chromosomal fusions. Two algorithms were used to identify gene fusions: AccuFusion (In-house

tool), MapSplice (Wang et al., 2010b).

Virus Detection

In addition to quantifying gene expression, RNA sequencing can detect viral transcripts using virus database including HPyV 6, 7, 9,

10, 12 and MCPyV. An algorithm was used to identify viral transcripts: VirusSeq (Chen et al., 2013).

RPPA
RPPA Experiments and Data Processing

Protein was extracted using RPPA lysis buffer (1% Triton X-100, 50 mmol/L Hepes (pH 7.4), 150 mmol/L NaCl, 1.5 mmol/L MgCl2,

1 mmol/L EGTA, 100 mmol/L NaF, 10 mmol/L NaPPi, 10% glycerol, 1 mmol/L phenylmethylsulfonyl fluoride, 1 mmol/L Na3VO4, and

aprotinin 10 ug/mL) from human tumors and RPPA was performed as described previously (Hennessy et al., 2007; Hu et al., 2007;

Liang et al., 2007; Tibes et al., 2006). Lysis buffer was used to lyse frozen tumors by Precellys homogenization. Tumor lysates were

adjusted to 1 mg/mL concentration as assessed by bicinchoninic acid assay (BCA) and boiled with 1% SDS. Tumor lysates were

manually serial diluted in two-fold of 5 dilutions with lysis buffer. An Aushon Biosystems 2470 arrayer (Burlington, MA) printed

1,056 samples on nitrocellulose-coated slides (Grace Bio-Labs). Slides were probed with 218 validated primary antibodies followed

by corresponding secondary antibodies (Goat anti-Rabbit IgG, Goat anti-Mouse IgG or Rabbit anti-Goat IgG). Signal was captured

using a DakoCytomation-catalyzed system and DAB colorimetric reaction. Slides were scanned in a CanoScan 9000F. Spot inten-

sities were analyzed and quantified using Array-Pro Analyzer (Media Cybernetics Washington DC) to generate spot signal intensities

(Level 1 data). The software SuperCurveGUI (Hu et al., 2007), available at http://bioinformatics.mdanderson.org/Software/

supercurve/, was used to estimate the EC50 values of the proteins in each dilution series (in log2 scale). Briefly, a fitted curve ("super-

curve") was plotted with the signal intensities on the y axis and the relative log2 concentration of each protein on the X axis using the

non-parametric, monotone increasing B-spline model (Tibes et al., 2006). During the process, the raw spot intensity data were

adjusted to correct spatial bias before model fitting. A QCmetric was returned for each slide to help determine the quality of the slide:

if the score was less than 0.8 on a 0-1 scale, the slide was dropped. In most cases, the staining was repeated to obtain a high quality

score. If more than one slide was stained for an antibody, the slide with the highest QC score was used for analysis (Level 2 data).

Proteinmeasurements were corrected for loading as described (Gonzalez-Angulo et al., 2011; Hu et al., 2007) usingmedian centering

across antibodies (level 3 data). In total, 218 antibodies and 85 TET (THYM) samples were used for the analysis. Final selection of

antibodies was also driven by the availability of high quality antibodies that consistently pass a strict validation process as previously

described (Hennessy et al., 2010). These antibodies are assessed for specificity, quantification and sensitivity (dynamic range) in their

application for protein extracts from cultured cells or tumor tissue. Antibodies are labeled as validated and used with caution based

on degree of validation by criteria previously described (Hennessy et al., 2010).

RPPA arrays were quantitated and processed (including normalization and load controlling) as described previously, using Micro-

Vigene (VigeneTech, Inc., Carlisle, MA) and the R package SuperCurve (version-1.3), available at http://bioinformatics.mdanderson.
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org/OOMPA (Hu et al., 2007; Tibes et al., 2006). Raw data (level 1), SuperCurve nonparameteric model fitting on a single array (level

2), and loading corrected data (level 3) were deposited at the DCC.

Data Normalization

We performed median centering across all the antibodies for each sample to correct for sample loading differences. Those differ-

ences arise because protein concentrations are not uniformly distributed per unit volume. That may be due to several factors,

such as differences in protein concentrations of large and small cells, differences in the amount of proteins per cell, or heterogeneity

of the cells comprising the samples. By observing the expression levels across many different proteins in a sample, we can estimate

differences in the total amount of protein in that sample versus other samples. Subtracting themedian protein expression level forces

themedian value to become zero, allowing us to compare protein expressions across samples. Those data were used for the analysis

of THYM samples.

