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products of open balls in the space of continuous functions
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Abstract. Let C [ 0, 1 ] be the Banach algebra of real valued continuous
functions on [ 0, 1 ], provided with the supremum norm. For f, g ∈ C [ 0, 1 ]
and balls Bf , Bg with center f and g, respectively, it is not necessarily true
that f · g is in the interior of Bf · Bg. In the present paper we characterize
those pairs f, g where this is the case.

The problem is illustrated by using a suitable translation. One studies walks
in a landscape with hills and valleys where an accompanying dog can move
in a certain prescribed way.
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1. Introduction

For f ∈ C [ 0, 1 ] and ε > 0 we denote by Bε(f) the closed ball with center f
and radius ε. It has been observed in [1] that, for f, g ∈ C [ 0, 1 ], it is in general
not true that f · g is an interior point of Bε(f) ·Bε(g) (= the collection of all f̃ · g̃
with f̃ ∈ Bε(f), g̃ ∈ Bε(g)).

As a simple example consider f(t) = g(t) = t − 0.5. When f̃ is close to f

and g̃ close to g, then f̃ and g̃ must vanish at some point. Consequently also

f̃ · g̃ is zero somewhere, and therefore no f̃ · g̃ is a function which is strictly

larger than f · g at every point.

In [1] it has been shown that Bε(f) ·Bε(g) always contains interior points, a result
which is generalized to the space of differentiable functions in [3]. In the present
paper we characterize the topological properties of f and g which guarantee that
f · g itself is always an interior point.

We introduce the following

Definition 1.1. Let f, g ∈ C [ 0, 1 ] be given. We say that f, g have property (*)
if for every ε > 0 the function f · g is in the interior of Bε(f) ·Bε(g).
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It will be convenient to translate the problem as follows. We consider a “land-
scape” where the height above sea level at the point with coordinates (x, y) ∈ R2

is H(x, y) := x · y. Every two functions f, g ∈ C [ 0, 1 ] generate a “walk”

t 7→
(
f(t), g(t), H(f(t), g(t))

)
in this landscape.

Now suppose that ε > 0 and that the walker is accompanied by a “dog” which
is always close to him or her: we assume that the position of the dog at “time” t is(

f(t) + d1(t), g(t) + d2(t), H(f(t) + d1(t), g(t) + d2(t))
)
,

where |d1(t)|, |d2(t)| ≤ ε. The height above sea level of the dog can be larger or
smaller than that of the walker, the relative difference is

τ(t) := H
(
D(t)

))
−H(f(t), g(t))

)
,

where D is the function (f+d1, g+d2). (It will be convenient to call both D(t) ∈ R2

and
(
D(t), H(D(t))

)
∈ R3 the position of the dog at time t.)

It is then obvious that f, g have (*) if and only if the following holds:

For every ε > 0 there exists δ > 0 such that for arbitrary τ ∈ C [ 0, 1 ]
with ||τ || ≤ δ there is a “walk of the dog” t 7→

(
f(t)+d1(t), g(t)+d2(t)

)
with ||d1||, ||d2|| ≤ ε such that the height difference at every time t is
just τ(t).

Fix f and g. We will write γ(t) :=
(
f(t), g(t)

)
for t ∈ C [ 0, 1 ]: this is the walk

seen from above. Denote by Q++, Q−+,Q−−,Q+− the four quadrants of the plane,
i.e., the sets

{x, y ≥ 0}, {x ≤ 0, y ≥ 0}, {x, y ≤ 0}, {x ≥ 0, y ≤ 0}.

The height function H is ≥ 0 on Q++ and Q−−, it is ≤ 0 on Q−+ and Q+−, and
(0, 0) is a saddle point of H. It will turn out that the behaviour of γ close to this
saddle point is crucial.

Definition 1.2. Let t0 ∈ ] 0, 1 [. We say that γ has a positive saddle point
crossing at t0 if γ(t0) = (0, 0) and there exists r > 0 such that:

• γ(t) ∈ Q++ ∪Q−− for t ∈ [ t0 − r, t0 + r ];

• there are t1 ∈ [ t0 − r, t0 ] and t2 ∈ [ t0, t0 + r ] such that γ(t1) ∈ Q++ \
{(0, 0)} and γ(t2) ∈ Q−− \ {(0, 0)} or vice versa.

