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(liste non contractuelle) : Alex et Delphine, Anto, Béni, Charline, Christo,
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Portland, en passant par Bruxelles, Oxford, Grenoble, Marseille, Nantes et
Paris, aux n̂ımois et affiliés, et enfin une spéciale mention à ceux que j’ai
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Chapter 1

Introduction

In this thesis we study enumerative properties of regular planar graphs and
that of their embeddings on the sphere, usually called maps. Both topics
are active areas in discrete mathematics with many important applications
in physics, algorithmic, probability and algebraic geometry, among other
disciplines. The language we will use is the one introduced by P. Flajolet
and R. Sedgewick in their reference book Analytic Combinatorics [25].

There are many ways to enumerate discrete combinatorial structures. One
can do it directly by finding a closed formula, by exhibiting a bijection with
another class of structures, or if it holds, by exploiting its recursive nature, see
[31, 62]. Those methods become very natural when seen through the prism
of the symbolic method: to each class is associated a purely algebraic object,
a generating function whose n-th coefficient counts the number of objects of
size n. Combinatorial relations between classes are then directly translated
into algebraic operations between their associated generating functions. Enu-
meration can then be understood as the computation of those coefficients.
In the absence of a closed formula, one can try to design a recursive decom-
position scheme to enumerate a combinatorial class via a bootstrapping-type
method. In particular, when a generating function is defined implicitly as
the solution of a Langrangian equation, a polynomial equation or a linear dif-
ferential equation with polynomial coefficients, there exists effective methods
for computing its coefficients.

A uniformly at random discrete structure of a certain size is the typical
object taken uniformly at random among all the other objects with the same
size in the class. In probabilistic combinatorics, one is interested in predict-
ing the properties of such a typical object. In fact, as the sizes of the objects
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grow close to infinity, those predictions become deterministic in some sense.
The asymptotic study of a random discrete structure is then the study of
a typical object in the class, as its size goes to infinity. A classical method
to compute the probability that a property holds asymptotically is to study
the associated probability generating function. The symbolic method reveals
then its usefulness when one considers generating functions as analytic ob-
jects, namely functions of the complex variable, so that one can use powerful
methods coming from complex analysis. In particular, when such a function
is analytic in a neighbourhood of the origin, one can estimate its coefficients
via the analysis of its singularities. This thesis is organised as follows.

First, in Chapter 2 we will introduce the objects under study as well as
some of the main notions of graph theory, enumeration the language of the
so-called Symbolic Method. We will also introduce the main tools originating
from complex analysis, mostly Singularity Analysis, that we will use to obtain
asymptotic and probabilistic results. Finally, we will discuss the central
graph-theoretic tools developped throughout this thesis, namely the recursive
decompositions of a class of graph into smaller subclasses in which the graphs
have higher connectivity.

In Chapter 3, we will then apply the connectivity-decomnpositon method
in pair with singularity analysis to the enumeration of the family of labelled
cubic planar graphs. The enumeration of labelled planar graphs has recently
been the subject of much research; see [48] and [49] for two surveys on the
area. While the enumeration of subclasses of planar graphs, such as trees,
series-parallel graphs, etc., and more generally so-called subcritical classes of
graphs is well understood and was solved several years ago [21, 30, 56], the
problem of counting planar graphs was recently solved by Giménez and Noy
[28, 29]. And that of the enumeration of cubic planar graphs was partially
solved by Bodirsky, Kang, Löffler and McDiarmid [7].

On the other hand, the enumeration of cubic graphs that non-necessarily
planar has a long history. Bruce Read [58] found a formula for the number of
labelled cubic graphs using recurrence relations. Later Wormald [72] found
a second order differential equation satisfied by their associated exponential
generating function. Wormald’s method cannot be adapted to the enumera-
tion of cubic planar graphs, since one of the operations needed in his analysis
does not preserve planarity.

In this chapter, we will instead apply the method introduced by Bodirsky,
Kang, Löffler and McDiarmid in [7], and based on the decomposition of
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graphs in term of their connected components. We will then revisit and
extend their work. In particular, we will exhibit full asymptotic estimates
for the number of arbitrary, connected, 2-connected and 3-connected cubic
planar graphs. It is noteworthy to point that the estimate for arbitrary
graphs requires a special tool, that did not fully exist yet at the time of [7],
the so-called Dissymetry Theorem for tree-decomposable classes. Then, using
the same approach, we also give full asymptotic estimates on the number of
arbitrary and connected cubic planar multigraphs.

Concerning the spherical embeddings of cubic planar graphs, Gao and
Wormald enumerated three classes of simple cubic planar maps in [27]: ar-
bitrary, 2-connected and triangle-free 3-connected. Their proofs are based
on the duality between cubic maps and arbitrary triangulations (containing
possibly loops and multiple edges), and on the decomposition of 3-connected
triangulations from 4-connected triangulations. It is mentioned in [27] that
it would be very interesting to find an alternative approach, specially since
some of the results rely on heavy computations with Maple. We will hence
reprove the first two results from [27], using a different scheme based on the
connectivity-decompositon approach developed for the enumeration of cubic
planar graphs.

Consequently, in Chapter 4 we will apply our asymptotic results to the
analysis of random cubic planar graphs according to the uniform distribution.
More precisely, let G be the class of labelled cubic planar graphs. For every
n ∈ N we then denote by Gn the subclass of G consisting of the graphs with n
vertices. If we now pick a graph uniformly at random in Gn, then each graph
has the same probability 1/gn of being picked, where gn = |Gn| is the number
of labelled cubic planar graphs with n vertices. This random model was first
analysed in [7]. In this chapter, we will extend their work and shed more
light on the structure of random cubic planar graphs. We will in particular
prove that the sequences of random variables (An)n≥0, (Bn)n≥0 and (Cn)n≥0,
respectively associated to the number of cut-vertices, isthmuses and blocks
in a (uniform) random graph in Gn, are all normally distributed with linear
expectation and variance. A subgraph of a cubic planar graph is said to be
quasi-cubic if at most two of its vertices have degree less than three. Next, we
will look at the distributions of the sequences of random variables associated
to the number of appearances of two special types of quasi-cubic subgraphs,
namely the cherries and the near-bricks. Where a cherry is a planar graph in
which all vertices have degree 3 except for one distinguished vertex of degree
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1, and a near-brick as a graph obtained from a 3-connected cubic planar
graph by removing one edge. We will also prove that both sequences are
normally distributed. And finally, we will show that the number of triangles
both in random arbitrary and 3-connected cubic planar graphs is distributed
following a Gaussian limit law.

The second topic of this thesis is then developed in Chapter 5, where
we will present the first combinatorial scheme for counting labelled 4-regular
planar graphs through a complete recursive decomposition. More precisely,
we will show that the exponential generating function of labelled 4-regular
planar graphs can be computed effectively as the solution of a system of
equations, from which the coefficients can be extracted. As a byproduct, we
can also enumerate labelled 3-connected 4-regular planar graphs, and simple
4-regular rooted planar maps.

There are several references on the exhaustive generation of 4-regular
planar graphs. Starting with a collection of basic graphs one shows how
to generate all graphs in a certain class starting from the basic pieces and
applying a sequence of local modifications. This was first done for the class
of 4-regular planar graphs by Lehel [42], using as basis the graph of the
octahedron. For 3-connected 4-regular planar graphs a similar generation
scheme was shown by Boersma, Duijvestijn and Göbel [12]; by removing
isomorphic duplicates they were able to compute the numbers of 3-connected
4-regular planar graphs up to 15 vertices. It is also the approach of the
more recent work by Brinkmann, Greenberg, Greenhill, McKay, Thomas and
Wollan [11] for generating planar quadrangulations of several types. The
authors of [11] use several enumerative formulas to check the correctness
of their generation procedure. However this does not include the class of
3-connected quadrangulations, which by duality correspond to 3-connected
4-regular planar graphs, a class for which no enumeration scheme was known
until now. As we shall see, this class is the key to the enumeration of labelled
4-regular planar graphs.



5 Chapter 1. Introduction

Scientific publications.
This thesis is based on papers written by the author and co-authored with
some subsets of Michael Drmota, Marc Noy and Juanjo Rué. All these papers
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Chapter 2

Preliminaries

2.1 Planar graphs

As notations in Graph Theory are not uniform throughout literature, we
recall and fix here some basic definitions that we will use in the rest of this
thesis. Our main reference for this part is the first chapter of Reinhard
Diestel’s book [19].

2.1.1 Basic definitions

Labelled graphs. A labelled graph G is defined by a pair (V (G), E(G)),
where V = V (G) is the vertex set of G and E = E(G) is the edge set of
G. We always consider finite graphs, and we use the set [n] = {1, 2, . . . , n}
to denote the set of vertices of G. An unlabelled graph is a class of labelled
graphs up to permutations of the labels of the vertex set.

An edge e ∈ E is encoded by a pair of vertices {u, v} (non-necessarily
distinct) in V . In this case, u and v are said to be the endpoints of e. An
edge with the same endpoints is called a loop.

A simple graph is a graph without loops. An edge is said to be directed
when it is encoded by an ordered pair of vertices of V . A directed edge
e = (u, v) ∈ E of G can also be written as e = uv. A multigraph is a
graph whose edge set is in fact a mutliset, thus allowing several repetitions
of the same edge which will then be called a parallel edge. The number of
repetitions of a parallel edge is called its multiplicity.

11



2.1. Planar graphs 12

Figure 2.1: Two examples of complete graphs. One is cubic and planar, one
is 4-regular and non-planar.

Connectivity. A graph G is connected if there exists a path between each
pair of vertices. Every connected maximal subgraph of G is a connected
component of G. A graph G is said to be k-connected if |V | > k and if
for every set X ⊂ V with |X| < k, G − X is connected. A set of vertices
{v1, v2, . . . , vk} which disconnects a k-connected graph G, which is not (k+1)-
connected, is called a k-cut of G.

If k = 1, this set is also called a cut vertex of G. A cut-edge or isthmus is
an edge e of G such that G−e is disconnected. A connected component of G is
a maximal connected subgraph in the sense that no other connected subgraph
of G contains it. A block (resp. a brick) is then a maximal 2-connected (resp.
3-connected) subgraph of G. Even though edges are not 2-connected, we
consider them as blocks when they are not contained in another block.

Regularity. The degree of a vertex v is denoted by deg(v). A notable
result, linking the sum of the degrees to the number of edges in a graph, is
known as the Handshaking Lemma and is obtained by double counting∑

v∈V (G)

deg(v) = 2|E(G)|.

A graph is said to be k-regular when all its vertices have degree k. In
particular, a graph is called cubic when it is 3-regular. Two examples, one
of a cubic graph and one of a 4-regular graph are given in Figure 2.1.

Interesting families of graphs. Let us introduce some specific families
of graphs. The cycle with n vertices is denoted by Cn. A connected graph
without cycles is called a tree. A vertex of degree 1 in tree is called a leaf. A
tree with a distinguished vertex (resp. edge) is called a vertex-rooted (resp.
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edge-rooted) tree, and the distinguished vertex (resp. edge) is called the root
of the tree. The complete graph on n vertices is denoted by Kn. A graph is
said to be planar when it can be drawn on the sphere without edge-crossing.
In Figure 2.1 are pictured the complete graph on 4 vertices, K4 which is
planar, and the complete graph on 5 vertices, K5 which is not: the dashed
red edge is crossing another edge.

2.1.2 Planarity

Our main references for this part are the monograph of Mohar and Thomassen
[45] and the book of Lando and Zvonkin [41].

Maps on surfaces. A surface is a compact (bounded and closed) con-
nected 2-manifold (locally homeomorphic to a disk) without boundary. Let
S be a surface without boundary. A map on S is a subdivision of S into 0-
dimensional sets (vertices of the map), 1-dimensional contractible sets (edges
of the map) and 2-dimensional contractible open sets (faces of the map).
Maps are considered up to orientation preserving homeomorphisms of the
underlying surface, preserving the combinatorial structure of the map (inci-
dences between vertices, edges and faces).

Planar maps. Planar maps are maps on the 2-dimensional sphere S2 of
R3. The fact that they are called planar comes from the fact that they
are in bijection with maps on the plane R2 via the so-called stereographic
projection. Alternatively, a planar map can be defined as a proper embedding
of a connected planar multigraph on the oriented sphere, considered up to
the homeomorphisms preserving the orientation. More precisely, vertices of
the multigraph will be mapped to points of the sphere and edges xy are
injectively mapped to arcs whose endpoints are the respective points of the
sphere corresponding to x and y. Here and by abuse of language, we will
refer to them as vertices and edges of the map. The faces of a map are the
connected components of its complement, when the map is seen as a set of
points, in the sphere. Observe that a given planar multigraph can admit
several different proper embeddings, as illustrated by Figure 2.2. We will
later see a necessary condition for a planar multigraph to admit a unique
embedding on the sphere up to homeomorphism preserving the orientation.

An edge of a map has two ends (incidence with a vertex) and either one



2.1. Planar graphs 14

Figure 2.2: Two different planar maps drawn on the sphere and associated
to the same planar multigraph.

Figure 2.3: Two equivalent rootings of a planar map. Left is rooted at the
dotted edge, whose direction gives the root vertex in white and the root face
on the right side. Right is the same map rooted at the corresponding corner.
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or two sides (incidence with a face). A map is rooted if an end and a side of
an edge are distinguished as the root-end and root-side respectively. Rooting
of maps on oriented surfaces usually omits the choice of a root-side because
the underlying surface is oriented and maps are considered up to orientation
preserving homeomorphism. Our choice of a root-side is equivalent in the
oriented case to the choice of an orientation of the surface. The vertex,
edge and face defining these incidences are the root-vertex, root-edge and
root-face, respectively. Rooted maps are considered up to homeomorphism
preserving the root-end and root-side. A vertex is then said to be an inner
vertex if it is not adjacent to the root face and all the non root faces are said
to be inner faces. In the rest of this monograph, maps will always be planar
and rooted.

A corner is an incidence between a vertex and a face. Hence, a vertex or a
face of degree d defines d corners. Now a map is said to be a d-angulation when
all its faces have degree d. In particular, a triangulation is a 3-angulation
and a quadrangulation is a 4-angulation. Notice that a simple triangulation,
i.e. with no multiple edge, is maximal in the sense that any added edge will
create a crossing on the sphere. We also remark that the Handshaking lemma
forces any triangulation to have an even number of vertices.

Connectivity and embeddings. A map is said to be k-connected, for
any k ≥ 1, if it has at least k + 1 vertices and its underlying planar graph
is k-connected. A famous result, concerning the number of embeddings of a
3-connected planar graphs on the sphere, implies the existence of a bijection
between 3-connected planar graphs and 3-connected maps:

Theorem (Whitney [71]). A 3-connected planar graph admits a unique em-
bedding, up to homeomorphism preserving the orientation, on the sphere.

Another fundamental result is an equation, known as Euler’s formula,
linking the number v of vertices of a planar map together with the number
e of its edges and the number f of its faces, as follows:

v − e+ f = 2.

A planar map is said to be simple when it is defined as a proper embed-
ding of some connected simple planar graph. A corollary of Euler’s formula
states that a simple map cannot have more than 3n − 6 edges. Together
with the Handshaking lemma, this implies that there are no simple map or
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Figure 2.4: The smallest cubic, 4-regular and 5-regular planar graphs.

planar graph that is 6-regular or more. Simple planar graphs that are 1-
regular are known as matchings and their properties are well understood,
if not trivial. Similarly, simple planar graphs that are 2-regular are simply
collections of cycles. Their asymptotic enumeration and properties are also
well understood (see [25]). The most interesting and complex cases are then
the three remaining classes of simple regular planar graphs, namely cubic,
4-regular and 5-regular, whose first respective elements are the graphs of the
tetrahedron, of the octahedron and of the icosahedron, and are pictured in
Figure 2.4.

Dual and medial. The dual map M∗ of a map M on a surface without
boundary is a map obtained by drawing the vertices of M∗ in each face of M
and edges of M∗ across each edge of M . If the map M is rooted, the root edge
of M∗ corresponds to the root edge e of M ; the root-end and root-side of M∗

correspond respectively to the side and end of e which are not the root-side
and root-end of M . An example of a dual map is pictured in Figure 2.5. It
is immediate to show that M∗∗ = M . Notice that the dual of a d-angulation
is a d-regular map.

The medial map M̄ of a map M on a surface without boundary is a map
obtained as follows. One vertex of M̄ is drawn on each edge of M . Then,
two vertices of M̄ are connected each time their corresponding edges share
a corner of M . The edge of M̄ associated to that corner is then drawn
alongside it. An example of a medial map is pictured in Figure 2.5. Due to
edges having two sides, notice that the medial of a map is always 4-regular.

2.2 Generating functions and enumeration

One of the most fundamental tools in enumeration is that of generating
functions. In this section, we will briefly present some aspects of the exact
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Figure 2.5: A map and its associated dual and medial maps.

enumeration of a combinatorial class. The two main references are the book
from Flajolet and Sedgewick [25] and the monograph from Kauers and Paule
[39] from which Sections 2.2.1 and 2.3.2 are directly inspired.

2.2.1 Formal power series

Sequences. An infinite sequence (an)n≥0 in C is a map from N to C. The
set of all sequences in C, denoted by CN, forms a vector space over C if we
define addition and scalar multiplication termwise:

(an)n≥0 + (bn)n≥0 = (an + bn)n≥0 and α(an)n≥0 = (αan)n≥0, for α ∈ C.

To a sequence (an)n≥0 will be associated the following formal power series
with indeterminate x:

a(x) =
∑
n≥0

anx
n.

The set of all formal power series associated to sequences in CN and with
indeterminate x is denoted by C[[x]]. The n-th coefficient of the formal power
series a(x) =

∑
n≥0 anx

n is denoted by [xn]a(x) = an. Observe in particular
that the constant term is given by [a0]a(x) = a(0). A generating function
is a formal power series with non-negative coefficients, i.e. associated to a
sequence in N.

The ring of formal power series. Multiplication of two sequences is usu-
ally defined termwise (this would be the Hadamard product). This product
together with the pairwise sum induces however a ring with divisors of zero.
In the case of power series, we will instead use the convolution product (or
Cauchy product):

(an)n≥0 · (bn)n≥0 = (cn)n≥0, where cn =
n∑
k=0

akbn−k.

And indeed, this time the following holds:
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Theorem ([39] - Section 2). Together with the pairwise addition and the
convolution product, C[[x]] forms a commutative ring. It is furthermore an
integral domain.

Differentiation and integration of a formal power series a(x) =
∑

n≥0 anx
n

are respectively defined as follows:

Dxa(x) =
∑
n≥0

an+1(n+ 1)xn and

∫
x

a(x) =
∑
n≥1

an−1
n

xn.

With respect to the first operation above, C[[x]] forms a differential ring.
The following also holds:

Theorem ([39] - Section 2).

• Fundamental theorem of calculus I: Dx

∫
x
a(x) = a(x).

• Fundamental theorem of calculus II:
∫
x
Dxa(x) = a(x)− [a0]a(x).

• Taylor’s formula: [an]a(x) = 1
n!
Dn
xa(x)|=0.

Formal Laurent series. However, the set of formal power series does not
form a field as not all element will admit a multiplicative inverse. In fact,
only those associated to a sequence (an)n≥0 for which a0 6= 0 admits one.

Notice now that it makes sense to consider (a(x)− a(0))/x, because the
formal power series in the numerator only involves terms in x, x2, x3, . . . which
are divisible by x. So that if we define the order ord(a(x)), of a non-negative
formal power series a(x), as the smallest integer k such that [ak]a(x) 6= 0,
then the quotient a(x)/b(x) of two formal power series a(x) and b(x) is itself
a formal power series if and only if ord(b(x)) ≤ ord(a(x)). This motivates
the following definition.

A formal Laurent series of order k and with indeterminate x is a series of
the form xka(x) where k ∈ Z and a(x) ∈ C[[x]]. It corresponds to a sequence
with index set {k, k+1, k+2, . . .} ⊂ Z. Now, we have that the multiplicative
inverse of xka(x), where a(0) 6= 0 is simply x−ka(x)−1, where a(x)−1 is the
multiplicative inverse of a(x) in C[[x]]. The set of all such formal Laurent
series is denoted by C((x)). By construction, it is in fact a field, namely the
quotient field of C[[x]].
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2.2.2 The symbolic method

The symbolic method provides a dictionary to translate combinatorial rela-
tions between classes into algebraic relations between their associated gener-
ating functions. Using the terminology introduced by Flajolet and Sedgewick
[25] in the context of Analytic Combinatorics, we present here the basic
combinatorial constructions with their counterparts in terms of generating
functions.

Combinatorial class. A combinatorial class is a pair (A, | · |) where A is
a set of objects and | · | is a mapping from A to N. For every a ∈ A, |a|
will be called the size of a, and for n ∈ N, we define an = |A(n)|, where
A(n) is the set of objects of size n. We will restrict ourselves to the study
of admissible combinatorial classes only, i.e. those for which the number of
objects of size n is finite for every n ∈ N. Let (A, | · |) be a combinatorial
class. The following power series

A(z) =
∑
n≥0

anz
n =

∑
a∈A

z|a|,

is then called the ordinary generating function (OGF) associated to (A, | · |).
The neutral class E is made of a single object of size 0, and its associated

generating function is E(z) = 1. The atomic class Z is made of a single
object of size 1, and its associated generating function is Z(z) = z. Let now
(B, || · ||) be another combinatorial class with ordinary generating function
B(z) =

∑
n≥0 bnz

n. We write B(z) ≤ A(z) if and only if the inequality
bn ≤ an holds for every n. The union A ∪ B refers to the disjoint union of
classes (and the corresponding induced size). The Cartesian product A× B
is the set of pairs (a, b) where a ∈ A, and b ∈ B. The size of (a, b) is then
the sum of the sizes of a and b. The sequence Seq(A) corresponds to the set
E ∪A∪ (A×A)∪ (A×A×A)∪ . . . The size of an element (a1, a2, . . . , ar) in
Seq(A) is the sum of sizes of the elements ai. The pointing operator over the
class A works in the following way: for each element a ∈ A, with |a| = n,
the pointing operator distinguishes one of the n atoms that compounds a.
Finally, the substitution of the class B in A substitutes each atom of every
element of A by an element of B.

Labelled combinatorial class. A combinatorial class is said to be labelled
when to each element a in the class is attached |a| different labels in the
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set [|a|]. When dealing with labelled structures, we introduce the following
refinements. For an admissible labelled combinatorial class (A, | · |) we define
the exponential generating function (EGF) associated to A as the formal
power series

A(z) =
∑
n≥0

an
zn

n!
=
∑
a∈A

z|a|

|a|! .

Definition of combinatorial relations between labelled classes are quite
different compared to ordinary classes. For instance, instead of considering
the product of classes we consider the labelled product: let (A, | · |) and
(B, || · ||) be labelled combinatorial classes, we define A ∗ B as the set of all
possible labellings of the pairs of the form (a, b), with a ∈ A and b ∈ B. This
specification is translated in the language of exponential generating functions
in the following way:

∑
(a,b)∈A×B

(|a|+ ||b||
|a|

)
z|a|+||b||

(|a|+ ||b||)! =
∑
a∈A

z|a|

|a|!
∑
b∈B

z|b|

||b||! = A(z) ·B(z).

All the other operations specified for ordinary generating functions can
be rephrased in the exponential context using the labelled product. In Table
2.1 is depicted the translation between some basic combinatorial construc-
tions and their associated generating functions, both for the ordinary and
the exponential case. The particular constructions Set(A) and Cyc(A) are
described for labelled classes only and refer to the classes made respectively
of sets of elements of A and of cycles in which every vertex is substituted by
an element of A.

Parameters. A parameter of a combinatorial class (A, | · |) is a function
χ : A → N. In this context, the size function is called the main parameter.
The consideration of additional parameters over the combinatorial classes
gives rise to multivariate generating functions.

For example, the class of graphs with labelled vertices, where the number
of vertices is the main parameter while the number of edges is the secondary
parameter, will be associated to the bivariate generating function

A(x, y) =
∑
n,k

an,k
xn

n!
yk,
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Construction OGF EGF

Disjoint Union A ∪ B A(x) +B(x) A(x) +B(x)
Product A× B A(x) ·B(x) -

Labelled Product A ? B - A(x) ·B(x)
Sequence Seq(A) 1

1−A(x)
1

1−A(x)
Set Set(A) - exp(A(x))

Cycle Cyc(A) - log 1
1−A(z)

Substitution A ◦ B A(B(x)) A(B(x))
Pointing A• x ∂

∂x
A(x) x ∂

∂x
A(x)

Table 2.1: The dictionary of the symbolic method.

where an,k is the number of labelled graphs with n vertices and k edges,
and

∑
k≥0 an,k = an. Setting a parameter y to one into A(x, y) is formally

equivalent to not considering it, i.e. A(x, 1) = A(x).

2.2.3 Exact enumeration

Enumerating a combinatorial class (A, | · |) is computing, for any n ∈ N,
the number |A(n)| = an of objects of size n. In terms of the associated
generating function A(z), this is translated into the computation of its n-th
coefficient [zn]A(z) or n![zn]A(z), depending on whether A(z) is ordinary or
exponential.

One of the most well knonw result on enumeration is Newton’s binomial
theorem. On can rephrase it in terms of generating functions, as follows.

Theorem (Binomial formula). Let r be a any integer. Then

(1 + z)r =
∑
n≥0

(
r

n

)
zn.

Bootstrapping. Using the symbolic method, some generating functions
can be described implicitely as the solution of system of functional equa-
tions involving other generating functions. The following lemma guarantees
the existence of a unique non-zero solution to some system of non-negative
equations, under sufficient hypotheses.
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Lemma 1. Let y1(z, u), . . . , ym(z, u) be power series satisfying the system of
equations

y1 = F1(z, y1, . . . , ym, u),
y2 = F2(z, y1, . . . , ym, u),

...
ym = Fm(z, y1, . . . , ym, u),

where the Fi are power series in the variables indicated. Assume that for
each i, Fi has non-negative coefficients and is divisible by z. Assume also
that there exists a solution ŷ = (y1(z, u), . . . , ym(z, u)) to the system which is
not identically 0 for all i. Then this is the unique solution with non-negative
coefficients.

Moreover, the solution can be computed iteratively from the initial values
yi = 0 up to any degree of z.

Proof. We first recall that the order of a non-zero power series A(z) =
∑
anz

n

is the minimum n such an 6= 0, and that a sequence {Am(z)}m≥0 is convergent
in the ring of formal power series if the order of the Am(z) go to infinity.

Let F = (F1, . . . , Fm). Start with the initial value y(0)(z, u) = 0 and let

y(k+1)(z, u) = F(z,y(k)(z, u), u), where y(k)(z, u) = (y
(k)
1 (z, u), . . . , y

(k)
m (z, u)).

Since the Fi have non-negative coefficients, so do the y(k). Since each Fi is
divisible by z, the mapping F is a contraction, in the sense that the order of
y
(k+1)
i (z, u) is larger than the order of y

(k)
i (z, u). Hence the solution is unique

and is given by the limit of the y(k)(z, u). The solution is non-zero since the
Fi are non-zero.

The former proof gives a procedure for computing iteratively the unique
solution. Start with yi = 0 for all i and compute the y

(k)
i iteratively.

Each y
(k)
i (z, u) is a polynomial and, because of the hypothesis on the Fi,

y
(k+1)
i+1 (z, u) = y

(k)
i (z, u) + Mi, where Mi is a monomial of degree larger than

the degree of y
(k)
i (z, u). This can be iterated to any desired degree. Observe

also that the variable u plays only the role of a parameter and that further
parameters can be added without any change. We refer to Section 2.2.5 of
[20] for further discussions.

Lagrange Inversion. In 1770, Lagrange [40] developed a method to relate
the coefficients of the compositional inverse of an analytic function to the
coefficients of the powers of the function itself. The inversion z = φ(u)
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consists in expressing u as a function of z and is solved by the so-called
Lagrange series. The combinatorial version presented here is due to Bürmann
[15] (see [25, Theorem A.2] for a proof).

Theorem (Lagrange-Bürmann inversion formula). Let φ(y) =
∑

k≥0 φky
k be

a power series of C[[y]] with φ0 6= 0. And let H be an arbitrary function.
Then the equation u(z) = zφ(u) admits a unique solution in C[[z]] whose
coefficients are given by the Lagrange form

[zn]H(u(z)) =
1

n
[yn−1](H ′(y)φ(y)n).

2.3 Analytic combinatorics

The relationship between generating functions and combinatorial enumer-
ation goes deeper than simply exact enumeration. Certain combinatorial
classes admit an associated generating function that, when seen as a func-
tion of the complex variable, turns out to be analytic in a neighbourhood
around the origin.

In this case, one can use the powerful tools from Complex Analysis, linking
the expansion of the function near its dominant singularity to tight asymp-
totic estimates of its coefficients. This is aymptotic enumeration. Those
estimates can in turn be used to compute the limiting probabilities of the
random object associated to such a combinatorial class. Those singular ex-
pansions are in particular computed from the functional equations induced
by the recursive decompositon of the combinatorial class, via the symbolic
method. The main references for this section are the books from Flajolet
and Sedgewick [24], Drmota [20], Walker [68] and Kauers and Paule [39].

2.3.1 Asymptotic enumeration

We say that two sequences of numbers (an)n≥0 and (bn)n≥0 are of the same ex-
ponential order if lim sup |an|1/n = lim sup |bn|1/n. Under these assumptions,
we write an ./ bn . Sequences (an)n≥0 and (bn)n≥0 are called asymptotically
equivalent, and is denoted by an ∼ bn, if the limit of the quotient an/bn exists
and is equal to 1. This notation is also extended to generating functions, as
we write A(z) ∼ B(z) when [zn]A(z) ∼ [zn]B(z).
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When finite, the quantity lim sup |an|1/n is known as the exponential
growth or the exponential order of the sequence (an)n≥0. If R is the expo-
nential growth of (an)n≥0, then an = θ(n) · Rn, where lim sup |θ(n)|1/n = 1.
The term θ(n) is called the subexponential growth of (an)n≥0. Estimates of
both the exponential and the subexponential growths of a sequence can be
obtained by considering the dominant singularity of the associated generat-
ing function seen as an analytic function on a complex neighbourhood of the
origin.

Analytic functions. A complex function f(z) defined over a region Ω is
said to be analytic at a point z0 ∈ Ω if, for z in some open disc centred
at z0 and contained in Ω, it is representable by a convergent power series
expansion

f(z) =
∑
n≥0

cn(z − z0)n.

A function is analytic in a region Ω if it is analytic at every point of Ω. An
analytic function f(z), defined over the interior region Ω determined by a
simple closed curve γ, is said to be analytically continuable at z0 ∈ γ if there
exists a an analytic function f ∗(z), defined over some set Ω∗ containing z0,
such that f ∗(z) = f(z) in Ω∗ ∩ Ω.

Singularities and growth. A singularity of an analytic function f(z) is
a point z0 on the boundary of its region of analycity for which f is not
analytically continuable. Singularities of a function analytic at 0, which lie
on the boundary of the disc of convergence, are called dominant singularities.
In this case, a dominant singularity is a singularity with smallest modulus.

Theorem (Pringsheim [25, Theorem IV.6]). A dominant singularity, if it
exists, of a generating function with positive coefficients is always a positive
real number.

The location of a dominant singularity will give the exponential growth
of the sequence, and the nature of this singularity the subexponential term.
Indeed, the next theorem, stated by Cauchy in 1821 [16] then fully proved
by Hadamard in 1892 [33], already relates in a case relevant to us the (pos-
itive real) dominant singularity with the exponential growth of an analytic
function. A proof can be found in [25, Theorem IV.7].
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0 ρ R

φ

Figure 2.6: A typical ∆-domain at ρ.

Theorem (Exponential growth formula). If the function A(z) is analytic at
0 and one of its dominant singularities is the positive real number ρ, then

[zn]A(z) ./ ρ−n.

To compute the subexponential term in the asymptotic growth of the
coefficients of a generating function, we will need a more refined notion.

Singularity analysis. Given a complex number ρ 6= 0, a ∆-domain at ρ
is an open set of the form

∆(R, φ) = {z : |z| < R, z 6= ρ, | arg(z − ρ)| > φ}.

The typical shape of a ∆-domain is pictured in Figure 2.6.
Let now A(z) and B(z) be two generating functions with the same positive

real number ρ as dominant singularity. We write

A(z) ∼
z→ρ

B(z) when lim
z→ρ

A(z)

B(z)
= 1.

We obtain the asymptotic expansion of [zn]A(z) by transferring the behaviour
of A(z) around its dominant singularity from a simpler function B(z), from
which we know the analytic behaviour . This is the idea behind the so-called
Transfer Theorems introduced by Flajolet and Odlyzko [24]. In this thesis,
we will use a combination of Theorems VI.1 and VI.3 from [25].
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Theorem (Sim-transfer). Assume A(z) has a unique dominant singularity
ρ > 0 and is analytic in a ∆-domain at ρ. If A satisfies, locally around ρ,
the following estimate:

A(z) ∼
z→ρ

c ·
(

1− z

ρ

)α
with α ∈ Q>0 \ N, then the coefficients of A(z) satisfy

[zn]A(z) ∼
n→∞

c · n
−α−1

Γ(−α)
· ρ−n,

where Γ is the Gamma function: Γ(z) =
∫∞
0
tz−1e−tdt.

All the singularities we will encounter are of square-root type, that is, the
expansion of a function near a singularity ρ will be of the form

A(z) = A0 + A2X
2 + · · ·+ A2kX

2k + A2k+1X
2k+1 +O(X2k+2),

where X =
√

1− z
ρ

and α = 2k + 1 is the smallest odd index i such that

Ai 6= 0. Now, because ρ is a square-root singularity of A(z), the even powers
of X are analytic function at ρ, so all those that are even and asymptotically
dominant (i.e. with a smaller power) compared to Xα cannot contribute to
the asymptotic of [zn]A(z). This means that the dominant term is AαX

α.

Multiple dominant singularities. If A(z) has several dominant singu-
larities coming from pure periodicities, then the contributions from each of
them must be combined (see [25, IV.6.1]). In our case the periodicities will
be due to the fact that cubic graphs have necessarily an even number of
vertices and the corresponding generating functions will be even. We will
locate the (unique) positive dominant singularity ρ and we will simply add
the contributions from ρ and −ρ. In fact, to apply the Transfer Theorem in
this case, A(z) needs to be analytic in a dented-domain at ±ρ.

