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Abstract

A real-time energy management system was developed to improve the energy efficiency of an 

Air Handling Unit (AHU). The system consists of models to analyse the performance of 

subsystems in an AHU, which was tested using actual data collected from AHU operation via 

wireless monitoring. The system detects control-related malfunctions such as simultaneously 

turning on the cooling coil and the pre-heating coil. The system estimated that this type of control 

malfunction wastes 63,455 kWh within the cooling coil and the pre-heating coil.  Furthermore, the 

system helped identify other energy saving opportunities through set point changes. For the tested 

case, the opportunities identified had the potential of 77,141 kWh of energy saving during the same 

study period.  
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NOMENCLATURE  
Fan speed, m/sec𝐶𝑓𝑎𝑛

 Air specific heat, 𝐶𝑝,𝑎 kJ/kg.k
 Water specific heat, 𝐶𝑝,𝑤 kJ/kg.k

Enthalpy of vaporization, ℎ𝑓𝑔 𝑘𝐽/𝑘𝑔
I RMS Current, Amp 

Total mass flow rate capacity of the coil, kg/sec𝑀
Current mass flow rate through the coil, kg/sec𝑚
Mass flow rate of air, kg/sec𝑚𝑎
Mass flow rate of water, kg/sec𝑚𝑤
Air energy rate, 𝑄𝑎 kW 
Latent energy rate, kW𝑄𝐿
Sensible energy rate, kW𝑄𝑠
Total heating rate, kW𝑄𝑇
Water energy rate, kW𝑄𝑤

P Power, kW
PF Power factor, %
V RMS Voltage, V

Volumetric flow rate, m3/sec𝑞

Water valve position, %𝛼
Fan % speed, %𝛽
Air density, kg/m3𝜌𝑎
Water density, kg/m3𝜌𝑤
Amount of air temperature change, ∆𝑇𝑎 ℃
Amount of water temperature change, ∆𝑇𝑤 ℃
Change in humidity ratio, dimensionless∆𝑊

1. Introduction  

The building sector has a higher percentage of energy consumption than either transportation 

or industrial operations, using about 74% of the total electricity used in the U.S.A. [1].  Air 

handling unit (AHU) systems accounted for more than 50% of the total energy cost of commercial 

building in 2013 [2,3].  Thus, improvement of the AHU system’s performance can significantly 

reduce energy consumption in the building sector. 

In the past, much research has been done to improve the overall performance of AHU systems 
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using various control strategies. Various control algorithms have been studied such as Model 

Predictive Control (MPC) [3], Evolutionary Algorithm (EA)[4], Evolutionary Programming (EP) 

[5], Proportional-Integral-Derivative (PID) Controllers [6,7], supply air temperature optimization 

in various climates [8], Proportional-Integral (PI) Controllers for Single Zone AHU [9,10], and 

Dynamic Model of a Heating, Ventilation, and Air Conditioning (HVAC) System [11,12,13]. 

However, these control systems were designed to regulate the building temperature, improve 

system operation, or for troubleshooting. They were not used for the energy performance analysis 

of an AHU system. Furthermore, none of these algorithms completely covered all climate 

conditions nor provided general solutions for larger buildings since the models were developed for 

specific systems. Furthermore, these control systems needed to consider more parameters, such as 

climate conditions, internal loads, and building shape, which require close monitoring.  

White-box, black box and grey-box are three approaches that have been used for AHU systems 

modelling. The black-box model is a statistical and data-driven approach that is mainly used for 

fault detection [14,15]; whereas the white-box model is a physics-based approach that is primarily 

adopted for an optimal design. A few researchers have used a data-driven method for modelling 

using Genetic Algorithm (GA) [16]. The grey-box approach is a combination of physical and non-

physical approaches involving a physical model that is developed to illustrate the process 

characteristics. It was presented by Haghigat et al. [17] as a software framework in predictive 

control since it combined physically based models with a generic algorithm.   Such control tools 

are used for new AHU systems to ensure both the ultimate efficiency of the unit and the comfort 

of the occupants, which is the purpose of energy management. 

The goal of this research was to increase the energy efficiency of an AHU in a commercial 
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building. The objective was to develop an energy management system with inputs from real-time 

sensor data to evaluate system performance, estimate the energy consumption and associated cost 

of the AHU’s subsystems, including the heating and cooling coils, at a certain set temperature. 

This tool will help energy facility managers make evidence-based decisions regarding AHU 

control to increase energy efficiency. 