A negative saddle point crossing is defined similarly: here γ moves from Q−+

to Q+− or from Q+− to Q−+.
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(Note that this could be formulated equivalently as follows: if γ has, e.g., no
positive saddle point crossings, then for t1, t2 with γ(t1) ∈ Q++ \ {(0, 0)} and
γ(t2) ∈ Q−−\{(0, 0)} there must be a t between t1 and t2 such that H

(
γ(t)

)
< 0.)

And here is our characterization (theorem 3.1):

Theorem: f, g have property (*) iff the associated curve γ has no positive and no
negative saddle point crossings.

In section 2 we will prepare our investigations with the definition of some auxi-
liary functions. Section 3 contains the main result, and in section 4 one finds some
invitations for further study.

2. Preparations

We will fix f, g in C [ 0, 1 ], and γ = (f, g) has the same meaning as above. In
the proof of the main theorem we will have to design paths D = γ+d of the “dog”
such that all ||d(t)|| are small1 and H ◦D −H ◦ γ equals a continuous function τ
which has small norm but which is not otherwise restricted.

We will glue together the desired paths from several pieces: those where γ(t)
is “sufficiently far away” from the saddle point (0, 0) and those where the path γ
approaches it.

The gradient field of H

Suppose that you are at a particular point (x, y,H(x, y)) of our “landscape”
and you want to find a position of the dog which is close to you where the altitude
over sea level is a little bit larger or smaller than yours. It is natural to go into the
direction of the gradient (or the negative gradient) if a higher (or smaller) level is
wanted.

This will now be formalized. Fix (x0, y0) 6= (0, 0) and consider the initial value
problem

(x′(s), y′(s)) = (gradH)
(
x(s), y(s)

)
=
(
y(s), x(s)

)
,
(
x(0), y(0)

)
= (x0, y0).

The solution is simple:(
x(s)
y(s)

)
=
(

x0+y0
2 es + x0−y0

2 e−s
x0+y0

2 es − x0−y0
2 e−s

)
.

It follows that H
(
x(s), y(s)

)
increases with increasing s: one has

H
(
x(s), y(s)

)
=
x2

0 + y2
0

4
(e2s − e−2s) +

x0y0

2
(e2s + e−2s)

1We will work with the maximum norm on R2: ||(x, y)|| := max{|x|, |y|} for (x, y) ∈ R2.
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and therefore

d

ds
H
(
x(s), y(s)

)
=
x2

0 + y2
0

2
(e2s + e−2s) + x0y0(e2s − e−2s)

Now let L, s0 > 0 be numbers such that x2
0 + y2

0 ≥ L and |e2s − e−2s| ≤ 1/2 for
|s| ≤ s0. The above derivative has at least the value L/4 so that s 7→ H

(
x(s), y(s)

)
meets all values between −s0L/4 and s0L/4 precisely once when s runs through
[−s0, s0 ].
This can be summarized as follows:

Lemma 2.1. Let L > 0 and ε̃ > 0 be given. Then there are a positive δ̃ and a
continuous function

Ψ : {(x, y) | x2 + y2 ≥ L} ×
[
−δ̃, δ̃

]
→ R2

such that for all (x, y) with x2 + y2 ≥ L and all α ∈
[
−δ̃, δ̃

]
the following hold:

• ||(x, y)−Ψ(x, y, α)|| ≤ ε̃;

• H
(
Ψ(x, y, α)

)
−H(x, y) = α.

Proof. Above we have shown that Ψ(x, y, α) can be defined for all x, y, α under
consideration and that the possible range of α only depends on L. That Ψ is
continuous (and even C∞) follows from the implicit function theorem. �

A topological lemma

It will be important to know that our path γ will be “close to” the saddle point
only finitely often. To make this precise we prove the following

Lemma 2.2. Let ε0 > 0 be given. We assume that there exists at least one
t ∈ [ 0, 1 ] with γ(t) = (0, 0).