Given a complex number ρ 6= 0, a dented-domain at ±ρ is an open set of
the form

∆2(R, φ) = {z : |z| < R, z 6= ±ρ, | arg(z ± ρ)| > φ}.

The typical shape of a dented-domain is pictured in Figure 2.7.
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Figure 2.7: A typical dented-domain at ±ρ.

Assume then that A(z) is an even function and that its singular expansion∑
AiX

i around its dominant singularity is of square-root type, then by the
Transfer Theorem, we have the following estimate

[zn]A(z) = Aα ·
n−α−1

Γ(α)
· (ρ−n + (−ρ)−n) · (1 + o(n−1),

where α is the smallest i with Ai 6= 0 in
∑
AiX

i.

2.3.2 Local expansions of certain implicit functions

In this thesis, every generating function will be defined implicitly via a system
of equations or a single functional equations, thus reflecting the recursive
nature of its associated combinatorial class. Furthermore, a direct application
of the implicit function theorem would give us both a garanty of the analycity
of the generating function and its a singular expansion, allowing us to use
the Transfer theorem.

However, as we would like to compute the constants involved in the latter
theorem, we would need a more constructive method to compute asymptotic
expansions of implicit functions. We will now exhibit one such method when
the function is algebraic or D-finite.
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Algebraic generating functions. A function f(x) is said to be algebraic
of order d ∈ N when it satisfies a polynomial equation of the form:

P (f(x), x) := p0(x) + p1(x)f(x) + . . .+ pd(x)f(x)d = 0, (2.1)

where pk(x) ∈ C[x] is a polynomial in x, for each k ∈ {0, . . . , d}. In this case,
we also say that P (y, x) is an annihilating polynomial of f(x). Formally, we
think of P (y, x) as an object in C[x][y] ' C[x, y], so that when speaking
about the degree of P (y, x), we mean its degree with respect to y.

A minimal polynomial of f(x) is an irreducible non identically zero poly-
nomial of smallest degree among all the annihilating polynomials of f(x).
Note that in this definition, a minimal polynomial is not unique. This is
because we would like to keep the nice following property: using the above
notation, all polynomials pk(x) that arise throughout this thesis have integer
coefficients.

Branch points. A bivariate polynomial P (y, x) defines an algebraic curve,
whose critical points are of particular interest to us, as they contain the
singularities of the induced algebraic functions. In particular, a point (y, x)
is said to be a branch point of the curve when it is a root of both P (y, x) and
Py(y, x), the derivative of P (y, x) with respect to y. The x-coordinates of the
branch points are then the roots of the resultant of P (y, x) and Py(y, x) with
respect to y. This is a polynomial in C[x] called the discriminant of f(x).

A particular algebraic function need not have a singularity for everyone of
those branch points, it corresponds in fact to just one branch of the algebraic
curve, and x0 being a critical point only means that some of the branches
have a singularity at x0 (see [39, Section 6.5]). For a given algebraic function
f(x) induced by a polynomial P (y, x), branch points of P (y, x) are hence
called potential singularities of f(x) (see [25, Section VII.7.1]). One has
then to determine which of the potential singularities do actually belong to
its associated branch. In particular, by Pringsheim’s theorem the dominant
singularity of an algebraic generating function A(x), associated to a combi-
natorial class A, will be the smallest positive root of one of the factors of the
discriminant of A(x). Throughout this thesis, the choice of the good factor
will be done by an inspection into the combinatorial informations on A.

Puiseux expansions. After finding the dominant singularity ρ of an al-
gebraic generating function f(x), one would like to compute its asymptotic
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expansion in a neighbourhood of ρ, namely its singular expansion. In some
cases, roots of the minimal polynomial of f(x) will be formal power series.
But that is not always the case! To comprise all the solutions of any alge-
braic equation, one needs to introduce a more general notion, similarly to
the formal Laurent series who were introduced to obtain a field. While for-
mal Laurent series are obtained from power series by allowing terms xn with
negative integers n to appear in the series, we will now extend further and
allow even rational numbers as exponents.

For that we first need to introduce a fundamental result due to Newton
and later rediscovered by Puiseux. This version is taken from [39, Section 6]
but a full constructive proof using the Newton polygon can be found in [68,
Section III.3]

Theorem (Newton-Puiseux). If a polynomial m(x, y) ∈ C[x][y] is irreducible
of degree d, then there exists a positive integer k and d distinct Laurent series
a1(x), . . . , ad(x) with m(xk, ai(x)) = 0 for i = 1, . . . , d.

Let now r be a non-negative integer. After a formal substitution x→ x1/r,
the Laurent series ai(x) in the theorem become objects of the form ai(x

1/r)
which involve fractional exponents and satisfy m(x, ai(x

1/r)) = 0. They
are called Puiseux series of branching-type r with indeterminate x. Observe
that Puiseux series may involve fractional exponents, but not in an arbitrary
fashion. The fractions appearing as exponents of a fixed Puiseux series must
have a finite common denominator, here r. So that a typical Puiseux series
of branching-type r has the form x1/ra(x), where a(x) ∈ C[[x]].

A corollary to the theorem of Newton-Puiseux is that the set of Puiseux
series with indeterminate x form, together with the usual operations, an alge-
braically closed field, called the fractionnal field C(x)∗ (for precise definitions
and a proof, see [68, Theorem 3.1]). Another corollary wich will be central
for us is the following (see [25, Theorem VII.7]):

Theorem (Newton-Puiseux singular expansion). Let f(z) be an algebraic
function. In a circular neighbourhood of a singularity ζ, slit along a ray
emanating from ζ, f(z) admits a Puiseux expansion that is locally convergent
and of the form

f(z) =
∑
k≥k0

ck · (z − ζ)k/r,

for a fixed determination of (z− ζ)1/r, where k0 ∈ Z and r is a non-negative
integer, called the branching type.
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Notice that the singular expansions granted by the above theorem are of the
exact type required to apply the theorem of sim-transfer.

Concerning computability of such an expansion, the constructive proof
of the Newton-Puiseux theorem gives a polynomial-time algorithm that has
been implemented in a several computer algebra systems. For this thesis, we
use the function puiseux from the library algcurves of Maple 2017.

D-finite generating functions. A function f(x) is said to be D-finite,
or equivalently holonomic, of order r ∈ N if it satisfies a linear differential
equation with polynomial coefficients:

q0(x)f(x) + q1(x)Dxf(x) + . . .+ qr(x)Dr
xf(x) = 0. (2.2)

The following facts about D-finite generating functions are well-known, we
refer the reader to [62, Chapter 6] for details and proofs:

Theorem (Basic facts on D-finite generating functions).

• A(x) =
∑

n≥0 anx
n is D-finite if and only if {an}n≥0 is P -recursive,

that is, it satisfies a linear recurrence with polynomial coefficients.

• An algebraic function is D-finite.

• D-finite functions are closed under sums and products.

• If A(x) is D-finite and B(x) is algebraic, then A(B(x)) is D-finite.

• The derivative and the primitive of a D-finite function are D-finite.

Furthermore, the next lemma states that a function is D-finite given that
the derivative of its logarithm is algebraic.

Lemma 2. If f ′(t) is an algebraic function of t, then g(t) = ef(t) is D-finite.

The proof presented here is due to Mireille Bousquet-Mélou.

Proof. Start with the following, which is easily proved by induction on k:
If f ′ is algebraic, then each derivative f (k) is a rational function of f ′ and t.
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Using this observation we have

g = 1 · g
g′ = f ′g = R1(f

′, t)g
g′′ = f ′′g + (f ′)2g = R2(f

′, t)g
...
g(k) = Rk(f

′, t)g,

where Rk is a rational function, and we set R0 = 1.
Since f ′ is algebraic, Q(f ′, t) is finite dimensional over Q(t), say of di-

mension k. Hence there are rational functions Si(t) such that

k∑
i=0

Si(t)Ri(f
′, t) = 0.

It follows that

S0(t)g + S1(t)g
′ + · · ·+ Sk(t)g

(k) = 0.

This proves that g is D-finite.

Note. The reciprocal holds but is harder to prove: if f ′(t) and ef(t) are
D-finite, then f ′(t) is algebraic (see the last paragraph of [61]).

Transfer of singularities. Similarly to the algebraic case, solutions of
linear differential equation with polynomial coefficients do not necesseraly
admit a Puiseux expansion. There is a more general notion of series defined
in [39, Section 7.3] and its computation, although more complex, also uses the
Newton polygon. However, the number of solutions is not finite but is instead
a vector space of dimension the order of the linear differential equation (see
[39, Theorem 7.3]).

Thankfully, every D-finite generating functions that will be encountered
in this thesis will either be an integral

∫
x
f(x) or of the form exp ◦

∫
x
f(x)

(as in Lemma 2), where f(x) is algebraic. The next result (see [20, Section
2.2.4]) will guarantee us that in both cases, the D-finite generating func-
tions will inherit the dominant singularity of f(x), as well as its singular
behaviour, that is they will have a similar expansion as f(x) in a neighbour-
hood of the dominant singularity, namely a Puiseux expansion, even though
the fractionnal exponent might change.
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Theorem (Transfer of singularity). Suppose that the function f(x) is ana-
lytic at zero with an expansion near its dominant singularity ρ ∈ R>0 of the
form

f(x) ∼
x→ρ

f0 + f2X
2 + . . .+ f2kX

2k + f2k+1X
2k+1,

where X =
√

1− x/ρ and k ∈ N.

Let now H(x, y) be a function that is analytic at (0, f(0)) and such that
DyH(0, f(0)) 6= 0. Then fH(x) = H(x, f(x)) admits the same kind of singu-
lar expansion as f(x), that is

fH(x) ∼
x→ρ

h0 + h2X
2 + . . .+ h2kX

2k + h2k+1X
2k+1.

Furthermore the derivative and the integral of f(x) have singular expan-
sions of the (respective) form:

Dxf(x) ∼
x→ρ

d0 + d2X
2 + . . .+ d2kX

2k + d2k+2X
2k+2 + d2k+3X

2k+3,∫
x

f(x) ∼
x→ρ

i0 + i2X
2 + . . .+ i2k−2X

2k−2 + i2k−1X
2k−1.

Regarding the computation of those Puiseux expansion, it will be done
numerically by integrating the one of f(x), computed via the Newton poly-
gon, or by integrating it then taking the exponential. However, as we will
see in Chapter 3, the subexponential term of the asymptotic estimate of the
coefficients obtained in the second case will be undeterminated due to the
integration step before taking the exponential.

To avoid having to integrate numerically, we will introduce in the next
section a so-called combinatorial integration of certain classes of graphs. This
is induced by a recursive decomposition of a connected graph in terms of its
2-connected and 3-connected components.

Bivariate singularity analysis. Suppose that we are now given a bivari-
ate generating function f(x, y) =

∑
n,k≥0 fn,k x

nyk ∈ K(x, y) that satisfies
an irreducible trivariate polynomial implicit equation P ∈ K[X, Y, Z], i.e.
P (f(x, y), x, y) = 0. To some extent, one can transfer the definitions from
the univariate to the multivariate case. In particular, P will be called the
minimal polynomial of f(x, y).
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When f(x, y) is a function of complex variables, the groundbreaking
monograph of Pemantle and Wilson [57] deals with the general analytic be-
haviour of multivariate generating functions. This is however beyond the
scope of this thesis.

In our case, we will study the singular behaviour of f(x, y) when y will be a
postive real number in a small neighbourhood of 1. This has the advantage of
reducing the bivariate analysis to the univariate case, and one can interpret it
combinatorially as a small perturbation of the case y = 1 in which the second
variable is not taken into account. Observe that if the generating function
f(x, y) has only non-negative coefficients, then it is continuous. So that if
f(x) = f(x, 1) is analytic in a neighbourhood of the origin, so is f(x, y0), for
any positive real y0 ∼ 1. Now the discriminant D(x, y) of P with respect to
f(x, y) will be called the singularity curve of f(x, y). In D(x, y), one can look
at x = x(y) as a function of y, so that when setting y = 1, we must recover
the dominant singularity ρ = ρ(1) of f(x, 1) = f(x), as a positive root of
the univariate polynomial x(1). This also implies that when f(x) is an even
function that is analytic in a dented domain at ±ρ, then so is f(x, y0), for
any y0 ∼ 1.

Now for a fixed positive real number y0 ∼ 1, one can also apply New-
ton’s algorithm to the bivariate polynomial P (f(x, y0), x, y0) to compute the
Puiseux expansion of f(x, y0) (which is now univariate) for x near x(y0). In
this thesis, it will always be of the form:

f(x, y0) = f0(y0)+f2(y0)X
2 + · · ·+f2k(y0)X

2k +f2k+1(y0)X
2k+1 +O(X2k+2),

where X =
√

1− x/x(y0) and k is a positive odd integer. And we can apply
the theorem of sim-transfer on this local expansion to obtain an asymptotic
estimate on the coefficients of f(x, y0), as follows:

[xn]f(x, y0) =
f2k+1(y0)

Γ(−α)
· n−α · ρ(y0)

−n, with α =
k

2
+ 1.

2.3.3 Limiting distributions

We introduce here some of the basic definitions from probability theory as
well as an important theorem that will be used in this thesis. INote that
we jump directly to the notion of probability distribution without defining a
probability space nor a random variable. For precise definitions, we send the
reader to the monograph of Grimmett and Stirzaker [32].



2.3. Analytic combinatorics 34

Probability distribution. Let (Ω, P(Ω), p) be a probability space with
a random variable X. The quantity FX(x) = p[{X ≤ x}] is known as the
probability distribution function of X. Provided that its derivative exists, the
probability distribution function has an interpretation in terms of fX(x), the
density probability distribution of X

FX(x) =

∫ x

−∞
fX(s)ds.

The expectation of X is then defined as

E[X] =

∫ ∞
−∞

fX(s)ds,

and the variance of X is

Var[X] = E[X2]− E[X]2.

Gaussian distibution. Let µ ∈ R and σ ∈ R>0. Then a random vari-
able Z is called Gaussian or normal with law N(µ, σ2), if its probability
distribution function is of the form

p[{Z ≤ x}] = Φ

(
x− µ
σ

)
, with Φ(x) =

1√
2π

∫ x

−∞
e−

1
2
t2dt.

And we have E[Z] = µ and Var[Z] = σ2.

Poisson distribution. Let λ ∈ R>0. Then a discrete random variable Y
is called Poisson with law Po(λ), if its probability distribution function is of
the form

p[{Y ≤ `}] =
∑̀
k=0

λk

k!
e−k.

And we have E[Z] = Var[Z] = λ.

Probability generating function. Let (A, |·|) a combinatorial class with
an added parameter χ : A → N, so that its associated generating function
is A(z, u) =

∑
n,k≥0 an,kz

nuk. One can then consider the sequence Xn of
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uniform random variables over A(n) defined for each n ≥ 0 by the discrete
probability density function:

p[{Xn = k}] =
an,k
an

.

This allows us to define the probability generating function of Xn, for n ≥ 0:

pn(u) :=
∑
k≥0

p[{Xn = k}]uk =
[zn]A(z, u)

[zn]A(z, 1)
.

Convergence in distribution. Among the several modes of convergence
of a sequence of random variables, we will only consider the convergence
in distribution. We say that a sequence of random variables (Xn)n>0 tends

in distribution to a random variable X, and we denote it by Xn
d→ X,

if the associated sequence of distribution probability functions (FXn(x))n>0

converges point wise to the distribution function FX(x) of X.

Asymptotic normality. In Chapter 4, we will mainly concern ourselves
with sequences of random variable converging to normal distributions. The
main method that will be used is due to Hwang [36]. He designed a way
to deduce asymptotic normality from the singular expansions of generating
functions. The following version can be found in [25, Theorem IX.8]:

Theorem (Quasi-powers [36]). Let the (Xn)n>0 be a sequence of non-negative
discrete random variables, each with probability density functions pn(u). As-
sume that, uniformly in a fixed complex neighbourhood of u = 1,

pn(u) = A(u) ·B(u)n
(

1 +O

(
1

n

))
,

where A(u) and B(u) are both analytic at u = 1 and A(1) = B(1) = 1.
Assume finally that B(u) satisfies B′′(1) +B′(1)−B′(1)2 6= 0.

Then after standardisation, the distribution of Xn is asymptotically Gaus-
sian and the mean and variance satisfy

E[Xn] ∼
(
B′(1)

B(1)

)
n, Var[Xn] ∼

(
B′′(1)

B(1)
+
B′(1)

B(1)
−
(
B′(1)

B(1)

)2
)
n.
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In the applications of the Quasi-Powers theorem throughout this thesis,
we will always have B(u) = ρ(1)/ρ(u), where ρ(u) will be the singularity
curve (as a function of u) of a bivariate generating function f(z, u), that is
ρ(1) will be the dominant singularity of f(z, 1). The former expressions then
become

E[Xn] ∼
(
−ρ
′(1)

ρ(1)

)
n, Var[Xn] ∼

(
−ρ
′′(1)

ρ(1)
− ρ′(1)

ρ(1)
+

(
ρ′(1)

ρ(1)

)2
)
n.

2.4 Graphs decompositions

2.4.1 Root decompositions

As an illustration of how one can use some of the enumerative methods
unified under the framework of Analytic Combinatorics, we will now study
some classes of rooted planar maps following Tutte’s seminal idea of root
decomposition. In the rest of this thesis, all maps will be rooted and planar.

In 1968 [67], Tutte found a closed formula for the number mn of maps
with n edges:

mn =
2 · 3n
n+ 2

Cat(n),

where Cat(n) is the nth Catalan number 1
2n+1

(
2n
n

)
. To obtain that result, he

recursively decomposed maps as follows: start with any map, remove its root
edge and classify the resulting maps.

In 1962 following a similar recursive root decomposition, Tutte [64] also
found closed formulas for the numbers of simple 3-connected triangulations.

Then 1965 [14] Brown found a root decomposition for irreducible quad-
rangulations, that are quadrangulations with at least 6 vertices and for whcih
every 4-cycle defines a face.

3-connected triangulations. We would first like to point a slight differ-
ence in vocabulary between this thesis and [64]. For us, a simple triangulation
is a triangulation without loop nor multiple edge, while for Tutte there are
the triangulations in which every 3-cycle defines a face, i.e. no separating
triangle. We will call the latter irreducible triangulations. In the rest of the
thesis, we will refer as 3-connected (resp. 4-connected) simple triangulations
those that are 3-connected resp. 4-connected) and without loop nor multiple
edge.
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For n ≥ 1, let tn be the number of 3-connected triangulations on n + 2
vertices. So that T (z) =

∑
n≥1 tnz

n is the (ordinary) generating function
counting 3-connected triangulations, where the variable z marks the number
of vertices minus two. Notice that we add here the single triangle, whose
generating function is z, which is not 3-connected but will be counted by
T (z). Observe now that if one removes the root edge of a given 3-connected
triangulation, which is not the single triangle, then the resulting map (re-
rooted in some predefined canonical way) will have a root face of size four:
it will be the triangulation of a square. This is because the root edge was
adjacent to two triangles, the one defining the root face and another one.
The two other edges of the latter triangle are now part of the boundary of
the new root face. In general, the map resulting from the removal of the root
edge of a triangulation of a k-gon is a triangulation of a (k + 1)-gon.

Near triangulations. If we want to apply the root-decomposition method,
it is then natural to introduce a new class of planar maps: the near trian-
gulations. They are simple 3-connected planar maps in which every face has
degree three but the root face, which has degree at least three, thus they
include the 3-connected triangulations.

Conversely, let us now consider a near triangulation η, whose root edge
(a, b) is adjacent to a k-gon, the root face, and to an inner triangle whose
third vertex is c. Two cases arise: there are either r > 0 edges, different
from {a, c} and {b, c}, and directly connecting c to an external vertex, i.e.
a vertex incident to the root face, or zero such edge (the case where c is
directly incident with the root face is impossible as the map would then have
a 2-vertex cut), as illustrated by Figure 2.8. Both cases can be obtained by
considering a (finite) sequence of at least one near triangulations η1, . . . , ηm,
with respective root edges (a1, b1), . . . , (am, bm) and whose third unmarked
external vertices are respectively c1, . . . , cm, where (ai, ci) is an external edge
of ηi (i ∈ [m]). Then by identifying together the following edges: (a1, c1) with
(a2, b2), . . . , (am−2, cm−2) with (am−1, bm−1), and (am−1, cm−1) with (am, bm).
And by finally adding a directed edge between cm and bm in the root face of
the newly obtained map. We know obtained the near triangulation η, with
a = cm, b = b1 and c = a1 = a2 = . . . = am. Notice that in the second case,
η1 cannot have a root face of size three and that this all process excludes the
single triangle.



2.4. Graphs decompositions 38

Figure 2.8: A near triangulation and its decomposition into two smaller near
triangulations (the grayed areas) and two triangulations: K3 and K4.

A functional equation with a catalytic variable. As motivated above,
we first introduce a new variable, u marking the number of external vertices
minus three. The reason for the minus three is to avoid any over-counting
when identifying edges of near triangulations. So that if for n ≥ 5 and k ≥ 3,
an,k is the number of near-triangulations with n+2 vertices and k+3 external
vertices, so that N(z, u) =

∑
n,k≥0 an,kz

nuk is the generating function of near
triangulations, then the above combinatorial decompositon translates into
the following functional equation:

N(z, u) = z +
1

u2

(
uN(z, u)

1− uN(z, u)
− uT (z)

)
. (2.3)

The explanation is as follows. A near triangulation is either the single triangle
or a non-empty sequence of near triangualtions. When the sequence has size
one, then we must make sure that it is not a 3-connected triangulation as they
have a triangular root face, thus the correcting term −uT (z). The factors
u and u−2 adjust the number of external vertices when identifying external
edges of near triangulations of the sequence and when creating the new root
edge, respectively.

Observe now that if we want to obtain T (z) from Equation (2.3), we
cannot just set u = 0. This behaviour is rather characteristic of a sort of
equations that are said to have a catalytic variable (in our case u), as baptised
by Zeilberger in [73].
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The quadratic method. Let us first transform (2.3) into a polynomial
equation in N ≡ N(z, u) by multiplying both sides by u(1− uN):

u2N2 + (uT + 1− zu2 − u)N + zu− T = 0, (2.4)

where T ≡ T (z). Observe again that setting u = 0 here would just give us
N(z, 0) = T (z) which is true but not very interesting.

When the polynomial in N is quadratic, Tutte’s trick is to complete the
square so that one can eliminate the variable N , similarly to the classical
resolution of quadratic equations. Notice that this amounts in fact to com-
puting the discriminant of (2.4) with respect to N . Now, suppose that we
already know T (z) to be algebraic and with a minimal polynomial of genus
zero. Then it will admit a rational parametrisation with an algebraic func-
tion. In [64], Tutte guessed such a parametrisation from the discriminant of
(2.4) with respect to N :

T (z) = U(z) (1− 2U(z)) , (2.5)

where U(z) is an algebraic function defined by

U(z)(1− U(z))3 − z = 0. (2.6)

From there, one can obtain an annihilating polynomial of T (z) by eliminating
U(z) from the system composed of Equations (2.5) and (2.6).

This method was later formalised by Brown in [13] and is known as the
quadratic method. It has then been generalised to any polynomial with one
catalytic variable in [8]. In our case, it works as follows. As we want a
functional equation in T and z only, we would like to eliminate the variables
N and u from (2.4). To do so, we iteratively compute the discriminant of
(2.4), first with respect to N (thus obtaining a polynomial equation in T , z
and u) then with respect to u.

Minimal polynomial of T (z). In both cases, we end up with the following
polynomial equation:

T 4 + 3T 3 + T 2(3 + 8z) + T (1− 20z) + 16z2 − z = 0, (2.7)

This is in fact the minimal polynomial of T (z) as we already removed a factor
−16z3 to make it irreducible. One of the solutions of (2.7) admits a unique
local expansion near 0 in formal power series with non-negative coefficients.
This is the generating function T (z) whose first terms are

T (z) = z + z2 + 3z3 + 13z4 + 68z5 + 399z6 + 2530z7 + · · ·
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Closed formula. Even though one does not really need Tutte’s parametri-
sation to obtain the minimal polynomial of T (z), it becomes useful if one
wants to find a closed formula for the number of 3-connected triangulations.
Indeed, Equation (2.6) has a so-called Lagrangian form, which means that one
can apply Langrange-Bürmann inversion formula. So that with φ(y) = 1

(1−y)3

and H(y) = y, we have

[zn]U(z) =
1

n
[yn−1]

(
1

1− y

)3n

=
3

4n− 1

(
4n− 1

n− 1

)
, (2.8)

where the last inequality is obtained by applying the binomial theorem with
a negative entry on (1−y)−3n. We can directly verify this as there is a unique
formal power series solution of (2.6) with non-negative coefficients

U(z) = z + 3z2 + 15z3 + 91z4 + 612z5 + 4389z6 + 32890z7 + · · ·

Finally substituting U(z) in (2.5) by the right hand-side of (2.8) gives us
the closed formula for the number of 3-connected triangulations, as discovered
by Tutte in [64]:

[zn]T (z) =
2(4n+ 1)!

(n+ 1)!(3n+ 2)!
.

Asymptotic enumeration of U(z). As we will need it in Chapter 3,
we first compute both the local expansion of the generating function U(z),
together with an asymptotic estimate of its coefficients.

As it is irreducible, Equation (2.6) is in fact the minimal polynomial of
U(z). So that its discriminant with respect to U(z),

z2(256z − 27) = 0

has two solutions (up to multiplicity). As U(z) has only non-negative coef-
ficients, its dominant singularity is the unique solution which is a positive
(non zero) real number, namely τ = 27/256.

Now if we compute the possible Puiseux expansions of U(z) for z near τ ,
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we obtain the three following truncations, setting Z =
√

1− z/τ :

5 + i
√

2

4
− 8 + 7i

√
2

96
Z2 − 1184 + 1117i

√
2

41472
Z4 +O(Z6),

5− i
√

2

4
− 8− 7i

√
2

96
Z2 − 1184− 1117i

√
2

41472
Z4 +O(Z6),

1

4
−
√

6

8
Z +

1

12
Z2 − 31

√
6

1728
Z3 +O(Z4).

Observe that the first two are conjugate from one another but that both are
analytic at z = τ . So the only remaining candidate for the local expansion
of U(z) is the third one, for which only the first two summands suffice:

U(z) ∼
z→τ

1

4
−
√

6

8

√
1− z

τ
. (2.9)

Applying finally the theorem of sim-transfer on (2.9), we obtain the fol-
lowing asymptotic estimate:

[zn]U(z) ∼
n→∞

√
3

8
√

2π
· n−3/2 ·

(
256

27

)n
.

Asymptotic enumeration of T (z). By transfer of singularity, Equation
(2.5) tells us that T (z) has the same dominant singularity has U(z), namely
τ = 27/256 (this can be verified by computing the discriminant of (2.7), the
minimal polynomial of T (z), with respect to T ). And from the polynomial
(2.7), one can compute the first terms of the only Puiseux expansion of T (z)
near τ that is not analytic at τ . So that:

T (z) ∼
z→τ

1

8
− 3

16

(
1− z

τ

)2
+

√
6

24

(
1− z

τ

)3/2
. (2.10)

And applying the theorem of sim-transfer on (2.10), gives the following
asymptotic estimate:

tn = [zn]T (z) ∼
n→∞

√
3

16
√

2π
· n−5/2 ·

(
256

27

)n
.
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Figure 2.9: Two 3-connected triangulations pasted on the faces of an irre-
ducible triangulation, here K4.

2.4.2 Composition schemes

In [64], Tutte also used his results on 3-connected triangulations to study
the generating function of simple 4-connected triangulations via a compo-
sition scheme. Thus leading to a closed formula for the number of simple
4-connected triangulations.

Similarly in 1968, Mullin and Schellenberg [47] found another composition
scheme relating the family of irreducible quadrangualtions with that of simple
quadrangulations.

Irreducible triangulations. Whitney showed in [70] that a triangulation
is irreducible if and only if it is either 4-connected or K4, the graph of the
tetrahedron, or the single triangle K3.

In [64], Tutte remarked that any 3-connected triangulation can be ob-
tained recursively by replacing each inner (non root) face of an irreducible
triangulation, that is not the single triangle, by some 3-connected triangu-
lation (see Figure 2.9). Notice that because the single triangle is counted
as a 3-connected triangulation, substituting a triangular face with nothing
is like substituting it with a triangle. As irreducible quadrangulations are
composed of the single triangle, the tetrahedron and the 4-connected trian-
gulations, this gives us a way to access the generating function of the latter
from that of 3-connected triangulations.

4-connected triangulations. For n ≥ 4, let fn be the number of 4-
connected triangulations with n + 2 vertices. So that T4(y) =

∑
n≥4 fny

n
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is the generating function counting 4-connected triangulations, where the
variable y also marks the number of vertices minus two.

The above discussion can be interpreted in terms of the following func-
tional equation:

T (z) = z + z2(z−1T (z))3 +
T4(z(z−1T (z))2)

z−1T (z)
. (2.11)

It is explained as follows. Substituting a triangular face by any 3-connected
triangulation Γ is encoded by the generating function z−1T (z), as we want the
three external vertices of Γ to be unmarked by the variable z (two originally
and one more from the factor z−1). The right hand-side is composed of the
single triangle whose unique inner face is not substituted, the tetrahedron
whose three inner faces are substituted, and of any 4-connected triangulation
whose inner faces are substituted. The latter substitution is encoded by
composition of the variable y in T4(y), which marks vertices minus two, with
the generating function z(z−1T (z))2. The square is there to substitute faces
instead of vertices, as Euler’s formula tells us that a simple triangulation with
n + 2 vertices has 2n faces. And the factors z (or z2 for the tetrahedron)
exist to keep track of the original number of vertices. Finally, the division
by z−1T (z) is there to ensure that we do not substitute the root face.

Minimal polynomial of T4(y). One can then rewrite (2.11) into two poly-
nomial equations:

T 4 − zT 2 + z2T + z2T4 = 0,

T 2 − zy = 0,

where T4 ≡ T4(y) and T ≡ T (z). So that together with Equation (2.7), they
form a polynomial system from which one can eliminate the two variables T
and z. Thus resulting in the following single polynomial equation:

(y2 + 8y + 16)T 3
4 + (3y4 + 21y3 + 21y2 − 28y)T 2

4

+ (3y6 + 18y5 − 3y4 − 26y3 + 11y2 − y)T4
+ y8 + 5y7 − 8y6 + y5 = 0,

(2.12)

which is irreducible and is hence the minimal polynomial of T4(y). And
the unique solution of Equation (2.12) that admits a formal power series
expansion at y = 0 with non-negative coefficients is:

T4(z) = y4 + 3y5 + 12y6 + 52y7 + 241y8 + 1173y9 + 5929y10 + · · ·
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Rational parametrisation of T4(z). Alternatively, after observing that
Equation (2.12) has genus zero, one could substitute T by the right hand-side
of Equation (2.5), as well as z by U(z)(1 − U(z))3 (see (2.6)) into (2.11) to
obtain, after some manipulations, the following rational parametrisation

T4(y) = y +
V (y)(V (y)− 1)

(1 + V (y))2
− y2, (2.13)

where V (y) is an algebraic function defined by

V (y)(1− V (y))2 − y = 0. (2.14)

Similarly to above, one could exploit the fact that (2.14) admits a Lagrangian
form to obtain a closed, although quite involve, formula for the coefficients
of T4(z) (see [64, Section 7]).

Asymptotic enumeration of T4(z). Now taking the discriminant of (2.12)
with respect to T4 gives

−y3(27y − 4)3 = 0. (2.15)

From there, one can directly deduce that the dominant singularity of T4(y) is
ς = 4/27. And the only solution of (2.12) that admits a Puiseux expansion,
for y → ς, that is not analytic at ς is given by:

T4(y) ∼
y→ς

7

5832
+

245

23328

(
1− y

ς

)
+

√
3

96

(
1− y

ς

)3/2

. (2.16)

So that an application of the theorem of sim-transfer on (2.16), gives the
following asymptotic estimate for the number of 4-connected triangulations:

fn = [yn]T4(y) ∼
n→∞

√
3

128
√
π
· n−5/2 ·

(
27

4

)n
.

Critical composition scheme. Let us now observe a bit the composition
scheme equation (4.14) relating T (z) with T4(z). In particular, notice that
in the composition T4(z

−1T (z)2) it holds that

τ−1T (τ)2 = ς, (2.17)
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Figure 2.10: From left to right. the unique irreducible quadrangulation with
five inner faces: the graph of the cube, the single quadrangle, then the two
symmetric ones counted by 2z2.

where τ and ς are the respective dominant singularities of T (z) and T4(y).
Indeed, as proven in (2.10) T (τ) = 1/8 so that 256

27·64 = 4
27

. In this case,
we call the above composition scheme critical. Equation (2.17) gives us in
fact a mean to directly compute ς, the dominant singularity of T4(y), given
that we know the dominant singularity T (z) as well as its singular expansion.
There is a whole family of combinatorial classes for which this type of critical
composition holds, as such it defines a combinatorial characterisation that is
universal. This is typically the case for planar-like families of graphs.

If, in Equation (2.17), it were instead that τ−1T (τ)2 > ς, the composition
scheme would be called sub-critical. Notable classes of connected graphs
for which the latter holds are trees, cactus graphs, outerplanar graphs or
series-parallel graphs.

Irreducible quadrangulations. A quadrangulation is said to be irre-
ducible if it has no separating quadrangle, i.e. if every 4-cycle defines a face.
We denote by S the set of all irreducible quadrangulations with at least five
inner faces. For any n ≥ 6, let sn be the number of irreducible quadrangula-
tions with n inner faces. So that, the generating function S(t) =

∑
n≥0 snt

n

counts irreducible quadrangulations (with at least five inner faces), where the
variable t marks the number of inner (non root) faces. Notice that by consid-
ering only the irreducible quadrangulations with at least five inner faces, we
exclude the single quadrangle, whose generating function is z, and the two
symmetric quadrangulations counted by 2z2 (see Figure 2.10). The reason
will be made more clear when decompsing simple quadrangulations. In the
rest of this thesis, an irreducible quadrangulation will always have at least
five inner faces.
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Bijection with 3-connected maps. The generating function S(t) is well-
known, since S is in bijection with rooted 3-connected planar maps counted
by number of edges (see [65] or [47], and [3]). This bijection is obtained as
follows. Start from a 3-connected map and take its medial, it is a 4-regular
map, then take the dual to obtain an irreducible quadrangulation with at
least five inner faces. Now setting x = 1 in the system for 3-connected maps,
composed of Equations (9) and (10) in [3], gives us the following rational
parametrisation of S(t):

S(t) =
2t

1 + t
− t− W (t)2

(1 + 2W (t))3t
, (2.18)

where the algebraic generating function W (t) is defined by

W (t) = (1 +W (t))2t. (2.19)

Notice that W (t) =
∑

n≥0Cnt
n is the generating function of the Catalan

numbers.