Consensus Clustering

Weused consensus clustering to cluster the THYM samples (Figure S5A). Pearson correlation was used as distancemetric andWard

was used as a linkage algorithm for the clustering. A total of 85 samples and 218 antibodies were used in the analysis. We identified

four robust sample clusters, with most of the ‘‘AB’’ pathology subtype samples clustering together in cluster 4. The RPPA clusters

showed statistically significant association with pathology subtype and lymphocyte grade, with most of the grade 4 samples falling in

cluster 3. To illustrate the role of cell signaling and other pathways in THYM, we calculated ten pathway scores based on a previously

described method and grouped them by the RPPA clusters (Figure S5B) (Akbani et al., 2014). The analysis showed that cluster 2 had

significantly low cell cycle, apoptosis, TSC/mTOR and core reactive pathway activity. On the other hand, cluster 1 had high EMT

activity, whereas clusters 3 and 4 showed significantly high cell cycle, hormone signaling and TSC/mTOR pathway activity, along

with low RAS/MAPK and breast reactive activity.

Cluster of Cluster Analysis

Cluster of Cluster Analysis (CoCA) was performed using data from methylation, miRNA, mRNA, copy number and RPPA platforms

using a fuzzy clustering approach. Data matrix that was used to do platform specific subtype clustering and platform specific cluster

assignments were used to generate centroids for each cluster. Membership of each sample to each cluster was then obtained by

correlation of each sample values to centroid of cluster. This correlation matrix was used for consensus clustering. Consensus

clustering was performed using R package ConsensusClusterPlus_1.24.01, with 90% resampling for 1000 iterations of hierarchical

clustering based on pearson correlation distance (Monti et al., 2003; Wilkerson and Hayes, 2010). KaplanMeier survival estimates for

CoCA clusters were estimated using R package survival_2.38-3. Fisher exact test was used for examining association of CoCA

cluster to clinical variables.

Microbiome

Our microbial detection pipeline is based on BioBloomTools (BBT, v1.2.4.b1), which is a Bloom filter-based method for rapidly

classifying RNA-seq or DNA-seq read sequences (Chu et al., 2014). We generated 43 filters from ‘complete’ NCBI genome reference

sequences of bacteria, viruses, fungi and protozoa, using 25-bp k-mers and a false positive rate of 0.02. We ran BBT in paired-end

mode with a sliding window to screen FASTQ files from 117 RNA-seq libraries (49-bp PE reads), and 117 matched tumor/normal

whole exome libraries (49-bp PE reads). In a single-pass scan for each library, BBT categorized each read pair as matching the

human filter, matching a unique microbial filter, matching more than one filter (multi-match), or matching neither human nor microbe

(no-match). For each filter, we then calculated a reads-per-million (rpm) abundance metric as:

Abundance metric=

�
#reads mapped to the microbe

#reads mapped to human in the sample
� 106

�

To detect genomic integration of specific viruses we performed de novo assembly of RNA-seq and DNA-seq sequence data with

ABySS v1.3.4 (Simpson et al., 2009), using for each library the reads classified by BBT as human, the virus, multi-match and no

match.We thenmerged the k-mer assemblies for each library with Trans-ABySS v1.4.8 (Robertson et al., 2010) to generate the work-

ing contig set.We re-ran BBT on these contigs, applying only human and specific virus filters, identifying contigs thatmatched to both

filters. We identified any integration breakpoints in suchmulti-matched contigs by using BLAT v34 (Kent, 2002) to align each contig to

the human GRCh37/hg19 reference sequence, and to virus reference sequences. We retained contig alignments in which: a) the

aligned human and viral sequences summed to at least 90% of the contig length, and b) the human and viral aligned overlapped

by less than 50%. Human breakpoint coordinates were annotated against RefSeq and UCSC (Kuhn et al., 2013) gene annotations

(downloaded from the UCSC genome browser on 30-Jun-2013). Breakpoints that had at least 3 spanning mate-pair reads or 5 flank-

ing mate-pair reads were considered potential integration sites.

PARADIGM

PARADIGM is a computational model that identifies significantly altered pathways from an integrated analysis of copy number and

gene expression of a patient or sample (Vaske et al., 2010). This integrated analysis is performed in the context of pathway entities.