Suppose that both γ(0) and γ(1) are different from (0, 0) and that ||γ(0)|| > ε0

and ||γ(1)|| > ε0.
Then there are 0 < a1 < b1 < a2 < b2 · · · < ar < br < 1 such that

• ||γ(t)|| ≤ ε0 on
⋃
i=1,...,r [ ai, bi ];

• every [ ai, bi ] contains at least one zero of γ, and
⋃
i=1,...,r [ ai, bi ] contains

all of them;

• ||γ(ai)|| = ||γ(bi)|| = ε0 for all i.

Proof. In a first step choose finitely many closed subintervals of [ 0, 1 ] where ||γ(t)||
is bounded by ε0 such that each interval contains a zero and the union covers all
zeros of γ. Next pass to unions to get disjoint intervals. Enlarge these intervals (if
necessary) such that the norm of γ at the endpoints is ε0. And finally it might be
that one has to pass to unions again to obtain disjoint intervals. �
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The canonical walk

With the notation of the preceding paragraph let ∆ be the set

∆ = [ 0, a1 ] ∪ [ b1, a2 ] ∪ · · · ∪ [ br, 1 ] .

γ has no zero in ∆ so that there is an L > 0 such that ||γ(t)|| ≥ L for t ∈ ∆.
Let also ε̃ > 0 be given, we choose δ̃ and Ψ as in lemma 2.1.

We will now construct “walks of the dog” where the times t run through ∆ with
prescribed values of H. Let a continuous function τ : ∆ → R be given such that
|τ(t)| ≤ δ̃ on ∆. For t ∈ ∆ we put

D(t) := Ψ
(
γ(t), τ(t)

)
, d(t) := D(t)− γ(t).

Then t 7→ D(t) is continuous, and and for all t one has ||d(t)|| ≤ ε̃ and H
(
D(t)

)
=

H
(
γ(t)

)
+ τ(t).

We note in passing that one gets with this construction walks defined on [ 0, 1 ]
if γ never vanishes. Thus f, g have (*) whenever f and g have no common zeros.
Since it is easy to perturbate arbitrary f, g such that the perturbations never vanish
simultaneously it follows at once that Bε(f) ·Bε(g) always has interior points (this
was proved in [1] for continuous and in [3] for differentiable functions).

Suitable walks in the neighbourhood of (0, 0)

The walks close to the saddle point have to be prepared more subtly. First we
need some definitions. If µ is positive we denote by Qµ the square in the plane with
vertices (±µ,±µ). We will define certain paths in Qµ. The paths of the first type
lead from points in Qµ to the edges, those of the second type use only the edges
of Qµ.

The P -walks

Let [ t1, t2 ] be an interval, (q1, q2) ∈ Qµ, and η : [ t1, t2 ] → R a continuous
function with H(q1, q2) = q1q2 = η(t1). We will define a path which leads between
times t1 and t2 from (q1, q2) to an edge of Qµ in such a way that at every time t
the height is just η(t).

There will be four families of such paths.
1) (“Walks to the right edge”) Suppose that q1 > 0 and that ||η|| ≤ q1µ. We define

PRt1,t2,η,q1,q2 : [ t1, t2 ]→ Qµ

by t 7→
(
Nq1,µ(t), η(t)/Nq1,µ(t)

)
, where the N -map describes the linear interpola-

tion between two values:

Nα,β(t) :=
t− t1
t2 − t1

β +
t2 − t
t2 − t1

α.

This path has the desired properties: it is continuous, it starts at (q1, q2), it ends
on the right edge, it stays in Qµ and the H-value at time t is η(t).
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2) (“Walks to the top edge”) If q2 > 0 and ||η|| ≤ q2µ we define PTt1,t2,η,q1,q2 :
[ t1, t2 ]→ Qµ by t 7→

(
η(t)/Nq2,µ(t), Nq2,µ(t)

)
.

3) (“Walks to the left edge”) Suppose that q1 < 0 and ||η|| ≤ −q1µ. PLt1,t2,η, q1, q2

is the map t 7→
(
Nq1,−µ(t), η(t)/Nq1,−µ(t)

)
.

4) (“Walks to the bottom edge”) Finally, let q2 < 0 and ||η|| ≤ −q2µ. Then
PBt1,t2,η,q1,q2 is defined by t 7→

(
η(t)/Nq2,−µ(t), Nq2,−µ(t)

)
.