Minimal polynomial of S(t). Eliminating W (t) from the system com-
posed of Equations (2.18) and (2.19) gives an annihilating polynomial of
S(t). The only factor of the resulting annihilating polynomial whose root,
expressed as a formal power series of t near zero, has non-negative coefficients
and is

t5 + 4t7 + 6t8 + 24t9 + 66t10 + 214t11 + 676t12 + · · ·
is in fact the minimal polynomial of S(t) and is given by

t7 + 4t6 − t5 + (2t6 + 12t5 + 20t4 + 10t3 − 5t2 − 4t+ 1)S
+ (t5 + 8t4 + 25t3 + 38t2 + 28t+ 8)S2 = 0.

(2.20)

Asymptotic enumeration of S(t). The discriminant of (2.20) with re-
spect to S is

(4z − 1)3(z + 1)4 = 0,

whose unique positive root 1/4 is the dominant singularity of S(t). And the
unique Puiseux expansion near 1/4 computed from (2.20) and that is not
analytic at 1/4 is

S(t) ∼
t→ 1

4

1

540
− 167

8100
(1− 4t) +

32

729
(1− 4t)3/2. (2.21)
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Figure 2.11: A typical simple quadrangulation (left) pasted in the inner face
of an irreducible quadrangulation (middle), thus depicting a quadrangulation
in R. Right is the quadrangulation κ in which either one of the two inner
faces f1 or f2 has been substituted by the quadrangulation κ.

So that an application of the theorem of sim-transfer on (2.21) gives the
following asymptotic estimate for the number of irreducible quadrangualtions

sn = [tn]S(t) ∼
n→∞

8

243
√
π
· n−5/2 · 4n.

Simple quadrangulations. Let Q be the class of all simple quadrangu-
lations and for n ≥ 1, let qn be the number of simple quadrangulations
with n inner faces. Its associated generating function will be denoted by
Q(z) =

∑
n≥1 qnz

n.
In [47], the authors showed that simple quadrangulations can be decom-

posed via a composition scheme from the irreducible ones: take an irreducible
quadrangulation and replace its inner faces by a simple quadrangulation. Let
thenR be the sub-class of Q containing all simple quadrangulations obtained
from S by replacing each internal face with a quadrangulation in Q, all illus-
trated by the two leftmost pictures of Figure 2.11. Its associated generating
function will be denoted by R(z) = S(Q(z)), where the variable z marks
inner faces.

Quadrangulations with a diagonal. Now the reasons we excluded the
single quadrangle and the quadrangulations counted by 2z2 from the gener-
ating function S(t) counting irreducible quadrangulations can be made clear.
First, it would be meaningless to replace the inner face of the single quadran-
gle. Secondly, let us define the quadrangulation κ as the third quadrangula-
tion from the left of Figure 2.10, whose generating function is z2. κ has two
inner faces, f1 the one incident with the root edge and f2. Notice then that
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if one would replace f1 by the simple quadrangulation κ, then the resulting
simple quadrangulation would be exaclty the same as the one obtained by
instead having replaced f2 by κ (see the rightmost picture of Figure 2.11).

This would break the unicity of the decomposition. Hence we need to
treat this case separately and introduce the following new sub-class of simple
quadrangulations: N is the class of simple quadrangulations containing a di-
agonal incident with the root vertex, where a diagonal is a path of length two
joining two vertices incident with the root face and passing through an in-
ner vertex. By symmetry they are in bijection with simple quadrangulations
containing a diagonal not incident with the root vertex. The smallest quad-
rangulation in N is κ, as defined above, and its symmetric is the rightmost
quadrangulation of Figure 2.10. The generating function associated with N
will be denoted by N(z), where the variable z marks inner faces. Observe
that any quadrangulation with a diagonal, other than κ or its symmetric,
admits a 4-cycle that does not define a face.

Recursive composition scheme. In [47], the authors showed that the
following system of equations holds:

Q(z) = z + 2N(z) + S(Q(z)),

N(z) = Q(z) · (z +N(z) + S(Q(z))).

(2.22)

Indeed, a simple quadrangulation is either the single quadrangle, a quad-
rangulation in R, or the quadrangulations containing a diagonal (where the
factor 2 stands for the symmetric ones). Those classes form in fact a par-
tition of Q. This justifies the first equation. Now for the second equation,
notice that a quadrangulation with a diagonal adjacent to the root vertex
is obtained by substituting the two inner faces of κ as follows: f2 can be
substituted by any simple quadrangulation, but f1 can only be substituted
by simple quadrangulations not in N (the class of symmetrics of N can be
decomposed similarly by considering the symmetric of κ as based quadran-
gulation).
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Minimal polynomial of Q(z). We first rewrite (2.22) as a polynomial
system of equations, where Q ≡ Q(z), S ≡ S(t) and N ≡ N(z), as follows:

Q− t = 0,

z + 2N + S −Q = 0,

(z +N + S)Q−N = 0.

(2.23)

So that from the system composed of (2.23) and the minimal polynomial
(2.20) of S(t), one can eliminate the variables S, t, and N to obtain the
following annihilating polynomial of Q(z):

z2Q3 + (6z2 + 2z)Q2 + (12z2 − 10z + 1)Q+ 8z2 − z = 0, (2.24)

which is irreducible and hence the minimal polynomial of Q(z).

Asymptotic enumeration of Q(z). The discriminant of (2.24) is

−z3(27z − 4)3,

whose unique positive root is ς = 4/27 (the same as 4-connected triangula-
tions). And the unique Puiseux expansion near ς computed from (2.24) and
that is not analytic at ς is given by

Q(z) ∼
z→ς

1

4
− 3

4

(
1− z

ς

)
+

2
√

3

3

(
1− z

ς

)3/2

. (2.25)

So that an application of the theorem of sim-transfer on (2.25) gives us
the following asymptotic estimate on the number of simple quadrangulations
with n inner faces:

qn = [zn]Q(z) ∼
n→∞

√
3

2
√
π
· n−5/2 ·

(
27

4

)n
.

Bijective methods. Equations (2.5), (2.13) and (2.18) can however be
derived by some more direct means. Indeed, one can find some bjective cor-
respondance between classes of maps and some simpler sets whose enumera-
tion is known. Cori and Vauquelin [18] first found such a bijection between
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general planar maps and some tree structure called well labelled trees, later
rediscovered by Arquès [1]. But the real development of this method came
with the thesis of Schaeffer [60], who was able to re-obtain most of Tutte’s
results through bijections. Finally, Bouttier, Di Francesco and Guitter [10]
found another bijection between classes of maps and so-called mobiles, which
allows one to clearly control the degrees of the vertices (see also [5] for a
generalisation).

Two other noteworthy advantages of the bijective methods are to provide
both some powerful algorithmic tools to generate random planar graphs, via
Boltzmann samplers [26], and some random models to study the scaling limit
of random planar maps [9].

2.4.3 Connectivity decompositions

Let G be a family of (simple) labelled graphs, with its associated generating
function G(x) =

∑
n≥0 gn

xn

n!
, where the variable x encodes vertices.

Component stable classes. A graph γ ∈ G can always be considered
as the disjoint union of its connected components. Notice then that the
connected components of γ ∈ G can be formed from any connected graph
in G. So that if we define the subclass G1 as containing every connected
graphs in G, then the symbolic method translates the above relationship into
a G = Set(G1). This allows us to derive the generating function G1(x) =∑

n≥0 cn
xn

n!
, associated with the class G1, from G(x) as follows

G(x) = eG1(x). (2.26)

This way, we can always derive the subclass G1 of connected graphs of
a given labelled graph class G. Furthermore, a graph class G defined by a
property P is said to be component stable when G1, the class of connected
graph in G, is also the class of connected graphs having property P . Classes
that are component stables include for example the class of cycle-free graphs
(i.e. forests), or that of planar graphs.

We will see in the rest of this section that similar derivations for the
subclasses of 2-connected or 3-connected graphs, athough more involve, can
be expressed using the symbolic method.
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Rooted connected graphs. Let G be a component stable class of graphs
and let γ ∈ G1 be a connected graph in G1. If γ has n vertices, then there are
n ways to root γ at a vertex v (when we root at a vertex, we keep its label).
As explained before, we denote by G•1 the class of (vertex-)rooted graphs in
G1. And the associated generating function G•1(x) can be obtained as follows

G•1(x) = xDxG1(x) = xG′1(x) =
∑
n≥1

ncn
xn

n!
. (2.27)

Block-decomposition. Let G•1 be the subclass of rooted connected graphs
of a component stable class of labelled graphs G, and let γ ∈ G•1 . Then γ can
be decomposed along its root vertex v as follows.

Suppose that v is not a cut vertex of γ. Then γ is simply a block β, i.e.
a maximal 2-connected component, rooted at v in which every other vertex
u is substituted by a connected graph in G•1 (and u is a cut vertex of β)
whose root vertex is identified with u (we consider here the graph reduced
to a single vertex as connected). Now if v is a cut vertex itself, then γ is
decomposed as a set (and not as a sequence, as graphs are not embedded)
of rooted blocks for which: each root vertex is identified with v (so that its
label was forgotten) and each other vertex is substituted by graphs in G•1 as
described above. Observe that such a rooted block with substituted vertices
can also be a single rooted edge with substituted vertex.

Notice the, that this decomposition can be carried recursively on the
rooted blocks, whose vertices are substituted, adjacent to the root vertex, so
that what remains at the end of the recursion is a set of rooted blocks or
edges, see Figure 2.12. In [34], it can be further observed that this terminal
set has a particular tree-like structure: consider a tree whose vertices are the
terminal rooted blocks and rooted edges, and where two vertices are adjacent
when their corresponding rooted blocks or edges have their root vertices
identified together in the recursion. This is indeed a tree as otherwise any
cycle with vertices v1, . . . , vt, respectively associated to the rooted blocks or
edges b1, . . . , bt would induce a bigger block in γ containing all the blocks
b1, . . . , bt, thus contradicting the maximality of each bi (for i ∈ [t]). Such a
structure is called a block-decomposition of the rooted connected graph γ.

Rooted 2-connected graphs. Let us now denote by G2 the subclass of all
the 2-connected graphs in G, with its associated generating function G2(x).
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Figure 2.12: An iterated block-decomposition of a connected graph.

A class of graphs G, defined by a property P , is said to be block stable when
G2 is the class of 2-connected graphs verifying property P . Suppose now that
G is both component and block stable. Then applying the symbolic method
to what was said above, the generating function G•2(x) = xG′2(x), associated
to the class of rooted 2-connected graphs in G, can be derived from that of
G•1 as follows (see [34] for a complete proof and further details):

G•1(x) = xeG
′
2(G
•
1(x)). (2.28)

Notice that Equation (2.28) is a composition scheme. There seems to be
a universal behaviour in the asymptotic enumeration of a labelled graph class
for which the scheme is critical and another one for when it is sub-critical.
In the first case, for example the family of planar graphs, the generating
function counting the connected graphs in the class will admit a (singular)
Puiseux expansion of type 5/2. While in the second case, it will be of type
3/2. Known classes for which the scheme is sub-critical are forests, cactus
graphs, outerplanar graphs and series-parallel graphs.

Enumeration of some labelled sub-critical graph classes. Such de-
composition scheme can alternatively be used to enumerate a family of graphs
that is component and block stable, when the generating function counting
the 2-connected graphs of the family is known. This was for example the
methods followed by Bodirsky, Giménez, Kang and Noy to enumerate both
outerplanar and series-parallel labelled graphs:
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Theorem ([6]). Let `n and sn respectively be the numbers of labelled outer-
planar and of series parallel graphs on n ∈ N vertices. The the following two
estimates hold:

`n ∼
n→∞

` · n−5/2 · λ−n · n!, sn ∼
n→∞

s · n−5/2 · σ−n · n!,

where ` ≈ 0.0182016, λ−1 ≈ 7.321, s ≈ 0.10131 · 10−2 and σ−1 ≈ 7.812267.

As the 2-connected blocks of trees are simply rooted edges, they form
a nice example of a block decomposition. We will briefly present it next,
following the monograph of Moon [46], but extended to forests.

Enumeration of labelled forests. Labelled graph classes that are compo-
nent and block stable, and without 3-connected components, such as forests
can be decomposed following a connectivity-decomposition scheme if the sub-
class 2-connected components is known. In the case of labelled forests, the
2-connected forests are simply edges. So that the (exponential) generating
function counting the number of 2-connected forests by vertices is x2/2.

Consider now the subclass of connected labelled forests, i.e. labelled trees.
Applying the block decomposition on the class of trees rooted at a vertex
gives us the following functional equation for the (exponential) generating
function T (x) counting trees by vertices:

xT ′(x) = xexT
′(x). (2.29)

Observe that Equation (2.29) has a Lagrangian form u(x) = xφ(u(x)) with
u(x) = xT ′(x), H(y) = y and φ(y) = exp(y). So that the Lagrange-Bürmann
inversion theorem gives

[xn]xT ′(x) =
1

n
[yn−1]

∑
k≥0

(ny)k

k!
=

nn−2

(n− 1)!
=
nn−1

n!
.

Notice now that Equation (2.27), applied to the case of trees, can be rein-
tepreted into the following relationship between the number of rooted labelled
trees on n vertices and that of (unrooted) labelled trees on n vertices:

n![xn]T (x) =
1

n
n![xn]xT ′(x) = nn−2,

which is known as Cayley’s formula.
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Now using Equation (2.26), we can access the number fn of forests with
n ≥ 1 vertices. For that, we will first compute the number fn,k of such forests
but composed of k ≥ 1 disjoint trees. It is given by

fn,k = n![xn]
T (x)k

k!
=

(
n− 1

k − 1

)
nn−k.

So that:

fn =
n∑
k=1

(
n− 1

k − 1

)
nn−k.

Network-decomposition. Similarly to the decompositon of a connected
graph, rooted at a vertex, along its cut vertices, we will now see how to
decompose a 2-connected graph β ∈ G2, rooted at a pair of vertices {s, t},
along its 2-vertex cuts.

This was one of the motivations for Trakhtenbrot [63] and independently
Tutte [66] to introduce the notion of networks : a network is a graph with
two distinguished vertices, called poles, such that the graph obtained by
adding an edge between the two poles (if they were not already adjacent) is
2-connected. The set of networks can be decomposed following a partition
(see [63] or [29]) into the three following subsets, plus the single edge:

• The series networks are the sequences of k ≥ 2 non-series networks,
where the second pole of the i-th network is identified with the first pole
of the (i+1)-th network. The poles of the resulting network are then the
first pole of the first network and the second pole of the last network in
the sequence. Notice that one can make this decomposition unique by
observing that a series network is the composition of a network which
is not series with an arbitrary network.

• The parallel networks are those obtained by gluing two or more non-
parallel networks, none of them containing the root edge, along the
common poles.

• The h-networks are those obtained as follows. Consider a 3-connected
graph, the core, rooted at a directed edge e (it is in fact itself an h-
network). And replace each edge ab 6= e of the core by a network with
ditinguished vertices (s, t). The replacement is done by first removing
the edge ab from the core and then by identifying the vertices a with s
and b with t.
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So that when decomposing β along {s, t}, two cases can arise: either
{s, t} is or is not a 2-cut of β. In the first case, β forms either a series or
a parallel network. While in the second case, β forms an h-network. Tutte
proved in [66] that by applying such a decomposition recursively, one ends
up with a tree-like structure, whose vertices are associated to the networks
induced by the decomposition, and two vertices of the tree form an edge
of the tree when their two associated networks are composed together in a
bigger network. Notice then that the leaves of this tree are associated to the
cores of the h-networks.

Rooted 3-connected graphs. Looking at the above network-decomposition,
one can see that rooted 3-connected graphs are the essential bricks of the de-
composition of rooted 2-connected graphs. This decomposition can indeed
be translated by Walsh [69] into a system of functional equations between
exponential generating functions.

To that end, let G be a class of graphs that is both component and block
stable. And let us denote by G3 the subclass of all the 3-connected graphs in
G, with its associated generating function G3(x). A class of graphs G, defined
by a property P , is said to be brick stable when G3 is the class of 3-connected
graphs verifying property P .

Let finally
→
G3(x, y) = 2y

x2
· ∂
∂y
G3(x, y) be the bivariate exponential gener-

ating function counting the graphs in G3 that are rooted at a directed edge
whose two endpoints are distinguished, and where the variables x marks ver-
tices and y marks edges. So that if N(x, y), S(x, y), P (x, y) and H(x, y)
respectively are the bivariate exponential generating functions of arbitrary,
series, parallel and h-networks, then the following system of equations holds,
as shown in [69] (see also [29]):

N(x) =
2y

x2
· ∂
∂y
G2(x, y),

N(x, y) = 1 + S(x, y) + P (x, y) +H(x, y),

S(x, y) = N(x, y) · x · (N(x, y)− S(x, y)),

P (x, y) = exp≥2(1 +N(x, y) + S(x, y)),

H(x, y) =
→
G3(x,N(x, y)),

(2.30)
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where exp≥2(z) = exp(z)− 1− z. The first equation translates the fact that
a network is a 2-connected graph rooted at a directed edge (the factor 2
encodes the two possible directions) whose two endpoints are distinguished.

Suppose now that a graph class G is component, block and brick stable.
Then the above three connectivity decomposition schemes give us a way to
decompose any graph in G with graphs in G3 that are rooted at a directed edge
(whose endpoints are distinguished). So that when the generating function
of the 3-connected (labelled) graphs of a class is known, then the whole class
can be known (see [30] for a general framework).

Further decompositions of 3-connected graphs into their 4-connected com-
ponents and so forth seem to however be more involved. Indeed, as shown
in [35], any similar decomposition along the k-cuts of a k-connected graph is
not unique for k > 3.

Enumeration of labelled planar graphs. An example of such a graph
class is that of planar graphs as one can check that a graph is planar if and
only if all its connected, 2-connected and 3-connected components are pla-
nar. Notice now that by Withney’s theorem the family of 3-connected planar
graphs rooted at directed edge is in bijection with the family of 3-connected
rooted planar maps. And as mentionned before, the latter family was enu-
merated by Tutte in [65]. So that one can relate the family of 3-connected
rooted planar maps to that of (labelled) 2-connected planar graphs, then
to that of connected planar graphs, to finally obtain the family of arbitrary
planar graphs.

This is the scheme first adapted by Bender, Gao and Wormald in [3],
where they enumerated the family of 2-connected planar graphs:

Theorem ([3]). Let bn be the number of 2-connected labelled planar graphs
on n ∈ N vertices. The the following estimate holds:

bn ∼
n→∞

b · n−7/2 · β−n · n!,

where b ≈ 0.37042 · 10−5 and β−1 ≈ 26.18412.

This scheme was then continued by Giménez and Noy in their break-
through paper [28], in which they were able to obtain the asymptotic enu-
meration of the family of connected and arbitray labelled planar graphs:
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Theorem ([28]). Let cn and pn respectively be the numbers of connected and
arbitrary labelled planar graphs on n ∈ N vertices. The the following two
estimates hold:

cn ∼
n→∞

c · n−7/2 · ρ−n · n!, pn ∼
n→∞

p · n−7/2 · ρ−n · n!,

where c ≈ 0.41043 · 10−5, p ≈ 0.42609 · 10−5 and ρ−1 ≈ 27.22688.

The computation of the constant p in the above theorem was obtain after
a rather involved algebraic integration of the generating function counting
rooted connected planar graphs.

Combinatorial integration. In [17] however, the authors were able to ob-
tain the same integration solely using a combinatorial decomposition. They
showed that one can relate (under certain conditions) the generating func-
tion of a rooted family of graphs to its unrooted counterpart via a functional
equation.

The idea comes from the book of Bergeron, Labelle and Leroux [4], in
which the authors generalised a famous relation between rooted and unrooted
trees, namely the Dissimilarity Characteristic Theorem developed by Otter
in [55] to prove his famous formula, to generating functions (we follow the
formulation from [17]):

Theorem (Dissymetry for trees [4]). Let T and T• be the class of trees and
vertex-rooted trees respectively. Let also T•−• and T•→• be the classes of trees
respectively rooted at an edge and at a directed edge. Then the following holds

T ∪ T•→• ' T• ∪ T•−•,
where ' is a bijection preserving the number of nodes.

Tree-decomposable classes of graphs. The authors of [17] then gener-
alised the dissymetry theorem for trees to any class of graphs that can be
decomposed in a tree-like manner, as for example in a block or a network-
decomposition.

A class of graphs A is said to be tree-decomposable if one can associate to
each graph γ ∈ A a tree τ(γ) whose nodes are distinguishable in some way
(e.g., using the labels on the vertices of γ). Let now A• denote the class of
graphs in A where a node of τ(γ) is distinguished. Similarly, A•−• will be
the class of graphs in A where an edge of τ(γ) is distinguished, and A•→•
those were an edge τ(γ) is distinguished and given a direction. So that:
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Theorem (Dissymetry for tree-decomposable classes [17]). Let A be a tree-
decomposable class. Then

A ∪A•→• ' A• ∪ A•−•,

where ' is a bijection preserving the number of nodes.

In particular, if one associate the generating function A(x) (resp. A•(x),
A•−•(x) and A•→•(x)) to the graph class A (resp. A•, A•−• and A•→•), then
the following equality holds:

A(x) = A•(x) + A•−•(x)− A•→•(x).

Note that the above dissymetry theorem still holds for unlabelled combina-
torial graph classes, as long as they admit a tree-like decomposition.

The method used in [17] to derive the generating function counting la-
belled (unrooted) connected planar graphs, was to root the tree associated
to the network-decomposition of 2-connected planar graphs graphs at either
a vertex (i.e. a network of the decomposition), an edge (i.e. two networks
associated in series, parallel or h-composition) or a directed edge. Each such
rooting can then be translated into functional equations involving the dif-
ferent generating functions counting networks. The main difficulty in this
type of combinatorial integration scheme always seems to obtain the gen-
erating function of unrooted 3-connected graphs in the family. For planar
graphs, it can be for example done by integrating (algebraically) the ratio-
nal parametrisation of irreducible quadrangulations (and hence 3-connected
rooted planar maps) given in Equation (2.18).

Algebraic connectivity decompositions. One can similarly decompose
rooted planar maps into 2-connected and 3-connected components. This was
in fact the main method used by Tutte in [65] to obtain the generating func-
tion counting 3-connected planar maps. In this case, the functional equations
involved become algebraic (the sets become sequences so that exp(x) becomes
(1− x)−1). It is in general not the case for classes of graphs.

In [7] however, Bodirsky, Kang, Löffler and McDiarmid adapted the
network-decomposition to cubic planar planar graphs. As we will see next,
the sets involved in this decomposition have size at most three, so that the
functional equations become algebraic. It seems to always be the case when
the graphs in the class have bounded degrees.



Chapter 3

Enumeration of cubic planar
graphs

3.1 Introduction

This chapter is about the asymptotic enumeration of the family of labelled
cubic planar graphs, counted by vertices. To that end, we will follow the cu-
bic network-decomposition scheme of vertex-rooted connected planar graphs
developed by Bodirsky, Kang, Löffler and McDiarmid in [7]. As mentionned
before, they adapted the classical network-decomposition scheme of [69] to
the particular case of vertex-rooted cubic graphs, where the generating func-
tions involved are algebraic. Computing then each singular expansions of
the associated exponential generating functions, we extend their scheme and
recover their main results: the asymptotic enumerations of 3-connected, 2-
connected and connected cubic planar graphs, but this time with complete
asymptotic estimates (including the multiplicative constants).

The first result concerns the full asymptotic enumeration of the class of
3-connected cubic planar graphs:

Theorem 3. The number tn of 3-connected cubic planar graphs on n ∈ N
vertices is asymptotically

tn ∼
n→∞

t · n−7/2 · γnt · n!,

with t ≈ 0.0407168760 and γt = ρ−1t ≈ 3.0792014357, where ρt = 3
√
3

16
≈

0.3247595264.

59
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The second result is then the (full) asymptotic enumeration of 2-connected
cubic planar graphs:

Theorem 4. The number bn of 2-connected cubic planar graphs on n ∈ N
vertices is asymptotically

bn ∼
n→∞

b · n−7/2 · γnb · n!,

with b ≈ 0.0592436837, γb = ρ−1b ≈ 3.1296662937 and ρb ≈ 0.3195228840 is
the smallest positive solution of

54x6 + 324x4 − 4265x2 + 432 = 0.

And we finally obtain the asymptotic enumeration of the family of con-
nected cubic planar graphs:

Theorem 5. The number cn of connected cubic planar graphs on n ∈ N
vertices is asymptotically

cn ∼
n→∞

c · n−7/2 · γn · n!,

with c ≈ 0.0609730610, γ = ρ−1 ≈ 3.1325905979, and ρ ≈ 0.3192246062 is
the smallest positive solution of

729x12+17496x10+148716x8+513216x6−7293760x4+279936x2+46656 = 0.

Furthermore, the cubic network-decomposition of [7] gives a natural tree-
decomposition of the class of connected cubic planar graphs. One can in
particular compute this way the constant coefficient of the singular expansion
of the generating function counting connected cubic planar graphs. So that
we can now give a complete asynptotic estimate of the family of labelled
cubic planar graphs:

Theorem 6. The number gn of cubic planar graphs on n ∈ N vertices is
asymptotically

gn ∼
n→∞

g · n−7/2 · γn · n!,

with g ≈ 0.0610098696 and γ is as in Theorem 5.
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The previous theorems were stated in [7, Theorem 2] but without compu-
tations of the multiplicative constants involved in the asymptotic estimates.
Our first goal is to provide a proof of these estimates. In particular, the one
for arbitrary cubic planar graphs requires an application of the dissymetry
theorem for tree-decomposable classes that only appeared one year later in
[17]. We also remark that the value of γ ≈ 3.132595 given in [7] is only
correct up to the fifth decimal place, and the value for γb ≈ 3.129684 given
there is correct only up to the fourth decimal place.

Our next result is an estimate on the number of cubic planar multigraphs.
This class of graphs is instrumental in the study of the phase transition
of the Erdős-Rényi random graph [37, 38, 50]. In these references cubic
multigraphs are equipped with a weight that depends on the number of loops
and multiple edges. Here we count unweighted cubic multigraphs, which is
a result interesting by itself:

Theorem 7. The numbers mn and m′n of cubic planar multigraphs and cubic
planar connected multigraphs on n ∈ N vertices are asymptotically

mn ∼
n→∞

m · n−7/2 · γnm · n! and m′n ∼
n→∞

m′ · n−7/2 · γnm · n!,

with m ≈ 0.2247427548, m′ ≈ 0.2094103951 and γm = ρ−1m ≈ 3.9855373662,
where ρm ≈ 0.2509071947 is the smallest positive root of the equation

729x12−17496x10+148716x8−513216x6−7293760x4−279936x2+46656 = 0.

The exponential growth of the number of cubic planar multigraphs γm is
also computed in [23] but in the more general setting of cubic multigraphs
on an orientable surface of fixed genus.

We finally reprove two results of [27], on the enumeration of simple cubic
maps, in a different way using a connectivity decomposition adapted to maps:

Theorem 8. Let sn be the number of simple cubic planar maps on n ∈ N
vertices. Then the following estimate holds:

sn ≈
n→∞

s · n− 5
2σn,

with s ≈ 0.9367499783 and σ = ρ−1s ≈ 3.2231120230, where ρs ≈ 0.3102591511
is the smallest positive solution of

27z12 + 216z10 + 171z8 − 208z6 − 339z4 + 24z2 + 1 = 0. (3.1)
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By setting x2 = z3 in (3.1), we can recover the polynomial obtained in
[27, Corollary 1].

Theorem 9. Let s′n be the number of 2-connected simple cubic planar maps
on n ∈ N vertices. Then the following estimate holds:

s′n ∼
n→∞

s′ · n− 5
2 · βn,

with s′ ≈ 0.6336562882 and β = ρ′−1s = 2√
6
√
3−10

≈ 3.1931414661, where

ρ′s =

√
6
√
3−10
2

≈ 0.3131712173 is the smallest positive solution of

2x4 + 10x2 − 1 = 0.

The plan of this chapter is the following: after briefly introducing the
method in [7], we will discuss the generating functions of 3-connected, 2-
connected then connected labelled cubic planar graphs and estimate their
coefficients. Then, applying the dissymetry theorem for tree-decomposable
classes of [17], we will estimate the number of labelled cubic planar graphs
on n vertices. Finally, using a similar method, we will discuss and estimate
the coefficients of the exponential generating functions counting cubic pla-
nar multigraphs and of the two ordinary generating functions respectively
counting arbitrary and 2-connected simple cubic planar maps.

3.2 Preliminaries

3.2.1 Cubic network-decomposition

We follow the definitions from [7] but deviate slightly from the notation there.

Cubic networks. A cubic network is a connected cubic multigraph µ with
an ordered pair of adjacent vertices (s, t), such that the graph obtained by
removing the edge st is simple. Observe that st can be a loop. The oriented
edge st is called the root of the network, and s and t are the poles.

Let µ be a network with root st and e = uv be an edge of another network
η. The replacement, or substitution of e with µ is the network obtained by
the following operations. Subdivide e twice transforming it in to the path
uu′v′v, remove the edge u′v′, and respectively identify u′ with s and v′ with t.
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Figure 3.1: The five different types of cubic networks. Top, from left to right,
are a loop, an isthmus and a series cubic network. Bottom, from left to right,
are the two types of parallel cubic networks and an h-composition.

Notice that if η and µ are cubic and planar, so is the resulting network. A cut
vertex in a cubic graph is necessarily incident with one or three isthmuses.
For each cut vertex u incident with exactly one isthmus e, one can remove
the component containing e and erase the resulting vertex of degree two,
resulting in a cubic graph. We call this operation suppressing the cut vertex
u. A 3-connected core is in particular a 3-connected network in which no edge
has been substituted. Notice that 3-connected networks are simple graphs.

Classification of cubic networks. Networks can be classified by the dif-
ferent types of graphs obtained after the removal of the root. They fall into
five classes, as shown in [7] . Some examples of each different class is pictured
in Figure 3.1. Let µ be a network with root st. Then it belongs to one and
only one of the following classes (see [17] for a detailed exposition).

• L (Loop). The root is a loop.

• I (Isthmus). The root is an isthmus.

• S (Series). µ− st is connected but is not 2-connected.

• P (Parallel). µ− st is 2-connected and µ− {u, v} is not connected.

• H (3-connected). µ is obtained from a 3-connected core by possibly
substituting each non-root edge with a network.
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Recursive decomposion. To decompose networks, we will need to intro-
duce the class C of connected cubic networks, that are the cubic networks
µ with root st, such that µ − st is connected. Notice that every (cubic)
network is connected apart for the isthmus networks. So that if we now let
L(x), I(x), S(x), P (x), H(x) and C(x) be the exponential generating func-
tions respectively counting cubic loop, isthmus, series, parallel, 3-connected
and connected networks, where the variable x marks vertices, then the fol-
lowing equation holds:

C(x) = L(x) + S(x) + P (x) +H(x).

We now present a recursive decomposition of networks that will link the

exponential generating function
→
G3(x, y) counting 3-connected cores (i.e. 3-

connected cubic planar graphs rooted at a directed edge), where the variables
x and y respectively mark vertices and edges, to that of connected networks.
The next lemma was first proven in [7, Section 3], and for the sake of com-
pleteness we offer a proof here.

Lemma 10. The following system of equations holds:

L =
x2

2
(I + C − L), I =

L2

x2
,

S = (C − S)C, P = x2
(
C +

C2

2

)
,

C = L+ S + P +H, H =

→
G3(x, 1 + C)

1 + C
,

(3.2)

where L ≡ L(x), I ≡ I(x), S ≡ S(x), P ≡ P (x), H ≡ H(x), C ≡ C(x).

Proof. Equation for L(x). Take any cubic network η and subdivide its root
with a new vertex v. Create finally another new vertex u and add both the
edge {u, v} and the directed loop uu. Notice now that the resulting graph
is a network if and only if η was not rooted at a loop. This means that η
belongs to the family of cubic networks counted by I + C − L. The factor
1/2 in the equation for L(x) then comes from the fact that the direction of
the loop uu does not matter. Alternatively, consider the double-loop, i.e. the
cubic multigraph with two vertices, both adjacent to one loop and to one
another, and rooted at a loop, and substitute the non-rooted loop by any
cubic network not rooted at a loop.
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Equation for I(x). Consider two ordered loop cubic networks (η1, η2) from
which the root vertex has been removed and notice that each of the resulting
graphs has now a vertex of degree two. Connect then those two vertices by
a directed edge, whose direction follows the order (η1, η2). Observe that this
directed edge is now an isthmus.

Equation for C(x). By definition, the class C is in bijection with the
class L ∪ S ∪ P ∪ H. We exclude the class I since removing the root edge
disconnects the graph.

Equation for S(x). Consider the two connected cubic networks η1 and η2,
with respective root edges s1t1 and s2t2. Now remove both their root edges
and add the edge {t1, s2} and the directed edge s1t2. By minimality of the
decomposition, one of the two cubic networks cannot be series.

Equation for P (x). Consider the 3-bond, i.e. the multigraph with two
vertices connected by a triple edge, one of which is directed. Now, if we
substitute at least one of the non-root edges by a connected cubic network,
then the resulting graph becomes itself a cubic network. It is in fact a parallel
cubic network. Observe the absence of a factor 2 in the equation for P (x),
as the direction of any directed edge of the 3-bond does not matter.

Equation for H(x). Consider a 3-connected core and possibly replace each
non-root edge by any network. It is thus translated in terms of generating

functions by substituting the variable y of
→
G3(x, y), by 1+C(x). The division

ensures that the root edge is not replaced.