These entities comprise biological molecules, small molecules, complexes, or abstract concepts that represent cellular processes

such as apoptosis or endothelial cell migration (Schaefer et al., 2009). The PARADIGM graphical model represents such entities as

nodes and generates an integrated pathway activity (IPA) for each entity of a patient. A gene IPA score, for example, refers to the final

active protein inferred from copy number, expression, and signaling from other genes in the pathway. Here we use PARADIGM to

generate IPA scores for each of the 117 TET patients.
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We clustered PARADIGM IPAs using the UCSC consensus clustering RData script v.1.0.0 available though medbook.ucsc.edu.

These PARADIGM inputs were merged real IPAs to be clustered by samples (patients). The clustering conditions used a k-means

algorithm, average final linkage, and 500 repetitions with a k-max of 10. Clustered heatmaps of patient IPAs were graphed with

attribute color assignments. As a quality check, we computed a silhouette score for each k tomeasure goodness of fit for each patient

in a cluster. The silhouette score used Euclidian distance to compute both similarity of a patient with other patients in a clusters, and

separation of patients in different clusters (Rousseeuw, 1987). To perform significance testing on cluster attribute enrichment,

we applied Benjamini-Hochberg p value correction (BH FDR) on Fisher Exact p values to compute False Discovery Rate (FDR).

This produced a ranked list of clinical attributes based on p value per cluster, annotated with FDR.

TumorMap

TumorMap is a tool that generates a map of cancer samples for interactive exploration, statistical analysis, and data overlay visual-

ization. These visualizations, which employ the Google Maps API, arrange samples on a hexagonal 2-dimensional grid based on a

sample-by-sample similarity matrix. Samples can be annotated according to different attributes to allow the user to explore new

associations in clinical data. Maps can be from a single platform or multiple merged platforms. This later approach uses Bivariate

Standardization similarity space Transformation (BST), adapted from Faith et al’s CLR, to integrate multiple similarity matrices

into a single matrix of sample-sample associations (Faith et al., 2007). Here we use an integrative approach to reveal the relationship

between the molecular and clinical attributes of TET patients based on a multi-platform co-cluster analysis.

We first created a sparse sample-by-sample similarity matrix from each of the platform clusters. This similarity matrix comprises

the top 10 highest ranked Spearman correlations per sample as implemented by the sklearn.metrics.pairwise submodule (Pedregosa

et al., 2011). We performed this rank on each of the platform clusters, and combined them with the BST pipeline. The BST pipeline

averages Z scores of each sample-sample similarity between platform matrices, resulting in a single similarity matrix. This single

matrix was inputted to the physics-based layout engine DrL, an open source version of VxOrd created by Sandia National Labs

(Martin et al., 2011). DrL treats sample similarities as spring constants and searches for a spatial configuration among samples

that minimizes system tension. This ultimate spatial configuration was mapped in 2D using TumorMap v0.5, available on

medbook.ucsc.edu, and colored samples by clinical attribute.

Multi-Center Mutation Calling
UCSC

Single nucleotide somatic mutations were identified by RADIA (RNA AND DNA Integrated Analysis), a method that combines the pa-

tient matched normal and tumor DNA whole exome sequencing (DNA-WES) with the tumor RNA sequencing (RNA-Seq) for somatic

mutation detection (Radenbaugh et al., 2014) (software available at: https://github.com/aradenbaugh/radia/). The inclusion of the

RNA-Seq data in RADIA increases the power to detect somatic mutations, especially at low DNA allelic frequencies. By integrating

the DNA and RNA, mutations that would be missed by traditional mutation calling algorithms that only examine the DNA can be

rescued back. RADIA classifies somatic mutations into 3 categories depending on the read support from the DNA and RNA: 1)

DNA calls – mutations that had high support in the DNA, 2) RNA Confirmation calls – mutations that had high support in both the

DNA andRNA, 3) RNARescue calls –mutations that had high support in the RNA andweak support in the DNA. Here RADIA identified

7,363 DNA mutations, 718 RNA Confirmation mutations, and 369 RNA Rescue mutations.

Washington University – Exomes and Validation

ExomeCapture. Illumina libraries were constructed as described previously. Unique, 6bpmolecular barcodes were used to identify

individual samples. Prior to exome capture, individual libraries were pooled. Pools were captured using Nimblegen SeqCap EZ

Human Exome Library v3.0 combined with additional 120-mer IDT custom probes, targeting cancer-related viruses. Pools were

sequenced in multiple lanes of Illumina HiSeq 2000 flowcells to achieve a minimum coverage of 20x across 80% of coding

target exons.