We will also need a version of these paths where the time is reversed : they
start on the edge and run backwards. This will be indicated by a tilde: for example,
P̃Rt1,t2,η,q1,q2 is defined on [ t1, t2 ] by t 7→ PRt1,t2,η,q1,q2(t t1 + (1 − t)t2) whenever
q1 > 0 and ||η|| ≤ q1µ.

The E-walks

This is simpler: we consider (q1, q2) on the boundary of Qµ, a time interval
[ t1, t2 ], and a continuous function η : [ t1, t2 ] → R such that ||η|| ≤ µ2 with
η(t1) = H(q1, q2) = q1q2, and we want to find a path on an edge of Qµ such that
the H-value at time t is η(t).

1) (“Walks on the right edge“) Suppose that q1 = µ.
Then ERt1,t2,η,q1,q2 : [ t1, t2 ]→ Qµ is defined by t 7→ (µ, η(t)/µ).

2), 3), 4) The “walks on the top resp. left resp. bottom edge”.
ET , EL, EB are defined similarly when q2 = µ or q1 = −µ or q2 = −µ, respectively:

ETt1,t2,η,q1,q2(t) = (η(t)/µ, µ),

ELt1,t2,η,q1,q2(t) = (−µ,−η(t)/µ),

EBt1,t2,η,q1,q2(t) = (−η(t)/µ,−µ).

Now let ε0 > 0 be fixed. We put µ := 2ε0. Suppose that [ a, b ] ⊂ ] 0, 1 [, that
||γ(a)|| = ||γ(b)|| = ε0 and that ||γ(t)|| ≤ ε0 for t ∈ [ a, b ].

Definition 2.3. We say that γ(a) and γ(b) are admissible if there exist ε′, δ′ > 0
with the following properties:

• ε′ ≤ ε0.

• Suppose that Pa, Pb ∈ Qµ are given such that ||Pa−γ(a)||, ||Pb−γ(b)|| ≤ ε′
and that τ ′ : [ a, b ] → R is a continuous function with ||τ ′|| ≤ δ′ and
H(Pa) = H

(
γ(a)

)
+ τ ′(a), H(Pb) = H

(
γ(b)

)
+ τ ′(b). Then there is a

continuous walk D′ : [ a, b ]→ Qµ such that D′(a) = Pa, D′(b) = Pb and

H
(
D′(t)

)
= H

(
γ(t)

)
+ τ ′(t)

for all t ∈ [ a, b ].
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Note that “admissible” just means that one can find walks of the dog in Qµ from Pa

to Pb where the relative altitude compared with H(γ) can be arbitrarily prescribed

provided it is small. The distance between γ(t) and D(t) is at most 3ε0 since

||γ(t)|| ≤ ε0 and D(t) ∈ Qµ.

The following lemma will be crucial for our investigations:

Lemma 2.4. Suppose that γ has no positive and no negative saddle point cros-
sings. Then, under the preceding assumptions, γ(a) and γ(b) are always admis-
sible.

Proof. γ(a) has (maximum) norm ε0. We may assume that this point lies in the
first quadrant Q++, the other possibilities can be treated in a similar way. We will
consider the following cases:

Case 1: γ(a) =: (α1, α2) lies in the interior of Q++.

Case 1.1: γ(b) =: (β1, β2) lies in the open right halfplane.
We put ε′ := min{α1/4, β1/4} and δ′ := ε0α1/4, and we claim that these

numbers have the desired properties.
Let Pa, Pb and τ ′ be given with the properties described in definition 2.3. Our

path D will consist of three parts: first it moves to the right edge of Qµ, then it
stays there for some time, and finally it moves towards Pb.

Choose t1 ∈ ] a, b [ such that ||γ(a) − γ(t)|| ≤ ε′ for t ∈ [ a, t1 ]. We define
D : [ a, t1 ]→ R2 by

D(t) := PRa,t1,η1,q1,q2(t),

where (q1, q2) = Pa and η1 is the restriction to [ a, t1 ] of

t 7→ η(t) := H
(
γ(t)

)
+ τ ′(t).

Note that:

• η1 is continuous with η1(a) = H
(
P (a)

)
.