Asymptotic enumeration. Recall that all the functions involved are even,
in agreement with the fact that a cubic graph has an even number of vertices.
Following [7] and by algebraic elimination, the system (3.2) can be written as
a single polynomial equation Φ(x,C) satisfied by C. It is then claimed in [7]
that the smallest positive root ρc ≈ 0.319224 of the discriminant of Φ with
respect to C provides the dominant singularity of C. The analysis is here
slightly incomplete since one must guarantee that this is indeed a singularity
of the generating function C(x). Then a singular expansion of C(x) near ρc
of square-root type is deduced as

C(x) = C0 + C2X
2 + C3X

3 +O(X4), where X =

√
1− x

ρc
.

The coefficients Ci are however not computed in [7]. Using a transfer-type
theorem, an estimate for the coefficients of C(x) is finally derived. This
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implies a corresponding estimate for the coefficients of G1. We provide in
section 3.5 both a complete proof of such an estimate and compute every
constants involved.

3.2.2 An analytic lemma

Lemma 11. Let A(x) be an even algebraic exponential power series with
positive coefficients which satisfies both a polynomial equation P (A(x), x) and
a functional equation of the form

F (A(x), x) = f(A(x), x) + h(T (x2(1 + A(x))3), x),

where T (z) is the generating function of triangulations as in (2.5), and
f(y, x) and h(y, x) are bivariate polynomials. Let also ∆(x) be the discrim-
inant of P (A(x), x) with respect to A(x) such that there exists at least two
factors of ∆(x) giving rise to positive (real) roots. And assume the following
conditions:

1. x0 is a positive solution of the equation x2(1 + A(x))3 = τ .

2. For all y ∈ R, with |y| ≤ x0, it holds that FA(A(y), y) 6= 0, where FA
is the derivative of F (A, x) with respect to A.

3. x0 is the smallest positive root of some factor of ∆(x).

Then x0 and −x0 are the only two dominant singularities of A(x), and the
singular expansions at x0 is of the form

A(x) ∼
x→x0

A0 + A2

(
1− x

x0

)
+ A3

(
1− x

x0

)3/2

,

where A0, A2, A3 and x0 are non-nul and computable algebraic numbers.
Furthermore, the following asymptotic estimate holds, for n even:

n![xn]A(x) ∼
n→∞

3A3

2
√
π
· n−5/2 · x−n0 · n!.

Proof. When ∆(x) admits several factors each with some (smallest) positive
roots, one wants to consider the combinatorial equation F (A(x), x) in order
to decide which factor gives rise to the dominant singularities of A(x), the
combinatorial branch of P (A(x), x). Any solution of x2(1 + A(x))3 = τ ,
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where τ is the dominant singularity of T (z), is a singularity of A(x). But
also any solution of FA(A(x), x) = 0.

First observe that conditions 1. and 2. ensure that the composition scheme
T (x2(1+A(x))3) is critical, i.e. that there is no positive solution of FA(A(x), x) =
0 that is smaller than x0, the smallest positive solution of x2(1 +A(x))3 = τ .
Given that A(x) is an even function, the above implies that ±x0 are the
dominant singularities of A(x).

Now condition 3. ensures that A(x) is analytic in a disk of radius x0
centered at the origin after slicing the two rays [x0,+∞] and [−x0,−∞].
Furthermore, a standard compactness argument (see the last part of the
proof of Theorem 2.19 in [20]) shows that A(x) is analytic in a dented domain
at ±x0. And using the Newton-Puiseux theorem of singular expansion, we
obtain

A(x) ∼
x→x0

A0 + A2

(
1− x

x0

)
+ A3

(
1− x

x0

)3/2

.

Indeed, first notice that due to A(x) having non negative coefficients, x0 > 0
implies that A0 = A(x0) > 0. By then differentiating x2(1 + A(x))3 with
respect to x and substituting x = x0, we deduce both from the critical com-
position scheme x20(1 + A(x0))

3 = τ and from A(x0) 6= 0, that |A′(x0)| =
|2(1 + A0)

2/(3x0)| < +∞. Thus showing that A1 = 0. Using finally
the parametrisation of T (z) by the algebraic generating function U(z) in
(2.5), observe that T ′(z) = (1 − U(z))−2, which implies that the derivative
Fx(A(x), x) contains the term U(x2(1 + A(x))3), so that the second deriva-
tive is in terms of U ′(z). It follows that the expression for A′′(x0) contains
the term U ′(x20(1 + A0(x0))

3) = U ′(τ), which is infinite because of (2.9). So
that |A′′(x0)| = +∞, which implies that A3 6= 0. The coefficients Ai are
algebraic numbers since A(x) is an algebraic function and so are ±x0 by the
first condition.

We can now apply the theorem of sim-transfer to obtain the estimate for
n ∈ N even as claimed, using Γ(−3/2) = 4

√
π/3. Notice that the contri-

butions from x0 and −x0 are added, so that the multiplicative constant is
2A3/Γ(−3/2).

Notes. In all our applications f(A(x), x) will be either a rational or a
quadratic function. Furthermore, when computing Puiseux expansions from
the minimal polynomial of A(x), it may be that several solutions appear due
to the different branches at a given point. In all our proofs we find a single
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expansion containing a non-zero term A3X
3, which has to correspond to the

branch of the combinatorial solution due to the above considerations.

3.3 3-connected cubic planar graphs

The main goal of this section is to estimate the number of labelled 3-connected
cubic planar graphs. As a byproduct, we will settle the algebraicity of
some associated generating functions. In particular, the one counting the
3-connected cores is central for the network-decomposition of both connected
and 2-connected cubic planar graphs, of cubic planar multigraphs and finally
in the root-decomposition of simple cubic maps.

3.3.1 3-connected cores are algebraic

Recall that
→
G3(x, y) is the exponential generating function counting labelled

3-connected cubic graphs rooted at a directed edge, where the variables x and
y respectively mark the number of vertices and edges. We will first derive

the minimal polynomial of
→
G3(x, y).

The duality argument mentioned before shows that
→
G3(x, y) can be ob-

tained from the generating function T (z) of rooted (unlabelled) triangula-
tions, where the variable z counts the number of vertices minus two. The
relation is

2 ·
→
G3(x, y) = T (x2y3)− x2y3. (3.3)

The subtracted term x2y3 corresponds to the triangulation consisting of a
single triangle and the factor 2 to the two possible choices of a root face from
a root edge when drawing a 3-connected planar graph on the sphere.

Let us now consider the algebraic system of equations composed of Equa-
tions (2.5), (2.6) and (3.3), together with the equation z = x2y3 encoding
the change of variable in (3.3). This gives:

(1− U)3U − z = 0, (1− 2U)U − T = 0,

T − z −
→
G3 = 0, x2y3 − z = 0,

(3.4)

where
→
G3 ≡

→
G3(x, y). From (3.4), one can eliminate the variables z, U and
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T to obtain an annihilating polynomial of
→
G3 ≡

→
G3(x, y):

16
→
G

4

3 + (32x2y3 + 24)
→
G

3

3 + (24x4y6 + 68x2y3 + 12)
→
G

2

3

+(8x6y9 + 50x4y6 − 28x2y3 + 2)
→
G3 + x8y12 + 11x6y9 − x4y6 = 0.

(3.5)

This polynomial turns out to be irreducible and is hence the minimal poly-

nomial of
→
G3(x, y), thus proving its algebraicity.

3.3.2 Enumeration of 3-connected cubic planar graphs

Let G3(x, y) =
∑

n≥0 tn,k
xn

n!
yk be the exponential generating function count-

ing (unrooted) labelled 3-connected cubic planar graphs. The next state-
ment won’t be used to compute the asymptotic estimate of the coefficients
tn = tn,1. The holonomic functional equation satisfied by G3(x, y) will how-
ever be of much use later on, when we will apply the dissymetry theorem for
tree-decomposable classes.

Proposition 12. The exponential generating function G3(x, y) is D-finite.

Proof. We have
→
G3(x, y) = 2yDyG3(x, y), so that

G3(x, y) =
1

2

∫
y

M(x, y)

y
=

1

4

∫
y

T (x2y3)− x2y3
y

,

where the 1/2y of the first equality arises from the label of the root-edge and
its orientation, and the second equality from Equation (3.3).

We now apply the change of variables x2y3 = z and are left with the
integral 1

12

∫
T (z)/z dz. We make the further change w = U(z), and using

Equations (2.5) and (2.6), we get

G3(x, y) = − 1

12

(
z −

∫
z

T (z)

z

)
= − 1

12

(
z −

∫
w

(1− 2w)(1− 4w)

1− w

)
= − 1

12

(
4w2 + 2w + 3 log(1− w) + z

)
.

This gives us a functional equation relating G3(x, y) with the (exponential
with respect to the variable x) generating function U(x2y3):

12G3(x, y) + 4U(x2y3)2 + 2U(x2y3) + x2y3 + 3 log(1− U(x2y3)) = 0. (3.6)

Since U(z) is algebraic (see (2.6)) so is U(x2y3), and the function log(U(x2y3))
is D-finite. Then from (3.6) one can directly see that so is G3(x, y).



3.3. 3-connected cubic planar graphs 70

Singularity analysis. We will now estimate the coefficients of the expo-
nential generating function G3(x) = G3(x, 1) =

∑
n≥0 tnx

n/n!. Let us first
consider the univariate version of Equation (3.6):

G3(x) =
1

12
(4W (x)2 + 2W (x) + x2 + 3 log(1−W (x))), (3.7)

where W (x) = U(x2) is an exponential generating function. By setting
z = x2 and U(z) = W (x) in the polynomial equation (2.6), we directly obtain
the minimal polynomial Q(W (x), x) of W (x). So that W (x) is algebraic and
its dominant singularity, the unique positive root of the discriminant of Q
with respect to W , is:

ρt =
√
τ =

3
√

3

16
≈ 0.3247595264.

And W (x) admits a local Puiseux expansion near ρt of the from:

W (x) =
1

4
−
√

3

4
X +

1

6
X2 −

√
3

108
X3 +

5

162
X4 − 11

√
3

1944
X5 +O(X6), (3.8)

with X =
√

1− x/ρt.
Notice now that the only possible source of singularities of G3(x) arises

from Equation (3.7), in particular from W (x). So that ±ρt are also the
dominant singularities of G3(x), as G3(x) is an even function. Using the
theorem on the transfer of singularity for the logarithm in Equation (3.7),
the type of expansion of W (x) is transfered to G3(x), i.e. it admits a local
Pusieux expansion near ρt of branching-type 2.

Proof of Theorem 3. To compute the coefficients of the singular expan-
sions of G3(x), we simply substitute W (x) by its local expansion (3.8) in the
right hand-side of Equation (3.7). So that:

G3(x) ∼
x→ρt

log 2

2
− 73

1024
− log 3

4
− 5

1536
X2 +

37

3072
X4 −

√
3

90
X5,

with X =
√

1− x/ρt. Notice that the first odd index of the above expansion
is five, this justifies our need to compute the coefficients of the expansion of
W (z) up to the fifth index in (3.8).
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Now, because of the expansion in powers of X, G3(x) is analytic in a
disk of radius ρt centered at the origin after slicing the rays [ρt,+∞] and
[−ρt,−∞]. The compactness argument mentionned in the proof of Lemma
11 then shows that G3(x) is analytic in a dented domain at both ±ρt. So that
an application of the theorem of sim-transfer gives us the following estimate
on tn (for n ∈ N even):

tn = n![xn]G3(x) ∼
n→∞

√
3

24
√
π
· n−7/2 ·

(
16
√

3

9

)n

· n!.

This concludes the proof.

3.4 2-connected cubic planar graphs

The main goal of this section is to asymptotically estimate the number of
labelled 2-connected cubic planar graphs. It will be done by studying the
coefficients of the exponential generating function G2(x) =

∑
n≥0 bnx

n/n!
counting labelled 2-connected cubic planar graphs, where the variable x will
mark the number of vertices. As a byproduct, we will settle some useful
algebraic properties of some of the associated generating functions.

3.4.1 2-connected cubic networks are algebraic

We define a 2-connected cubic network as a 2-connected cubic planar multi-
graph β, rooted at a directed edge e, and such that β−e is a simple connected
graph. We denote their exponentail generating function by B ≡ B(x).

Notice that one can directly obtain 2-connected cubic networks from cubic
networks by simply discarding the two classes L and I: these are the only
ones that produce cut-vertices. So that restricting Lemma 10 to 2-connected
cubic networks gives us directly

S = (B − S)B, B = S + P +H,

P = x2
(
B +

B2

2

)
, H =

→
G3(x, 1 +B)

1 +B
,

where the generating functions S ≡ S(x), P ≡ P (x) and H ≡ H(x) have the
same meaning as before, except that they are now restricted to 2-connected
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cubic networks. Using Equation (3.3), relating
→
G3(x, y) with T ≡ T (z), we

now rewrite it as the following system of five polynomial equations:

B2 − (1 +B)S = 0, S + P +H −B = 0,
x2(2B +B2)− 2P = 0, x2(1 +B)3 − z = 0,
T − x2(1 +B)3 − 2(1 +B)H = 0,

(3.9)

where the equation x2(1 + B)3 − z = 0 encodes the compositon scheme
T (x2(1 +B)3) with the generating function T (z).

From (3.9) one can first eliminate the variables S, P and H to obtain
after a simple algebraic manipulation a functional equation relating B(x)
with T (z):

2B + x2(1 +B)− T (x2(1 +B)3) = 0. (3.10)

And using the minimal polynomial of T (z), together with x2(1+B)3−z = 0,
one can now eliminate both z and T to obtain the following annihilating
polynomial of B(x):

16x4B6 +B5(8x6 + 128x4 + 32x2) +B4(x8 + 48x6 + 372x4

+88x2 + 16) +B3(4x8 + 107x6 + 498x4 + 43x2 + 24)
+B2(6x8 + 113x6 + 311x4 − 43x2 + 12)
+B(4x8 + 57x6 + 72x4 − 30x2 + 2) + x8 + 11x6 − x4 = 0.

(3.11)

Notice that the above polynomial is irreducible, so that it is in fact the
minimal polynomial of B(x).

3.4.2 Enumeration of 2-connected cubic planar graphs

Proposition 13. The sequence {bn}n≥0 is P -recursive, that is, it satisfies a
linear recurrence with polynomial coefficients.

Proof. Notice first that the following relation between the exponential gen-

erating function
→
G2(x), counting 2-connected cubic planar graphs rooted at

a directed edge, and B(x) holds:

→
G2(x) = B(x)− x2B(x). (3.12)

The reason is that from the cubic networks encoded by B(x) we have to
exclude the parallel networks with a double edge, that correspond to x2B(x).
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Observe that for a given labelled graph on n vertices, one has n possible
ways of rooting it at a vertex. So that the n-th coefficient (for n even) of
the exponential generating function xG′2(x) = G•2(x), counting labelled 2-
connected cubic planar graphs rooted at a vertex, is equal to nbn/n!, where
bn/n! is the n-th coefficient of G2(x). And by double counting we have

G•2(x) =

→
G2(x)

3
=
B(x)(1− x2)

3
. (3.13)

And finally using that xG′2(x) = G•2(x) in (3.13), we get

G2(x) =

∫
B(x)− x2B(x)

3x
dx.

Since B(x) is algebraic and divisible by x, the above equation directly implies
that G2(x) is D-finite, i.e. the sequence {bn}n is P -recursive.

Singularity analysis. Rewritting Equation (3.13) gives us the following
algebraic equation between G•2(x) and B(x):

(1− x2)B(x)− 3G•2(x) = 0. (3.14)

Thus by the theorem of transfer of singularities, G•2(x) will have the same
dominant singularities and singular behaviour as that of B(x). So in order
to estimate the coefficients nbn, as n→∞, it is enough to study the analytic
behaviour of B(x).

We compute the discriminant of (3.11) with respect to B and consider
the following irreducible factor:

54x6 + 324x4 − 4265x2 + 432 = 0, (3.15)

whose smallest positive root is given by ρb ≈ 0.3195228840. We claim that
ρb is indeed the dominant singularity of the generating function B(x). To
prove it, we will now verify the conditions of Lemma 11 with the functional
equation (3.10):

F (B(x), x) := B(x) =
T (x2(1 +B(x))3)

2
− x2(1 +B(x))

2
,

Now, to show that the composition scheme

x2(1 +B(x))3 = τ. (3.16)
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is indeed critical with x = ρb, it is sufficient to prove that R(B(x), x), the
right hand-side of FB(B(x), x), does not equal one for |x| ≤ ρb. A simple
computation using Equations (2.5) and (2.6) gives T ′(z) = (1−U(z))−2, and
we arrive at

R(B(x), x) =
3x2(1 +B(x))2

2(1− U(x2(1 +B(x))3))2
− x2

2
.

Substituting x = ρb in Equation (3.16) and since B(x) has non-negative
coefficients, we obtain

|B(x)| ≤ |B(ρb)| =
∣∣∣∣ 3

√
τ

ρ2b
− 1

∣∣∣∣ ≈ 0.0108963334.

And since also U(z) and T (z) both have non-negative coefficients, we get

|U(x2(1 +B(x))3)| ≤ |U(ρ2b(1 +B(ρb))
3)| = |U(τ)| = 1/4,

|T (x2(1 +B(x)))3)| ≤ |T (ρ2b(1 +B(ρb)))
3)| = |T (τ)| = 1/8.

It is now a simple matter to check the following inequalities:

|RB(B(x), x)| ≤ |RB(B(ρB), ρB)| ≤
∣∣∣∣3ρ2b(1 +B(ρb))

2

2(1− 1/4)2

∣∣∣∣− ∣∣∣∣ρ2b2
∣∣∣∣ < 0.227.

Consider finally the resultant, with respect to B, between the two poly-
nomials (3.11) and (3.16). And observe that (3.15) is its unique factor which
is also a factor of the discriminant of (3.11). So that ρb is a positive root of
(3.16). And we can now apply Lemma 11 to obtain the singular expansion
of B(x) near ρb:

B(x) ∼
x→ρb

B0 +B2

(
1− x

ρb

)
+B3

(
1− x

ρb

)3/2

, (3.17)

where B0 = B(ρb), B2 ≈ −0.1090702692 and B3 ≈ 0.2338926294.

Proof of Theorem 4. Taking the resultant with respect to B of the mini-
mal polynomial of B(x) (3.11) together with the polynomial equation (3.14)
gives us a polynomial equation of degree six: P (G•2(x), x) that turns out to
be irreducible. Thus P (G•2(x), x) is the minimal polynomial of G•2(x).
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As mentionned before, G•2(x) admits the same dominant singularity ρb
and the same singular behaviour near ρb as B(x). So that computing the
singular Puiseux expansion of G•2(x) from P (G•2(x), x) gives:

G•2(x) ∼
x→ρb

G•2,0 +G•2,2

(
1− x

ρb

)
+G•2,3

(
1− x

ρb

)3/2

,

where G•2,0 ≈ 0.0032612912, G•2,2 ≈ −0.0319032781 and G•2,3 ≈ 0.0700044636.
And using (3.4.2), an application of the theorem of sim-transfer to G•2(x)

gives the following asymptotic estimate for n even:

nbn = n![xn]G•2(x) ∼ b · n−5/2 · ρ−nb · n!,

where

b =
3

2
√
π
G•2,3 ≈ 0.0592436837.

From there the estimate on bn follows.

3.5 Connected cubic planar graphs

In this section, similarly to the previous one, our main goal is to estimate
the number cn of labelled connected cubic planar graphs with n ∈ N vertices,
by studying the coefficients of the exponential generating function G1(x) =∑

n≥0 cnx
n/n!, where the variable x marks the number of vertices.

To do so, we will first exhibit the minimal polynomial of the exponen-
tial generating function counting cubic networks, then studying its singular
behaviour. We will then transfer this behaviour to the generating function
counting connected cubic planar graphs rooted at a vertex and conclude.

3.5.1 Cubic networks are algebraic

Using Equation (3.3), and the composition scheme T (x2(1+C)3), the system
(3.2) can be rewritten as a system of seven polynomial equations:

x2(I + C − L)− 2L = 0, L2 − x2I = 0,
L+ S + P +H − C = 0, C2 − (1 + C)S = 0,
x2(2C + C2)− 2P = 0, x2(1 + C)3 − z = 0,
T − x2(1 + C)3 − 2(1 + C)H = 0.

(3.18)
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One can first eliminate the variables L, I, S, P , H and z from the five
remaining equations of (3.18), to obtain after a simple simple manipulation
a functional equation relating C(x) with T (x2(1 + C(x))3):

C =
T (z)

2

(
1 +

T (z)2

4

)
− x2(1 + C)2

2

(
1− C +

x2

2

)
− C2

2
, (3.19)

where z = x2(1 + C(x))3.
Then using the minimal polynomial (2.7) of T (z), one can eliminate T (z)

to obtain an annihilating polynomial of C(x):

4096x6C9 + C8(x16 + 32x14 + 400x12 + 2432x10 + 7520x8

+48640x6 + 7424x4 + 2048x2 + 256) + C7(8x16 + 256x14

+3200x12 + 19306x10 + 57760x8 + 230864x6 + 49792x4

+13984x2 + 2048) + C6(28x16 + 896x14 + 11193x12

+66878x10 + 192332x8 + 593264x6137977x4 + 37856x2

+6720) + C5(56x16 + 1792x14 + 22358x12 + 132034x10

+362152x8 + 919646x6 + 201670x4 + 50008x2 + 11648)
+C4(70x16 + 2240x14 + 27895x12 + 162470x10 + 420995x8

+891046x6 + 162815x4 + 29240x2 + 11440)
+C3(56x16 + 1792x14 + 22260x12 + 127582x10 + 308620x8

+532540x6 + 67124x4 − 416x2 + 6336)
+C2(28x16 + 896x14 + 11095x12 + 62426x10 + 138830x8

+182524x6 + 9274x4 − 8232x2 + 1836) + C(8x16 + 256x14

+3158x12 + 17398x10 + 34852x8 + 29174x6 − 1204x4

−2664x2 + 216) + x16 + 32x14 + 393x12

+2114x10 + 3707x8 + 846x6 − 108x4 = 0,

(3.20)

Which is irreducible and is hence the minimal polynomial of C(x).

3.5.2 Enumeration of connected cubic planar graphs

Proposition 14. The sequence {cn}n≥0 is P -recursive, that is, it satisfies a
linear recurrence with polynomial coefficients.

Proof. As shown in [7], the exponential generating function counting con-
nected cubic planar graphs rooted at a vertex G•1(x) can be expressed in
terms of cubic networks as

3G•1(x) = C(x) + I(x)− L(x)− x2C(x)− L(x)2. (3.21)
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The factor 3 comes from double counting since at every root vertex v we
have three possible choices for a root edge having v as a tail. The terms
C(x) + I(x) encodes all the cubic networks, from which one has to subtract
those which are not simple. The latter those for which the root edge is a
loop, i.e. those in L, and those where the root edge is a double edge which
are encoded by the two generating functions x2C(x) (parallel-composition of
a network with an edge) and L(x)2 (two loop networks in series).

From the knowledge of G•1(x) (recall that G•1(x) = xG′1(x)), one can then
directly compute the generating function of connected cubic planar graphs:

G1(x) =

∫
G•1(x)

x
dx. (3.22)

Now, plugging (3.21) into the above equation gives

G1(x) =

∫
C(x) + I(x)− L(x)− x2C(x)− L(x)2

3x
dx. (3.23)

Similarly to the proof of the algebraicity of C(x), one can eliminate z, T (z),
H, S, P , I and C from the system (3.18) to obtain an annihilating poly-
nomial of L(x), thus implying that it is algebraic. The algebraicity of I(x)
follows from the same elimination argument. And since C(x) is algebraic and
divisible by x, Equation (3.23) directly implies that G1(x) is D-finite.

Singularity analysis. Similarly to the previous section, applying the the-
orem of transfer of singularities to (3.21) implies that G•1(x) shares the dom-
inant singularity ρ and the singular behaviour of C(x). So that to estimate
the coefficients ncn, as n→∞, it is enough to study the singular behaviour
of C(x).

To that end, let us compute the discriminant of (3.20) with respect to C
and consider the following irreducible factor:

729x12 + 17496x10 + 148716x8 + 513216x6 − 7293760x4

+279936x2 + 46656 = 0,
(3.24)

whose smallest positive root is given by ρ ≈ 0.3192246062. We claim that ρ is
indeed the dominant singularity of the generating function C(x). To prove it,
we will now verify the conditions of Lemma 11 with the functional equation
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(3.19). Consider then R(C(x), x), the right hand-side of the derivative of
Equation (3.19) with respect to C(x):

x2(1 + C)2

4

(
6 + 3T (z)

(1− U(z))2
− x2

)
+

2x2(3C2 + 2C − 1)

4
− C,

where z = x2(1+C(x))3 and where we again used that T ′(z) = (1−U(z))−2.
Similarly to the previous section, we will prove the criticality of the compo-
sition scheme

x2(1 + C(x))3 = τ (3.25)

by showing that |R(C(x), x)| 6= 1 for any x ∈ R such that |x| ≤ ρ. In-
deed, similarly to before, since C(x), U(z) and T (z) all have non-negative
coefficients, it holds that

|U(x2(1 + C(x))3)| ≤ |U(ρ2(1 + C(ρ))3)| = |U(τ)| = 1/4,

|T (x2(1 + C(x))3)| ≤ |T (ρ2(1 + C(ρ))3)| = |T (τ)| = 1/8,

and |C(x)| ≤ |C(ρ)| =
∣∣∣∣ 3

√
τ

ρ2
− 1

∣∣∣∣ ≈ 0.0115259444.

So that it is a simple matter to check the following inequalities:

|R(C(x), x)| ≤ |R(C(ρ), ρ)|

≤
∣∣∣∣ρ2(1 + C(ρ))2

4

(
34

3
− ρ2

)
+

2ρ2(3C(ρ)2 + 2C(ρ)− 1)

4
− C(ρ)

∣∣∣∣
< 0.229.

As before, one can check that (3.24) is the only factor of both the discrim-
inant of (3.20) with respect to C, and of the resultant of (3.20) and (3.25)
with respect to C. So that ρ is a positive root of (3.25). And we can now
apply Lemma 11 to obtain the singular expansion of C(x) near ρ:

C(x) = C0 + C2X
2 + C3X

3 + C4X
4 + C5X

5 +O(X6), (3.26)

where X =
√

1− x/ρ, C0 = C(ρ) ≈ 0.0115259444 and:

C2 ≈ −0.1182076128, C4 ≈ −0.2260760661,

C3 ≈ 0.2542672141, C5 ≈ 0.0725519854.

Remark that we compute here the expansion up to the fifth power of X as
it will be needed for the next section.
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Proof of Theorem 5. The resultant with respect to C of (3.20) and (3.21)
is an irreducible polynomial equation of degree nine: the minimal polynomial
of G•1(x). As mentionned before, G•1(x) admits the same dominant singularity
ρ and the same singular behaviour near ρ as C(x). So that computing the
singular Puiseux expansion of G•1(x) from its minimal polynomial gives:

G•1(x) ∼
x→ρ

G•1,0 +G•1,2

(
1− x

ρ

)
+G•1,3

(
1− x

ρ

)3/2

, (3.27)

where G•1,0 ≈ 0.0032650685, G•1,2 ≈ −0.0323585164 and G•1,3 ≈ 0.0720479578.
And using (3.27), an application of the theorem of sim-transfer to G•1(x)

gives the following asymptotic estimate for n even:

ncn = n![xn]G•1(x) ∼ c · n−5/2 · ρ−n · n!, (3.28)

where

c =
3

2
√
π
G•1,3 ≈ 0.0609730610.

The estimate on cn follows.

3.6 Cubic planar graphs

The main goal of this section is to estimate the number gn of labelled cubic
planar graphs on n ∈ N vertices. We do so following the same procedure
as before, by looking at the singular expansion of the generating function
G(x) =

∑
n≥0 gnx

n/n!, counting cubic planar graphs, where the variable
x marks the number of vertices, but with a twist. Let us first prove the
following statement:

Proposition 15. The sequence {gn}n≥0 is P -recursive, that is, it satisfies a
linear recurrence with polynomial coefficients.

Proof. Using Equation (3.22) and the decomposition of a grqph into a set of
its connected components, one directly gets:

G(x) = exp(G1(x)) =

∫
x

G•1(x)

x
, (3.29)

The statement is then a direct consequence of Lemma 2.
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Applying then the theorem of transfer of singularity to (3.29) implies that
both G1(x) and G(x) inherit from G1(x) the fact that their expansion near
their dominant singularity ρ is Puiseux of branching-type 2. Plugging now
(3.27) into Equation (3.22) gives us the singular expansion of G1(x):

G1(x) = G1,0 +G1,2X
2 +G1,4X

4 +G1,5X
5 +O(X6),

where G1,3 = 0 follows by integrating (3.27) with respect to x together with
the fact that G•1,1 = 0. Taking then the exponential will give us the singular
expansion of G(x):

G(x) = G0 +G2X
2 +G4X

4 +G5X
5 +O(X6),

where
G0 = eG1,0 , G2 = eG1,0G1,2,
G4 = eG1,0

(
1
2
G2

1,2 +G1,4

)
, G5 = eG1,0G1,5.

(3.30)

Observe however that after integrating the singular expansion of G•1(x), the
resulting constant term G1,0 becomes indeterminate. In order to prove Theo-
rem 6 we need an expression of G1(x) in terms of the generating functions of
networks. Given Equation (3.23), all that would be necessary is to integrate
C(x), which is an algebraic function, but we have not been able to solve
this integration problem. This may be due to the fact that the algebraic
equation defining C(x) has genus 20; in a similar situation when integrating
the generating function of general planar networks, the corresponding curve
has genus 0 (see [28, page 319]) and determines a rational curve. Instead, we
use the theorem of dissymetry for tre-decomposable classes. This approach is
more combinatorial and has the additional advantage of giving an alternative
proof to Proposition 15.

As we shall also see in the next chapter, the constant G1,0 has another
important use when one wants to compute the probability of connectivity of
a uniformly at random cubic planar graph.

3.6.1 Combinatorial integration

The key tool is to associate to a cubic planar graph γ, a canonical tree τ(γ)
and to encode its different rootings using the generating functions of cubic
networks introduced before. We follow the development and terminology
from [17], adapted to our situation, where the main novelty is that, due to
their bounded degree, there is a finite number of cases to encode cut-vertices
using cubic networks.
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Figure 3.2: A cubic planar graph γ and its tree-decomposition τ(γ).

Connected cubic graphs are tree-decomposable. Let γ ∈ G1 be a la-
belled connected cubic planar graph. Similar to the recursive decomposition
of γ in terms of cubic networks, as in [7, Section 3], we associate to γ a tree
τ(γ) as follows. Its nodes will be of four different types L (loop), R (ring),
M (multiple edge) and T (tri-connected) each corresponding to some cubic
multigraph: L is associated to the cubic multigraph on two vertices with
two loops, R with any simple cycle, M to the cubic parallel edge, i.e. the
graph of the 3-bond, and finally T is associated to any 3-connected cubic
planar graph. An edge between two nodes of τ(γ) will correspond to compo-
sitions similar to those found in the cubic network-decomposition, but now
it will be between the associated cubic multigraphs. An example of such
decomposition is depicted in Figure 3.2.

The trick is to express each edge e or node v of τ(γ) while τ(γ) is itself
rooted at e or at v. This will allow us to use the different cubic networks
arising while decomposing the graph γ rooted at a directed edge. From there,
the theorem of dissymetry for trees will allow us to recover the exponential
generating function t(x) counting all the (unrooted) trees τ(γ), for every
γ ∈ G1, in terms of the different generating functions counting cubic networks.
So that the bijection associating such a tree to each graph in G1 implies that
t(x) = G1(x).

Next, we will detail the different compositions. We use here the same
notation as introduced in [17], with the difference of the new category of
L-nodes (and any edge adjacent to an L-node).
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Rooting at a vertex. An R-node is a cycle of length at least 3 in which
we replace every vertex with a connected cubic network that is not series,
i.e. counted by the generating function C − S. Notice that, by maximality
of the series construction, two R-nodes cannot be adjacent in the tree. The
generating function counting trees where an R-node is distinguished is:

tR ≡ tR(x) = Cycl≥3(C(x)− S(x))

=
1

2

(
log

1

1− (C(x)− S(x))
− (C(x)− S(x))− (C(x)− S(x))2

2

)
.

An M-node is the cubic parallel edge in which at least two (so that
the resulting graph is simple) of the edges are substituted by a connected
cubic network. The generating function counting trees where a M-node is
distinguished is:

tM ≡ tM(x) =
x2

2

(
C(x)2

2
+
C(x)3

6

)
.

A T -node encodes a 3-connected cubic planar graph, the core, in which
every edge is possibly substituted by a connected cubic network. The gener-
ating function counting trees where a T -node is distinguished is given by

tT ≡ tT (x) = G3(x, 1 + C(x)).

Notice that the leaves of this tree-decomposition are always T -nodes. This
is the combinatorial translation of the fact discussed earlier that 3-connected
graphs can be considered as the building blocks of all graphs.

Finally, a L-node encodes a cut-vertex of the graph γ, which separates the
graph into either two or three connected components. The first case, counted
by the generating function L(x)(D(x)−L(x))/2, is obtained by replacing the
root of a loop cubic network with a connected cubic network not rooted at
a loop (it cannot be another loop cubic network as otherwise a double-edge
would be created). The second case, counted by the generating function
L(x)3/(6x2), is obtained by pasting together three loop cubic networks. Both
cases are depicted in Figure 3.3. The generating function counting trees
where a L-node is distinguished is given by

tL ≡ tL(x) =
L(x)(C(x)− L(x))

2
+
L(x)3

6x2
.
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D − L

Figure 3.3: The L-nodes of the tree-decomposition for graphs.

Rooting at an edge. The adjacency between a R-node of the tree τ(γ)
and any other node can be described as the Cartesian product of a series-
network with another network. Recall that by maximality, an edge between
two R-nodes is impossible.

Then, an adjacency between any node and a M-node (resp. T -node,
resp. L-node) will be described by taking the Cartesian product of a parallel-
network (resp. H-network, resp. loop-network) with another network. We
must then divide by two to take into account the symmetry inherent to the
undirectedness of the edge.

The novelty here compared to [17] is the edge between two L-nodes (see
Figure 3.3). The associated generating functions are listed below:

tR−M ≡ tR−M(x) = 1
2
S(x)P (x), tR−T ≡ tR−T (x) = 1

2
S(x)H(x),

tR−L ≡ tR−L(x) = 1
2
S(x)L(x), tM−T ≡ tM−T (x) = 1

2
P (x)H(x),

tM−L ≡ tM−L(x) = 1
2
P (x)L(x), tM−M ≡ tM−M(x) = 1

4
P (x)2,

tT −L ≡ tT −L(x) = 1
2
H(x)L(x), tT −T ≡ tT −T (x) = 1

4
H(x)2,

tL−L ≡ tL−L(x) =
1

2

L(x)2

x2
.

