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Abstract

We investigate the behavior of randomized simplex algorithms on special linear pro�
grams�
For this� we develop combinatorial models for the Klee�Minty cubes ��	
 and similar
linear programs with exponential decreasing paths� The analysis of two most natural
randomized pivot rules on the Klee�Minty cubes leads to �nearly� quadratic lower
bounds for the complexity of linear programming with random pivots� Thus� we
disprove two bounds conjectured in the literature�
At the same time� we establish quadratic upper bounds for random pivots on the
linear programs under investigation� This motivates the question whether some
randomized pivot rules possibly have quadratic worst�case behavior on general linear
programs�
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� Introduction

Linear programming is the problem of minimizing a linear objective function over a
polyhedron P � IRn given by a system of m linear inequalities	

Without loss of generality 
��� we may assume that the problem is primally
and dually nondegenerate� that the feasible region is fulldimensional and bounded�
and that the objective function is given by the last coordinate	 In other words�
we consider the problem of �nding the �lowest vertex� �minimizing xn� of a simple
ndimensional polytope P � IRn with at most m facets� where the last coordinate
xn is not constant on any edge� and thus the lowest vertex is unique	

In this setting� the �geometric interpretation of the� simplex algorithm proceeds
from some starting vertex of P along edges in such a way that the objective func
tion decreases� until the unique lowest vertex of P is found	 The �theoretical and
practical� e�ciency of the simplex algorithm 
��� depends on a suitable choice of
decreasing edges that �quickly leads to the lowest vertex�	 Connected to this are
two major problems of linear programming� the diameter problem �Is there a short
path to the lowest vertex��� and the algorithm problem �Is there an algorithm which
quickly �nds a �short� path to the lowest vertex��	

The diameter problem is closely related to the �Hirsch conjecture� �from �����
and its variants 
�� ��� ���	 Currently there is no counterexample to the �Strong
monotone Hirsch conjecture� 
��� that there always has to be a decreasing path�
from the vertex which maximizes xn to the lowest vertex� of length at most m� n	
On the other hand� the best arguments known for upper bounds establish paths
whose length is roughly bounded by mlog

�
�n 
������	

The algorithm problem includes the quest for a strongly polynomial algorithm
for linear programming	 Klee � Minty 
��� showed in ���� that linear programs with
exponentially long decreasing paths exist� and that the �steepest descent� pivot
rule can be tricked into selecting such a path	 Using variations of the KleeMinty
constructions� it has been shown that the simplex algorithm may take an exponential
number of steps for virtually every deterministic pivot rule 
���	 �A notable exception
is Zadeh�s rule 
������� locally minimizing revisits� for which Zadeh�s ������	� prize

��� p	 ���� has not been collected� yet	�

No such evidence exists for some natural randomized pivot rules� among them
the following three rules�

random�edge� At any nonoptimal vertex x of P � follow one of the decreasing edges
leaving x with equal probability	

random�facet� If x admits only one decreasing edge� then take it	 Otherwise
restrict the program to a randomly chosen facet containing x	 This yields a
linear program of smaller dimension in which x is nonoptimal� and which can
be solved by recursive call to random�facet	

random�shadow� Start at the unique vertex y � P which maximizes xn	 Choose
a random unit vector c orthogonal to en	 Now take the path from y to the
lowest vertex given by fx � P � cx � cz for all z � P with zn � xng	
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random�facet is a randomized version� due to Kalai 
���� of Bland�s proce�
dure A 
��� which assumes that the facets are numbered� and always restricts to
the facet with the smallest index	 Interestingly enough� very elementary arguments
imply a recursion

f�n�m� � f�n � ��m� �� �
�

n

nX
i��

f�n�m� i�

for the maximal expected number of steps f�n�m� on an ndimensional linear pro
gram with m inequalities	 From this one can get subexponential upper bounds of

roughly eO�
p

n logm� for the number of steps of random�facet � see Kalai 
����
and �in a very similar dual setting� Matou�sek� Sharir � Welzl 
���	

The random�shadow rule is a randomized version of Borgwardt�s shadow
vertex algorithm 
�� �also known as the Gass�Saaty rule 
����� for which the
auxiliary function c is deterministically obtained in such a way that it is minimized
on the starting vertex	 Borgwardt 
�� has successfully analyzed this algorithm under
the assumption that P is random in a suitable model �where the secondary objective
function c can be �xed arbitrarily�� and obtained polynomial upper bounds for the
expected number of simplex steps	