Custom Capture Validation of Somatic Mutations. A second, independent set of Tumor and Normal Illumina libraries were gener-

ated from the original aliquots. These were enriched by performing hybrid capture using Roche Nimblegen SeqCap EZ custom cap-

ture oligos. When available, genomic DNA was utilized for library construction starting material, alternatively Qiagen WGA amplified

DNA was used when insufficient material was available. Each sample library received unique, dual molecular barcodes prior to pool-

ing. The target regions for somatic indels and point mutations were defined as a 100bp region surrounding the mutation site. Probes

designed with >5 mismatches were discarded. Additional 120-mer IDT probes targeting cancer-related viruses were combined with

SeqCap custom probes prior to capture. Target and probe bed files are available at http://genome.wustl.edu/pub/custom_capture/

Read Alignment for Exome and Custom Capture Validation. Each lane or sub-lane of data was aligned with bwa v0.5.9 (Li and Dur-

bin, 2009). to GRCh37-lite + accessioned target viruses (ftp://genome.wustl.edu/pub/reference/GRCh37-lite_WUGSC_variant_2/)

Defaults are used in both bwa aln and bwa sampe (or bwa samse if appropriate) with the exception that for bwa aln four threads

are utilized (-t 4) and bwa’s built in quality-based read trimming (-q 5). ReadGroup entries are added to resulting SAM files using

gmt sam add-read-group-tag. This SAM file is then converted to a BAM file using Samtools v0.1.16, name sorted (samtools sort

-n), mate pairings assigned (samtools fixmate), resorted by position (samtools sort), and indexed using gmt sam index-bam.

Read Duplication Marking and Merging

Reads from multiple lanes, but the same sequencing library are merged, if necessary, using Picard v1.46 MergeSamFiles and

duplicates are then marked per library using Picard MarkDuplicates v1.46. Lastly, each per-library BAM with duplicates marked is

merged together to generate a single BAM file for the sample. For MergeSamFiles we run with SORT_ORDER=coordinate and
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MERGE_SEQUENCE_DICTIONARIES=true. For both tools, ASSUME_SORTED=true and VALIDATION_STRINGENCY=SILENT are

specified. All other parameters are set to defaults. Samtools flagstat is run on each BAM file generated (per-lane, per-library, and final

merged).

SNVCallers. We detected somatic SNVs using Samtools (Li et al., 2009) v0.1.16 (samtools pileup –cv -A -B), SomaticSniper (Larson

et al., 2012) v1.0.4 (bam-somaticsniper -F vcf -G -L -q 1 -Q 15), Strelka (Saunders et al., 2012) v0.4.6.2 (with default parameters

except for setting isSkipDepthFilters = 1), and VarScan (Koboldt et al., 2012) v2.2.6 (–min-coverage 3 –min-var-freq 0.08 –p value

0.10 –somatic-p value 0.05 –strand-filter 1).

SNV Caller combination and filtering

First, Samtools calls were retained if they met all of the following rules inspired by MAQ:

Site is greater than 10bp from a predicted indel of quality 50 or greater.

The maximum mapping quality at the site is R 40.

Fewer than 3 SNV calls in a 10 bp window around the site.

Site is covered by at least 3 reads and less than 1,000,000,000 reads.

Consensus quality R 20.

SNP quality R 20.

After these filters were applied, Samtools and SomaticSniper calls were unioned using joinx v1.9 (https://github.com/genome/

joinx; joinx sort –stable –unique). The resulting merged set of variants were additionally filtered to remove likely false positives2,4.

We used bam-readcount v0.4 (https://github.com/genome/bam-readcount) with a minimum base quality of 15 (-b 15) to generate

metrics and retained sites based on the following requirements:

Minimum variant base frequency at the site of 5%.

Percent of reads supporting the variant on the plus strand R 1% and % 99% (variants failing these criteria are filtered only if the

reads supporting the reference do not show a similar bias).

Minimum variant base count of 4.

Variant falls within the middle 90% of the aligned portion of the read.

Maximumdifference between the quality sum ofmismatching bases in reads supporting the variant and reads supporting the refer-

ence of 50.

Maximum mapping quality difference between reads supporting the variant and reads supporting the reference of 30.

Maximum difference in aligned read length between reads supporting the variant base and reads supporting the reference base

of 25.