For instance, the generating function tR−M will count every tree-decompositon
rooted at an undirected edge between a R-node and a M-node. It corre-
sponds to an unordered pair of a series and parallel cubic networks, and
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similarly for the remaining expressions. The case when the root of the tree is
an undirected the edge between two L-nodes is illustrated as a dashed edge
in the bottom left picture of Figure 3.3.

Rooting at an oriented edge. If A and B are two nodes of different
types, then tA→B(x) = tB→A(x) and tA→B(x) = tA−B(x), because there are
no symmetries. When A = B we have tA→A(x) = 2tA−A(x) because there
are two possible orientations, hence

tM→M ≡ tM→M(x) =
1

2
P (x)2,

tT →T ≡ tT →T (x) =
1

2
H(x)2,

tL→L ≡ tL→L(x) =
L(x)2

x2
.

A dissymetry theorem. A theorem of dissymetry for G1 can be obtained
by applying the theorem of dissymetry for trees on the class τ of all the
trees τ(γ) associated to the graphs γ ∈ G1 and then using the bijection G1 '
τ explained above. So that the following combinatorial equation between
labelled classes:

τ ∪ τ•→• ' τ• ∪ τ•−•.

directly translates via the symbolic method into a functional equation be-
tween their associated exponential generating functions:

G1(x) = t(x) = tR + tM + tT + tL + tM−M + tT −T + tL−L

+tR−M + tR−T + tR−L + tM−T + tM−L + tT −L

−2(tR→M + tR→T + tR→L + tM→T + tM→L + tT →L)

−(tM→M + tT →T + tL→L).

Using now the above functional equations relating the different generating
functions of rooted trees into those counting the different classes of cubic
networks, we obtain after some simplifications a functional equation relating



85 Chapter 3. Enumeration of cubic planar graphs

G1(x) and the cubic networks:

G1(x) = x2

2

(
C2

2
+ C3

6

)
+G3(x, 1 + C) + L3

6x2

−1
2

(
log(1− C + S) + (C − S) + (C−S)2

2

)
−1

2

(
SP + SH +HP + P 2+H2

2
+ L2

x2

)
.

(3.31)

An alternative proof of Proposition 15. We will use the expression
for G1(x) obtained in (3.31) to show that G(x) = eG1(x) is D-finite. First,
similarly to C(x), one can prove using the system (3.4) that all the involved
generating functions counting cubic networks are algebraic. Now, since the
exponential is clearly a D-finite function, so are the exponentials of C(x),
L(x), P (x), S(x) and H(x), and the same is true for the exponential of
− log(1− C(x) + S(x))/2, since the logarithm is canceled.

Finally, we know from Proposition 12, that the generating functionG3(x, y)
is D-finite. But this implies that the composition exp(G3(x, 1 + C)) also is.
This concludes the proof.

3.6.2 Enumeration of cubic planar graphs

Singularity analysis. As mentionned above, the theorem of transfer of
singularity applied to Equation (3.29) tells us that G(x) shares the same
analytic behaviour as C(x) near the positive dominant singularity ρ. It will be
a Puiseux expansion of branching-type 2. To compute its coefficients, we will
first compute those of the singular expansion of G1(x) by substituting each
generating function in right hand-side of Equation (3.31) by its own singular
expansion. Note that the expansion obtained this way will have its smallest
odd-indexed summand equal to five. So that, even though each expansion
involved in the right hand-side of Equation (3.31) will have its smallest odd-
indexed summand equal to three, we will compute those expansions up to
the fifth index.

To that end, observe that the same theorem applied to the system (3.4)
implies that each of the generating functions L(x), S(x), P (x) and H(x) also
share the same singular behaviour as C(x). From this system one can then
compute the minimal polynomial of each one of those generating functions
(all of degree nine) and this way their respective Puiseux expansions near ρ.
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By Lemma 11 they will be of the form:

L(x) = L0 + L2X
2 + L3X

3 + L4X
4 + L5X

5 +O(X6),
S(x) = S0 + S2X

2 + S3X
3 + S4X

4 + S5X
5 +O(X6),

P (x) = P0 + P2X
2 + P3X

3 + P4X
4 + P5X

5 +O(X6),
H(x) = H0 +H2X

2 +H3X
3 +H4X

4 +H5X
5 +O(X6),

(3.32)

where X =
√

1− x/ρ and the computed constants are given by:

L0 ≈ 0.0005589485, L2 ≈ −0.0067979489, L3 ≈ 0.0123339214,

L4 ≈ 0.0003960045, L5 ≈ −0.0200317540,

S0 ≈ 0.0001313336, S2 ≈ −0.0026785117, S3 ≈ 0.0057615385,

S4 ≈ 0.0083780652, S5 ≈ −0.0564371027,

P0 ≈ 0.0011813127, P2 ≈ −0.0145473353, P3 ≈ 0.0262095830,

P4 ≈ 0.0029590186, P5 ≈ −0.0480034574,

H0 ≈ 0.0096543495, H2 ≈ −0.0941838168, H3 ≈ 0.2099621712,

H4 ≈ 0.2378091544, H5 ≈ −0.19702429942.

Now the last remaining generating function is the one counting the trees
rooted at a T -node, i.e. tT (x) = G3(x, 1 + C(x)). In order to compute its
singular expansion, let us first consider the exponential generating function
Z(x) = U(x2(1+C(x))3). Eliminating the variables C and z from the system
composed of Equations (2.6), (3.20) and x2(1 + C)3 = z, one can obtain the
minimal polynomial of Z(x) (it is also of degree nine). It is obvious from
its definition, that the only source of singularity of Z(x) comes from the
composition scheme x2(1 + C)3 = z. It is now easy to check that ρ is the
only positive root of both the composition scheme and the discriminant of the
minimal polynomial of Z(x) with respect to Z. And by arguments similar to
the proof of Lemma 11, one can prove that Z(x) admits a Puiseux expansion
of branching-type 2 near ρ and whose coefficients are computed using its
minimal polynomial as follows:

Z(x) =
1

4
+ Z1X + Z2X

2 + Z3X
3 + Z4X

4 + Z5X
5 +O(X6), (3.33)

where X is as above and

Z1 ≈ −0.4694327078, Z2 ≈ 0.2711831468, Z3 ≈ −0.1081595822,

Z4 ≈ 0.0160663764, Z5 ≈ 0.0862159165.



87 Chapter 3. Enumeration of cubic planar graphs

Notice that here, Z1 6= 0. Similarly to Lemma 11, this is because Z ′(ρ)
contains the term U ′(τ) =∞.

So that substituting y = 1+C(x) into (3.6), then Z(x) = U(x2(1+C(x))3)
and C(x) by their respective Puiseux expansions near ρ, directly gives us the
Puiseux expansion of tT (x) near ρ:

tT (x) = G3(x, 1 +C(x)) = t0 + t2X
2 + t3X

3 + t4X
4 + t5X

5 +O(X6), (3.34)

where X is as above and

t0 ≈ 0.0006314556, t2 ≈ −0.0038258171, t3 ≈ 0.0012273923,

t4 ≈ 0.0161328302, t5 ≈ −0.0404428904.

The next step is to substitute each generating function of the right hand-
side of Equation (3.31) by their respective Puiseux expansions near ρ. This
gives us the singular expansion of G1(x) near ρ:

G1(x) ∼
x→ρ

G1,0 +G1,2X
2 +G1,4X

4 +G1,5X
5, (3.35)

where we can finally compute every coefficient, as follows:

G1,0 ≈ 0.0006035047, G1,2 ≈ −0.0032650685,

G1,4 ≈ 0.0145467239, G1,5 ≈ −0.0288191831.

Proof of Theorem 6. By substituting G1(x) with its local expansion
(3.35) into Equation (3.22), one can compute the singular expansion of G(x)
near ρ:

G(x) ∼
x→ρ

G0 +G2X
2 +G4X

4 +G5X
5, (3.36)

where

G0 ≈ 1.0006036868, G2 ≈ −0.0032670396,

G4 ≈ 0.0145608392, G5 ≈ −0.0288365809.

Now, because of the expansion in powers of X, G(x) is analytic in a disk
of radius ρ centered at the origin after slicing the rays [ρ,+∞] and [−ρ,−∞].
The compactness argument mentionned in the proof of Lemma 11 then shows
that G(x) is analytic in a dented domain at both ±ρ. So that an application
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of the theorem of sim-transfer gives us the following estimate on gn (for
n ∈ N even):

gn = n![xn]G(x) ∼
n→∞

g · n−7/2 · ρ−n · n!, (3.37)

where

g = − 15

4
√
π
G5 ≈ 0.0610098696.

This concludes the proof.

3.7 Cubic planar multigraphs

This section discusses an asymptotic estimate for the number mn of labelled
cubic planar multigraphs on n vertices. To that end, we study the exponential
generating function M(x) =

∑
n≥0mnx

n/n!.

As in the case of simple graphs, we will first decompose connected cubic
planar multigraphs by rooting them at an edge, using so-called cubic multi-
networks. This time however, due to the presence of loops and multiple
edges, there seems to be no direct way to describe the family of vertex-rooted
connected planar multigraphs from the edge-rooted ones by integration and
differentiation. Hence the apparent necessity of the dissymetry theorem to
get a combinatorial description of the class of (unrooted) connected cubic
planar multigraphs. This is interesting in itself as it is the first example that
we could find in the literature where this theorem appears necessary.

3.7.1 Cubic multi-networks

A cubic multi-network is a labelled connected cubic planar multigraph rooted

at a directed edge. So that, using similar notation as before,
→
M1(x) will be

the generating function counting cubic multi-networks, where the variable x
marks the number of vertices. For the sake of readability, we will use the

notation D ≡ D(x) =
→
M1(x) for this generating function.

Proposition 16. The generating function D(x) is algebraic.

Proof. We define the other families of cubic multi-networks as in the case of
simple graphs and use the same letters L(x), I(x), S(x), P (x) and H(x) for
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Figure 3.4: Left is the double-loop. Right is a loop cubic multi-network
counted by the generating function x2L.

their associated generating functions. Then the following system of functional
equations holds:

L = x2(1 + L) +
x2

2
(I +D − L), I =

L2

x2
,

S = D(D − S), P = x2
(

1 +D + D2

2

)
,

D = L+ S + P +H, H =

→
G3(x, 1 +D)

1 +D
.

(3.38)

Observe the differences with the simple case: the first loop and parallel-
compositions are now respectively the double-loop and the 3-bond, both
counted by the generating function x2. Then the case where the non-rooted
edge of the double-loop is substituted by a cubic multi-network rooted at
a loop is now valid, see Figure 3.4. Using Equation (3.3), we then rewritte
(3.38) into a polynomial system of equations:

L+ S + P +H −D = 0,
2x2(1 + L) + x2(I +D − L)− 2L = 0,
L2 − x2I = 0,
D2 − (1 +D)S = 0,
x2(2 + 2D +D2)− 2P = 0,
T (z)− x2(1 +D)3 − 2(1 +D)H = 0,
x2(1 +D)3 − z = 0.

(3.39)

Together with the minimal polynomial (2.7) of T (z), one can then eliminate,
from the algebraic system (3.39), the variables T (z), z, L, I, S, P and H to
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obtain the following annihiliting polynomial of D(x):

4096x6D9 + (x16 − 32x14 + 400x12 − 2432x10 + 7520x8

+25088x6 + 7424x4 − 2048x2 + 256)D8 + (8x16 − 256x14

+3200x12 − 19606x10 + 62560x8 + 42448x6 + 68992x4

−18784x2 + 2048)D7 + (28x16 − 896x14 + 11193x12 − 68978x10

+225932x8 − 56336x6 + 272377x4 − 71456x2 + 6720)D6

+(56x16 − 1792x14 + 22358x12 − 138334x10 + 462952x8

−340130x6 + 597478x4 − 147112x2 + 11648)D5 + (70x16

−2240x14 + 27895x12 − 172970x10 + 588995x8 − 610234x6

+797855x4 − 178760x2 + 11440)D4 + (56x16 − 1792x14

+22260x12 − 138082x10 + 476620x8 − 591172x6 + 665204x4

−129952x2 + 6336)D3 + (28x16 − 896x14 + 11095x12 − 68726x10

+239630x8 − 331972x6 + 338554x4 − 53592x2 + 1836)D2

+(8x16 − 256x14 + 3158x12 − 19498x10 + 68452x8 − 102026x6

+96236x4 − 10440x2 + 216)D + x16 − 32x14 + 393x12

−2414x10 + 8507x8 − 13330x6 + 11700x4 − 432x2 = 0.

(3.40)

This polynomial is irreducible and is in fact the minimal polynomial of D(x).
Thus concluding the proof.

To be able to later locate the dominant singularities of D(x), we will need
an equation with a composition scheme in the style of Lemma 11. To that
end, let us only elimnate z, L, I, S, P and H from the system (3.39), which
after a simple manipulation gives:

D =
x2(1 +D)2

2

(
3 +D − 1

8

)
+
T (z)

2
+
T (z)2

8
− D2

2
, (3.41)

where z = x2(1 +D(x))3.

3.7.2 Combinatorial integration

Let M1 be the class of (unrooted) labelled connected cubic planar multi-
graphs, with its associated generating function M1(x) =

∑
n≥0m

′
n
xn

n!
. As

discussed above, in order to access M1(x), we will first need to prove that
connected cubic planar multigraphs are tree-decomposable. And then apply
a theorem of dissymetry on the induced tree-decomposition.
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Figure 3.5: In white, the two new types of cut-vertices of a multigraph.

Connected cubic planar multigraphs are tree-decomposable. Simi-
larly to the case of simple graphs, to any a connected cubic planar multigraph
γ ∈ M1, we associate a unique tree τ(γ). And we define the class τ of all
such trees, where t(x) is the associated exponential generating function. So
that the bijection M1 ' τ holds.

We will then consider the different generating functions of those trees
rooted at a vertex, at an edge, or at a directed edge, and use the exact same
letters as before for both the combinatorial classes of rooted trees and for
their associated generating functions.

Those generating functions can also be described in terms of multi-networks
only. In fact, they will be exactly as in the simple graphs case, changing C(x)
to D(x), but with some slight differences, reflecting the fact that we now deal
with multigraphs, which we present next.

Rooting at a M-node. The number of edges of the 3-bond graph that
can now be substituted by a connected cubic multi-network, is either zero,
one, two or three. This gives the new generating function:

tM(x) =
x2

2

(
1 +D +

D2

2!
+
D3

3!

)
.

Rooting at a L-node. The corresponding cut-vertices of the graph can
now be of two additional types: the top picture of Figure 3.5 corresponds
to the new case where a cut-vertex is adjacent to another cut-vertex, itself
incident with a loop. This is counted by the generating function L(x). The
bottom picture of Figure 3.5 corresponds to the case where a cut-vertex is
incident with a double-edge. Notice that now, because of the rooting, there
is no symmetry, so that it is encoded by the generating function x2L(x).
Altogether, this gives the new generating function

tL(x) = L+ L2 +
L(D − L)

2
+

L3

6x2
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Rooting at an edge between two L-nodes. We need here to add the
new case in which two cut-vertices are connected by a double edge, illustrated
by the multigraph on the right of Figure 3.5. This is counted by the gener-
ating function L2/2, where the factor 1/2 encodes the symmetry induced by
exchanging both sides of the double edge.

The directed case is then obtained by giving a direction to one edge of
the double edge from the undirected case, thus breaking the symmetry. So
that the new generating functions for the undirected and the directed cases
are respectively extended to:

tL−L(x) =
L2

2x2
+
L2

2
and tL→L(x) = 2 · tL−L(x) =

L2

x2
+ L2.

Another dissymetry theorem. As in the simple graphs case, we obtain a
theorem of dissymetry for the classM1 by applying the theorem of dissymetry
for trees on the class τ and using the bijection M1 ' τ :

M1 ∪ τ•→• ' τ• ∪ τ•−•.

This directly translates via the symbolic method into a functional equation
between their associated exponential generating functions:

M1(x) = x2
(

1
2

+ D
2

+ D2

4
+ D3

12

)
+G3(x, 1 +D) + L3

6x2
+ L2

2
+ L

−1
2

(
log(1−D + S) +D − S + (D−S)2

2

)
−1

2

(
PS +HS +HP + P 2+H2

2
+ L2

x2

)
.

(3.42)

Proposition 17. The sequence {mn}n≥0 is P -recursive, that is, it satisfies
a linear recurrence with polynomial coefficients.

Proof. The claim follows from a direct adaptation of the second proof of
Proposition 15, presented in the last paragraph of Subsection 3.6.1, to Equa-
tion 3.42, using Propositions 12 and 16.

3.7.3 Enumeration of cubic planar multigraphs

Singularity analysis. The theorem of transfer of singularities applied to
(3.42) shows that one can derive the singular behaviour of M1(x) from that
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of D(x). To that end, let us compute the discriminant of (3.40) with respect
to D and consider the following irreducible factor:

729x12 − 17496x10 + 148716x8 − 513216x6 − 7293760x4

−279936x2 + 46656 = 0,
(3.43)

whose smallest positive root is given by ρm ≈ 0.2509071947. Notice that the
coefficients are exactly those of (3.24), up to some changes of signs. We have
no satisfactory interpretation of this similarity between the simple and the
multigraphs cases.

Let us now check that ρm is the dominant singularity of D(x) by verifying
the conditions of Lemma 11 with the functional equation (3.41). Let as before
R(D(x), x) be the right hand-side of the derivative of Equation (3.41) with
respect to D:

x2(1 +D)2

4

(
6 + 3T (z)

(1− U(z))2
− x2

)
+
x2(3D2 + 10D − 7)

2
−D,

where z = x2(1+D(x))3 and where we again used that T ′(z) = (1−U(z))−2.
To prove the criticality of the composition scheme

x2(1 +D(x))3 = τ, (3.44)

it is a simple matter to check that for any x ∈ R such that |x| ≤ ρm:

|R(D(x), x)| ≤ |R(D(ρm), ρm)| < 0.3432,

where we used that |D(x)| ≤ |D(ρm)| =
∣∣∣∣ 3

√
τ
ρ2m
− 1

∣∣∣∣ ≈ 0.1876793068.

As before, one can check that (3.43) is the only factor of both the discrim-
inant of (3.40) with respect to D, and of the resultant of (3.40) and (3.44)
with respect to D. And we can now apply Lemma 11 to obtain the singular
expansion of D(x) near ρm:

D(x) = D0 +D2X
2 +D3X

3 +D4X
4 +D5X

5 +O(X6), (3.45)

where X =
√

1− x/ρm, D0 = D(ρm) ≈ 0.1876793068 and:

D2 ≈ −0.7326085490, D4 ≈ 0.35908310,

D3 ≈ 0.6259341848, D5 ≈ −0.9183087339.

Remark that similarly to the simple case, we need to compute the expansion
up to the fifth power of X.
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Singular expansion of connected cubic planar multigraphs. The
same arguments as in the previous section applied to the system (3.39) shows
that the exponential generating functions L(x), S(x), P (x) and H(x) count-
ing the associated families of cubic multi-networks are algebraic and one can
compute their respective minimal polynomials in a similar manner as that of
D(x). From there, we compute their respective Puiseux expansions near ρm:

L(x) = L0 + L2X
2 + L3X

3 + L4X
4 + L5X

5 +O(X6),
S(x) = S0 + S2X

2 + S3X
3 + S4X

4 + S5X
5 +O(X6),

P (x) = P0 + P2X
2 + P3X

3 + P4X
4 + P5X

5 +O(X6),
H(x) = H0 +H2X

2 +H3X
3 +H4X

4 +H5X
5 +O(X6),

(3.46)

where X =
√

1− x/ρm and the computed constants are given by:

L0 ≈ 0.0739210283, L2 ≈ −0.1849294497, L3 ≈ 0.022023947,

L4 ≈ 0.1758931558, L5 ≈ −0.0824618341,

S0 ≈ 0.0296574353, S2 ≈ −0.2132424445, S3 ≈ 0.1821924353,

S4 ≈ 0.4248853189, S5 ≈ −0.8147303774,

P0 ≈ 0.0758784006, P2 ≈ −0.2065336949, P3 ≈ 0.0468008876,

P4 ≈ 0.2291750107, P5 ≈ −0.1911320863,

H0 ≈ 0.0082224427, H2 ≈ −0.1279029599, H3 ≈ 0.3749169147,

H4 ≈ 0.4708703797, H5 ≈ −0.1700155640.

This time, the exponential generating function counting the decomposition-
trees rooted at a T -node is given by tT (x) = G3(x, 1+D(x)). The exact same
method as in the previous section (changing C(x) to D(x) and the associated
minimal polynomials) allows us to compute its singular expansion near ρm:

tT (x) = G3(x, 1 +D(x)) = t0 + t2X
2 + t3X

3 + t4X
4 + t5X

5 +O(X6), (3.47)

where X is as above and

t0 ≈ 0.0006314556, t2 ≈ −0.0062671242, t3 ≈ 0.0025733540,

t4 ≈ 0.0495962882, t5 ≈ −0.1427835242.

The final step is to substitute each generating function of the right hand-
side of Equation (3.42) by their respective Puiseux expansions near ρm. This
gives us the singular expansion of M1(x) near ρm:

M1(x) ∼
x→ρ

M1,0 +M1,2X
2 +M1,4X

4 +M1,5X
5, (3.48)
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where X =
√

1− x/ρm and:

M1,0 ≈ 0.0706604969, M1,2 ≈ −0.1638622489,

M1,4 ≈ 0.1725921179, M1,5 ≈ −0.0989787363.

By contradiction, let us illustrate here why is M1,3 = 0. Indeed, other-
wise and by the theorem of sim-transfernsfer, the ratio between the number
of connected cubic planar multigraphs with n vertices and the number of
connected networks with n vertices will be constant as n goes to infinity. Let
us now define a bad edge as either a double edge or a loop. Observe that for
n ≥ 4, a vertex of a connected cubic planar multigraph can be adjacent to
at most one bad edge. Hence, every vertex is adjacent to at least one sim-
ple edge, and because a simple edge is shared by two vertices, a connected
cubic planar multigraph admits at least n/2 simple edges, for n ≥ 4. Notice
now that every time a simple edge of a connected cubic planar multigraph
is distinguished and directed, we get a different connected network, i.e. for
n ≥ 4 the number of connected networks with n vertices is at least n/2 times
greater than the number of connected cubic planar multigraphs with n ver-
tices. Which contradicts the hypothesis that their ratio converges as n goes
to infinity.

Proof of Theorem 7. The expansion (3.48) in powers of X =
√

1− x/ρm
implies that M1(x) is analytic in a disk of radius ρm centered at the origin
after slicing the rays [ρm,+∞] and [−ρm,−∞]. The compactness argument
mentionned in the proof of Lemma 11 then shows that it is analytic in a
dented domain at both ±ρm. So that an application of the theorem of sim-
transfer gives the following estimate on m′n (for n even):

m′n = n![xn]M1(x) ∼
n→∞

m′ · n−7/2 · ρ−nm · n!, (3.49)

where

m′ = − 15

4
√
π
M1,5 ≈ 0.2094103951.

Now from the knowledge of M1(x), one can recover the generating func-
tion M(x) of labelled cubic planar multigraphs as follows

M(x) = exp
(
M1(x)

)
. (3.50)
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By the theorem of transfer of singularity, ρm is the dominant singularity of
M(x) and its singular expansion is given by:

M(x) ∼
x→ρm

M0 +M2X
2 +M4X

4 +M5X
5, (3.51)

where X =
√

1− x/ρm and:

M0 ≈ 1.0732168035, M2 ≈ −0.1758597189,

M4 ≈ 0.1996371456, M5 ≈ −0.1062256430.

The same arguments as above on the expansion (3.51) show that M(x)
is analytic in a dented domain at both ±ρm. So that an application of the
theorem of sim-transfer gives us the following estimate on mn (for n ∈ N
even):

mn = n![xn]M(x) ∼ m · n−7/2 · ρ−nm · n!, (3.52)

where

m = − 15

4
√
π
M5 ≈ 0.2247427548.

This concludes the proof.

3.8 Simple cubic planar maps

In this section, we will show that the connectivity-decomposition method
developed so far allows one to also enumerate both arbitrary and 2-connected
simple cubic planar maps. We will first need to adapt this decompositon
method to the context of maps, where so-called near-simple maps will play
an analogous role as that of netwroks in graphs.

3.8.1 Enumeration of simple cubic maps

We will enumerate here the class C of simple rooted cubic planar maps, by
computing an asymptotic estimate of the number sn of simple rooted cubic
planar maps with n vertices, as n goes to infinity. We set C(x) =

∑
n≥0 snx

n

to be the associated ordinary generating function (recall that here we only
consider maps with unlabelled vertices).
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Near-simple cubic maps. A cubic map N ∈ C with root edge st is said to
be near-simple when N − st is connected and simple. Let C̄ ⊆ C be the class
of near-simple maps in C, with its associated ordinary generating function
C̄ ≡ C̄(x). Analogue to the different classes of networks, we now define some
subclasses of C̄:
• N ∈ L is a loop map if st is a loop,

• N ∈ S is a series map if N − st admits a bridge,

• N ∈ P is a parallel map if N − st is 2-connected but {s, t} is a 2-cut,

• N ∈ H is an h-map if it can be obtained by possibly substituting the
edges of some 3-connected cubic map by maps in C̄.

To each of those classes is respectively associated the ordinary generating
functions L ≡ L(x), I ≡ I(x), S ≡ S(x), P ≡ P (x) and H ≡ H(x). This
allows us to derive a system of equations relating C(x) with the ordinary
generating function T (z), counting 3-connected cubic planar maps.

Lemma 18. The following system of equations holds:

C̄ = L+ S + P +H, L = 2x2
(
I + C̄ − L

)
,

I =
L2

4x2
, P = x2(2C̄ + C̄2),

S = C̄(C̄ − S), H =
T (x2(1 + C̄)3)− x2(1 + C̄)3

1 + C̄
.

(3.53)

Proof. It suffices to adaptate the proof of Lemma 10 to the case of maps.
The only differences are the absence of symmetries in the loop, the isthmus,
the parallel and the h-compositions.

Proposition 19. The generating function C(x) is algebraic.

Proof. We first rewrite (3.53) into a system of polynomial equations:

C̄ − L− L2 − 2x2C̄ + I − C = 0,
2x2(I + C̄) + (2x2 − 1)L = 0,
L+ S + P +H − C̄ = 0,
L2 − 4x2I = 0,
x2(2C̄ + C̄2)− P = 0,
C̄ − (1 + C̄)S = 0,
T (z)− x2(1 + C̄)3 − (1 + C̄)H = 0,
x2(1 + C̄)3 − z = 0.

(3.54)
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Similarly to the graph case, in order to obtain a simple map in C one
needs to remove the loop maps and the maps rooted at a double edge from
the class C̄, and then to add the maps rooted at an isthmus. This gives the
following polynomial equation relating C(x) with the ordinary generating
functions of near-simple cubic maps:

C(x) = C̄(x)− L(x)− L2(x)− 2x2C̄(x) + I(x), (3.55)

where the terms L2(x) and 2x2C̄(x) encode maps rooted at a double edge,
respectively obtained from the series composition of two loop maps and the
two possible parallel compositions of a map in C̄ with an edge.

So that by eliminating variables I, L, S, P , H, z and T from the system
(3.54), together with Equations (2.7) and (3.55), we obtain an annhilating
polynomial for C(x). Furthermore, one can factorise this annihilating poly-
nomial and choose the ”right” factor by checking the first terms of the Taylor
expansions of its roots, for x near the origin. This factor will then be the
minimal polynomial of C ≡ C(x):

64x10C4 + (912x14 + 640x12 + 384x10 + 3328x8 + 2864x6)C3

−(1743x18 + 13968x16 + 13344x14 − 52888x12 − 116934x10

−71248x8 − 4064x6 + 3768x4 − 41x2)C2 + (784x22 + 13524x20

+29478x18 − 51033x16 − 194686x14 − 166400x12 − 5454x10

+43746x8 + 4030x6 − 5652x4 + 904x2 − 41)C − 1568x24

−17724x22 + 3788x20 + 90950x18 + 85609x16 − 10833x14

−29549x12 + 1572x10 + 3719x8 − 781x6 + 41x4 = 0.

(3.56)

Singularity analysis. As before, the theorem of transfer of singularity
applied to Equation 3.55 implies that to study the singular behaviour of
C(x) it is enough to study that of C̄(x).

To do the latter, we derive an equation verifying the hypotheses of Lemma
11 from the system (3.54): after eliminating the variables I, L, S, P , H and z,
we obtain a single polynomial equation with a composition scheme, relating
C̄ ≡ C̄(x) with T (z). It is given by:

C̄ =
T (z)2

2
+ (x2(1 + C̄) + 1)T (z) + 2x2C̄3

+
1

2
(1− x2)(3x2 − 1)C̄2 − x2

(
1 + (3x2 + 1)C̄ +

3x2

2

)
,

(3.57)
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where z = x2(1 + C̄)3 is the composition scheme. And using (2.7), the
minimal polynomial of T (z), one can eliminate T (z) from (3.57) to obtain
the following annihilating polynomial of C̄ ≡ C̄(x):

256x12C̄4 + 32x6C̄3(9x8 + 80x6 + 206x4 + 272x2 + 161)
+C̄2(81x16 + 1728x14 + 7260x12 + 16032x10 + 17366x8

+8832x6 − 548x4 + 32x2 + 1) + C̄(162x16 + 2538x14 + 7432x12

+12324x10 + 9324x8 + 2970x6 − 1240x4 + 56x2 + 2) + 81x16

+1098x14 + 2449x12 + 2668x10 + 761x8 − 70x6 − 2x4 = 0.

(3.58)

This polynomial turns out to be irreducible and is hence the minimal poly-
nomial of C̄(x).

Next, we consider the following factor of the discriminant of (3.58) with
respect to C̄:

729x12 + 17496x10 + 148716x8 + 513216x6

− 7293760x4 + 279936x2 + 46656 = 0,
(3.59)

whose smallest positive root is given by ρs ≈ 0.3192246062. This is the
unique such factor that is also a factor of the polynomial obtained by taking
the resultant, with respect to C̄, of (3.58) with the composition scheme:

x2(1 + C̄(x))3 = τ. (3.60)

To finally apply Lemma 11, we need to prove that the above scheme is
critical. To that end, let us compute the derivative of the right hand-side of
(3.57) with respect to C̄:

R(C̄(x), x) := 3x2(1 + C̄)

(
x2(2C̄ + C̄2) +

T (z)− 1

(1− U(z))2

)
+x2T (z)− x2(1− 4C̄ − 6C̄2)− C̄,

where z = x2(1+C̄(x))3, and where we again used that T ′(z) = (1−U(z))−2.
Using the fact that both B̄(x) and U(z) have non-negative coefficients, it is
a simple matter to check that for any x ∈ R such that |x| ≤ ρs:

|R(C̄(x), x)| ≤ |R(C̄(ρs), ρs)| < 0.555,

where we used that |C̄(x)| ≤ |C̄(ρs)| =

∣∣∣∣ 3

√
τ
ρ2s
− 1

∣∣∣∣ ≈ 0.0309197658. So that

by Lemma 11, ±ρs are the two dominant singularities of both C̄(x) and C(x),
and their respective expansions near ρs are Puiseux series of branching type
3/2. This also implies that C̄(x) is analytic in a dented domain at ±ρs.
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Proof of Theorem 8. Using (3.56), we can compute the Puiseux expan-
sion of C(x) near ρs:

C(x) ∼
x→ρs

C0 + C2

(
1− x

ρs

)
+ C3

(
1− x

ρs

)3/2

, (3.61)

where C0 ≈ 0.0200048103, C2 ≈ −0.296721268, and C3 ≈ 1.1068974043.
The theorem of transfer of singularity on (3.55) tells us that C(x) is also

analytic in a dented domain at ±ρs. So that the theorem of sim-transfer,
applied on (3.61), implies the following estimate on sn (for n even):

sn = [xn]C(x) ∼
n→∞

s · n−5/2 · ρ−ns , (3.62)

where s =
3

2
√
π
· C3 ≈ 0.9367499783.

3.8.2 Enumeration of 2-connected simple cubic maps

We now enumerate the class B of 2-connected simple cubic planar maps.
In particular, we will give an asymptotic estimate of s′n, the number of 2-
connected simple cubic planar maps on n vertices, by studying the associated
ordinary generating function B(x) =

∑
n≥0 s

′
nx

n.

Proposition 20. The ordinary generating function B(x) is algebraic.

Proof. Similarly to the case of arbitray cubic maps, we define the notion of
near-simple 2-connected cubic planar maps: let B̄ be the class of 2-connected
cubic planar maps N , rooted at the edge st, such that N − st is simple and
connected. Notice that, because it is 2-connected, a map in B̄ cannot have
loops nor isthmuses. The subclasses S, P and H of B̄ are then defined as
their connected counterparts. Thus, from a direct adaptation of the proof of
Lemma 18, one can see that the following polynomial system of equations
holds:

S + P +H − B̄ = 0,
x2(2B̄ + B̄2)− P = 0,
B̄2 − S(1 + B̄) = 0,
T (z)− x2(1 + B̄)3 − (1 + B̄)H = 0,
x2(1 + B̄)3 − z = 0.

(3.63)

Notice now that the class B can be obtained by removing from the class
B̄ the maps rooted at a double edge coming from the parallel compositions.
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This is directly translated into the following relation between the associated
generating functions B(x) and B̄(x):

B(x) = (1− 2x2)B̄(x). (3.64)

So that using (3.64) together with (2.7), one can eliminate variables S, P ,
H, z, T (z) and B̄ from the system (3.63) to obtain an annihilating polynomial
of B(x). And after factorisation, one can compute the (irreducible) ”right”
factor of this annihilating polynomial. It is obtained as in the connected
case, and is the minimal polynomial of B ≡ B(x):

16x4B3 − (16x8 + 120x6 − 48x4 − 8x2)B2

+ (4x12 + 76x10 + 121x8 − 244x6 + 118x4 − 20x2 + 1)B
− 8x14 − 76x12 + 134x10 − 77x8 + 17x6 − x4 = 0.

(3.65)

Thus proving that B(x) is algebraic.