• γ(t) ≤ 5α1ε0 for all t ∈ [ 0, t1 ].

• q1 ≥ 3α1/4.

Consequently

|η1(t)| = H
(
γ(t)

)
+ |τ ′(t)|

≤ 5ε0α1/4 + ε0α1/4
≤ µq1;

this was a relevant condition in the definition of PRa,t1,η1,q1,q2 .

The walk continues. Let t2 ∈ ] t1, b [ be such that ||γ(b) − γ(t)|| ≤ ε′ for t ∈
[ t2, b ]. The second part of the walk moves from (q1, q2) := D(t1) =

(
µ, η(t1)/µ

)
to(

µ, η(t2)/µ
)

between the times t1 and t2. This is achieved by the map ERt1,t2,η2,q1,q2
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(with η2 = η|[ t1,t2 ]), and the path stays in Qµ since |η2(t)| ≤ |H
(
γ(t)

)
|+ |τ ′(t)| ≤

µ2.

And finally we use P̃Rt2,b,η3,q̃1,q̃2 to come from D(t2) to PB =: (q̃1, q̃2) (with
η3 = η|[ t2,b ]).

Case 1.2: γ(b) =: (β1, β2) lies in the open upper halfplane.
This case can be treated in a similar way: move to the upper edge in a short

time interval [ a, t1 ] where γ stays close to γ(a), stay on this edge for some time,
and finally (for t ∈ [ t2, b ] where γ is already close to γ(b)) move to Pb.

Case 1.3: It remains to treat the case γ(b) =: (β1, β2) ∈ Q−−. Here our assumption
comes into play.

Since γ has no positive saddle point crossings there must exist t0 ∈ [ a, b ] with
H
(
γ(t0)

)
< 0. We choose a small interval [ t2, t3 ] with t2 < t0 < t3 such that

H
(
γ(t)

)
< 0 for t in this interval. Note that η(t) := H

(
γ(t)

)
+ τ ′(t) will be strictly

negative there if ||τ ′|| is small.
Suppose first that β1 < 0. Then D is defined on [ a, b ] as follows, at every t the

“height” H
(
D(t)

)
of D(t) is η(t):

• Move to the upper edge of Qµ while t ∈ [ a, t1 ]. This part uses the path PT .

• Stay there during [ t1, t2 ]. (The explicit formule is given by the ET -path.)

• For the t ∈ [ t2, t3 ] the dog moves (with PL) from the top edge to the left
edge of Qµ.

• Between t3 and t4 the walk is driven by EL; here t4 is close to b such that
γ(t) is close to γ(b) for t ∈ [ t4, b ].

• Finally, on [ t4, b ], walk according to P̃L to come from the left edge to PB .

If β1 = 0 we need a different procedure. (The ti have the same meaning as
before.) First move to the right edge between times a and t1; stay there until t2;
move between t2 and t3 to the bottom edge; stay there until t4; turn to Pb between
t4 and b.

Case 2: γ(a) =: (α1, α2) lies on the boundary of Q++. This means that γ(a) =
(ε0, 0) or γ(a) = (0, ε0). Let us suppose that γ(a) = (0, ε0).

If γ(b) is not in the set {(−ε0, 0), (0,−ε0), (ε0, 0)} we are done: one simply has
to reverse the roles of γ(a) and γ(b), to find a path for this situation as in the
preceding investigations and then let the time t run backwards. Thus there remain
three cases which have to be considered.

Case 2.1: γ(b) = (ε0, 0).
It cannot be the case that all γ(t) for t ∈ [ a, b ] are in Q−+ ∪ Q+− since this

would mean that γ has a negative saddle point crossing. Therefore there must exist
t0 ∈ [ a, b ] with H

(
γ(t0)

)
> 0. Thus η := H ◦ γ + τ ′ will be positive on a suitable

small interval [ t2, t3 ] around t0 provided that ||τ ′|| is small.
Here is the construction of D with H

(
D(t)

)
= η(t): move, starting at Pa,

between times a and t1 (with t1 close to a) to the top edge; stay there until t2;
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move between t2 and t3 to the right edge; stay there until t4 (which is close to b);
turn to Pb between t3 and b.