None of the available evidence contradicts the possibility that the expected run
ning time of all three randomized algorithms we consider is bounded from above
by a polynomial� even a quadratic function� in n and m	 In this connection� we
report investigations of the performance of such algorithms on in�nite families of
�test problems�� speci�c linear programs which have decreasing paths of exponential
length	

It is not generally believed that polynomial upper bounds can be achieved it
is equally conceivable that subexponential bounds such as those by Kalai 
��� are
essentially best possible	 An interesting open problem in this context is to �nd linear
programs on which the algorithms in 
��� ��� actually behave superpolynomially 
Matou�sek 
��� has constructed abstract optimization problems � more general than
linear programs � for which the subexponential analysis is tight	

In this extended abstract we concentrate on the analysis of the �KleeMinty
cubes�� see Section �	 These are very interesting linear programs whose polytope
is a deformed ncube� but for which some pivot rules follow a path through all the
vertices and thus need an exponential number of steps	

Our main results are quadratic� respectively nearly quadratic� lower bounds for
the expected number of steps taken by the random�facet and the random�edge
simplex algorithms	 For the random�edge rule this seems to be the �rst superlinear
bound	

Speci�cally� our analysis of random pivots on the KleeMinty cubes yields the
following two theorems	

Theorem �� The random�facet simplex algorithm on the n�dimensional Klee�
Minty cube� started at the vertex v �opposite� �on the n cube� to the optimal vertex�



�

takes a quadratic expected number of steps Fn�v��

Fn�v� � n � �
nX

k��

����k��

k � �

�
n� k

�

�
�
�
�

�
� �

�

�
n��

Moreover� for a random starting vertex the expected number of steps is

Fn �
n� � �n

!
�

We note that one gets a linear lower bound and a quadratic upper bound
Fn�x� � �n� � �n��� for the expected number of steps from an arbitrary start
ing vertex x	 Furthermore� there are starting points in the upper facet for which
the facet random rule will take only linearly many steps	 The fact that for some
starting vertices the expected number of steps is quadratic follows from an explicit
formula for the expectation value� given in Section �� or from the bound for a random
starting vertex	

A result very similar to Theorem �� in the setting of dual simplex algorithms�
was earlier obtained by Matou�sek 
���� who analyzed the behavior of the Matou�sek
SharirWelzl dual simplex algorithm on a special class of linear programs	

Similarly� for random�edge one gets an upper bound En�x� � �
n��
�

�
for the

expected number of steps starting at any vertex x of the ndimensional KleeMinty
cube� see Section �	 This was �rst observed by Kelly 
���� see also 
���	

Theorem �� The expected number En of steps that the random�edge rule will
take� starting at a random vertex on the n�dimensional Klee�Minty cube� is bounded
by

n�n � ��

!Hn
� En �

�
n � �

�

�
�

where Hn � � � ��� � � � � � ��n is the n�th harmonic number	

This superlinear lower bound requires substantially harder work� see Section �	
It implies that there is a vertex x with En�x� � "�n�� log n�� but compared to the
case of random�facet we are not able to show this bound for a speci�c starting
vertex� e	g	 the top vertex	

Our proof is based on a combinatorial model for the KleeMinty cubes� which
describes the random�edge algorithm as a random walk on an acyclic directed
graph �see Section ��	

The combinatorial model also makes it possible to do simulation experiments	
Our tests in the range n � �� ��� suggest that the quadratic upper bound is close
to the truth	 Also� it seems that a �nearly� quadratic lower bound is valid also if
the starting vertex is chosen to be the top vertex of the program� but as mentioned
above� our method does not prove this	

Still� our result contradicts Exercise !	��# in 
��� p	 �!!�� where it is claimed that
En�x� � O�n�	 It also disproves a conjecture of Kelly 
��� that En�x� � O�n�log n���
for all starting vertices x	
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Another conjecture of Kelly 
���� according to which the expected number of
random�edge pivots is maximal if the starting vertex is diametrically opposite to
the lowest vertex� also turned out to be false	 We found� by explicit computation
of expectation values �in rational arithmetic� using REDUCE� that the smallest
dimension in which this fails is n � �!	