Singularity analysis. Again by applying the theorem of transfer of sin-
gularity on Equation 3.64, one can see that B(x) and B̄(x) both share the
same dominant singularities and singular behaviour.

We will now study that of B̄(x) by deriving an equation with a composi-
tion scheme and show that it satisfies Lemma 11. After eliminating variables
S, P and H from the system (3.63), we obtain the following single polynomial
equation relating B̄(x) with T (z):

B̄(x) = T (z)− x2(1 + B̄), (3.66)

where z = x2(1 + B̄)3 is the composition scheme. Using (2.7), we can now
eliminate T (z) from (3.66) to obtain an annhilating polynomial of B̄ ≡ B̄(x):

16x4B̄3 + 8x2B̄2(x4 + 8x2 + 1)
+B̄(x8 + 20x6 + 50x4 − 16x2 + 1) + x8 + 11x6 − x4 = 0.

(3.67)

One can check that this polynomial is irreducible and is hence the minimal
polynomial of B̄(x). Let us now consider the following factor of the discrim-
inant of (3.67) with respect to B̄:

2x4 + 10x2 − 1 = 0, (3.68)

whose smallest positive root is:

ρ′s =

√
6
√

3− 10

2
≈ 0.3131712173.
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We will now prove that the composition scheme is critical, i.e. that the
following equation holds:

x2(1 + B̄(x))3 = τ. (3.69)

Let us first compute the derivative of the right hand-side of (3.66) with
respect to B̄ :

R(B̄(x), x) :=
3x2(1 + B̄(x))2

(1− U(z))2
− x2,

where z = x2(1 + B̄(x))3 and T ′(z) = (1 − U(z))−2. Using then that both
B̄(x) and U(z) have non-negative coefficients and that

B̄(ρ′s) =
3
√

3− 5

8
≈ 0.0245190528,

it is a simple matter to check that the following inequality holds for any
x ∈ R such that |x| ≤ ρ′s:

|R(B̄(x), x)| ≤ |R(B̄(ρ′s), ρ
′
s)| < 0.451.

One can finally verify that (3.68) is the unique factor of the discriminant,
with respect to B̄, of (3.67) that is also a factor of the resultant, with respect
to B̄, of (3.67) with (3.69). And Lemma 11 implies that ±ρ′s are the two
dominant singularities of B̄(x). It also implies that B̄(x) both admits a
Puiseux series expansion near ρ′s of branching type 3/2, and is analytic in a
dented domain at ±ρ′s.

Proof of Theorem 9. As mentionned nefore, the theorem of transfer of
singularity, applied on Equation (3.64), implies that ±ρ′s are also the domi-
nant singularities of B(x) and that B(x) admits the following expansion near
ρ′s, computed using (3.65):

B(x) ∼
x→ρ′s

B0 +B2

(
1− x

ρ′s

)
+B3

(
1− x

ρ′s

)3/2

, (3.70)

where B0 = 0.0197095812, B2 = −0.2451905284, and B3 = 0.7487510188.
It also implies that B(x) is analytic in a dented domain at ±ρ′s. So that
an application of the theorem of sim-transfer on (3.70) gives the following
estimate on s′n (for n even):

s′n = [xn]B(x) ∼
n→∞

s′ · n−5/2 · ρ′−ns , (3.71)

where s′ =
3

2
√
π
·B3 ≈ 0.6336562882.
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3.9 Conclusion

To conclude this chapter, we give here some tables presenting the main enu-
merative results in a compact way. We first consider the following exponential
generating functions:

• G(x) =
∑

n≥0 gnx
n/n!, where gn (n ≥ 0) is the number of cubic planar

graphs on [n],

• G1(x) =
∑

n≥0 cnx
n/n!, where cn (n ≥ 0) is the number of labelled

connected cubic planar graphs on [n],

• G2(x) =
∑

n≥0 bnx
n/n!, where bn (n ≥ 0) is the number of labelled

2-connected cubic planar graphs on [n],

• G3(x) =
∑

n≥0 tnx
n/n!, where tn (n ≥ 0) is the number of labelled

3-connected cubic planar graphs on [n].

In Table 3.1 are displayed their respective six first non-zero coefficients. No-
tice that the first discrepancies appear at n = 8. Indeed, the first cubic
planar graph that is 2-connected but not 3-connected is the (unrooted) series-
composition of two K4’s. And the first disconnected cubic planar graph is
the disjoint union of two K4’s. Whereas in Table 3.2 are displayed the ap-
proximate values of the different orders in the asymptotic estimate of their
respective coefficients.

We consider next the two exponential generating functions counting multi-
graphs:

• M(x) =
∑

n≥0mn
xn

n!
counting labelled cubic planar multigraphs,

• M1(x) =
∑

n≥0m
′
n
xn

n!
counting connected labelled cubic planar multi-

graphs,

together with the two ordinary generating functions counting simple maps:

• C(x) =
∑

n≥0 snx
n counting rooted simple cubic planar maps,

• B(x) =
∑

n≥0 s
′
nx

n counting 2-connected rooted simple cubic planar
maps.

In Table 3.3 are displayed their respective first coefficients. The two cubic
planar multigraphs with two vertices are the (unrooted) 3-bond and double-
loop. Whereas in Table 3.4 are displayed the approximate values of the
different orders in the asymptotic estimate of their respective coefficients.
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n gn cn bn tn

4 1 1 1 1
6 60 60 60 60
8 13475 13440 13440 10920
10 5826240 5813640 5700240 4112640
12 4124741775 4116420000 3996669600 2654467200
14 4379810575140 4371563196000 4217639025600 2625727104000

Table 3.1: Numbers of arbitrary, connected, 2-connected and 3-connected
labelled cubic planar graphs with n vertices.

Coefficient Constant factor Exponential growth

gn 0.0610098696 3.1325905979
cn 0.0609730610 3.1325905979
bn 0.0592436837 3.1296662937
tn 0.0407168760 3.0792014357

Table 3.2: The approximate values of the linear and exponential orders in
the asymptotic estimate of the numbers of arbitrary, connected, 2-connected
and 3-connected labelled cubic planar graphs.
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n mn m′n sn s′n

2 2 2 0 0
4 47 35 1 1
6 4710 3540 7 3
8 1239875 967680 43 19
10 669496590 542694600 294 128
12 634267800705 529970364000 2129 909
14 946240741175730 808665504847200 16133 6737

Table 3.3: Numbers of arbitrary and connected labelled cubic planar multi-
graphs and arbitrary and 2-connected simple cubic planar maps with n ver-
tices.

Coefficient Constant factor Exponential growth

mn 0.2247427548 3.9855373662
m′n 0.2094103951 3.9855373662
sn 0.9367499783 3.2231120230
s′n 0.6336562882 3.1931414661

Table 3.4: The approximate values of the linear and exponential orders in
the asymptotic estimate of the numbers of arbitrary and connected labelled
cubic planar mutigraphs and aribtrary and 2-connected simple cubic planar
maps.
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Chapter 4

Random cubic planar graphs

4.1 Introduction

A uniform random cubic planar graph on n vertices is the typical object
chosen uniformly at random among all cubic planar graphs on n vertices. In
this chapter, we will study some of the classical properties verified by this
object. We will first focus on properties related to connectivity, then concern
ourselves with the number of appearances of some given subgraphs.

If one can both enumerate a family Gn of graphs on n vertices, and the
subfamily composed of the graphs in Gn satisfying a given property P , then
one can compute the probability pn that P holds in Gn by taking the ratio
of the two. To speak deterministically of such a property, one then takes
the limit, that is: computes when it exists the limiting probability lim pn, as
n→∞. To that end, we will make an extensive use of the asymptotic results
proved in the previous chapter.

4.1.1 Results on connectivity

For instance, a direct consequence of our enumerative results is an estimate of
the probability of connectivity for both cubic planar graphs and multigraphs.

Theorem 21. The limiting probability p that a uniformly at random cubic
planar graph is connected is equal to

p =
c

g
≈ 0.9993966774,

107
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where c and g are as in Theorems 5 and 6 respectively. A similar estimate
holds for a uniformly at random cubic planar multigraph. The limiting prob-
ability of connectivity in this case is equal to

pm =
m′

m
≈ 0.93177818003,

where m′ and m are as in Theorem 7.

Let us remark that the actual value of p was not computed in [7]. Indeed,
it requires an application of the theorem of dissymetry for tree-decomposable
classes to access the constant terms in the estimates for the number of both
connected and arbitrary cubic planar graphs.

Theorem 22. Let Xn and Yn be two random variables respectively counting
the number of connected components in a unifromly at random cubic planar
graph and multigraph on n vertices. Then as n→∞ they are both distributed
following shifted Poisson distributions:

Xn ∼ 1 + Po(G1(ρ)) and Yn ∼ 1 + Po(M1(ρm)),

where G1(ρ) = G1,0 ≈ 0.0006035047 and M1(ρm) = M1,0 ≈ 0.0706604969.

Observe then that theorem 21 becomes a corollary of Theorem 22, as in
the case of simple graphs, we have that P[Xn = 1] ∼ e−G1(ρ), as n→∞.

Our second result concerns the limiting distributions of some other pa-
rameters related to connectivity that have been studied for planar graphs
and related classes of graphs (see for example the survey [48]).

Theorem 23. For a random cubic planar graph, the following parameters
are asymptotically Gaussian with linear expectation and variance:

1. the number of cut-vertices,

2. the number of isthmuses,

3. and the number of blocks.

The values of both constants µ for the expectation and λ for the variance can
be approximated to any digits. In the next table, we present such approxi-
amtions up to the tenth decimal:

Parameter µ λ

Cut-vertices 0.0018774448 0.0037934519
Isthmuses 0.0009389848 0.0009496835
Blocks 0.0018777072 0.0037958302
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H...

Figure 4.1: A generic cherry build from the graph H.

Figure 4.2: An appearance of the smallest near-brick, K4 minus an edge, in
a cubic planar graph.

4.1.2 Results on the number of subgraphs

Our next two results concern the number of copies of graphs which are close
to being cubic. We define a cherry as a planar graph in which all vertices
have degree 3 except for one distinguished vertex of degree 1. The smallest
cherry has 6 vertices and is obtained by subdividing an edge of K4 and adding
one vertex of degree one. A generic cherry is pictured in Figure 4.1.

Let A be a fixed cherry with aut(A) automorphisms. A copy of A in a
cubic planar graph is defined as an appareance of A as a unlabelled subgraph,
i.e. it is like counting appareances of A as a labelled subgraph but weigthed
by |A|!/aut(A).

Theorem 24. Let XA,n be the number of copies of a fixed cherry A, with
aut(A) automorphisms, in a random cubic planar graph. Then XA,n is
asymptotically normal with moments

EXA,n ∼ µn, VarXA,n ∼ ηn,

where for ρ ≈ 0.3192246062, we have:

µ ≈ 1.6799126922 · ρ|A|

aut(A)
and η ≈ 3.0530105678 ·

(
ρ|A|

aut(A)

)2

+ µ.

We now define a near-brick as a graph obtained from a 3-connected cubic
planar graph by removing one edge. The smallest near-brick that can appear
in a cubic planar graph is K4 minus one edge, as depicted in Figure 4.2.

Let B be a fixed near-brick with aut(B) automorphisms. A copy of B in
a cubic planar graph is defined as for copies of a cherry.
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Theorem 25. Let XB,n be the number of apparances of a fixed near-brick B,
with aut(B) automorphisms, in a random cubic planar graph. Then XB,n is
asymptotically normal with moments

EXB,n ∼ µn, VarXB,n ∼ ηn,

where

µ ≈ 0.0000000289 + 1.7444626168
ρ|B|

aut(B)

and η ≈ µ− 3.1810806588

(
ρ|B|

aut(B)

)2

.

Our final results deal with the distribution of the number of triangles.
First in a uniformly at random 3-connected cubic planar graph:

Theorem 26. Let Zn be the number of triangles in a uniformly at random
3-connected cubic planar graph on 2n vertices. Denoting by µn and λ2n the
expectation and variance of Xn, we have that

Zn − µn
λn

→ N(0, 1),

where N(0, 1) is the standard normal distribution. Additionally, the mean µn
and the variance λ2n satisfy

µn =
27

128
n(1 + o(1)), λ2n =

3267

32768
n(1 + o(1)).

Thus recovering a result from [43]. We then extend this result to a uni-
formly at random arbitrary cubic planar graph:

Theorem 27. Let Xn be the number of triangles in a random cubic planar
graph. Then Xn is asymptotically normal with moments

EXn ∼ µn, VarXn ∼ λn,

where
µ ≈ 0.1219742813, λ ≈ 0.0649847862.

It was proved in [7] that Xn is linear with high probability. Our result is a
considerable sharpening of this fact. We wish to remark that this is the first
time one is able to determine precisely the number of copies of a fixed graph
H containing a cycle in classes of random planar graphs. The proof based
on an enriched network-decomposition to apply the Quasi-Powers Theorem
is technically involved and we are not able to extend it, for instance, to the
number of quadrilaterals.
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4.2 Statistics on connectivity

In a first part of this section, we will show how one can directly use the
asymptotic estimates for the number of connected cubic planar graphs and
multigraphs to compute the associated distributions for the number of con-
nected components.

In the rest of this section, we will specify an enriched decomposition of
connected cubic planar graphs in terms of networks for each of the following
parameters: the number of cut-vertices, isthmuses and blocks. Each of those
parameter will respectively be encoded by the variable v, e and w. And
we will denote by C(x, v) =

∑
n,k cn,kv

kxn/n!, C(x, e) =
∑

n,s cn,se
sxn/n!

and C(x,w) =
∑

n,t cn,tw
txn/n! the three associated bivariate generating

functions counting connected cubic networks enriched by the new parameter.

In each case, we will then use the network-decompositon to compute the
so-called singularity curves ρ1(v), ρ2(e) and ρ3(w), such that ρ1(1) = ρ2(1) =
ρ3(1) = ρ. Then prove, using the Quasi-Powers Theorem, that the associated
sequences of random variables converges in distribution to Gaussian laws.
And finally compute the approximated values of each first two moments.

4.2.1 The number of connected components

Proof of Theorem 21. Recall that G(x) =
∑

n≥0 gnx
n/n! and G1(x) =∑

n≥0 cnx
n/n! are the exponential generating functions respectively counting

arbitrary and connected cubic planar graphs. The probability that a random
cubic planar graph on n vertices is connected is then equal to

n![xn]G1(x)

n![xn]G(x)
=
cn
gn
.

Using, both estimates (3.28) and (3.37), the limiting probability that a ran-
dom cubic planar graph is connected is then

p =
c · n−7/2 · ρ−n · n!

g · n−7/2 · ρ−n · n!
=
c

g
≈ 0.9993966774.

Recall similarly thatM(x) =
∑

n≥0mnx
n/n! andM1(x) =

∑
n≥0m

′
nx

n/n!
are the exponential generating functions respectively counting arbitrary and
connected cubic planar multigraphs. As above, the probability that a random
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cubic planar multigraph on n vertices is connected is then equal to

n![xn]M1(x)

n![xn]M(x)
=
m′n
mn

.

And using, both estimates (3.49) and (3.52), the limiting probability that a
random cubic planar multigraph is connected is now

pm =
m′ · n−7/2 · ρ−nm · n!

m · n−7/2 · ρ−nm · n!
=
m′

m
≈ 0.93177818003.

This concludes the proof.
Looking at Table 3.2, we conclude from this proof that a random cubic

planar graph is with high probability not 2-connected. The limiting prob-
ability that a random planar graph is connected was determined in [28] as
≈ 0.96325. That the probability for cubic planar graphs is larger can be
explained intuitively as follows. The smallest cubic graph is K4, and the
probability that the fragment is K4 tends to ρ2/24 ≈ 0.0042460146. Hence
p < 1 − 0.0042460146 = 0.9957539854. This value is very close to p, since
the contribution of largest fragments is extremely small. On the other hand,
there are two cubic multigraphs with two vertices, and the probability that
the fragment has size two tends to ρ2m ≈ 0.0629544204. Hence the probability
of connectedness for multigraphs is pm < 1− 0.0629544204 = 0.9370455796,
which is close to the actual value of pm.

Proof of Theorem 22. We only present here the proof for simple graphs,
as it is the exact same for multigraphs, modulo the appropriate notation.
For positive integers n, k ≥ 1, let gn,k be the number of labelled cubic planar
graphs on n vertices and with k connected components. Notice that this
number can be obtained by counting all the possible sets {γ1, . . . , γk}, where
γi is a connected cubic planar graph (for i ∈ [k]), and such that

∑k
i=1 |γi| = n.

So that gn,k = [xn]G1(x)k/k!. And using (3.35), the local expansion of G1(x)
in a neighbourhood of its dominant singularity ρ, it holds that

[xn]G1(x)k ∼
x→ρ

[xn]kG1(ρ)k−1G1(x).

If now Xn is the discrete random variable counting the number of con-
nected components in a uniformly at random cubic planar graph on n ver-
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tices, then we have

P[Xn = k] =
gn,k
gn

=
1

k!

[xn]G1(x)k

[xn]G(x)
∼
x→ρ

kG1(ρ)k−1

k!

[xn]G1(x)

[xn]G(x)

∼
n→∞

G1(ρ)k−1

(k − 1)!

G1,5

G5

,

where by (3.30) we have G5 = eG1(ρ)G1,5, so that

P[Xn = k] ∼
n→∞

G1(ρ)k−1

(k − 1)!
e−G1(ρ).

This implies that Xn − 1 ∼ Po(G1(ρ)).

4.2.2 The number of cut-vertices

Following the decomposition of a connected cubic planar graph in terms of
cubic networks, we enrich every generating functions in the system (3.2) of
a new variable v marking the number of cut-vertices. Notice that, as cut-
vertices only appear in loop or isthmus cubic networks, we only need to
modify the equations for L(x, v) and I(x, v) in (3.2) as follows:

L(x, v) =
v2x2

2
(C(x, v) + I(x, v)− L(x, v)) andI(x, v) =

L(x, v)2

v2x2
,

where the term v2 in the first equation arises from the fact that in a loop
cubic network, both the root vertex and its neighbour are cut-vertices. And
the term v−2 in the second equation encodes the suppression of both root
vertices of the two loop cubic networks used in any isthmus construction.

This gives after some manipulations the following polynomial system of
equations, where all the generating functions involved are bivariate:

v2x2(I + C − L)− 2L = 0, L2 − v2x2I = 0,
L+ S + P +H − C = 0, C2 − (1 + C)S = 0,
x2(2C + C2)− 2P = 0, x2(1 + C)3 − z = 0,
T − x2(1 + C)3 − 2(1 + C)H = 0.

(4.1)

So that using (2.7), one can eliminate every other variables from (4.1)
in order to obtain a triavariate annhilating polynomial Φ(C, x, v) of C(x, v).
This polynomial is irreducible and has degree 12 in C(x, v). It is too big to be
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presented here. We can however present the only factor of the discriminant
of Φ(C, x, v), with respect to C, for which the polynomial induced by the
projection v = 1 contains (3.24) as a factor. It is the singularity curve of
C(x, v):

23328x12v6 − 34992x12v4 + 279936x10v6 + 17496x12v2

−279936x10v4 − 1300104x8v6 − 2916x12 + 69984x10v2

+3209868x8v4 + 303264x6v6 − 1880496x8v2 − 10425024x6v4

−19683x4v6 + 565596x8 + 12174624x6v2 + 1012581x4v4

−12257649x4v2 − 17910289x4 + 1119744x2v2 + 186624 = 0,

(4.2)

where x = ρ1(v) and by construction ρ1(1) = ρ. By the theorem of transfer
of singularity, this is also the singularity curve for the generating function
counting cubic planar graphs. So that it is enough to study the distribution
for the number of cut-vertices in cubic networks.

Proof of the first part of Theorem 23. Let v0 be a positive real number
in the neighbourhood of 1. By continuity and as argued in Section 2.3.2
of Chapter 2, the coefficients of C(x, v0) admits the following asymptotic
estimates:

n![xn]C(x, v0) ∼
n→∞

c1(v0) · n−3/2 · ρ1(v0)−n · n!,

where the value of c1(v0) depends on the fifth coefficient of the singular
expansion of C(x, v0) around ρ1(v0). In particular, c1(1) = c, the same c is
as in (3.28).

Let now Xn be the random variable counting the number of cut-vertices in
a cubic planar graph with n vertices. Using (3.28), the probability generating
functions associated to the sequence {Xn}n≥0 are then given for n ≥ 0 by:

pn(v0) =
[xn]C(x, v0)

[xn]C(x)
∼

n→∞

c1(v0) · n−3/2 · ρ1(v0)−n
c · n−3/2 · ρ−n

=
c1(v0)

c
·
(
ρ1(v0)

ρ

)−n
.

(4.3)

After setting A1(v0) = c1(v0)
c

and B1(v0) = ρ
ρ1(v0)

observe that we fulfill the

assumptions of the Quasi-Powers Theorem (we will later numerically check
that B′1(1)+B′′1 (1)−B′1(1)2 6= 0). This means in particular that the sequence
{Xn}n converges in distribution, after renormalisation, to a Gaussian law.
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We will now compute the two first moments by taking the two derivatives
of (4.2) with respect to v. Setting v = 1 in the first derivative and replacing
ρ1(1) by its numerical approximation, we obtain a linear equation for ρ′1(1)
that we can numerically solve. Doing the same for the second derivative, then
replacing ρ′1(1) by its newly obtained numerical approximation, we similarly
obtain a linear equation for ρ′′(1). The numerical solutions are given by:

ρ′1(1) ≈ −0.0005993266 and ρ′′1(1) ≈ −0.0006105114,

and the first estimate of Theorem 23 holds. This also implies that B′1(1) +
B′′1 (1)−B′1(1)2 6= 0 as claimed.

4.2.3 The number of isthmuses

The study of the number of isthmuses is similar to that of cut-vertices, as
they also only appear in loop or isthmus cubic networks. Indeed, if the loop
construction arises from a loopless cubic network, then the non-loop edge
adjacent to the root vertex is an isthmus. When it arises from an isthmus
network, then one cut-edge is replaced by three new cut-edges. And, as an
isthmus construction always arises from deleting the root vertices of two loop
cubic networks then connecting their respective non-cubic vertex, we suppress
two cut-edges and create one. Modifying in consequence the equations for
L(x, e) and I(x, e) in (3.2) gives

L(x, e) =
x2

2

(
e2I(x, e) + e(C(x, e)− L(x, e))

)
and I(x, e) =

L(x, e)2

ex2
.

Similarly to the case of cut-vertices, we can rewrite (3.18) into an algebraic
system of bivariate equations. And after elimiation, one can obtain the mini-
mal polynomial of C(x, e). It is of degree 10 and is also too big to be presented
here. Using the same method as above, we can compute the singularity curve
of C(x, e):

729x12e3 + 8748x10e3 + 8748x10e2 + 26244x8e3 + 87480x8e2

+34992x8e+ 846936x6e3 − 660312x6e2 + 279936x6e
−4512544x4e3 + 46656x6 − 139968x4e2 − 2921184x4e
+903744x2e3 + 279936x4 − 2711232x2e2 + 5772384x2e
−46656e3 − 3684960x2 + 279936e2 − 559872e+ 373248 = 0,

(4.4)

where x = ρ2(e) and ρ2(1) = ρ. By the same argument as before, we remark
that this is also the singularity curve of the generating function counting
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cubic planar graphs. And it is again enough to study the distribution for the
number of istmuses in a random cubic network.

Proof of the second part of Theorem 23. Let e0 ∼ 1 be a positive real
number. The same continuity argument as for the number of cut-vertices
tells us that the following estimate on the coefficients of C(x, e0) holds: the
estimate

n![xn]C(x, e0) ∼
n→∞

c2(e0) · n−3/2 · ρ2(e0)−n · n!,

where the value of c2(e0) depends on the coefficients of the singular expansion
of C(x, e0) around ρ2(e0). In particular, c2(1) = c.

Let Yn be the random variable counting the number of cut-vertices in a
cubic planar graph with n vertices. Using (3.28), the probability generating
functions associated to the sequence {Yn}n≥0 are then given for n ≥ 0 by:

pn(e0) =
[xn]C(x, e0)

[xn]C(x)
∼

n→∞

c2(e0) · n−3/2 · ρ2(e0)−n
c · n−3/2 · ρ−n

=
c2(e0)

c
·
(
ρ2(e0)

ρ

)−n
.

(4.5)

Again setting A2(e0) = c1(v0)
c

and B2(e0) = ρ
ρ2(e0)

we observe that we fulfill

the assumptions of the Quasi-Powers Theorem (we will also later numerically
check that B′2(1) + B′′2 (1) − B′2(1)2 6= 0). This means in particular that
the sequence {Yn}n converges in distribution, after renormalisation, to a
Gaussian law.

We will now compute its two first moments. Setting e = 1 as before in the
two derivatives of the singularity curve of C(x, e), and substituting ρ2(1) = ρ
by its numerical approximation, we obtain the following two approximations:

ρ′2(1) ≈ −0.0002997471 and ρ′′2(1) ≈ −0.0000031338.

And the second estimate of Theorem 23 holds. This also implies that B′2(1)+
B′′2 (1)−B′2(1)2 6= 0 as claimed.

4.2.4 The number of blocks

Recall that by block we mean a maximal 2-connected subgraph. For enumer-
ative purposes, when encoding blocks the variable w will count the number
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D − L − S

D − L

Figure 4.3: The three types of series compositions involving loop cubic net-
works.

of blocks in a cubic network as the root edge is removed. For example, as in
the two cases counted by the generating functions L(x,w) and I(x,w), the
root edge forms a block by itself (isthmuses and loops are blocks). And w
will count the number of blocks minus one.

We also need to distinguish for each class of cubic networks, whether or
not a loop cubic networks is used in its construction. The reason is that
when using loop cubic networks to build larger cubic networks, we are not
decreasing the number of blocks while in the rest of the cases the number
of blocks in the final network decreases. For instance, the three different
series constructions involving at least one loop cubic network are illustrated
in Figure 4.3:

• Left is when two loop cubic networks are pasted in series, thus creating
one new block.

• Middle is when the first cubic network is rooted at a loop, forcing the
second to be non-series and non-loop (to exclude the previous case),
thus creating no new block.

• And right is when the first cubic network is not rooted at a loop (but
could be series) but the second one is rooted at a loop, thus creating
again no new block.

For a parallel construction, we take the 3-bond graph rooted at an edge
and substitute one or two of its two non-root edges. The special case when
only one edge of the 3-bond graph is substituted by a loop cubic network is
detailed in Figure 4.4: Left is when the cubic network was rooted at a loop,
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D − L

Figure 4.4: The two types of parallel constructions where only one edge of
the 3-bond graph is substituted by a cubic network.

thus creating a new block. Right is when it was loopless but connected, thus
not creating any new block. Adapting (3.2) to account for the new variable,
we obtain the following system of equations:

C = L+ S + P +H,
L = x2(w2I + w(C − L))/2,
I = L2/(wx2),
S = wL2 + L(C − L+ C − L− S) + (C − L)(C − L− S)/w,

P = x2(C − L+ wL) +
x2

2
(wL2 + 2(C − L)L+ (C − L)2/w),

H =
w
→
G3(x, 1 + L+ (C − L)/w)

1 + L+ (C − L)/w
,

where the terms wx2L2/2 in the fourth equation and w in the last one respec-
tively encode the facts that the 3-bond itself is a block and that a 3-connected
core is in particular a block. The above system can be rewritten into the poly-
nomial system of equations, where all the generating functions invlolved are
bivariate:

L+ S + P +H − C = 0,
x2(w2I + w(C − L))− 2L = 0,
L2 − wx2I = 0,
w2L2 + w(2C − 2L− S)L+ (C − L)(C − L− S)− wS = 0,
x2(C + (w − 1)L)(2w + C + (w − 1)L)− 2wP = 0,
w2(T (z)− z)− 2(w + C + (w − 1)L)H = 0,
x2(w + C + (w − 1)L)3 − z = 0.

(4.6)

As before, eliminating from the system (4.6) gives us an annihilating poly-
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nomial of C(x,w). And after factorising, and choosing the right factor by
computing the first terms of the Taylor expansion of its roots, we obtain the
minimal polynomial of C(x,w). It has degree 12 and is also too big to be
presented here. Again, following the same method as above, we compute the
singularity curve of C(x,w):

23328x12w6 − 34992x12w5 + 17496x12w4 + 279936x10w6

−2916x12w3 − 419904x10w5 + 349920x10w4 − 1300104x8w6

−174960x10w3 + 1810188x8w5 + 34992x10w2 + 638928x8w4

+303264x6w6 − 1044036x8w3 − 979776x6w5 + 629856x8w2

−8098056x6w4 − 19683x4w6 − 139968x8w + 11305008x6w3

+102789x4w5 + 455544x6w2 + 1246671x4w4 − 1119744x6w
−10004689x4w3 + 186624x6 − 30995136x4w2 − 69984x2w4

+9375264x4w + 2775168x2w3 + 1119744x4 − 7835616x2w2

+20990016x2w − 186624w3 − 14739840x2 + 1119744w2

−2239488w + 1492992 = 0,

(4.7)

where x = ρ3(w) and ρ3(1) = ρ.

Proof of the final part of Theorem 23. The same reasoning as for
the number of cut-vertices tells us that the sequence of random variables
associated with the number of blocks converges in distribution to a Gaussian
law. We compute the first two moments using the same method as in the case
of cut-vertices and the numerical approximation of ρ3(1) = ρ. In particular,
we obtain:

ρ′3(1) ≈ −0.0005994104 and ρ′′3(1) ≈ −0.0006111865.

This concludes the proof of Theorem 23.

4.3 Subgraphs statistics

In this section, we will prove that the number of appareances of a given cheery,
of a given near-brick and of triangles in a uniformly at random cubic planar
graph are all distributed following a Gaussian law. We will first deal with
quasi-cubic subgraphs, that are cherries and near-bricks, then with triangles.
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4.3.1 The number of quasi-cubic subgraphs

In both cases, by the theorem of transfer of singularity, we will be able to
restrict the study of the number of occurences of a given quasi-cubic subgraph
in a random cubic network. To that end, we shall explicit in each case a
decomposition of a connected cubic planar graph rooted at a directed edge
in terms of cubic networks, to compute the singularity curve. Then use the
Quasi-Powers Theorem to obtain a limiting distribution and compute the
first moments.

The number of cherries. Let A be a given cherry with aut(A) automor-
phisms. Notice that the unique vertex of degree one in a cherry must be
fixed by every automorphism. Let then cn,` be the number of connected cu-
bic networks with n vertices and containing ` different appareances of the
cherry A. So that C(x, a) =

∑
n,`≥0 cn,` a

`xn/n! is the associated bivariate
generating function counting cubic networks. For the generating functions of
the other families of cubic networks: L, I, S, P andH, we associate similarly
a bivariate generating function with the same letter.

Observe that during the network-decomposition, a cherry A can by defi-
nition only arise from a loop construction. And we only need to modify the
equation for L(x, a) in the system (3.2), as follows:

L(x, a) =
x2

2
(I(x, a) + C(x, a)− L(x, a)) +

x|A|

aut(A)
(a− 1).

This is because occurrences of A are encoded by the monomial |A|!
aut(A)

· x|A||A|! =
x|A|

aut(A)
, since |A|!/aut(A) is the number of ways of labelling A, and each

occurrence is marked by a. If we then set κ := x|A|/aut(A), then we can
rewrite (3.18) into an algebraic system of bivariate generating functions by
replacing the equation for L(x, a) by the following:

x2(C + I − L) + 2(a− 1)κ− 2L = 0. (4.8)

Using now (2.7), the minimal polynomial of T (z), one can eliminate every
other generating function from the above system to obtain an annihilating
polynomial of C(x, a) that is irreducible and of degree 9. It is the minimal
polynomial of C(x, a). Taking finally its discriminant with respect to C and
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choosing the right factor using the same method as for the number of cut-
vertices, we obtain the singularity curve of C(x, a):

−729x12 + 17496κx8a− 17496x10 − 17496κx8 − 139968κ2x4a2

+279936κx6a− 148716x8 + 279936κ2x4a− 279936κx6

+373248κ3a3 − 139968κ2x4 − 1119744κ2x2a2 + 1259712κx4a
−513216x6 − 1119744κ3a2 + 2239488κ2x2a− 1259712κx4

+1119744κ3a− 1119744κ2x2 − 559872κ2a2 + 1119744κx2a
+7293760x4 − 373248κ3 + 1119744κ2a− 1119744κx2 − 559872κ2

+279936κa− 279936x2 − 279936κ− 46656 = 0,

(4.9)

where again κ = x|A|/aut(A) behaves as a constant, and x = ρ4(a) where by
construction ρ4(1) = ρ.

Proof of Theorem 24. If now a0 ∼ 1, then the same continuity argument
as for the number of cut-vertices gives the following asymptotic estimate for
the coefficients of C(x, a0):

n![xn]C(x, a0) ∼
n→∞

c4(a0) · n−3/2 · ρ4(a0)n · n!,

where c4(a0) depends on the third coefficient of the singular expansion of
C(x, a0) around ρ4(a0). In particular, c4(1) = c. As before, this implies that
the sequence of random variables associated to the number of appearances
of the given cherry A in a cubic planar graph on n vertices converges in
distribution to a Gaussian limit law, as n→∞.

To compute the first two moments of this limiting distribution, notice
first that by setting κ(a) := ρ3(a)|A|/aut(A), then we get:

κ = κ(1) = ρ4(1)|A|/aut(A) = ρ|A|/aut(A),

where ρ ≈ 0.3192246062. So that setting a = 1 in the first two derivatives of
(4.9) gives the following numerical approximations:

µ = −ρ
′
4(1)

ρ4(1)
· ρ3(1)|A|

aut(A)
≈ 1.6799126922

ρ|A|

aut(A)
,

and

η ≈ 3.0530105678

(
ρ|A|

aut(A)

)2

+ µ,

as claimed.
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The number of near-bricks. Let B be a given near-brick admitting
aut(B) automorphisms, with the convention that its two vertices of degree
two are distinguishable. Let then cn,m be the number of connected cubic
networks with n vertices and containing m different appareances of the near-
brick B. So that C(x, b) =

∑
n,m≥0 cn,m bmxn/n! is the associated bivariate

generating function counting cubic networks. For the generating functions of
the other families of cubic networks: L, I, S, P andH, we associate similarly
a bivariate generating function with the same letter.