2. Methods

2.1 Overview

The energy management system is capable of evaluating the AHU’s efficiency and unit 

performance. Performance evaluation of the AHU was accomplished by monitoring control 

parameters derived from the data of the sensors in the AHU. The monitored parameters were 

collected and outliers were filtered. Models were then used to analyse the performance of the AHU. 

A baseline of the energy consumption can be established which was compared to the actual 

operation of the unit. Energy consumption and potential energy savings were then estimated. The 

system was implemented in a building with multiple AHUs. 

2.2 AHU System

The AHU system is vital to a building’s ability to maintain a comfortable space for occupants, 

thus, it is tailored to meet various needs for thermal control. Fig. 1 is a schematic of an AHU 

system. In addition, there is a chiller/cooling tower for removing energy from the return air and 

then dispensing it into the environment and a boiler for adding heat/energy to the supply air going 

into the building. The fans are essential for moving air through the ducts and transferring it into 

the office spaces.  Inside the building, various air handling systems can be used to deliver air as 

needed to each room in the building.  The energy consumption consists of electricity used to power 
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the fans and the control system and energy from heat exchangers including the heating coils and 

the cooling coils.

3. Experimental setup

3.1 Building

A building consisting of three floors and a basement was used to demonstrate the functionality 

of the tool. Each floor has two AHUs to maintain adequate temperatures and air quality. The AHU 

provides air to a total of 33 offices and 7 labs. Total office square footage is 7,657  (711.4 𝑓𝑡2 𝑚2) 

and total lab area is 6,236 . The labs require outside exhaust air at all times to make 𝑓𝑡2 (579.3 𝑚2)

sure that none of the chemicals used in the labs are mixed with the return air to the unit. Exhaust 

fans are also used to maintain a negative pressure in the lab area and a positive pressure in the 

plenum with respect to the lab space in order to limit the leak of lab fumes into the plenum.  

Variable Air Volume (VAV) boxes are used to distribute and reheat air before it reaches the 

offices/labs. Each VAV box controls one or more rooms depending on the size and location. There 

is one thermostat in every set of offices, which sends a signal to control the VAV box dampers and 

reheat coils to supply more air at a higher or lower temperature in the room to maintain the desired 

room temperature. 
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Fig. 1 diagram of the energy users of an AHU

3.2 AHU Operation  

The AHU has airflow measuring stations for both outside air (OA) and return air (RA), actuators 

for RA dampers, preheat coil valves, and cooling coil valves, OA and RA relative humidity 

sensors, and supply fan drive controllers with current sensors. The AHU operates continuously 

throughout the day, regardless of occupancy, based on control commands from a central operator 

workstation. The supply fan runs continuously. The duct static pressure is maintained by 

modulating the supply fan speed through the Variable Frequency Drive (VFD). The VFD is 

controlled to maintain a duct static set point of +2" WC (Water Column) which is the AHU’s set 

point and is adjustable at two locations in the duct system. The duct static pressure transmitter 

controls the VFD through the AHU Controller. An electric static pressure high limit safety device 

shall stop the supply fan(s) whenever fan discharge static pressure rises above the 5" WC (12.7 
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cm) (adjustable) high limit. An AHU fan’s power, which is a function of RMS Voltage (V), RMS 

Current (I), and Power Factor (PF), is calculated using equation (1).  

                                     (1)𝑃 =
𝑉 × 𝐼 × 𝑃𝐹 × 3

1000

The preheat coil discharge air temperature set point is 53°F (11.7 , which is adjustable, and ℃)

the cooling coil temperature set point is 55°F (12.8 , which is also adjustable. They are ℃)

maintained by the modulating control valve(s).  The cooling is required when the outdoor air 

temperature and relative humidity (RH) are above 75 db (Dry Bulb) and 50% RH, ℉ (23.9℃) 

respectively. The return air relative humidity sensor high limit set point is at 57% RH and 

discharge air temperature reset point is at 50°F (10.0 . Furthermore, the humidifier control valve ℃)

is modulated to maintain a return air relative humidity set point of 35%RH.   The supply air has a 

humidity sensor, which prevents humidity levels from rising above 80% RH.  When the unit is 

stopped, the outdoor air dampers close, the return air dampers open, the chilled water valve closes, 

the humidifier control valve closes, the preheat coil valve remains in control, and the variable 

frequency drives ramp down. After identifying all parameters monitored in the AHU for control 

and troubleshooting purposes, a relationship between the needed parameters and monitored 

parameters was established as given in table (1).  