The random�shadow algorithm has not yet been studied on special programs	
Goldfarb 
�� !� has constructed a variant of the KleeMinty cubes for which the
deterministic shadow vertex algorithm takes an exponential number of steps	
There is hope for a successful analysis since Borgwardt�s work 
�� shows that methods
of integral geometry can be very powerful when applied in this context	

Besides the KleeMinty cubes and their variants� there are other natural classes
of �test problems� for �randomized� linear programming algorithms	 They include
the deformed products of Klee � Minty 
���� for which a combinatorial model is
produced in Section �	 Also there is a natural model on polars of cyclic polytopes�
for which the actual program has not been constructed� yet	 This relates to the
unsolved �upper bound problem for linear programs�	

� Combinatorial Models

The Klee�Minty cubes 
��� ��� are the polytopes of the linear programs in IRn with
m � �n facets given by

min xn �
� �x�� �

�xi�� �xi� � � �xi��

for � � i � n and � � � � ���	 Our illustration shows the �dimensional KleeMinty
cube for � � ���	

Considering the geometry in the limit � � �� one sees that the feasible region
is a �slightly� deformed unit cube	 Thus the feasible vertices of the program are
in bijection with the set f�� �gn of all ���vectors of length n� where we obtain the
���vector for any vertex by rounding the coordinates	 Two vertices are adjacent if
the corresponding ���vectors di$er in exactly one coordinate	 �The identi�cation
of f�� �g with GF ��� will turn out useful in the next section� where linear algebra
over GF ��� is a key tool in our approach to lower bounds	�

In the following� we identify the vertices of the KleeMinty cubes with the corre
sponding ���vectors	 Since the simplex algorithm proceeds along decreasing edges�
we have to describe the edge orientations	 It is easy to see� by induction on the
dimension� that if x is a ���vector with k ones� at positions s� � s� � � � � � sk�
then the xncoordinate of the corresponding vertex of the KleeMinty cube is

�n�sk � �n�sk�� � � � � � ����k���n�s�

From this we obtain that if x� x� � f�� �gn di$er in their ith component� then the
corresponding edge is directed from x to x� if and only if the sum xi �xi��� � � ��xn
is odd	 We write x� x� in this situation	



�

Figure �� KleeMinty cube for n � �� � � ���

This completes the description of the combinatorial model� a directed� acyclic
graph with �n vertices� n�n�� directed arcs� and a unique source and sink	 It can be
used as a combinatorial model for the linear program	

For instance� one can derive that the average length %n of a decreasing path
from the highest to the lowest vertex � taking all paths with equal probability �
satis�es %n � �� � ��

p
��n�� 
���� it is exponential	 Thus� the �average� path is

exponentially long� but the random�edge and random�facet pivot rules take
the long paths with low probability	

The random�edge algorithm moves on the digraph of the KleeMinty cube by
leaving the current vertex� using one of the outgoing edges with equal probability�
until it reaches the unique sink in the digraph	 For example� a legal sequence of
steps for n � �� starting at the highest vertex and ending at the lowest� is given by�

� �

�

�

�
A �� �

� �
�

�

�
A

��

�
� �

�
�

�
A �� �

� �
�
�

�
A �

Here any coordinate that can be &ipped is typeset bold� from this one can read o$
that the �rst step is taken with probability p � �

�� the second one with p � �
�� and

the third with probability �	 Thus this path is taken with probability �
�	

The expected number of steps En�x� from a vertex x to the lowest vertex satis�es
the recursion

En�x� � � �
�

'fx� � x� x�g
X

x�
x�x�

En�x���
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If i�x� denotes the highest index i for which xi � �� then we can easily show

i�x� � En�x� �
�
i�x� � �

�

�
�
�
n � �

�

�
� this implies the upper bound of Theorem �� but only a linear lower bound	
A complete analysis seems to be surprisingly di�cult	 In Section � we develop a
method� based on linear algebra over GF ���� that yields the nearly quadratic lower
bounds �on average� of Theorem �	

The random�facet pivot rule can� however� be completely analyzed on the
KleeMinty cubes	 For this� one �rst derives that