Observe that a brick B 6= K−4 can only arise from an h-network isomor-
phic to B in which no edge is replaced. The modified bivariate generating
function of h-networks becomes then:

H(x, b) =

→
G3(x, 1 + C(x, b))

1 + C(x, b)
+

x|B|

aut(B)
(b− 1). (4.10)

But when B = K−4 , it now appears as a parallel composition of two loop
networks, and we have to modify the bivariate generating function in conse-
quence:

P (x, b) = x2
(
C(x, b) +

C(x, b)2

2

)
+
x2

2
(b− 1)L(x, b)2. (4.11)

One can now rewrite Equations (4.10) and (4.11) and plugg them into
(3.18) to obtain an algebraic system of equations involving bivariate gener-
ating functions, at the exception of T ≡ T (z), as follows:

L+ S + P +H − C = 0,
x2(I + C − L)− 2L = 0,
L2 − x2I = 0,
C2 − (1 + C)S = 0,
2x2C + x2C2 + 2(b− 1)κL2 − 2P = 0,
T − x2(1 + C)3 + 2(b− 1)(1 + C)κ− 2(1 + C)H = 0,
x2(1 + C)3 − z = 0.

(4.12)

where we now set κ := x|B|/aut(B). And after finally eliminating every other
variables from (4.12), one can obtain an irreducible annihilating polynomial,
i.e. the minimal polynomial of C(x, b). It has degree 16 and is too big to be
presented here. So is the singularity curve σ(C, x, b) of C(x, b), for x = ρ5(b)
and ρ5(1) = ρ, that one can compute using the same method as for the
number of cut-vertices.
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Proof of Theorem 25. Using the same arguments as those developed for
the number of cut-vertices, it holds that for any b0 ∼ 1, the coefficients of
C(x, b0) are asymptotically

n![xn]C(x, b0) ∼
n→∞

c5(b0) · n−3/2 · ρ5(b0)n · n!,

where c5(1) = c. And as before, the sequence of random variables associated
to the number of near-bricks B in a uniformly at random cubic planar graph
on n vertices converges in distribution to a Gaussian limit law.

We now set κ(b) := ρ5(b)
|B|/aut(B), so that κ(1) = ρ|B|/aut(B). And

computing the two derivatives of the singularity curve σ with respect to b
gives the two following numerical approximations:

µ ≈ 0.0000000289 + 1.7444626168
ρ|B|

aut(B)

and

η ≈ µ− 3.1810806588

(
ρ|B|

aut(B)

)2

,

as claimed.

4.3.2 The number of triangles

In order to study the distribution of the number of triangles in random
cubic planar graphs, we start with 3-connected cubic graphs. By duality
this amounts to studying vertices of degree 3 in triangulations. We are able
to do it, by adapting the composition scheme presented in Section 2.4.2
of Chapter 2, which derives 3-connected triangulations from the irreducible
ones, following an idea from [27, Section 5] where the authors studied the
case u = 0, i.e. triangle-free 3-connected rooted cubic planar maps. The key
point is that an irreducible triangulation admits no cubic vertices, as they
only begin to appear in 3-connected triangulations.

We then use this study to count triangles in 3-connected cubic planar
graphs. And then by adapting the decomposition of a connected cubic planar
graph rooted at a directed edge, we can finally prove the limiting distribution.
The key remark is that, at the exception of K4, two triangles in a 3-connected
cubic planar graph do not share a vertex. And the number of different
configurations in which two triangles of a 2-connected or connected cubic
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planar graph intersect is finite. This means that a network decomposition
is particularly suited for keeping track of the number of triangles in a cubic
planar graph.

Cubic vertices in triangulations. Let tn,k be the number of 3-connected
triangulations on n + 2 vertices among which are with k cubic vertices, and
let T (z, u) =

∑
n,k≥0 znuk be the associated bivariate (ordinary) generating

function. Our goal is to refine the composition scheme in Equation (2.11) by
counting vertices of degree three.

To that end, recall that an internal vertex in a triangulation is a vertex not
incident with the root face, otherwise it is called external. Observe then, that
when pasting a triangulation with an external cubic vertex v on the inner face
of an irreducible triangulation, the degree of v in the resulting triangulation
strictly increases. This justifies the introduction of the generating function
T ∗(z, u) counting 3-connected triangulations (where for commodity we now
exclude the single triangle) but where the variable u now encodes inner cubic
vertices only. Using this notation, one can deduce from (2.11) the following
implicit equation:

T ∗(z, u) =
T4(z(1 + z−1T ∗)2)

1 + z−1T ∗
+ z2(1 + z−1T ∗)3 + z2(u− 1). (4.13)

The only difference comes from the second term associated to K4: when none
of the internal faces is replaced with a triangulation, the central vertex has
degree 3 and the configuration is encoded as u. Notice that this is exactly
where cubic vertices appear in triangulations. We can derive the bivariate
generating function T (z, u) in a similar way:

T−z =
T4(z(1 + z−1T ∗)2)

1 + z−1T ∗
+z2(1+z−1T ∗)3+3z(u−1)T ∗+z2(u4−1). (4.14)

We will define now two other bivariate generating functions counting tri-
angulations, which will be of use later. Let T0 be the set of triangulations
(except K3 and K4) in which the degree of the root vertex is equal to three,
and T1 those where the degree is greater than three. In particular, T =
T0∪T1∪{K3, K4}. Let then T0(z, u) and T1(z, u) be the associated bivariate
generating functions, where u now counts the total number of cubic vertices,
including the external ones. So that T (z, u) = T0(z, u) + T1(z, u) + z + z2u4.
Notice then that when removing the root vertex (and the three adjacent
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edges) of a triangulation in T1, we obtain a smaller triangulation. The re-
verse operation is to take a triangulation, draw a vertex on its root face, join
it with the three vertices on the external face, and re-root the resulting map.
This gives the following equation:

T1(z, u) = uz · T ∗(z, u). (4.15)

And using (4.13) to eliminate T4(z(1 + z−1T ∗)2) from (4.14), we can write
T (z, u) as a function of T ∗(z, u) only. The generating function T0(z, u) then
follows from the identity T = T1 + T0 + z + z2u4:

T0(z, u) = (1 + 2zu− 3z) · T ∗(z, u)− z2u (4.16)

Proof of Theorem 26. Let u0 ∼ 1. By continuity and using the theo-
rem of transfer of singularity on (3.3), it is direct to see that G3(x, u0) and
T ∗(z, u0) both share the same dominant singularity τ(u0) and the same type
of expansion for x near τ(u0) (although G3 will have a Puiseux expansion of
branching type 5/2 instead of 3/2).

Let us then study the singularity curve of T ∗(z, u). To that end, we
rewrite (4.13) as a polynomial system composed of the two following equa-
tions:

z2T4 + (z + T ∗)((z + T ∗)3 + z3(u− 1)− zT ∗) = 0,
(z + T ∗)2 − zy = 0,

(4.17)

where T4 ≡ T4(y) and T ∗ ≡ T ∗(z, u). From there we use (2.12), the min-
imal polynomial of T4(y) to eliminate T4 and y and obtain an annihilating
polynomial of T ∗(z, u):

u3z7 + 8u3z6 − 3u2z7 + 16u3z5 − 21u2z6 + 3uz7 − 21u2z5

+18uz6 − z7 + 28u2z4 − 3uz5 − 5z6 − 26uz4 + 8z5 + 11z3u
−z4 − uz2 + (4u3z6 + 16u3z5 − 12u2z6 − 36u2z5 + 12uz6

+57u2z4 + 24uz5 − 4z6 − 20u2z3 − 102uz4 − 4z5 + 106uz3

+45z4 − 34uz2 − 82z3 + 59z2 − 14z + 1)T ∗ + (6u3z5 + 8u3z4

−18u2z5 − 6u2z4 + 18uz5 + 33u2z3 − 12uz4 − 6z5 − 48uz3

+10z4 + 42uz2 + 15z3 + 3uz − 36z2 + 14z + 3)(T ∗)2

+(4u3z4 − 12u2z4 + 12u2z3 + 12uz4 + 3u2z2 − 24uz3 − 4z4

+6uz2 + 12z3 + 6uz − 9z2 − 2z + 3)(T ∗)3 + (u3z3 − 3u2z3

+3u2z2 + 3uz3 − 6uz2 − z3 + 3uz + 3z2 − 3z + 1)(T ∗)4 = 0.

(4.18)
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This polynomial being irreducible, it is the minimal polynomial of T ∗(z, u).
The only factor of its discriminant with respect to T ∗, for which the projection
u = 1 factorises to 256z− 27, is the singularity curve of T ∗(u, v), as follows:

256z(1 + z(u− 1))2 − 27, (4.19)

where z = τ(u) with τ(1) = τ = 27/256.
By setting u = u0 ∼ 1, one can now compute the Puiseux expansion of

T ∗(z, u0) directly from (4.18). Applying then the transfer theorem, we obtain
an estimate on the coefficients of T ∗(z, u0), as follows:

[zn]T ∗(z, u0) ∼
n→∞

t(u0) · n−3/2 · τ(u0)
−n,

where t(u0) can be computed from the third coefficient of the singular expan-
sion of T ∗(z, u0) and t(1) = 1/8. The same 1/8 as the constant in (2.10). As
before and using the quasi-powers theorem, this implies that the sequence of
random variables counting the number of triangles in a unifromly at random
3-connected cubic planar graph on n vertices converges in distribution to a
Gaussian limit law, as n→∞.

On can then compute the two first moments by setting u = 1 in the two
first derivatives of (4.19), the singularity curve of T ∗(z, u), with respect to
u. This gives the following:

σ′(1) = − 729

32768
and σ′′(1) =

137781

8388608
.

An application of the quasi-powers theorem concludes the proof.

Triangles in cubic networks. Let C(x, u) =
∑

n≥0 rn
xn

n!
ut be the expo-

nential generating function counting connected cubic networks, where the
variable z marks vertices and u marks triangles. We consider similarly the
bivariate exponential generating functions of the other families of cubic net-
works: L, I, S, P and H.

Notice that when removing the root edge of a network, notice that any
triangle adjacent to it will disappear. This justifies the following notation:
to the generating function associated to a class of cubic network we add the
index i ∈ {0, 1, 2} to indicate the number of triangles in the networks that are
incident with the root edge. For example, the generating function Ci(x, u)
will count connected cubic networks where the root-edge belongs to exactly
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i triangles. The same convention applies to series, parallel and h-networks.
The special case when the 3-connected core of an h-network is K4 is encoded
in the generating functions Wi. We let E(x, u) be the generating function of
networks where triangles incident to the root edge are not counted, that is,

E(x, u) = C0(x, u) + u−1C1(x, u) + u−2C2(x, u). (4.20)

The next two lemmas provide the expressions for the series Ci ≡ Ci(x, u),
Si ≡ Si(x, u), Pi ≡ Pi(x, u), Wi ≡ Wi(x, u) (i = 0, 1, 2), I, L and for H0, H1.

Lemma 28. The following system of equations involving only bivariate gen-
erating functions holds:

C0 = S0 + P0 +W0 + L+H0,

C1 = S1 + P1 +W1 +H1,

C2 = P2 +W2,

I = L2/x2,

L = x2 (I + E − L) /2 + x2(u− 1)
(
x2(E − L) + ux2L+ L2

)
/2,

P0 = x2(E − L) + x2(E − L)2/2,

P1 = ux2L(E − L) + u2x2L,

P2 = u2x2L2/2,

S0 =
(
E − (S0 + u−1S1)

)
E − u−1S1,

S1 = uL3 + 2ux2(E − L)L+ 2u2x2L2,

W0 = x4(2(1 + u)E2 + 8E3 + 5E4 + E5)/2,

W1 = x4(4u2E + 6uE2 + 2uE3)/2,

W2 = x4(u4 + u2E)/2.

Proof. Equations for C0(x, u), C1(x, u) and C2(x, u) are clear, since S2(x, u) =
H2(x, u) = 0. The equation for I(x, u) is the same as in the univariate case,
as isthmus constructions do not create nor destruct triangle.

The equation for L(x, u) is obtained as follows: triangles arising from loop
constructions when pasting a network with a double edge on the non-root
edge of the double-loop. So that from the main term x2(I(x, u) + E(x, u)−
L(x, u))/2 we need to consider separately three situations, which are drawn
in Figure 4.5. The corresponding generating functions are ux4(E(x, u) −
L(x, u))/2, u2x4L(x, u)/2 and ux2L(x, u)2/2 respectively.
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E − L
L

Figure 4.5: Triangles in loop networks.

E − L

L LL

Figure 4.6: Triangles in parallel networks.

In the case of a parallel network γ, when pasting loop networks we create
triangles incident with the root edge of γ. The possible such contributions
to P1(x, u) and P2(x, u) are respectively counted by the generating functions
ux2(E(x, u)−L(x, u))L(x, u) and x2u2L(x, u)2/2. They are drawn in Figure
4.6 in that respective order.

The equation for S1(x, u) is derived by the fact that a triangle is created
when two networks are pasted in series and one is rooted at a loop while
the other one is rooted at a double edge. The three possible configurations
are counted by the following generating functions: uL(x, u)3, ux2(E(x, u)−
L(x, u))L(x, u), u2x2L(x, u)2, and are respectively depicted in Figure 4.7.
The equation for S0(x, u) is obtained similarly to the univariate case, but
now we also need to subtracte the term u−1S1(x, u).

Finally, the equations for W0(x, u), W1(x, u) and W2(x, u) are obtained
by considering all cases for which K4 is the core of the h-network.

We say that a triangle in a network is external if it is incident with the
root edge. The non-root edges of an external triangle are called special.
We denote by M0 and M1 the families of 3-connected cubic planar graphs
(except K4) rooted at a directed and respectively without external triangle,
or with exactly one external triangle. And let M0(x, y, u) and M1(x, y, u)
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L

L

L

L

E − L

L

L

Figure 4.7: Triangles incident with the root edge of a series network.

be the associated generating functions, where variables x, y and u mark the
number of vertices, edges and triangles, respectively. Similarly to Equation
(3.3) it holds that:

2M0(x, y, u) = T0(x
2y3, u) and 2M1(x, y, u) = T1(x

2y3, u). (4.21)

We can now prove the following lemma:

Lemma 29. The following system of equations holds, with E ≡ E(x, u):

H1(x, u) =
uM1

(
x, 1 + E, 1 + u−1

(1+E)3

)
(1 + E)3 + u− 1

, (4.22)

H0(x, u) =
M0

(
x, 1 + E, 1 + u−1

(1+E)3

)
1 + E

+ (2E + E2)
H1(x, u)

u
. (4.23)

Proof. A network in H1 is obtained from a 3-connected core rooted at a
triangle, i.e. a graph γ in M1, in which we possible replace each non-root
edge with a connected network, and where the three edges of the external
triangle of γ are not replaced. The term u+3E+3E2+E3 = (1+E)3+u−1
encodes the substitution of networks over 3-sets of edges defining triangles
(except the external triangle and the corresponding edges, which are not
substituted). This translates into the first equation, where the denominator,
which is the substitution uy3 = (1+E)3+u−1 (where y and u are the second
and the third variable of M1(x, y, u), guaranties that the triangle incident to
the root edge is not substituted.

Let us now consider a network in H0. It can be obtained in two different
ways: either from a core without an external triangle, or from a core with an
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external triangle in which some special edges are replaced with a non-empty
network. Using a similar encoding argument as before we arrive at the second
equation, where the factor 2E + E2 in the second summand corresponds to
the substitution of networks on the pair of special edges.

Triangles in rooted connected cubic planar graphs. The bivariate
generating function of connected cubic planar graphs rooted at a vertex
C•(x, u) can finally be described in terms of networks, similarly as in Equa-
tion (3.21), as follows:

3G•1(x, u) = C(x, u) + I(x, u)− L(x, u)− x2C(x, u)− L(x, u)2, (4.24)

where C(x, u) = C0(x, u) + C1(x, u) + C2(x, u).

One can now directly deduce from Lemma (28) that every generating
function in the right-hand side of Equation (4.24) can be written as a poly-
nomial in E(x, u) (it will be made more clear in the next paragraph). And for
a fixed u0 ∼ 1, using our now classical continuity argument and the theorem
of transfer of singularity on Equation (4.24), it holds that each bivariate gen-
erating function G(x, u), G1(x, u) and G•1(x, u) both share the same dominant
singularity ρt(u0) and the same sort of expansion for x near ρt(u0) as E(x, u).
Although E(x, u) and G•1(x, u) will admit a Puiseux expansion of branching
type 3/2, while for both G(x, u) and G1(x, u) the Puiseux expansion will be
of branching type 5/2. It will also imply that all the above generating will
be analytic in a dented domain at ±ρt(u0).

In particular, to prove Theorem 27, it will suffice to study the singularity
curve of E(x, u) as well as the singular behaviour of E(x, u0) for x near ρt(u0),
for any positive real number u0 in the neighbourhood of one.

The singularity curve. Using the two equations of (4.21), one can rewrite
Equation (4.20) and the equations of Lemmas 28 and (29) to obtain the



131 Chapter 4. Random cubic planar graphs

following polynomial system involving bivariate generating functions:

u2C0 + uC1 + C2 − u2E = 0,
S0 + P0 +W0 + L+H0 − C0 = 0,
S1 + P1 +W1 +H1 − C1 = 0,
L2 − x2B = 0,
x2(B + E − L) + x2(u− 1)(L2 + x2(L(u− 1) + E))− 2L = 0,
2x2(E − L) + x2(E − L)2 − 2P0 = 0,
ux2(E − L)L+ u2x2L− P1 = 0,
u2x2L2 − 2P2 = 0,
uE2 − (1 + E)(uS0 + S1) = 0,
uL3 + 2ux2(E − L)L+ 2u2x2L2 − S1 = 0,
x4(2(1 + u)E2 + 8E3 + 5E4 + E5)− 2W0 = 0,
x4(4u2E + 6uE2 + 2uE3)− 2W1 = 0,
x4(u4 + u2E)− 2W2 = 0,
uT1 − 2((1 + E)3 + u− 1)H1 = 0,
uT0 + 2(1 + E)((2E + E2)H1 − uH0) = 0,
x2(1 + E)3 − z = 0,
(u− 1)(3E + 3E2 + E3) = 0,

(4.25)

where T0 ≡ T0(z, u) and T1 ≡ T1(z, u).
Using now the two equations (4.16) and (4.15), together with its minimal

polynomial (4.18) of T ∗(z, u), one can now eliminate every other variables
from the system (4.25) to obtain an annhihilating polynomial for E(x, u)
irreducible and of degree 24. It is the minimal polynomial of E(x, u) but is
too big to be presented here. So is its singularity curve σ(x, u), with x = ρt(u)
so that ρt(1) = ρ.

Proof of Theorem 27. Let now u0 ∼ 1. Setting u = u0 on the minimal
polynomial of E(x, u) allow us to compute its Puiseux expansion for x near
ρt(u0). It is of the form:

E(x, u0) ∼
x→ρt(u0)

E0(u0) + E2(u0)

(
1− x

ρt(u0)

)
+ E3(u0)

(
1− x

ρt(u0)

)3/2

.

(4.26)
As mentionned before, E(x, u0) is analytic in a dented domain at ±ρt(u0),
so that an application of the transfer theorem on (4.26) implies the following
estimate on its coefficients:

[xn]E(x, u0) ∼
n→∞

c(u0) · n−3/2 · ρt(u0)−n,
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where c(u0) = 3E3(u0)/(2
√
π) and c(1) = c.

We now satisfy every conditions of the quasi-powers theorem (apart, as
before, for an inequality that one can verify after computing an approxi-
mation of the second moment). This implies that the sequence of random
variables associated to the number of triangles in a unifromly at random cu-
bic planar graph on n vertices converges in distribution to a Gaussian limit
law. Its two first moment are computed by setting u = 1 in the two deriva-
tives of σ(x, u), the singularity curve of E(x, u), with respect to u. This gives
the following approximations:

ρ′t(1) ≈ −0.0389371919 and ρ′′t (1) ≈ 0.0229417852,

which concludes the proof.

4.4 Conclusion

We comment briefly on the notable differences of this model with the classical
model of random cubic (not necessarily planar) graphs [72]. A random cubic
graph is with high probability 3-connected. Also, the number of triangles
follows a Poisson law with expectation 4/3. Finally a random cubic graph
is 3-colourable, whereas a random cubic graph has a (small) probability of
containing K4 as a component, hence of being 4-chromatic.

To conclude, we illustrate in Table 4.1 the approximate values of the first
and the second moments of the following Gaussian limit laws: the number of
cut-vertices, isthmuses, blocks and triangles in a random cubic planar graph.
We do not reproduce here the first two moments of the limiting distributions

Parameter Expectation Variance

# cut-vertices 0.0018774448 · n 0.0037934519 · n
# cut-edges 0.0009389848 · n 0.0009496835 · n
# blocks 0.0018777072 · n 0.0037958302 · n
# triangles 0.1219742813 · n 0.0649847862 · n

Table 4.1: The first and the second moments of the random variables associ-
ated with the number of several parameters in a random cubic planar graph
on n vertices.

for the number of cherries H and near-bricks B, as they directly depend on
the knowledge of the respective automorphism group of H and B.



Chapter 5

Enumeration of 4-regular
planar graphs

Copyright notice: A slightly modified version of this chapter has already
been published in 2019 in the Proceedings of the London Mathematical So-
ciety, under the title Enumeration of 4-regular planar graphs, and with the
DOI address: https://doi.org/10.1112/plms.12234. This work was co-
authored together with Marc Noy and Juanjo Rué (see the reference [53]).

5.1 Introduction

In this chapter we provide the first scheme for counting labelled 4-regular
planar graphs through a complete recursive decomposition. Let C(x) =∑
cnx

n/n! be the exponential generating function of labelled connected 4-
regular planar graphs counted according to the number of vertices. We show
that the derivative C ′(x) can be computed effectively as the solution of a
(rather involved) system of algebraic equations. In particular C ′(x) is an
algebraic function. Using a computer algebra system we can extract the
coefficients of C ′(x), hence also of C(x). If G(x) =

∑
gn

xn

n!
is now the

generating function of all 4-regular planar graphs, the exponential formula
G(x) = eC(x) allows us to find the coefficients gn as well.

Our main result is the following:

Theorem 30. The generating function C ′(x) is algebraic and is expressible
as the solution of a system of algebraic equations from which one can compute
effectively their coefficients.
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As a corollary, and using Lemma 2, we obtain:

Corollary 31. The sequence {gn}n≥0 is P -recursive, that is, it satisfies a
linear recurrence with polynomial coefficients.

We also determine the generating function τ(x) =
∑
tn
xn

n!
of 3-connected

4-regular graphs and show that its derivative is algebraic

Theorem 32. The generating function τ ′(x) is algebraic and is expressible
as the solution of a system of algebraic equations from which one can compute
effectively their coefficients.

To obtain our results we follow the classical technique introduced by
Tutte: take a graph rooted at a directed edge and classify the possible con-
figurations arising from the removal of the root edge. This produces several
combinatorial classes that are further decomposed, typically in a recursive
way. The combinatorial decomposition translates into a system of equations
for the associated generating functions, which in our case is considerably in-
volved. Next we provide a brief overview of the combinatorial scheme in our
solution.

Using a variant of the classical decomposition of 2-connected graphs into
3-connected components in the spirit of [7], we find an equation linking C(x)
to the generating function T (u, v) of 3-connected 4-regular planar graphs,
counted according to the number of simple edges and the number of double
edges. Actually, T will be the generating function of rooted 3-connected maps
(a rooted map is an embedding of a planar graph where a directed edge is
distinguished) but by Whitney’s theorem, 3-connected planar graphs have
a unique embedding in the oriented sphere and in this situation counting
graphs is equivalent to counting maps. As will be seen later, it is essential
to count 3-connected maps according to simple and double edges, otherwise
there is not enough information to obtain C(x).

Once we have access to T (u, v) we can compute the coefficients of C(x)
to any order. In order to compute T (u, v) we apply the reverse procedure
working with maps instead of graphs. The starting point is the fact that the
number Mn of rooted 4-regular maps with 2n edges is well known, since they
are in bijection with rooted (arbitrary) maps on n edges, and equal to

Mn =
2 · 3n

(n+ 1)(n+ 2)

(
2n

n

)
.
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Using again the decomposition into 3-connected components, one can obtain
an equation linking T (u, v) and M(z) =

∑
Mnz

n. However this is not suffi-
cient since T (u, v) is a bivariate series and cannot be recovered uniquely from
the univariate series M(z). In order to overcome this situation, we enrich
the combinatorial scheme and count maps according to a secondary param-
eter: the number of isolated faces of degree 2, namely, those not incident
with another face of degree 2. Notice that this parameter, when restricted to
3-connected 4-regular planar graphs, is precisely the number of double edges.

If M(z, w) is the associated series, where w marks the new parameter,
then we can enrich the corresponding equations and obtain an algebraic re-
lation of the form

T (f(z, w,M(z, w)), g(z, w,M(z, w))) = h(z, w,M(z, w)),

where f, g and h are explicit functions. The transformation

u = f(z, w,M), v = g(z, w,M)

turns out to have non-zero Jacobian and can be inverted explicitly. This
allows us to express T (u, v) as a power series whose coefficients can be com-
puted in terms of those of M(z, w) and the inverse mapping (z, w)→ (u, v).
From here, we can compute the coefficients of T (u, v) to any order. In par-
ticular, the coefficients of T (u, 0) give the numbers Tn of simple rooted 3-
connected 4-regular planar maps. By double counting, we obtain the number
of labelled 3-connected 4-regular planar graphs as tn = Tn(n− 1)!/8.

It remains to compute M(z, w). To this end, we use the dual bijection
between 4-regular maps and quadrangulations, and count quadrangulations
according to the number of faces and the number of vertices of degree 2 not
adjacent to another vertex of degree 2. This is technically demanding but
can be achieved using the decomposition of quadrangulations along faces and
edges, refined to take into account for the new parameter.

Once we have access to T (u, v), we can also enumerate simple 4-regular
maps, a result of independent interest (the enumeration of simple 3-regular
maps can be found in [27]).

Theorem 33. The generating function of rooted simple 4-regular maps is
algebraic, and is expressible as the solution of a system of algebraic equations
from which one can compute its coefficients effectively.

The steps towards the proofs of Theorems 30 and 33 are summarized in
the following diagram:
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Simple quadrangulations (Section 2.1)w�
Arbitrary quadrangulations ←→ 4-regular maps (Section 2.2)w�

3-connected 4-regular multigraphs ←→ 3-connected 4-regular maps (Section 3)w� w�
4-regular graphs (Section 4) Simple 4-regular maps (Section 5)

We remark that the final equations relating the power series M(z, w),
T (u, v) and C(x) are not written down explicitly. Instead, we work with
several intermediate systems of equations that allow us to extract the coef-
ficients of the corresponding series. This is computationally demanding but
it is within the capabilities of a computer algebra system such as Maple.

Here is a summary of the chapter. In Section 5.2, we determine the series
M(z, w) as the solution of a system of polynomial equations. In Section 5.3,
we obtain T (u, v) as a computable function of M(z, w), thus proving the
second part of Theorem 30. In Section 5.4, we find an equation connecting
C(x) and T (u, v), which allows us to compute the coefficients of C(x), that
is, the number of connected 4-regular planar graphs, and to complete the
proof of Theorem 30. From the relation G(x) = exp(C(x)), we obtain the
coefficients of G(x). Finally, in Section 5.5 we count simple 4-regular maps.

5.2 Counting quadrangulations

A diagonal in a quadrangulation is a path of length 2 joining opposite vertices
of the external face. If uv is the root edge, there are two kind of diagonals,
those incident with u and those incident with v. By planarity both cannot
be present at the same time. A cycle of length 4 which is not the boundary
of a face is called a separating quadrangle. Vertices in the outer face are
called external vertices. A vertex of degree 2 is isolated if it is not adjacent
to another vertex of degree 2. An isolated vertex of degree 2 is called a
2-vertex.
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Figure 5.1: Examples of simple quadrangulations. The first three, from left
to right, belong to N0, N1 and N2, respectively. The last one is in R: a
quadrangulation from S in which one face has been replaced with a quadran-
gulation in N1. Isolated vertices of degree 2 are shown in white.

5.2.1 Simple quadrangulations

All quadrangulations in this section are simple, that is, have no multiple
edges. This implies in particular that all faces are quadrangles, that is, simple
4-cycles. We will now refine the system of equation from [47] or Section 2.4.2
of Chapter 2, to include a second variable marking the number of 2-vertices
in simple quadrangulations. To that end, let us consider the following classes
of quadrangulations, illustrated in Figure 5.1:

• Q are all (simple) quadrangulations.

• S are quadrangulations without diagonals or separating quadrangles.

• N are quadrangulations containing a diagonal incident with the root
vertex. By symmetry they are in bijection with quadrangulations con-
taining a diagonal not incident with the root vertex.

• Ni are quadrangulations in N with exactly i external 2-vertices, for
i = 0, 1, 2.

• R are quadrangulations obtained from S by possibly replacing each
internal face with a quadrangulation in Q.

In the following generating functions, z marks internal faces and w marks
2-vertices. For each class of quadrangulations we have the corresponding
generating function written with the same letter. For instance Q(z, w) is
associated with the class Q, and so on. The exception is S(z), since a quad-
rangulation in S has no vertex of degree 2, and variable w does not appear.
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Lemma 34. Let

N = N0 +N1 +N2, Ñ = N0 +
N1

w
+
N2

w2
.

Then the following system of equations holds:

Q = z + 2N +R,

R = S(z + 2Ñ +R),

N0 = (Ñ +R)

(
Ñ +R +N0 +

N1

2w

)
,

N1 = 2zw

(
Ñ +R +N0 +

N1

2

)
,

N2 = z2w3 + zw

(
N2 +

N1

2

)
.

(5.1)

Moreover, the system and has a unique solution with non-negative coeffi-
cients.

Proof. First we check that the system has non-negative coefficients. As S(z)
has non-negative Taylor coefficients, we only need to argue on the terms
N1/w and N2/w

2. But by definition, quadrangulations in Ni have at least i
2-vertices, and the generating function Ni has wi as a factor. It is immediate
to check that all the right-hand terms are divisible by z, hence Lemma 1
guarantees the last claim in the statement.

The first equation follows from the fact that a quadrangulation, not re-
duced to a single quadrangle, either has a diagonal or is obtained from a
quadrangulation in S by replacing internal faces with arbitrary quadrangu-
lations in Q.

The second equation expresses the recursive nature of the class R. Notice
that the substitution inside S contains the term Ñ instead of N . The reason
is that vertices of degree 2 in the outer face become vertices of degree more
than two after substitution.

For the rest of the proof, notice that the left-hand terms in the last three
equations correspond to quadrangulations in N , whose diagonal is incident
to the root vertex. They are decomposed following their rightmost diagonal,
that is, the first diagonal to the left of the root edge. Let A be the quad-
rangulation consisting of a single quadrangle with a diagonal adjacent to the
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root vertex. It has two inner faces: f1, incident with the root edge, and f2.
A quadrangulation in N is obtained by replacing the inner faces of A with
simple quadrangulations, such that the quadrangulation replacing f1 does
not have a diagonal incident with the root vertex, as otherwise the decom-
position would not be unique. the diagonal of A would not be the rightmost
diagonal of the resulting quadrangulation, contrary to the construction. In
what follows, the top vertex is the external vertex adjacent to the root vertex
and not incident with the root edge.

Equation for N0. Both f1 and f2 can be replaced either with quadrangu-
lations in R or those with a diagonal not adjacent to the root vertex (which

are in bijection with N ), hence the factor Ñ + R. In addition, f2 can be
replaced by a quadrangulation with a diagonal adjacent to its root vertex,
but only if the top vertex is not of degree 2, that is, any quadrangulation in
N0 and half of the ones in N1 (those in which the top vertex is not of degree
2).

Equation for N1. In this case, either has f1 or f2 is empty. Notice that
both cases are symmetric with respect to the diagonal of A (but in the second
case, the diagonal of A does not have to be the rightmost diagonal, instead it
is the leftmost). We will hence only explicit the first case, where f1 is replaced
by the single quadrangle zw while for f2 it is a quadrangulation counted by
Ñ +R+N0 +N1/2. Observe that contrary to the previous equation we have
the term N1/2 instead of N1/(2w): this is because the middle vertex of the
diagonal of A remains of degree 2.

Equation for N2. In this case face f1 is not replaced. If neither is f2, we
get A, hence the term z2w3. Else, f2 is replaced with a quadrangulation in
N whose top vertex is of degree 2, corresponding to the term N2 +N1/2, as
before.

From the previous system of equations we can compute the coefficients
to any order of all the series involved by iteration. As we are going to see, a
modified version of the series Q, N0, N1, N2 is needed in Section 5.2.2.

5.2.2 Arbitrary quadrangulations

A quadrangulation of a 2-cycle is a rooted map in which each face is of
degree 4 except the outer face which is of degree 2. One of the two edges
in the outer face is taken as the root edge, and its tail is the root vertex.
An arbitrary quadrangulation is obtained from a simple quadrangulation
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Figure 5.2: The different types of quadrangulations in B, depending on the
nature of the root face. Isolated vertices of degree 2 are shown in white.

by replacing edges with quadrangulations of a 2-cycle. Conversely, given
an arbitrary quadrangulation, collapsing all maximal 2-cycles, one obtains a
simple quadrangulation. Notice that among the simple quadrangulations, we
need to include the degenerate case consisting of a path of length 2, which
we denote by P3 (see Figure 5.2 and the corresponding caption).

In an arbitrary quadrangulation there are three possibilities for the shape
of the root face: it is either a quadrangle, the result of gluing two 2-cycles
through a vertex, or gluing one 2-cycle and one edge (see Figure 5.2).

We now define the following classes of quadrangulations:

• A = A0 ∪ A1 are quadrangulations of a 2-cycle. A1 are those whose
root vertex is a 2-vertex (by symmetry, they are in bijection with those
in which the other external vertex is a 2-vertex), and A0 are those
without external 2-vertices.

• B = B0∪B∗0∪B1 are arbitrary quadrangulations. B1 are those in which
the root edge is incident to exactly one 2-vertex, and B0 ∪B∗0 are those
in which the root edge is not incident to a 2-vertex. Furthermore, B∗0
are the quadrangulations obtained by replacing one of the two edges
incident with the root edge on the single quadrangle, as illustrated in
Figure 5.3. The class B∗0 is introduced for technical reasons that will
become apparent in the next section, when we consider the dual class
of 4-regular maps.