Case 2.2: γ(b) = (−ε0, 0).
This situation can be treated in a similar way.

Case 2.3: γ(b) = (0,−ε0).
This is the most complicated case. We claim that there must be t+, t− ∈ [ a, b ]

such that
H
(
γ(t+)

)
> 0, H

(
γ(t+)

)
< 0 :

since if this would not hold γ would have a positive or a negative saddle point
crossing. Suppose that, without loss of generality, t+ < t−. We choose t1, . . . , t6
with t1 close to a, t6 close to b, and on [ t2, t3 ] (resp. on [ t4, t5 ]) the function
η := H ◦ γ + τ ′ is strictly positive (resp. strictly negative); as above this can be
achieved if ||τ ′|| is small. This time the dog has to be rather busy. It walks:

• from Pa to the top edge between a and t1;

• on the top edge between t1 and t2;

• from the top edge to the right edge between t2 and t3;

• on the right edge between t3 and t4;

• to the bottom edge between t4 and t5;

• on the bottom edge between t5 and t6;

• from the bottom etge to Pb between t6 and b.

And this can be done in such a way that H ◦D = H ◦ γ + τ ′ during the walk. �

3. The main result

Our main result is

Theorem 3.1. Let f, g ∈ C [ 0, 1 ] be given and γ = (f, g) the associated path
in R2. Then the following assertions are equivalent:

1. f · g is an interior point of Bε(f)Bε(g) for all ε > 0.

2. For every ε > 0 there exists a δ > 0 such that the functions f · g + δ and
f ·g−δ are in Bε(f)Bε(g); here δ (resp. −δ) denotes the constant function
δ (resp. −δ).

3. γ has no positive and no negative saddle point crossings.
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Proof. “1 ⇒ 2:” This is trivially true.

“2 ⇒ 3:” This will be shown by proving that “¬ 3” imlies “¬ 2”. Let us assume,
e.g., that γ has a positive saddle point crossing: Suppose, e.g., that γ is in Q++ on
[ t0 − r, t0 ] and in Q−− on [ t0, t0 + r ], and γ(t1) (resp. γ(t1)) is in Q++ \{(0, 0)}
(resp. Q−−\{(0, 0)}) for a suitable t1 ∈ [ t0 − r, t0 ] (resp. t2 ∈ [ t0, t0 + r ]). Choose
ε > 0 such that an x ∈ R2 lies necessarily in the upper half plane if H(x) > 0
and ||x − γ(t1)||e2ε0. Also we assume that y lies in the lower halfplane provided
that H(y) > 0 and ||γ(t2)− y|| ≤ 2ε. This implies that (γ + d)(t1) is in the upper
halfplane (resp. (γ + d)(t2) is in the lower halfplane) whenever ||d(t1)|| ≤ ε (resp.
||d(t2)|| ≤ ε) and H ◦ (γ + d) > H ◦ γ. Thus, necessarily, there exist t ∈ [ t1, t2 ]
where γ + d meets the line R × {0} so that H

(
(γ + d)(t)

)
= 0. It follows that

f · g + δ is not contained in Bε(f)Bε(g) for any positive number δ. (There is no
walk of the dog such that it stays close to you and its altitude is always your altitude
+δ.)

Similarly it follows that there is an ε > 0 such that f · g− δ is not contained in
Bε(f)Bε(g) if γ has a negative saddle point crossing.

“3 ⇒ 1:” This is the most difficult part of the proof. We assume that γ has no
positive and no negative saddle point crossings, and we have to find for given ε > 0
a δ > 0 such that all f · g + τ lie in Bε(f)Bε(g), where τ ∈ C [ 0, 1 ] is arbitrary
with ||τ || ≤ δ.

Let ε > 0 be given. We suppose for the moment that ||γ(0)||, ||γ(1)|| > ε.
(The necessary modifications of the proof if this doesn’t hold are indicated later.)
Our aim is to find a positive δ such that for every continuous τ : [ 0, 1 ] → R with
||τ || ≤ δ there exists a path γ + d which is ε-close to γ at every moment, and
H
(
γ(t) + d(t)

)
= H

(
γ(t)

)
+ τ(t) is true for all t.