Minimum average distance to the effective 3’ endx of the read for variant supporting reads of 20% of the sequenced read length.

Maximum length of a flanking homopolymer run of the variant base of 5.

After this filtering, the SomaticSniper/Samtools calls were additionally filtered to high confidence variants by retaining only those

sites where:

The average mapping quality of reads supporting the variant allele was R 40

The SomaticScore of the call was R 40.

VarScan calls were retained if they met the following criteria:

VarScan reported a somatic p value % 0.07.

VarScan reported a normal frequency % 5%.

VarScan reported a tumor frequency R 10%.

VarScan reported R 2 reads supporting the variant.

VarScan variants passing these criteria were then filtered for likely false positives using bam-readcount v0.4 and identical criteria as

described above for SomaticSniper. Fully filtered calls as described above for SomaticSniper and VarScan were then merged with

calls from Strelka using joinx v1.9 (joinx sort –stable –unique) to generate the final callset.

Indel Callers. We detected indels using the GATK (McKenna et al., 2010) 1.0.5336 (-T IndelGenotyperV2 –somatic –window_size

300 -et NO_ET), retaining only those which were called as Somatic, Pindel (Ye et al., 2009) v0.2.2 (-w 10; with a config file generated

to pass both tumor and normal BAM files set to an insert size of 400), Strelka (Saunders et al., 2012) v0.4.6.2 (with default parameters

except for setting isSkipDepthFilters = 1), and VarScan (Koboldt et al., 2012) v2.2.6 (–min-coverage 3 –min-var-freq 0.08 –p value

0.10 –somatic-p value 0.05 –strand-filter 1).

Indel Caller Filtering and Combination

Pindel calls were retained if they had:

No support in the normal data.

Hadmore reads reported by Pindel than reported by Samtools at the indel position or if the number of supporting reads fromPindel

was R 8% of the total depth at the position reported by Samtools.

Samtools reported a depth less than 10 at the region and Pindel reported more indel supporting reads than reads mapped with

gaps at the site of the call.

A Fisher’s exact test p value % 0.15 was returned when comparing the number of reads with gapped alignments versus reads

without in the normal to the tumor.

VarScan indel calls were retained if they met the following criteria:

VarScan reported a somatic p value % 0.07.
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VarScan reported a normal frequency % 5%.

VarScan reported a tumor frequency R 10%.

VarScan reported R 2 reads supporting the variant.

Broad Institute

Identification of Somatic Mutations. Alignments were first subjected to quality control to avoid mix-ups between tumor and normal

samples, as well as cross-contamination between tumor samples using ContEst (Cibulskis et al., 2011). We used the MuTect

algorithm version 1.1.62 to generate somatic mutation calls, which were subsequently filtered to remove any spurious calls due to

shearing-induced generation of 8-oxoguanine (Costello et al., 2013). Indels were identified using the IndelLocator algorithm as

previously described (Costello et al., 2013). Details and tools are available at www.broadinstitute.org/cancer/cga.

Mutation Annotation. Functional annotation of mutations was performed with Oncotator (Ramos et al., 2015) (http://www.

broadinstitute.org/cancer/cga/oncotator) using Gencode V18.

BC Cancer Agency

Strelka Variant Caller. Strelka (Saunders et al., 2012) (v1.0.6) was used to identify somatic single nucleotide variants, and

short insertions and deletions from the TCGA THYM exome dataset. All parameters were set to defaults, with the exception of

"isSkipDepthFilters", which was set to 1 in order to skip depth filtration given the higher coverage in exome datasets. 123 pairs of

libraries were analyzed. When a blood sample was available, it served as the matched normal specimen; otherwise, the matched

normal tissue was used. The variants were subsequently annotated using SnpEff (Cingolani et al., 2012), and the COSMIC (v61)

(Forbes et al., 2010) and dbSNP (v137) (Smigielski et al., 2000) databases.