In the generating functions A0(z, w) and A1(z, w), variables z and w mark,
respectively, internal faces and 2-vertices, whereas in B0(z, w), B1(z, w) and
B∗0(z, w) variable z marks all faces: it is important to keep in mind this
distinction when checking the equations satisfied by the various generating
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Figure 5.3: On the left are the two types of quadrangulations in A∗0. On the
right are two types of substitutions of P3 counted in A1.

functions. An exception, which again becomes clear when passing to the dual,
is the term 2z encoding the path P3 (which can be rooted in two different
ways), where the middle vertex is not considered to be a 2-vertex.

The next generating function encodes the substitution of edges in simple
quadrangulations:

Ã = A0 +
2A1

w
.

The reason for w in the denominator is that, after substitution, the 2-vertex
in A1 no longer has degree 2, and the factor 2 is because this vertex can be
any of the two endpoints of the root edge.

To encode the substitution of edges by objects from A, we first remark
that the number of edges in a quadrangulation is twice the number of faces,
hence there is a bijection between faces and pairs of edges. Moreover, since
2-vertices are isolated, pairs of edges incident with a 2-vertex are uniquely
determined. Indeed, one can interpret w as to mark all pairs of edges inci-
dent with 2-vertices, while z marks pairs of remaining edges except the pair
that corresponds to the external face in the aforementioned bijection. These
considerations justify the following change of variables:

s = s(z, w) = (1 + Ã)2, t = t(z, w) =
w + 2Ã+ Ã2

(1 + Ã)2
,

whose meaning is the following. The term (1 + Ã)2 in s encodes pairs of
edges that are possibly substituted. Pairs of edges incident with a 2-vertex
must be treated differently: if any of them is replaced with an object from
A, the vertex no longer has degree 2, hence the term w+ 2Ã+ Ã2 in t. This
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must be corrected with the term (1 + Ã)2 in the denominator of t since those
edges where already counted in s.

Consider now the system (5.1) from the previous section with the change
of variables

z = zs, w = t.

We remark that the factor z in zs encodes faces in the initial simple quad-
rangulation. We then partition the resulting quadrangulations into three
families. The first one is associated to the generating function E(z, w) which
counts those whose initial simple quadrangulation is the single quadrangle.
The second and third are counted by Q1(z, w) and Q0(z, w), which respec-
tively count those whose root edge is incident or not with a 2-vertex, and
whose initial simple quadrangulations is not the single quadrangle. In all
three generating functions, the variable z marks inner faces and the variable
w marks 2-vertices.

Lemma 35. The following equalities hold:

Q1 =
1

t
(N1(zs, t) + 2N2(zs, t)),

Q0 = s(2N0(zs, t) +N1(zs, t) +R(zs, t)) + (2Ã+ Ã2)Q1,

E = z(1 + Ã)4 − 4zÃ2 + 4zwÃ2,

where z marks inner faces and w marks 2-vertices.

Proof. Let uv be the root edge. In all three cases we consider the simple
quadrangulation obtained when collapsing all 2-cycles. The first equation
holds because quadrangulations where there is one 2-vertex incident with
the root edge are encoded by N1 + 2N2, and the factor 1/t because we do
not replace any of its two incident edges.

In the second equation, we need to distinguish whether either u or v in
the initial simple quadrangulation were of degree 2 or not. If this is the case,
we must replace at least one of its two incident edges with a quadrangulation
of a 2-cycle, obtaining the correcting factor (2Ã+ Ã2), hence the term (2Ã+
Ã2)Q1. If neither u nor v were of degree 2 we get s(2N0 + N1 + R), where
the factor s accounts for replacing the pair of edges that corresponds to the
external face.

As for the last equation, vertices of degree 2 in the root face can become
isolated after replacing two consecutive edges of a quadrangle by quadran-
gulations of a 2-cycle. There are four possibilities for this situation, encoded
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Figure 5.4: The four types of quadrangulations obtained by replacing two
consecutive edges of a quadrangle with quadrangulations of a 2-cycle, where
a 2-vertex (in white) is created. The first two on the left are in B0, while the
two on the right are in B1.

by 4zÃ2 in the expansion of z(1 + Ã)4 (see Figure 5.4). Hence the term

z(1 + Ã)4 − 4zÃ2 + 4zwÃ2.

We treat separately the generating function encoding the substitution of
P3, the path on 3 vertices, which corresponds to

Â = A0 + A1 +
A1

w
. (5.2)

The difference with Ã is that the two edges of P3 have one endpoint of degree
1, and when the external 2-vertex of a quadrangulation in A1 is identified
with one of them, its degree does not increase (see Figures 5.2 and 5.3).

Lemma 36. Let Q0, Q1 and E be as in Lemma 35. Then the following
equations hold and have a unique solution with non-negative coefficients:

A1 = zw(1 + Â),

A0 = 2zÃ(1 + Â) + z(Q0 +Q1 + E + 2zÃ(w − 1) + 2zÃ2(1− w)).

(5.3)
Moreover, the system has a unique non-zero solution with non-negative coef-
ficients.

Proof. The right-hand terms are clearly divisible by z. The right-hand side
of the second equation has non-negative coefficients. The term −2zÃ cancels
with the first term, and −2zwÃ cancels with a corresponding term in E.
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Lemma 1 then guarantees the uniqueness of the solution with non-negative
coefficients.

We first observe that a quadrangulation of a 2-cycle can be thought as
an ordinary quadrangulation adding an edge parallel to the root edge.

When removing the root vertex of a quadrangulation of a 2-cycle inA1, we
obtain either an edge (term zw), a quadrangulation of a 2-cycle in A0 (term
zwA0), a quadrangulation of a 2-cycle in A1 (term zA1), or its symmetric. In
the last case, we create a 2-vertex, hence the factor w in zwA1. The reverse
operation consists of starting from a quadrangulation γ encoded in 1 + Â,
adding a new vertex v in the outer face, connecting v to the root vertex v′ of
γ by two edges, and rooting the resulting map at vv′ so that the outer face
is a digon.

The term 2zÃ(1 + Â) in the equation for A0 encodes quadrangulations
of the 2-cycle arising from a quadrangulation whose external face is not a
simple 4-cycle (illustrated in the two leftmost parts of Figure 5.2 and on the
right of Figure 5.3). The term zQ0 +zQ1 +zE arises from the corresponding
quadrangulations when building the 2-cycle. The term zE has to be adjusted
because either we create a 2-vertex, or we remove a 2-vertex. The first case
is counted by the term 2zÃ(w− 1), illustrated by the two graphs on the left-

hand side of Figure 5.3, while the second is counted by the term 2zÃ2(1−w),
illustrated by the two graphs on the right-hand side of Figure 5.4.

From the previous lemma we can obtain the generating functions associ-
ated to B0, B∗0 and B1.

Lemma 37. Let Q0, Q1, E, A0, A1 be as in the previous two lemmas and
Â as defined in Equation (5.2). Then B0, B1 and B∗0 are given by

B0 = 2z(1 + Â)(1 + Â− A1) + z(Q0 + E − 2zwÃ2 − 2zÃ),

B1 = 2z(1 + Â)A1 + zw(Q1 + 2zÃ2),

B∗0 = 2z2Ã,

(5.4)

where z marks faces and w marks 2-vertices.

Proof. Recall that an arbitrary quadrangulation is obtained by substituting
edges by quadrangulations of a 2-cycle in a simple quadrangulation. The
factor z in all equations is used to encode the outer face, which has not been
considered in the previous generating functions.
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The term 2z(1 + Â)(1 + Â−A1) encodes quadrangulations obtained from

P3. Notice that quadrangulations counted by the term 2z(1+ Â)A1 are in B1
and must be removed from B0. The second term z(Q0 +E − 2zwÃ2 − 2zÃ)
encodes quadrangulations obtained from simple quadrangulations whose root
face is a 4-cycle. In this situation, we have to remove from zE the terms
2z2Ã and 2z2wÃ2, which contribute to B∗0 and B1, respectively (see the
two leftmost maps in Figure 5.3 and the two rightmost maps in Figure 5.4,
respectively). Finally, there is an extra contribution to B1 with the term
zwQ1.

From the Systems (5.1) and (5.4) we can compute, by iteration, the coef-
ficients to any order of all the series involved. In particular we can compute
the coefficients of the series B1, B0 and B∗0 , which are needed in the next
section.

5.3 Rooted 3-connected 4-regular planar maps

In this section we count 3-connected 4-regular planar maps according to the
number of simple and double edges. Because they have a unique embedding
on the oriented sphere, this is equivalent to counting labelled 3-connected
4-regular planar graphs. We notice that a 3-connected 4-regular map cannot
have triple edges, and double edges must be vertex disjoint. In addition, all
maps in this section are rooted.

For brevity, a face of degree 2 not adjacent to another face of degree 2
is called a 2-face. We say that an edge is in a 2-face if it is one of its two
boundary edges. An edge is ordinary if it is not in the boundary of a 2-
face. Since the number of edges is even, the number of ordinary edges is also
even. Maps are counted according to two parameters: the number of 2-faces,
marked by variable w, and half the number of ordinary edges, marked by q.
Setting w = q one recovers the enumeration of 4-regular maps according to
half the number of edges. Observe that the dual of a quadrangulation with
` 2-vertices is a 4-regular map with ` 2-faces.

We need to define the replacement of edges by maps. Let M be a rooted
map. Consider a fixed orientation of the edges in M ; since in a rooted map
all vertices and edges are distinguishable we can define such an orientation
unambiguously.

Replacement of simple edges. Let let e = uv be an edge of M and N a map
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whose root edge is simple. The replacement of e with N is the map obtained
by the following operation. Subdivide e twice transforming it in to the path
uu′v′v, remove the edge u′v′, and identify u′ and v′ with the end vertices
of the (previously deleted) root edge of N , respecting the orientations. An
example is shown in Figure 5.5, bottom right.

Replacement of 2-faces. Let (e, e′) be the endpoints of a 2-face f and N
a map whose root is a 2-face f ′. The replacement of f with N is the map
obtained by identifying (e, e′) with the endpoints of f ′ after having deleted
the two edges of f ′, while preserving the orientation and the embedding.
On the bottom of Figure 5.5, an example of a map rooted at a 2-face is
illustrated by the second picture from the left, while the third picture from
the left exhibits a 2-face that has been replaced.

Notice that ifM andN in the above are 4-regular, then the maps obtained
by replacement of simple edges or 2-faces are also 4-regular.

We now consider the following families of (rooted) 4-regular maps.

• M = M0 ∪ M∗
0 ∪ M1 are 4-regular maps. M0 ∪ M∗

0 are 4-regular
maps in which the root edge is not incident with a 2-face, and M1

are those for which the root edge is incident with exactly one 2-face.
M∗

0 are maps in which the root is one of the extreme edges of a triple
edge, corresponding to dual maps of quadrangulations on the left of
Figure 5.3. These classes are in bijection with the classes B0, B∗0 and B1
from the previous seciton, and Lemma 37 gives access to the associated
generating functions.

The next classes are all subclasses of M. Given a map M , we let M− be
the map obtained by removing the root edge st. In accordance with the
terminology introduced in the next section, the poles are the endpoints s, t
of the root edge.

• L are loop maps: the root-edge is a loop.

• S = S0 ∪ S1 are series maps: M− is connected and there is an edge in
M− that separates the poles. As above, the index i = 0, 1 refers to the
number of 2-faces incident with the root edge.

• P = P0 ∪ P1 are parallel maps: M− is connected, there is no edge in
M− separating the poles, and either M − {s, t} is disconnected or st
is a double or a triple edge of M−. The index i = 0, 1 has the same
meaning as in the previous class.
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Figure 5.5: Root-decomposition of 4-regular maps. On top a loop map (left)
and a series map (right). Bottom, from left to right: parallel map, map in
F , and two maps in H.

• F are maps M such that the face to the right of the root-edge is a
2-face, and such that M − {s, t} is connected; see Figure 5.5. Maps in
F are those meant to be pasted on a 2-face. Notice that in this case,
the information whether the 2-face lays on the right of the root edge
or on its left will be lost. We hence chose one of those two rootings so
we don’t need to carry over a factor 1/2 when later doing the algebraic
inversion. The maps with a 2-face laying on the left of the root edge
are in F̄ and are, by symmetry, in bijection with those in F .

• H are h-maps: they are obtained from a 3-connected 4-regular map C
(the core) and possibly replacing every non-root edge of C with a map
in M. The root edge of C must be a simple edge.

Lemma 38. The former classes partition M, that is,

M = L ∪ S ∪ P ∪H ∪ F ∪ F̄ .

Proof. Let G be a 4-regular map rooted at e = st, and suppose e is not a
loop, so we are not in the class L. Consider the 2-connected component C
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containing e. As before, C is either a series, parallel or h-composition. Series
and h-compositions correspond, repectively, to classes S and H. Parallel
compositions are either in P , in F or in F̄ .

The next step is to determine the algebraic relations among the gener-
ating functions of the previous classes. Variable q marks half the number
of ordinary edges, and w the number of 2-faces. We need to introduce an
auxiliary generating function D. It is combinatorially equivalent to the gen-
erating function associated to the class M, but it will instead count maps
that are ready to be pasted on a single edge. That is maps whose root edge
has already been suppressed. The difference in terms of generating function
is as follows. If the root edge was a single or a quadruple edge, i.e. the map
belongs toM0, then it does not change anything. Now if the root edge is in
a double edge forming a 2-face, i.e. the map belongs to M1, then removing
it will make the other edge ordinary. This is accounted for by dividing the
generating function by w then multiplying it by q. Finally if it belongs to
a triple edge, then we two cases arise: either the two edges remaining after
the suppression of the root form a 2-face or not. The latter are maps in
M0, and it does not change anything for the associated generating function,
while the former are the maps in M∗

0, and is accounted for by dividing the
generating function by q then multiplying it by w. This is a technical device
that simplifies the forthcoming equations.

Let T (u, v) be the generating function of 3-connected 4-regular maps in
which the root edge is simple, where u marks half the number of simple edges
and v marks the number of double edges (let us recall again that the number
of edges in a 4-regular graph is even). The next result provides a link between
the known series M0, M

∗
0 and M1, and the series T we wish to determine.

Lemma 39. The following system of equations holds, where q marks half the
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Figure 5.6: On the left the two cases of loop maps. On the right is a map in
S1, in which two loop maps are connected in series, thus creating a 2-face.

number of ordinary edges, and w the number of 2-faces.

M0 = S0 + P0 + L+H,

M1 =
w

q
(S1 + P1 + 2qF ),

M∗
0 = 2q2D,

D = M0 +
q

w
M1 +

w

q
M∗

0 ,

L = 2q(1 +D − L) + L(w + q),

S0 = D(D − S0 − S1)−
L2

2
,

S1 =
L2

2
,

P0 = q2(1 +D +D2 +D3) + 2qDF,

P1 = 2q2D2,

H =
T (q(1 +D)2, w + q(2D +D2) + F )

1 +D
.

(5.5)

Proof. The first four equations follow directly from the definitions. Consider
now loop maps. The double-loop is the map consisting of a single vertex and
two loops. A loop map is obtained by possibly replacing the non-root loop
of the double-loop with a map inM. We have two possiblities illustrated in
Figure 5.6, thus giving:

L = 2q(1 +D − L) + L(q + w).

A series map is obtained by taking a map in M with poles s1 and t1, a
map inM\S with poles s2 and t2, and then replacing s1t1 and s2t2 with edges



5.3. Rooted 3-connected 4-regular planar maps 150

t1s2 and s1t2, the latter being the new root. When the two maps connected
in series are in L, a 2-face is created containing the root (see Figure 5.6),
and we obtain a map in S1. There are four ways to connect two loop maps
in series, but only two of them produce a map in S1: when they are rooted
either both on a face of degree one, or both on a face of degree more than
one. In terms of generating functions we have

S0 = D(D − S)− S1 and S1 =
L2

2
.

A parallel map can be obtained in two different ways. First, from a map
in F with double root edge r and replacing exactly one edge in r with a map
in M. This is encoded by 2qFD (see Figure 5.7). Secondly, we take the
4-bond (an edge of multiplicity 4) and replace any of its three non-root edges
with maps in M. This is encoded by q2(1 + D)3 (see Figure 5.5), but two
particular cases must be considered:

1) When exactly two edges of the 4-bond are substituted, encoded by P1

(see Figure 5.7), where a double edge is created;

2) When exactly one edge of the 4-bond is substituted.

Again there are two instances, encoded by M∗
0 (see Figure 5.7), where

the root edge belongs to exactly one of the two faces of degree 2. Notice
that these faces are not isolated and hence are encoded as three ordinary
edges. When the root edge is removed, the face of degree two containing it
is removed and the remaining one becomes isolated, i.e. a 2-face. Summing
this up gives the expressions for P0 and P1.

A map in H is obtained by possibly replacing the non-root simple edges
of a core by a map in M, and the double edges with either:

1) A map in M on one of the edges of the double edge;

2) Two maps in M, one on each edge;

3) A map in F (see Figure 5.5).

This gives

H =
T (q(1 +D)2, w + q(2D +D2) + F )

1 +D
.
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Figure 5.7: Top from left to right: two types of maps in P1, and a map in
P0 obtained by taking a map in F and substituting its root edge by a map in
M. Bottom: the two types of maps in M∗

0.



5.3. Rooted 3-connected 4-regular planar maps 152

Proof of Theorem 32. From the knowledge of M and the Mi in the pre-
vious section we can determine D = M∗

0/(2q
2). Hence we can also determine

L, then S0 and S1. We also know P1 = 2wD2 and from M1 = S1 +P1 + 2wF
we obtain F . This is enough to compute P0, and from M0 = S0 +P0 +L+H
we determine H. Since M and the Mi were algebraic functions, so are all the
functions in the previous system.

We are ready for the final step. Consider the following change of variables

u = q(1 +D)2, v = w + q(2D +D2) + F,

relating T and H. The first terms in the expansion of u and v in q and w are

u = q + · · · , v = w + · · ·
It follows that the Jacobian at (0, 0) is equal to 1 and the system can be
inverted, in the sense that we can determine uniquely the coefficients of the
inverse series. Computationally, this can be explicitly obtained using Gröbner
basis (we are grateful to Manuel Kauers for this observation).

Let the inverse of the system be

q = a(u, v), w = b(u, v).

Since D and F are algebraic functions, so are the inverse functions a and b.
Now we use the last equation in Lemma 39 to get

T (u, v) = (1 +D(a(u, v), b(u, v))H(a(u, v), b(u, v)).

This equation determines T . Since all the series involved are algebraic, so is
T .

Recall that tn is the number of labelled 3-connected 4-regular planar
graphs. Let Tn = [uk]T (u, 0) be the number of simple rooted 3-connected
4-regular maps. Then we have the relation

8ntn = n!Tn.

This follows by double counting. We can label the vertices of a rooted map in
n! different ways, since vertices in a rooted map are distinguishable, and on
the other hand, from a labelled graph we obtain 8n rooted maps: 4n choices
for the directed root edge, and 2 choices for the root face. As a consequence,

8xτ ′(x) = T (u, 0).

Since T is algebraic, so is τ ′(x).
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Figure 5.8: The two types of networks in F . On the left a network in S2. On
the right a network in H2.

5.4 Labelled 4-regular planar graphs

In this section we complete the proof of Theorem 30. In the sequel all graphs
are labelled. First we define networks. A network is a connected 4-regular
multigraph G with an ordered pair of adjacent vertices (s, t), such that the
graph obtained by removing the edge st is simple. Vertices s and t are the
poles of the network.

We now define several classes of networks, similar to the classes introduced
in the previous section. We use the same letters, but they now represent
classes of labelled graphs instead of classes of maps. No confusion should
arise since in this section we deal with graphs.

• D is the class of all networks.

• L,S,P correspond as before to loop, series and parallel networks. We
do not need to distinguish between S0 and S1 and between P0 and P1.

• F is the class of networks in which the root edge has multiplicity exactly
2 and removing the poles does not disconnect the graph.

• S2 are networks in F such that after removing the two poles there is a
cut vertex, see Figure 5.8.

• H = H1 ∪H2 are h-networks: in H1 the root edge is simple and in H2

it is double, see Figure 5.8.
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Lemma 40. The two classes S2 and H2 partition F , that is

F = S2 ∪H2.

Proof. Clearly S2 and H2 are contained in F . Now take a network in F and
remove its two poles. By definition, the resulting graph must be connected
and has either a cut-vertex or is at least 2-connected. If it has a cut-vertex
then it belongs to S2. Otherwise, by the same argument as in Lemma 38 it
is obtained from a 3-connected core rooted at a double edge, hence if belong
to H2.

The generating functions of networks are of the exponential type, for
instance D(x) =

∑
Dn

xn

n!
. We need in addition the generating functions

Ti(x, u, v) =
∑

T
(i)
n,k,`u

kv`
xn

n!

of 3-connected 4-regular planar graphs rooted at a directed edge, where i =
1, 2 indicates the multiplicity of the root, x marks vertices and u, v mark,
respectively, half the number of simple and the number of double edges. The
coefficients T

(i)
n,k,` of Ti are easily obtained from those of T =

∑
tk,`u

kv`, the
generating function of 3-connected 4-regular maps computed in the previous
section. By double counting we have

T
(1)
n,k,` = n!

tk,`
2
, ` T

(2)
n,k,` = k T

(1)
n,k,`, n = `+ k/2.

Since we can compute the coefficients tk,` as in the previous section, we can

compute the coefficients T
(i)
n,k,` as well.

In terms of generating functions this amounts to

T (1)(x, u, v) =
1

2
T (u2x, vx), u

∂

∂u
T (2)(x, u, v) = v

∂

∂u
T (1)(x, u, v). (5.6)

Since T is an algebraic function, T (1) is algebraic too, but to prove that T (2)

is algebraic needs a separate argument.

Similarly to Lemma 40 but in the maps setting, F (as a class of maps) is
partitioned into S2 and H2. Although redundant for the purpose of extract-
ing the coefficients of T , this decomposition can be added to the system of
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equations (5.5) as follows:

F = S2 +H2,

S2 = (w + q(2D +D2) + F )(w + q(2D +D2) + F − S2),

H2 =
T2 (q(1 +D)2, w + q(2D +D2) + F )

w + q(2D +D2) + F

(5.7)

where T2(u, v) counts 3-connected 4-regular maps rooted at a double edge
and with the face of degree two on the right of the root edge. Since F and D
are algebraic by Lemma 39, so are S2 and H2. And so is T2 since it can be
derived form H2 by the same algebraic inversion as before. Finally we have

T (2)(x, u, v) =
1

2
T2(u

2x, vx), (5.8)

where the division by two encodes the choice of the root face.

Lemma 41. The following system of equations among the previous series
holds:

D = L+ S + P +H1 + F

L =
x

2
(D − L)

S = D(D − S)

P = x2
(
D2

2
+ D3

6

)
+ FD

F = S2 +H2

S2 = 1
x

(
F + x2

(
D + D2

2

))(
F + x2

(
D + D2

2

)
− S2

)
H1 =

T (1)
(
x, 1 +D,D + D2

2
+ F

x2

)
1 +D

H2 =
T (2)

(
x, 1 +D,D + D2

2
+ F

x2

)
D + D2

2
+ F

x2

(5.9)

Proof. The first equation follows from a direct adaptation of Lemma 38 to
the context of graphs. The remaining equations follow by adapting the proof
of Lemma 39 form maps to graphs. We briefly indicate the differences.
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In the equation for L we must take into account that graphs are not
embedded, hence the division by two, and also that the double loop is not
admissible as a network. In the equation for S the only difference with
Lemma 39 is that the family S1 is no longer needed. Similar considerations
apply to the equation for P . The equation for F follows directly from Lemma
40.

The equation for S2 describes the decomposition of a network in S2. It is
essentially a series composition of two networks, one in F and one in F \S2,
in which the second pole of the first one is identified with the first pole of
the second one, hence the division by x. In addition we have the cases were
one of the two networks in the series composition is a fat polygon, that is,
a cycle in which each edge is doubled, and every double edge is replaced
with one or two networks in D. Notice that contrary to double edges of
networks counted in T (1) and T (2), double edges of the fat polygon are not
replaced with networks in F , as this would create a series composition with
two networks in S2.

The last two equations are similar to that for H in Lemma 39 with the
difference that double edges must be replaced with either: a network in D;
two networks in D, encoded by D2/2; or a network in F for which the two
poles were removed, encoded by F/x2.

Proof of Theorem 30. Equations (5.9) can be rewritten as a system with
non-negative coefficients using the identities D − L = S + P + H1 + F ,
D − S = L + P + H1 + F , and F − S2 = H2. Hence it has a unique
solution with non-negative terms, which can be computed by iteration from
the knowledge of T (1) and T (2). Since all the functions involved are algebraic,
the solution consists of algebraic functions.

Let C(x) now be the generating function of labelled 4-regular planar
graphs. There is a simple relation between C(x) and the series D(x) of
networks, namely

4xC ′(x) = D(x)− L(x)− L(x)2 − F (x)− x2

2
D(x)2.

The series on the left corresponds to labelled graphs with a distinguished
vertex v in which one of the 4 edges incident with v is selected. These cor-
respond precisely to networks, except for the fact that since we are counting
simple graphs we have to remove from D(x) networks containing either loops
or double edges, which correspond to the terms subtracted.



157 Chapter 5. Enumeration of 4-regular planar graphs

Finally, since D, L and F are algebraic functions, so is C ′(x).

5.5 Simple 4-regular maps

The enumeration of simple 4-regular maps is obtained by adapting the ar-
guments in the previous section to maps instead of graphs. We define the
various classes of simple maps exactly as we did for networks, keeping the
same notation. The decomposition scheme starts from the series T1(x, u, v)
and T2(x, u, v) of 3-connected 4-regular maps, where the indices and variables
have the same meaning as in the previous section, with the exception that
now the rooted (double) edge of T2 does not need to have a face of degree two
on its right hand-side. As before, they are accessible from the series T (u, v):

T1(x, u, v) = T (xu2, xv) and u
∂

∂u
T2(x, u, v) = 2v

∂

∂v
T1(x, u, v),

where multiplication by 2 on the right-hand side of the second equation is
because a double edge can be rooted at any of its two edges (as discussed
above).

Lemma 42. The following equations hold:

D = L+ S + P +H1 + 2F

L = 2x(D − L)

S = D(D − S)

P = x2(3D2 +D3) + 2FD

F = S2 +
H2

2

S2 =
1

x
(F + x2(2D +D2))(F + x2(2D +D2)− S2)

H1 =
T1
(
x, 1 +D, 2D +D2 + F

x2

)
1 +D

H2 =
T2
(
x, 1 +D, 2D +D2 + F

x2

)
2D +D2 + F

x2

(5.10)

Proof. The proof is essentially the same as that of Lemma 41, with the follow-
ing differences. Maps are embedded, hence there are

(
m
k

)
ways to substitute
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k maps in D for an edge of multiplicity m. This justifies the term 3D2 in
the fourth equation and the term 2D in the last three equations. Finally, the
fact that maps have a root face explains the factors 2 in the first, second and
fourth equations.

Proof of Theorem 33. From the knowledge of T (u, v) of Section 5.3 and
from Lemma 42, we can compute the coefficients of the series D, L, S, P ,
S2, F , H1 and H2 up to any order. By removing maps having a loop or a
multiple edge, the series M(x) of rooted 4-regular simple maps is equal to

M(x) = D(x)− L(x)− L(x)2 − 3x2D(x)2 − 2F (x). (5.11)

Since D,L and F are algebraic, so is M .

5.6 Conclusion

As an illustration we present in Table 5.1 the numbers of 4-regular planar
graphs up to 24 vertices. We see that the first discrepancy is at n = 12.
For this number of vertices there are 4-regular planar graphs which are ei-
ther disconnected (the union of two octahedra) or are connected but not
3-connected (gluing two octahedra via two parallel edges). Table 5.2 and 5.3
give, respectively, the numbers of rooted 3-connected 4-regular maps, and
simple 4-regular maps.
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n gn cn tn

6 15 15 15
7 0 0 0
8 2520 2520 2520
9 30240 30240 30240
10 1315440 1315440 1315440
11 39916800 39916800 39916800
12 1606755150 1606651200 1546776000
13 66356690400 66356690400 63826963200
14 3068088823800 3067975310400 2879997120000
15 152398096250400 152395825982400 142057025510400
16 8196374895508800 8196176020032000 7534165871232000
17 472595587079616000 472586324386176000 430559631710208000
18 29138462100216869400 29137847418231552000 26287924131076608000
19 1912269800864459836800 1912231517504083776000 1710786280874711040000
20 133143916957026288112800 133141260589657512192000 118162522829227548672000
21 9803331490189678577136000 9803140616698955285760000 8635690901034837319680000
22 761176404797020723326816000 761161832514030029322240000 665819208405772061921280000
23 62162810722904469623293248000 62161644432203364801392640000 54014719048912416098304000000
24 5327113727746428410913561441000 5327015666189741660374318080000 4599666299608288403199344640000

Table 5.1: Numbers of arbitrary, connected and 3-connected labelled 4-
regular planar graphs with n vertices.

`\k 2 3 4 5 6 7 8 9 10 11 12

0 1 4 6 29 88 310
1 12 28 128 396 1460 5148 18696
2 2 6 16 40 156 546 2192 8316 32380 125510 489708
3 8 56 260 1152 4900 21344 92160 397960 1708300 7303040
4 46 510 3630 21350 115440 593622 2959160 14407250 68862960
5 312 4920 46508 347984 2282544 13791064 78760836 431601120
6 2388 48860 579736 5267640 40819100 284712736 1843137520
7 19728 498352 7123464 76274560 683057672 5415222384
8 172374 5190462 86891050 1072179834 10906813890
9 1571096 54988280 1055746780 14758457040

10 14800940 590784084 12801068400
11 143190896 6422227344
12 1415859276

Table 5.2: Coefficients of T (u, v) =
∑
tk,`u

kv` : tk,` is the number of rooted 3-
connected 4-regular maps with ` double edges and 2k simple edges, in which
the root edge is simple.
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n tn,0 Mn

6 1 1
7 0 0
8 4 4
9 6 6
10 29 29
11 88 88
12 310 334
13 1066 1196
14 3700 4386
15 13036 16066
16 46092 59164
17 164628 218824
18 591259 812503
19 2137690 3028600
20 7770968 11329468
21 28396346 42527120
22 104256321 160148795
23 384446150 604932614
24 1423383358 2291617406

Table 5.3: tn,0 is the number of simple rooted 3-connected 4-regular maps; Mn

is the number of simple 4-regular maps. As for graphs, the first discrepancy
is at n = 12. The numbers tn,0 match those give in Table 1 from [12] given
up to n = 15.



Chapter 6

Further researches

Let us finally conclude this thesis by mentioning some possible further re-
searches.

Starting with the content of Chapter 3, one could adapt again adapt
the network-decomposition and the tree-decomposition, inherent to the Dis-
symetry Theorem for tree-decomposable classes, to fully estimate the number
of 2-connected cubic planar multigraphs. Note that the Dissymetry Theo-
rem seems here necessary as, similarly to the connected case and due to the
presence of loops and multiple edges, there is no known way to describe cubic
planar multigraphs rooted at an edge in function of those rooted at a vertex.

Then concerning the content of Chapter 4, the problems of understanding
the distribution for the number of appearances of a given subgraph, say C4,
in a random cubic planar graph remains open. It is in fact open in a general
random planar graph.

Adapting the scheme developed for triangles, one can enumerate the class
of triangle-free cubic planar graphs. It is done in [54] but was not reproduced
due to our effort of keeping the thesis relatively short. Considering the essence
of the connectivity-decomposition, this in fact naturally extends the enumer-
ation of 3-connected triangle-free cubic planar graphs done in [27, Section
5]. With a similar method, one can also enumerate triangle-free simple cubic
planar maps. It is in fact done in [22].

Similarly to [44], one could ask for the distribution of the size of the
largest 2-connected components in a random cubic planar graph. We believe
that the associated random variables should converge to a Airy distribution,
as in [2].
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And we finish with Chapter 5, where due to the complexity of the system
of equations involved in the connectivity-decomposition scheme, we were un-
able to obtain the minimal polynomial satisfied by the generating function of
3-connected 4-regular maps with two variables. This is necessary to obtain
an asymptotic estimate on the number of 4-regular planar graphs. With this,
one could also start the study of random 4-regular planar graphs. We believe
this to be strictly a computational problem.

Adapting the techniques developed in Chapter 5, one could also try to
enumerate the family of 5-regular planar graphs. Notice that when the cores
for 4-regular graphs can have double edges, a 3-connected 5-regular map can
have double and triple edges. So we would need to enrich the scheme with
two new variables. The starting point of the scheme for 4-regular graphs was
the family of quadrangulations without separating quadrangle. The point
was that, because such quadrangulation do not have 2-vertices, one could
control their apparition in arbitrary quadrangulations. One should then start
by designing an analogue configuration for pentagulations. A good starting
point could be the work of Bernardi and Fusy in [5], where they gave a
bijection to compute the generating function of pentagulations with girth
five.



Zusammenfassung

Das zentrale Thema dieser Dissertation sind Familien von regulären planaren
Graphen und Karten. Insbesondere sind wir an daran interessiert, diese
zu zählen und die Zusammenhänge zu deren zufälligen Gegenstücken zu er-
forschen.

Im ersten Teil geben wir sowohl eine rekursive als auch eine asymp-
totische Abzählung von kubischen, planaren Graphen, Multigraphen und
einfachen Karten, durch eine Dekomposition entlang deren Komponenten.
Im zweiten Teil wenden wir diese Resultate auf zufällige kubische planare
Graphen an. Insbesondere berechnen wir die Wahrscheinlichkeit von Zusam-
menhängigkeit, und beweisen das einige bedeutende Parameter normalverteilt
sind: die Anzahl der cut-vertices, isthmuses, Blöcke, cherries, near-bricks
und Dreiecke. Im dritten und letzten Teil entwickeln wir das erste kombi-
natorisches Schema, basierend auf einem Dekompositionsschema das ähnlich
zu dem im Kontext von kubischen planaren Graphen ist, das zur rekursiven
Abzählung von 4-regulären planaren Graphen und einfachen Karten führt.
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Selbständigkeitserklärung
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ative Combinatorics, pages 402–442. CRC Press, 2015.

[50] M. Noy, V. Ravelomanana, and J. Rué. On the probability of planarity
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