3.3 Heat Transfer Formulation  

Heating and cooling represent a change of sensible heat whereas humidification and 

dehumidification represent a change of latent heat. The amount of moisture liberated or absorbed 

by air was obtained using its initial and final absolute humidity [2].  Latent energy flow was 

calculated using equation (2).
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Table 1 Relationship between monitored parameters and mechanical model

Parameter Action Equation 

Current Measured  -

Air Mass 
Flow rate

Calculated 
through the Fan 

Speed 
measurement 

 𝑚𝑎 = 𝜌𝑎𝛽𝐶𝐹𝑎𝑛

Water Mass 
Flow rate 

Estimated by 
monitoring the 
Valve position 

on the coils 

 𝑚𝑤 = 𝛼𝑀

Inlet coil 
Temp.

Estimated from 
spec. sheet 

𝑇𝑐 = 7.22℃  
  𝑇ℎ = 93.33℃

Outlet Coil 
Temp. 

Estimated from 
spec. sheet 

𝑇𝑐 = 12.77℃    
𝑇ℎ = 77.22℃

Inlet Air 
Temp. Measured -

                 (2) 𝑄𝐿 =
ℎ𝑓𝑔𝜌𝑎𝑞∆𝑊

3600

Based on equation (2), energy created by removing latent heat from the supply air can be 

calculated using enthalpy of evaporation , obtained from the saturated steam ℎ𝑓𝑔 =  2465.56
𝑘𝐽
𝑘𝑔

tables at 55  (12.78 ) and 1 kPa (absolute). Engineering Equation Solver (EES) was used to ℉ ℃

convert the measured relative humidity into humidity ratio in order to be used in equation (2). 

Equation (3) was obtained using constant air density of , from equation (2). 1.25
𝑘𝑔
𝑚3

                   (3) 𝑄𝐿 = 0.856𝑞∆𝑊

Equation (4) was used to calculate sensitive heat during an air handling process. Air mass flow 

rate was obtained using fan speed: 𝑚𝑎 = 𝜌𝑎𝛽𝐶𝑓𝑎𝑛.
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𝑄𝑆 = 𝑚𝑎𝐶𝑝,𝑎∆𝑇𝑎

                 (4)𝑄𝑆 = 𝜌𝑎𝛽𝐶𝑓𝑎𝑛𝐶𝑝,𝑎∆𝑇𝑎

For a cooling coil; total energy removed due to passing through the cooling coil was then calculated 

by combining the sensible heat and latent heat using equation (5).

𝑄𝑇 = 𝑄𝑆 + 𝑄𝐿

                 (5)𝑄𝑇 = 𝜌𝑎𝛽𝐶𝐹𝑎𝑛𝐶𝑝,𝑎∆𝑇𝑎 + 0.856𝑞∆𝑊

To estimate the required water flow rate for desired set point temperature, sensible energy added 

to or removed from the supplied air is equivalent to energy of water and the water mass flow 

rate was obtained using equation (6).

 = 𝑄𝑇 𝑄𝑊

   (6)𝜌𝑎𝛽𝐶𝐹𝑎𝑛𝐶𝑝,𝑎∆𝑇𝑎 + 0.856𝑞∆𝑊 = 𝑚𝑤𝐶𝑝,𝑤∆𝑇𝑤

Water mass flow rate and volumetric flowrate were calculated as shown in equations (7 & 8).

                           (7)𝑚𝑤 =
𝜌𝑎𝛽𝐶𝐹𝑎𝑛𝐶𝑝,𝑎∆𝑇𝑎 + 0.856𝑞∆𝑊

𝐶𝑝,𝑤∆𝑇𝑤
 

                      (8)𝑞 =
𝑚𝑤

𝜌𝑤

The volumetric flow rate  was calculated based on the monitored airflow rate and temperature.  𝑞

To compare this value with the monitored water valve position, an additional equation (equation 

9) needed to be added in order to obtain a valve position estimate. 
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                 (9% 𝑉𝑎𝑙𝑣𝑒 =
𝑞
𝛼 ) 

3.4 Monitoring System 

A wireless system was used for the AHU data collection. A Fully Functioning Device (FFD) 

was installed to transmit data from the AHU to the server using ZigBee. ZigBee is a specification 

for a suite of high-level communication protocols used to create Personal Area Networks (PAN) 

for small, low-power digital radios. Two ECOMM WC21-1048-ENC4X FFD’s were used as a 

communication link between the sensors and the PAN coordinator. The ECOMM WC21-1048-