Fn�ei� � Fn�ei � ei��� � i�

In particular� started at the highest vertex en� the random�facet rule only needs
an expected number of Fn�en� � n steps	 For an arbitrary starting vertex x �
f�� �gn� the solution of the program restricted to a facet xi � � delivers the lowest
vertex restricted to a facet xi � � the algorithm yields the vector ei � ei��� where
we set e � �	 From this we get a recursion

Fn�x� �
�

n

	
nX
i��

ixi �

nX
i��

Fn���x
�i��



�

with x�i� �� �x�� � � � � xi��� xi�� � xi� xi��� � � � � xn�t � f�� �gn�� for � � i � n	 Using
this recursion� it is easy to derive a linear lower bound and a quadratic upper bound
for Fn�x�� namely

i�x� � Fn�x� � i�x�� � �i�x�

�
� n� � �n

�
�

Equality in the linear lower bound holds for the in�nite series of vectors ei and
ei � ei��	 Surprisingly� one can explicitly solve the above recursion	 In particular�
quadratic lower bounds as in Theorem � can be derived from the following result	

Proposition �� Started at a vertex x � f�� �gn of the n�dimensional Klee�Minty
cube� with

ft � xt � �g � fs�� s�� � � � � skg��
the expected number of steps of the random�facet simplex algorithm is

Fn�x� �
kX
i��

si � �
X

��i�j�k

����j�isi
sj � si � �

�

For a random starting vertex� the situation is substantially simpler� Let

Gn �
X

x�f��gn

Fn�x��



!

From the recursion we get

Gn � �n���n � �� � �Gn��

with G� � �	 This gives

Gn � �n���

�
n � �

�

�
� ���

and the second part of Theorem � follows	

� A Lower Bound

Our analysis of the random�edge rule on the KleeMinty cubes starts with a
coordinate transformation in V �� GF ���n	 Namely� we associate with every vertex
x � V the label

Tx �� �xn� xn � xn��� � � � � xn�xn���� � ��x��
t � V�

With these new labels� the vertex set of the digraph is again given by V	 An arc of
the digraph now corresponds to vertices x� x� � V such that xi � �� and x� arises
from x by replacing xj by xj � ��mod �� for every j � i	 �In particular� this yields
x�i � �	�

Thus� for any vector x � V� we consider the game KM�x��

choose a random coordinate r for which xr � �� and &ip this coordinate
together with all coordinates of higher index	 This operation is repeated until
the zero vector is reached	

For example� the &ipping sequence considered in Section � corresponds� after this
coordinate transformation� to the sequence�

� �
�
�

�
A

��

�
� �

�
�

�
A �� �

� �
�
�

�
A

��

�
� �

�
�

�
A �

The version in which we prove the lower bound of Theorem � in this section is the
following� starting with a random vector x � V� the expected number L�x� of rounds
played is at least cn�� log n for some c � �	

The �ipping operation� The &ip at index r �in the new coordinate system� can
conveniently be expressed as a linear transformation over V� i	e	� there is a matrix
Ar such that

xr �� �x�� � � � � xr��� �� xr�� � xr� � � � � xn � xr�
t � Arx

for all vectors x � �x�� � � � � xn��
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The columns of Ar are the images of the unit vectors under the &ip at r� i	e	

Ar �

�
BBBBBBBBB�

� � column r
	 	 	

�
� 	 row r
� �
			

	 	 	

� �

�
CCCCCCCCCA
�

and all other entries are zero	 Note that for j 
� r� ejr � ej in general� a &ip with
xr � x is called void� and although KM�x� does not perform void &ips� this more
general &ipping concept is a key ingredient in our approach	

Flip sequences� Let S be the set of all �formally in�nite� sequences �s�� s�� ����
with elements in f�� ���� ng� where probS�sk � r� � ��n independently for all k	 We
refer to the members of S as �ip sequences	 For a &ip sequence s and an integer k
we let x�s�k� be the result of (applying� the �rst k &ips of s to x� i	e	�

x�s�k� �� A�s�k�x� with A�s�k� �� Ask ���As�As� �

The analysis of game KM� It is clear that one can simulate game KM by
&ipping with a random r � f�� ���� ng in each step and ignoring the void &ips	 This
means that the expected length L�x� of game KM�x� is just the expected number of
nonvoid &ips encountered during the simulation	 Using the linearity of expectation�
this boils down to the following formula�

L�x� �
�X
k��

prob
S

�x�s�k� 
� x�s�k�����

Note that

L��x� ��
�X
k��

prob
S

�x�s�k� 
� ��

is just the expected length of the simulation� including the void &ips  this will be
important later	 Let us refer to the simulation as game KM�	

Recall that x�s�k� 
� x�s�k��� if and only if the kth &ip hits a oneentry of the
current vector x�s�k���� which implies that the probability for a nonvoid kth &ip is
just the expected number of oneentries in x�s�k���� divided by n	 Thus

prob
S

�x�s�k� 
� x�s�k���� �
�

n

nX
r��

prob
S

�x�s�k���r � ���



��

Let

L�n� ��
�

�n

X
x�V

L�x�

be the average expected length �over all vectors x� of game KM	 We obtain

L�n� �
�X
k��

�

n

nX
r��

prob
S�V

�x�s�k���r � ��

�
�

n

nX
r��

�X
k��

prob
S�V

��A�s�k���x�r � ��

�
�

n

nX
r��

�X
k��

prob
S�V

��er
tA�s�k����x � ��

�
�

�n

nX
r��

�X
k��

prob
S

�er
tA�s�k��� 
� ���

since probV��ertA�s�k����x � �� is equal to ��� if ertA�s�k��� 
� � �and � otherwise�	
In general� xtA�s�k��� arises from x by playing k � � rounds of another &ipping

game� choose in each round a random index r and replace xr by
P

r��r xr� � xr �P
r��r xr�	 But wait) This &ipping game is nothing else than the simulation KM��

played in the original combinatorial model of the previous section� if
P

r��r xr� is
odd� xr gets &ipped� inducing a proper round of KM � otherwise nothing happens�
and a void &ip occurs in the simulation	 Putting together this observation and the
previous derivation gives a simple relation between the average expected length L�n�
of game KM and the expected length L� of game KM� for speci�c starting vectors	

Lemma ��

L�n� �
�

�n

nX
r��

�� � L��Ter���

where T � x �� �xn� xn � xn��� � � � � xn�xn���� � ��x��t is the coordinate transforma�
tion relating the two combinatorial models of the Klee�Minty cubes	

Bounding L�� Lemma � leaves us with the problem of determining how many
&ips �void or nonvoid� are necessary on the average to reduce the vector

Ter � ��� � � � � �� �� � � � � �� �z 
r

�

to �	 To this end we will analyze how the vector evolves when applying a random
&ip sequence to it	 Actually� the analysis will only trace the dimension which records
the oneentry with lowest index	 Therefore� the considerations for Ter are valid as
well for any other vector x with the same lowest oneentry	
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De	nition 
� For a nonzero vector x � V� the dimension is the number

d�x� �� n � � �minfr j xr � �g�

Furthermore� d��� �� ��

For example� d�Ter� � r	 Now de�ne for � � d � n the numbers

l�d� �� min
x�V

fL��x� j d�x� � dg�

We get l��� � � and L��Ter� � l�r�� and our objective will be to bound l�d�
from below	 To this end �x any vector x with dimension d and L��x� � l�d�� and
apply a random &ip sequence to it	 Eventually the sequence will hit the leading one
entry� thereby decreasing the dimension of the vector currently under consideration	
The expected number of &ips performed until this happens is exactly n �we have a
sequence of Bernoullitrials with probability of success equal to ��n independently
in every trial�	 The expected number of &ips performed after the dimension has
decreased depends on the actual dimension obtained	 For i � d let pi denote the
probability that the dimension goes down from d to i	 Then

l�d� � n �
d��X
i�

pil�i�� ���

Lemma �� Let i � d	 Then

p � � � �� pi � �

d � i
�

Proof� p � � � � � pi is the probability that the dimension goes down by at least
d � i� and if this event is possible at all� the &ip sequence must necessarily hit the
leading oneentry before it hits any of the d � i� � next higher indices � otherwise
there is a zeroentry at the lowest such index which was hit� and this entry turns
into one by the time the leading position is &ipped� preventing the dimension from
advancing by more than d � i � �	 However� the probability of hitting the leading
oneentry �rst is exactly ���d � i�	

From the fact that l is monotone in d �the easy argument is omitted here� it
follows that the right hand side of ��� is minimized if the tuple �pd��� � � � � p� is
lexicographically smallest subject to