First we fix ε0, a positive number less than ε/3. We find the [ ai, bi ] , i = 1, . . . , r
according to lemma 2.2, and as above ∆ is the set

[ 0, a1 ] ∪ [ b1, a2 ] ∪ · · · ∪ [ br, 1 ] .

As before we denote by L the positive number mint∈∆ ||γ(t)||. By lemma 2.4 we
may choose positive δ′, ε′ such that the definition of admissibility applies to all
[ ai, bi ]. Now find a δ̃ > 0 for L and ε̃ := min{ε′, ε} as in lemma 2.1. We claim
that δ := min{δ′, δ̃} has the desired properties.

Let τ ∈ C [ 0, 1 ] with ||τ || ≤ δ be given. We define D : ∆ → R2 as the
canonical walk which is constructed by using the map Ψ associated with ε̃ and L.
Thus ||D(t) − γ(t)|| ≤ ε̃ ≤ ε, and H

(
D(t)

)
= H

(
γ(t)

)
+ τ(t) for t ∈ ∆. And

the gaps can be closed with the help of lemma 2.4 which will be used successively
for i = 1, . . . , r, the intervals [ a, b ] = [ ai, bi ] and Pa = D(ai), Pb = D(bi). Note
that always ||D(t) − γ(t)|| ≤ 3ε0 ≤ ε since D(t) ∈ Qµ and ||γ(t)|| ≤ ε0 for
t ∈
⋃

[ ai, bi ].

To complete the proof of the theorem we have to discuss the case when γ(a)
or γ(b) or both vanish.
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If γ(t) = 0 for all t it is easy to see that property (*) holds. Given ε > 0 we put
δ := ε2. Then, if τ is continuous with ||τ || ≤ δ, the walk D(t) := (ε, τ(t)/ε) has
the desired property: ||γ(t)−D(t)|| ≤ ε, and

H
(
D(t)

)
= τ(t) = H

(
γ(t)

)
+ τ(t).

Thus suppose that there exists t′ with γ(t′) 6= (0, 0). We will restrict ourselves
to ε with ε < ||γ(t′)||. We start as above by setting ε0 = ε/3. Let γ(a) = (0, 0).
Now the topological lemma 2.2 is only true with the following modification: The
first interval [ a1, b1 ] is of the form [ 0, b1 ], and ||γ(b1)|| = ε0. On the complement
of
⋃

[ ai, bi ] the paths D can be defined in the canonical way, but it remains to
close the gap between 0 and b1 (and maybe between ar and 1 if it happens that
γ(1) = (0, 0), too).

Suppose that ||γ(t)|| ≤ ε0 on [ 0, b1 ], that ||γ(b1)|| = ε0 and that, e.g., the x-
component of γ(b1) equals ε0 (recall that we work with the maximum norm on R2).
A continuous function τ is given with sufficiently small norm, and η := H ◦ γ+ τ is
written on ∆ as H ◦D. Put Pb := D(b1), and we want to extend the definition of
D in a continuous way to [ 0, b1 ] such that H ◦ γ + τ = H ◦D holds also on this
interval.

The construction is similar to those in the proof of lemma 2.4. We choose t1
close to b1 such that γ(t) stays close to γ(b1) on [ t1, t ]. We start our walk at
D(0) := (µ, τ(0)/µ) and continue to stay on the right edge of Qµ by setting
D(t) := (µ, η(t)/µ) for t ∈ [ 0, t1 ]; as before µ stands for 2ε0. And between t1 and
b1 we define D with the help of P̃R to arrive at D(b1) = Pb.

Depending on γ(b1) it might be necessary to use one of the other edges of Qµ
(e.g., the top edge if the y-component of γ(b1) equals ε0). And the final part (for
the t between ar and 1) is treated similarly if γ(1) = (0, 0). �

We close this section by stating the following immediate corollaries to our theorem:

Corollary 3.2. Let f, g ∈ C [ 0, 1 ] be such that f ·g doesn’t change sign, i.e., all
γ(t) lie in Q++ ∪Q−− or all lie in Q+− ∪Q−+. Then f, g have (*) iff neither
f nor g changes sign on [ 0, 1 ].