ENC4X is capable of reading analog signals in addition to having four analog outputs and eight 

digital outputs. The built-in software package allows connection and communication through the 

static IP address. The mixed air damper signal was used for controlling the opening of return air 

and outside air dampers. When the signal is 100%, the unit is not using any return air. Thus, the 

return air dampers are shut and the unit is economizing and using 100% outside air. The pre-heat 

valve opening is pneumatically controlled and is linear as a function of input voltage.   MatLab 

was used for data analysis and the flowchart of the code, which consisted of three parts, shown in 

Fig. 2.  

The wireless system uploaded information to a server every hour for 2 minutes with a sampling 

rate of 20Hz. The information was saved in a separate file and stored in a directory. MatLab 

software then scanned the directory every hour to check for any new files.  The new file was then 

opened, read, filtered, and converted into appropriate units. A sample of monitored parameters is 

given in Fig. 3. Fifteen sets of data were collected and processed using the algorithms described 

above.
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Fig. 2 Matlab Code block diagram
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Fig. 3 All monitored parameters data

7.3567 7.3567 7.3567 7.3568 7.3568 7.3568 7.3568

x 105

0

20

40

60
Out Side Temperature

T
e
m

p
e
ra

tu
re

 (
F
)

Time (s)

7.3567 7.3567 7.3567 7.3568 7.3568 7.3568 7.3568

x 105

60

80

100
Supply Fan Speed

S
p
e
e
d
 P

e
rc

e
n
ta

g
e
(%

)

Time (s)

7.3567 7.3567 7.3567 7.3568 7.3568 7.3568 7.3568

x 105

45

50

55

60
Pre-Heat Temperature

T
e
m

p
e
ra

tu
re

 (
F
)

Time (s)
7.3567 7.3567 7.3567 7.3568 7.3568 7.3568 7.3568

x 105

40

50

60

70
Discharge Air Temperature

T
e
m

p
e
ra

tu
re

 (
F
)

Time (s)
7.3567 7.3567 7.3567 7.3568 7.3568 7.3568 7.3568

x 105

0.5

1

1.5

2
Supply Air Static Pressure

P
re

s
s
u
re

 (
IW

C
)

Time (s)

7.3567 7.3567 7.3567 7.3568 7.3568 7.3568 7.3568

x 105

0

0.2

0.4
Building Static Pressure

P
re

s
s
u
re

 (
IW

C
)

Time (s)
7.3567 7.3567 7.3567 7.3568 7.3568 7.3568 7.3568

x 105

0.5

1

1.5
x 104 Outside Air Flow

F
lo

w
 R

a
te

 (
C
F
M

)

Time (s)
7.3567 7.3567 7.3567 7.3568 7.3568 7.3568 7.3568

x 105

1000

1500

2000

2500
Exhaust Air Flow

F
lo

w
 R

a
te

 (
C
F
M

)

Time (s)

7.3567 7.3567 7.3567 7.3568 7.3568 7.3568 7.3568

x 105

0

20

40

60
Supply Air R.H.

R
.H

 (
%

)

Time (s)
7.3567 7.3567 7.3567 7.3568 7.3568 7.3568 7.3568

x 105

10

15

20

25
Return Air R.H.

R
.H

 (
%

)

Time (s)
7.3567 7.3567 7.3567 7.3568 7.3568 7.3568 7.3568

x 105

0

50

100
Mixed Air Damper 

P
e
rc

e
n
ta

g
e
 (
%

)

Time (s)

7.3567 7.3567 7.3567 7.3568 7.3568 7.3568 7.3568

x 105

60

80

100
Pre-Heat Valve 

P
e
rc

e
n
ta

g
e
 c

lo
s
e
d
 (
%

)

Time (s)
7.3567 7.3567 7.3567 7.3568 7.3568 7.3568 7.3568

x 105

0

50

100

150
Cooling Valve 

P
e
rc

e
n
ta

g
e
 O

p
e
n
 (
%

)

Time (s)

7.3567 7.3567 7.3567 7.3568 7.3568 7.3568 7.3568

x 105

0

0.5

1
x 10-3 Relief Fan Speed

S
p
e
e
d
 P

e
rc

e
n
ta

g
e
(%

)