Pd��
i� pi � � and the inequalities established

by Lemma �	 This is the case if pi � ���d� i�� ���d� i� �� for i � �� and we get

Lemma ��

l�d� � n �
d��X
i��

�
�

d � i
� �

d� i � �
�l�i��



��

Theorem �

l�d� � dn

��Hd�� � ��
�

Proof� The inequality of Lemma � can be rewritten as

dX
i��

l�i�

d � i� �
� n �

d��X
i��

l�i�

d� i
�

and after setting f�d� ��
Pd

i�� l�i���d� i � �� reads as

f�d� � n � f�d � ��

with f��� � �	 This implies f�d�� � d�n for all d� � d� so

d�X
i��

l�i�

d� � i � �
� d�n�

Summing up the inequalities for all values of d� up to d gives�
d � �

�

�
n �

dX
d���

d�X
i��

l�i�

d� � i � �

�
dX

i��

l�i�
dX

d��i

�

d� � i � �

�
dX

i��

l�i�Hd�i���

While l�i� increases with i� Hd�i�� decreases� and Chebyshev�s summation in
equality 
�� p	 �!� can be applied to yield

dX
i��

l�i�Hd�i�� � �

d

	
dX

i��

l�i�


	
dX
i��

Hd�i��




�
�

d
�d � ���Hd�� � ��

dX
i��

l�i��

From this we obtain
d�n

�
� �Hd�� � ��

dX
i��

l�i��

so

l�d� � �

d

dX
i��

l�i� � dn

��Hd�� � ��
�

as claimed	
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Putting everything together� From Lemma � we know that

L�n� �
�

�n

nX
r��

�� � L��Ter�� � �

�n

nX
r��

l�r��

and by Theorem ! we can argue that

L�n� � �

�

nX
r��

r

Hr�� � �
�

�

�Hn

nX
r��

r
Hn

Hr�� � �

� �

�Hn

nX
r��

r �
n�n � ��

!Hn
�

which �nally implies Theorem �	
It can be shown that the lower bound on l�d� derived in Theorem ! is asymp

totically sharp for the recursion of Lemma � in order to beat this bound �and show
e	g	 that l�d� � "�dn�� one will have to keep track of more information than the
dimension of vectors during the &ipping process	

� Related Models

In this �nal section� we provide two more combinatorial models for classes of linear
programs with exponentially long decreasing paths	 A main feature of these two
classes � as compared to the KleeMinty cubes � is that they include polytopes
with arbitrarily large number of facets in any �xed dimension	 In both classes�
we can prove quadratic upper bounds for the running time of random�edge with
arbitrary starting vertex	

Deformed products� This class of linear programs was also constructed by Klee
� Minty 
���	 Its polytopes are combinatorially equivalent to products of � and
�dimensional polytopes	 For the following� we restrict to the special case where
the dimension n is even� and P �� �Ck�n�� is a product of kgons� an ndimensional
polytope with m � kn

� facets	 Such polytopes are now realized in IRn ��deformed��
in such a way that they have an xndecreasing path through all the vertices	 The
geometric construction of these programs is tricky 
���� but the combinatorial model
is very simple� as follows	

The vertex set of P can naturally be identi�ed with the set of vectors f�� � � � � kgn��	
Two vertices are adjacent if their vectors x� x� � f�� � � � � kgn�� di$er in a single co
ordinate� and in this coordinate the di$erence is either � or k��	 Furthermore�
the directions for these edges are given as follows� if x and x� di$er in their ith
coordinate� then we get a directed edge x � x� if either xi � x�i and �x�� � � � � xi���
contains an even number of even entries� or if xi � x�i and �x�� � � � � xi��� contains an
odd number of even entries	 For example� for n � � and k � � �m � �� we get



��

�� � �� � �� � �� � �� � �� � �� � �� � ��
as the directed path through all the vertices	

This explicitly describes a digraph� on which algorithms such as random�edge
take a random walk	

Proposition �� For an arbitrary starting vertex x on a deformed product program�
the expected number of steps taken by the random�edge algorithm is bounded by
a quadratic function� namely�

En�m�x� � n�m�

The function En�m�x� is� however� not even completely analyzed for the case
n � �	