Baylor College of Medicine

Multicenter Mutation Calling. At BCM, mutations in BAM files were detected as follows: Atlas-SNP (Bang et al., 2010) of the Atlas2

Suite (Challis et al., 2012) was run to list all variants found in multiple reads at a single locus; and variants were annotated with dbSNP

by ANNOVAR (Wang et al., 2010a) and COSMIC (Catalogue Of Somatic Mutations In Cancer). The variants were further filtered to

remove all those observed fewer than 4 times or were present in less than 0.04 of the reads. Normal variant ratio must be less

than 1% of tumor variant ratio. At least one variant had to be mapping quality of Q20 or better, and the variant had to lie in the central

portion of the read. In addition, at least one variant must appear in both forward and reverse orientations. COSMIC variants were

exempted from above filters. Insertion or deletion variants (‘‘indels’’) were discovered by similar processing except that the initial pro-

cessing was with Atlas-Indel of the Atlas2 Suite, and indels must have been observed in 10 of the reads with ratio of 0.15. All the

variants were compared to a population of normal genomes and any matching variant was removed; then the file were further filtered

by removing variants with normal sample coverage less than 2 or tumor variant coverage less than 0.05 or genes with greater than 2

variants for the same sample.

Copy Number Analysis
SNP-based Copy Number Analysis

DNA from each tumour or germline sample was hybridized to Affymetrix SNP 6.0 arrays using protocols at the Genome Analysis Plat-

form of the Broad Institute as previously described (McCarroll et al., 2008). Briefly, from raw .CEL files, Birdseed was used to infer a

preliminary copy-number at each probe locus (Korn et al., 2008). For each tumour, genome-wide copy number estimates were

refined using tangent normalization, in which tumour signal intensities are divided by signal intensities from the linear combination

of all normal samples that are most similar to the tumour (Cancer Genome Atlas Research Network, 2011). This linear combination

of normal samples tends to match the noise profile of the tumour better than any set of individual normal samples, thereby reducing

the contribution of noise to the final copy-number profile. Circular Binary Segmentation (CBS) (Olshen et al., 2004) was used to

segment patient-level normalized copy-number estimates. As part of this process of copy-number assessment and segmentation,

regions corresponding to germline copy-number alterations were removed by applying filters generated from either the TCGA

germline samples from the previous TCGA studies or from samples in this cohort.

ABSOLUTE

Allelic copy number, whole genome doubling, and purity (tumour cellularity) and ploidy estimates were calculated using the

ABSOLUTE algorithm (Carter et al., 2012). ABSOLUTE integrates somatic SNV (SSNV) mutations in its analysis; the input mutations

were analyzed using MuTect (Cibulskis et al., 2013) and can be obtained from gdac.broadinstitute.org. Because many TET samples

contained few or no somatic copy number alterations (SCNA), the purity prediction may be less reliable due to estimation from only

mutations.

PyClone and TITAN

We used PyClone (Roth et al., 2014) v0.12.9 to assess the clonality of validated mutations with deeper coverage of SSNV loci; only

88/117 samples that had at least 2 mutations with > 50 read depth were analyzed. For these 88 samples, PyClone used input SCNA

events analyzed by TITAN (Ha et al., 2014) v1.5.8 (from whole exome sequencing). All parameters for both PyClone and TITAN were

initialized to the defaults. The tumor content was initialized to 1.0, such that the clonally dominant cluster (SSNVs observed to be

present in the highest fraction of tumour cells) will be the new, estimated purity. To do this, we identified the cluster having the largest

average cellular prevalence across the mean of the posterior distribution for each mutation within the cluster. For samples that had

less than 5%of the genome altered by SCNA, we reassigned the purity to the PyClone average cellular prevalence as the new purity;

otherwise, the ABSOLUTE purity was used.
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Next, we corrected the CBS segments for each patient using the estimated purity. This correction allows the amplitude of the

SCNA segments to be comparable on the same scale and extenuates the signals for samples with lower purities. Therefore,

application of a uniform threshold (e.g. +/-0.3 log2 copy ratio) to determine deletions and gains (as is done by GISTIC) is now

more appropriate. To do this, we applied the following correction to adjust the log2 copy ratio l for segment t to obtain the purity-

ploidy-corrected log2 copy ratio, brt
S= 2n+ ð1� nÞB
c=
2lt S� 2n

ð1� nÞ
brt = log2

�
c

B

�

GISTIC

Using these purity-ploidy-corrected copy ratios of the segmented copy number profiles for tumour and matched control DNAs, we

applied Ziggurat Deconstruction, an algorithm that parsimoniously assigns a length and amplitude to the set of inferred copy-number

changes underlying each segmented copy number profile (Mermel et al., 2011). Then, we determined statistically significant focal

copy number alterations using GISTIC 2.09.

DATA AND SOFTWARE AVAILABILITY

All raw genomic and clinical data has been made available at the NCI Genomic Data Commons: https://gdc.cancer.gov/
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