Time (s)
7.3567 7.3567 7.3567 7.3568 7.3568 7.3568 7.3568

x 105

0

10

20

30
Fan Current

C
u
rr
e
n
t 
(A

m
p
s
)

Time (s)



  

13

4. Mathematical Model Validation and Results  

 One of the mechanical model’s aims was to predict the operation of the pre-heating and cooling 

coils using the physical equations. The data was filtered to remove any signals that are under 5% 

of the pre-heat and cooling valves opening percentage since the initial pneumatic pressure had to 

be applied to the valves before water started flowing.  To make sure the results obtained from the 

mechanical model accurately predicted the performance of the unit, a validation system was put 

in place that allowed for comparing theoretical results with actual operating conditions. An error 

report was obtained and will be discussed below.

4.1 Mechanical Model Results and Waste Calculation  

Fig. 4 shows the profiles of the temperature and status of the cooling and heating valves for the 

last week of January. The data shows that both cooling and heating valves were open even when 

outside (or supply) air temperature was below 60℉ (15.6 ). Theoretically, the cooling valve is ℃

on to cool the supply air, and the heating valve is on to pre-heat the supply air to the air’s set point 

temperature.  By comparing actual valve positions with the supplier air temperature in Fig. 4, the 

cooling valve was trying to reduce the supply air temperature to a cooling valve’s set point 

temperature of 55℉ (12.8 . At the same time, the heating valve was negating this call and ℃)

applying heat to the supply air, raising it to the set point at 60 . ℉ (15.6℃)

To analyse the expected performance, the theoretical position of the cooling valve was 

evaluated as shown in Fig.5 with a new set point of 60℉ (15.6℃) for the cooling valve. It is 

clear that the subsystems in the unit were contradicting each other, and the unit was confused 

about the set point temperatures.   
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Fig.4 Cooling valve and heating valve position for actual system in comparison with supply air 

temperature.

Fig.5 Theoretical cooling valve position compared to low outside temperature
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A spike in pre-heat temperature happened at the X as shown in Fig. 6. This was due to the 

increase in the supply air set point and the VAV air set point. However, the increase was not 

conveyed to the cooling coil controller, and the cooling coil was still struggling to bring supply 

air temperature to 55℉ (12.8 . This operation resulted in wasted resources. The effects were ℃)

estimated using the theoretical model. 

Fig.6 Current cooling valve position in comparison with supply air temperature and pre-heat 

temperature

The expected AHU behaviour, in terms of theoretical valve position in comparison with supply 

air temperature and pre-heat temperature, based on mechanical modelling is given in Fig. 7. These 

were calculated considering a supply air temperature at 65℉ (18.3 , higher than the set point ℃)

temperatures for cooling and heating coils, to analyse the energy consumption. Comparison of 

expected performance and actual values of the pre-heat valve position with pre-heat temperature 
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is given in Fig. 8. As seen in the theoretical model, the heating valve was not in operation 

whenever pre-heat temperature was above 55℉ (12.8 . The theoretical and actual position of ℃)

the cooling valve in comparison with the pre-heat temperature is given in Fig. 9. As noted before, 

the cooling valve was fully operational where theoretically it should not exceed 10% open 

position. From Figs. 8 & 9, the wasted energy was calculated through a comparison between 

theoretical and actual valve position.

Fig. 7 Theoretical valve position in comparison with supply air temperature and pre-heat 

temperature
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Fig. 8 Theoretical and actual Pre-heat valve position in comparison with Pre-heat temperature

Fig. 9 Theoretical and actual Cooling valve position in comparison with Pre-Heat temperature
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4.2 Chilled Water Waste & Heated Water Waste Calculation

4.2.1. Chilled Water Waste  

By comparing the operation to the theoretical operation of the valve, the wasted flow in gallons 

of chilled water was calculated and was converted to energy consumption in kWh. This estimate 

only considered the amount of energy needed to heat/cool water to reach a temperature difference 

that was lost through the coils, see in Table 2.  Energy Cost was estimated at $0.09/kWh based on 

the local electric rate. For the low temperature analysis, the results of the theoretical usage of the 

heating coil was compared to the actual usage. Keeping in mind that the supply air temperature 

should not exceed 55  (12.8  at any time, thus, the theoretical set point stayed at 55  (12.8℉ ℃) ℉

 rather than 60 . ℃) ℉ (15.6℃) 

Table 2 Current theoretical and waste gallons used in the cooling coil in low temperatures 