For the deformed products� the shortest path from the highest to the lowest
vertex visits only these two vertices� while the longest decreasing path visits all the
kn�� � ��m

n
�n�� vertices	 In constant dimension this yields a longest decreasing path

of length O�mn���� which is asymptotically sharp	 However� for other interesting
parameter settings� like m � �n� there might be substantially longer paths � see
the following construction	

Cyclic programs� Here the construction starts with the polars Cn�m�� of cyclic
polytopes 
������	 These simple polytopes have the maximal number of vertices for
given m and n� namely

V �n�m� �

�
m� dn

�e
bn
�
c
�

�

�
m� �� dn��� e

bn��
�
c

�
�

according to McMullen�s upper bound theorem 
��� ���	 The facets of Cn�m�� are
identi�ed with 
m� �� f�� �� � � � �mg the vertices correspond to those nsubsets F �

m� which satisfy �Gale�s evenness condition�� if i� k � 
m�nF � then the set fj � F �
i � j � kg has even cardinality	

Now any two sets F � fi�� i�� ���� ing� and G � fj�� j�� ���� jng� satisfying Gale�s
evenness condition are compared by the following twisted lexicographic order� F � G
if and only if i� � j��
or i� � j�� � � � � ik � jk� ik�� � jk��� and ik is even�
or i� � j�� � � � � ik � jk� ik�� � jk��� and ik is odd	

Thus one compares the �rst element in which the �sorted� sets F and G di$er�
and takes the natural order if the element before that is even �or doesn�t exist�� and
the reversed order if the element before is odd	 For example� for C��!�� we get the
ordering
���! � ���! � ���! � ���! � ���! � ���� � ���� � ���� � ���� � ���! �
���! � ���� � ���� � ���� � ���� � ���� � ���! � ���! � ���� � ���!	

Now we use this ordering to construct the digraph model	 Its vertices are the
sets satisfying Gale�s evenness condition	 There is a directed edge F � F � if and
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only if F � � F and F�F � di$er in exactly one element� that is� the corresponding
vertices of Cn�m�� are adjacent	

The special property of the ordering is that every vertex is adjacent to the
previous one	 Thus the digraph is acyclic with unique source and sink� and with a
directed path through all the vertices	 �The construction is derived from Klee 
����
where the order is constructed and described recursively	�

It is not clear if one can realize the polytope Cn�m�� such that the xncoordinate
orders the vertices according to twisted lexicographic order	 �Equivalently� we can
not show that this order corresponds to a BruggesserMani shelling 
�� ��� of some
realization of the cyclic polytope	� If such a realization is possible� then this solves
the �upper bound problem for linear programs ��

�What is the largest possible number P �n�m� of vertices on a decreasing path
in a linear program of dimension n with m facets��

�a very natural unsolved problem)� by showing that the bound P �n�m� � V �m�n��
from the upper bound theorem for polytopes� holds with equality	

Even without such a realization� the twisted lexicographic ordering yields an
abstract objective function in the sense of 
���� and thus a shelling of the cyclic
polytope Cn�m�	 Thus our digraph model is a very reasonable �worst case� ���
scenario for the performance of randomized simplex algorithms	 Both the random�
edge and the random�facet variants can� indeed� be analyzed in terms of the
digraph model� without use of a metric realization	

Proposition ��� For the random�edge rule� started at an arbitrary vertex F
of the cyclic program� there is a linear lower bound and a quadratic upper bound
for the expected number of steps	 For this� we set 	�F � �� m � � � min�F �� with
n � 	�F � � m� and obtain

	�F �� n � En�m�x� �
�
	�F � � �

�

�
�
�
n � �

�

�
�

Since both the diameter problem 
�!���� and the algorithm problem 
����� have
upper bounds that are linear in m� it would be interesting to know that En�m�x�
indeed grows at most linearly in m for such problems	 On the other hand� it is
certainly challenging to strive for a nonlinear lower bound for these models	

More details for the analysis of the models in this section will appear in 
��	

Thanks

We wish to thank M	 Reiss� E	 Welzl and M	 Henk for helpful discussions� comments
and contributions� and D	 K*uhl� W	 Schlickenrieder� C	 BetzHaubold� T	 Takkula
and W	 Neun for extensive computations	 We are indebted to J	 Matou�sek for a
substantial simpli�cation of the lower bound proof in Section �	
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