Proof. One only has to note that the condition is equivalent with the fact that (f, g)
has no positive and no negative saddle point crossing. �

Now it is clear why our first example f(t) = g(t) = t− 0.5 fails to have (*): here γ
has a positive saddle point crossing at t = 0.5.

On the other hand, if f(t) = g(t) = |t − 0.5|, then γ meets the saddle point of H
at t = 0.5. But no saddle point crossing occurs so that f, g have (*) in this case.

Corollary 3.3. Suppose that O1, O2 ⊂ C [ 0, 1 ] are open and that f, g have (*)
for arbitrary f ∈ O1, g ∈ O2. Then O1O2 is also open.

4. Invitations for further study
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The aim of this paper was the study of the obstructions which are responsible
for the fact that f · g is sometimes not in the interior of Bε(f)Bε(g).

It would be interesting to consider the similar problem in other Banach algebras
Y . As before we say that f, g ∈ Y have (∗) is f ·g is an interior point of Bε(f)Bε(g)
for every ε > 0. Here are some first observations:

1. In l∞ every two f, g have (*). This is obvious. (More generally it has been shown
in [2] that, for compact X, each two f, g ∈ CX have (*) iff X is zero dimensional.)

2. Let CbR be the Banach algebra of bounded continuous real valued functions on
R, provided with the supremum norm. Then f, g fail to have (*) if the associated
path γ = (f, g) has positive or negative saddle point crossings, but the reverse
implication doesn’t hold. A characterization seems to be difficult.

3. If we consider Y to be the set of complex-valued continuous functions on [ 0, 1 ],
then every two f, g have (*) (so that the product of open subsets of X is always
open). This can be veryfied by adapting the methods used in this paper. For the
proof it is crucial that the boundary of the unit sphere in C (in contrast to that of
R) is path-connected.

4. It is completely open how a characterization could look like in the case of the
Banach algebra CX of real (or complex) valued continuous functions on an arbitrary
compact space X.

5. The Banach algebra CN [ 0, 1 ] of N times continuously differentiable real functi-
ons studied in [3] can be treated in a similar way as C [ 0, 1 ] in the present paper.The
characterization of f, g such that f · g have (*) is the same: no positive or negative
saddle point crossings. One only has to observe that the constructions above can be
modified such that one arrives at differentiable functions. (Rigorous proofs, however,
will be rather clumsy.)

Also generalizations of the walk-the-dog illustration could be studied by replacing
H by a more general function. Consider continuous functions Φ : R2 → R and
γ : [ 0, 1 ] → R2. We will say that γ is Φ-admissible if for every ε > 0 there exists
δ > 0 with the following property:

Whenever τ ∈ C [ 0, 1 ] is given with ||τ || ≤ δ there exists a conti-
nuous D : [ 0, 1 ] → R2 such that ||γ(t) −D(t)|| ≤ ε and Φ

(
D(t)

)
=

Φ
(
γ(t)

)
+ τ(t) for every t.

This is the same situation as before (where we worked with Φ(x, y) = H(x, y) =
xy), but the “landscape” might be more complicated.

In some simple cases one “sees” that all γ are Φ-admissible. This is, e.g., the case
when Φ(x, y) := max{x, y}, or Φ(x, y) := min{x, y}, or Φ(x, y) := x + y, a fact
which corresponds to results in [1] where it has been shown that (f, g) 7→ max{f, g},
(f, g) 7→ min{f, g}, and (f, g) 7→ f + g (from C [ 0, 1 ]×C [ 0, 1 ] to C [ 0, 1 ]) map
open sets to open sets.

It is clear that γ cannot be Φ-admissible if γ passes through a local maximum
or a local minimum of Φ. If Φ is smooth a characterization of Φ-admissibility will



Walk the dog 13

have to use the behaviour of γ close to the saddle points of Φ. It has to be expected
that the same techniques as in the present paper can be applied successfully.

Even more generally one could study “walks” in higher dimensions, i.e. smooth
functions Φ : Rn → R and continuous γ : R → Rn. Also then the singular points
of Φ will be of crucial importance for the characterization of Φ-admissible γ.

For general Φ which are continuous but not necessarily smooth (that is, for
possibly “very rough” landscapes), it is not likely that a simple description of the
Φ-admissible γ exists.
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