Energy 
waste

Cost 
Savings

(kWh)  ($)
Current Theoretical Waste

1,887,683.0 
(7,145,657.5)

30,337.0 
(114,838.0)

1,857,346.0 
(7,030,819.4) 45,411 $3,954 

Cooling Coil

Gallons (Liters) used

4.2.2. Heat Water Waste 

From Fig. 9, the heating valve should be engaged even though the pre-heat temperature was above 

55 . Table 3 shows the water waste during that four-week period in gallons of water at ℉(12.8℃) 

60 . ℉(15.6℃)
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Table 3 Current theoretical and waste gallons used in the Pre-Heat coil

Energy  
wasted 
(kWh)

Cost 
Savings 

($)
Current Theoretical Waste

560,461.0 
(2,121,575.7)

306,214 
(1,159,146.1)

254,247 
(962,429.6)

18,044 $1,571 

Heating Coil

 Gallons (Liters) used

 

4.3. Set Point Analysis  

After examining the operation of the AHU, a supply air temperature set point analysis was 

performed. The purpose of this analysis was to study the effects of a set point change on the energy 

consumption of the unit. The study showed that a single set point cannot be generalized for all 

operating conditions, because it is a function of outside temperature and number of building 

occupants. In this case, the building engineer manually changed supply air, which was monitored 

from Jan. to April. The analysis used a mechanical model to simulate a temperature set point 

change with increments of  ( starting at 45  (  and ending at 65 .   1℉ 0.55℃) ℉ 7.2℃) ℉ (18.3℃) 

The results are shown in Figs. 10-12. 

Based on the Set Point analysis for January 2014, a supply air set point of 61℉ would (16.1℃) 

result in the minimum energy consumption per day compared to other set points. The set point 

analysis done for March 2014 identified a set point where the minimum energy can be used to 

maintain comfort levels. According to the analysis, a set point of 58℉  in March would  (14.4℃) 

result in the minimum energy consumption per day for that specific month. As shown in Fig. 12, 

due to the high outside temperature, a clear understanding of the set point effects on the energy 
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usage cannot be established without a clear relationship between the set point and comfort levels 

in the rooms. For the reasons listed above, more data must be collected in order to optimize the 

set point.

4.4. Discussion  

This research demonstrated that an energy management system with the capability of real-time 

unit monitoring and performance evaluation can give very important insight on the operation of 

the AHU and its energy consumption. The example revealed that energy waste existed due to a 

contradiction in the operation of the cooling coil and pre-heat coil. This was due to a change in 

the supply air set temperature that resulted in the system calling for both cooling and heating 

operation. Based on the mechanical model, 63,455 kWh/week was wasted in the case study system 

due to control malfunction. This system would alert building engineers about such operation error 

and minimize waste if corrective action is implemented. This case indicated that to increase the 

efficiency of the AHU, a set point analysis should be done to determine the trade-off between 

energy consumption and occupant comfort level. A set point should be selected based on weather 

conditions and occupant comfort level in the building. The system identified additional energy 

savings opportunities due to set point changes that would result in total energy savings of 77,141 

kWh/week. 

Due to the limited data for this research, the set point analysis only identified the optimal set 

points for the months of January 2014 and March 2014. Finally, it is important to emphasize the 

importance of maintaining historical data that logs the performance of the unit under different 

circumstances. The data can be used for control optimization, energy usage reduction, and future 
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troubleshooting. Future studies will focus on refining the model and implementation of controls 

based on the model predictions.

Fig.10   Effect of set point change on the gallons of water use in the cooling and Pre-Heat coils 

during Jan. 2014      

Fig. 11 Effect of set point change on the gallons of water used in both the cooling and Pre-Heat 

coil during March 2014



  

Fig. 12 Effect of set point change on the gallons of water used in both the cooling and 

Pre-Heat coil during April 2014

5. Conclusion  

The AHU energy management system used in this research provides insight into the 

operation of an AHU and helps to identify various factors that affect the energy 

consumption in the unit. The system provides the ability to log and analyse historical 

data that represents the main energy consumers in the unit. The system can be used for 

control and troubleshooting purposes and can provide options for increasing energy 

efficiency. The system allows for a clear representation of each component in the AHU, 

which could not be obtained using the black-box method. Finally, this model along with 

the historical data allow for energy consumption calculation, controls verification, and 

overall performance evaluation of an AHU unit, as well as theoretical valve position in 

comparison with supply air temperature and pre-heat temperature. 
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