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Background: In Parkinson’s disease (PD), cognitive symptoms and mood changes may be 

even more distressing for the patient than motor symptoms.

Objective: Our aim was to determine the effects of bilateral subthalamic nucleus deep brain 

stimulation (STN-DBS) on working memory (WM) and mood.

Methods: Sixteen patients with PD were assessed with STN-DBS switched on (DBS-ON) and 

with dopaminergic treatment (Med-ON) compared to switched off (DBS-OFF) and without 

dopaminergic treatment (Med-OFF). The primary outcome measures were a Visual Analog 

Mood Scale (VAMS) and an emotional 2-back WM task at 12 months after DBS in the optimal 

DBS-ON/Med-ON setting compared to DBS-OFF/Med-OFF.

Results: Comparison of DBS-OFF/Med-OFF to DBS-ON/Med-ON revealed a significant 

increase in alertness (mean
off/off

 =51.59±24.54; mean
on/on

 =72.75; P=0.016) and contentedness 

(mean
off/off

 =38.73±24.41; mean
on/on

 =79.01±17.66; P=0.001, n=16), and a trend for reduction 

in sedation (P=0.060), which was related to stimulation as shown in a subgroup of seven 

patients. The N-back task revealed a significant increase in accuracy with DBS-ON/Med-ON 

compared to DBS-OFF/Med-OFF (82.0% vs 76.0%, respectively) (P=0.044), regardless of 

stimulus valence.

Conclusion: In line with previous studies, we found that patients rated themselves subjectively 

as more alert, content, and less sedated during short-term DBS-ON. Accuracy in the WM task 

increased with the combination of DBS and medication, possibly related to higher alertness 

of the patients. Our results add to the currently mixed results described for DBS on WM and 

suggest that there are no deleterious DBS effects on this specific cognitive domain.

Keywords: deep brain stimulation, Parkinson’s disease, working memory, neuropsychiatric

Introduction
Parkinson’s disease (PD) is a disorder of basal ganglia (BG) circuit function. Cognitive 

impairments, including working memory (WM) deficits in PD, are thought to result 

from loss of ascending dopaminergic projections to prefrontal cortex (pfC) terminal 

fields, particularly those in lateral pfC.1 In PD, cognitive symptoms and mood changes 

may be even more distressing for the patient than motor symptoms.2 Subthalamic 

nucleus deep brain stimulation (STN-DBS) is an established treatment for motor com-

plications in advanced PD, which alleviates dyskinesia and improves quality of life.3 

Studies on neuropsychiatric changes after STN-DBS are still heterogeneous. There is 

evidence that, in addition to the motor loop, other cortico-BG-thalamocortical loops that 

are associated with cognitive (dorsolateral and lateral orbitofrontal loops) and emotional 

function (anterior cingular loop) may be affected by DBS by current spread, leading to 
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changes in cognition and emotion.1 The subthalamic nucleus 

is part of the hyperdirect pathway, which connects regions of 

the frontal cortex to the BG and may be critical in supporting 

integrative functions of BG-thalamo-cortical circuits through 

rapid inhibition of thalamo-cortical pathways.4 Evaluation 

of cognition and mood in STN-DBS has yielded several 

results. STN-DBS itself has been associated with decrements 

in focal neuropsychological domains, including reductions 

in WM, lexical fluency, and learning and recall efficiency.5 

However, this is not consistently reported as other studies 

report unchanged,6,7 improved or reduced memory, attention, 

and executive functions after STN-DBS8 in PD. In particu-

lar, reports on WM are mixed. Whereas some investigators 

have reported WM improvements9 together with increased 

psychomotor speed,10 others have shown either no change 

or worsening of WM.11

Two possible hypotheses currently exist. Changes in 

mood and cognition might be due to spread of current to 

adjacent pathways and regions within the STN mediating 

non-motor function,12 or they may be due to lesions along 

the trajectory for STN-DBS with the lead location near the 

head of the caudate nucleus.13 The STN-DBS lead trajec-

tory passes through the pfC, the subcortical white matter, 

the anterior limb of the internal capsule, and the BG; it was 

recently shown13 that passage of the chronic lead through 

the head of the caudate increases the risk of global cogni-

tive decline. These structures are all involved in cognitive 

or emotional functions, and the STN itself subdivides into a 

motor but also a limbic and an associative part.2 Moreover, 

patients with PD can have non-motor mood symptoms related 

to: dopaminergic deficit (ie, due to reduction in dopaminer-

gic medication after the DBS and to the progression of the 

disease and continued loss of dopaminergic projections) 

affecting the mesolimbic system (such as apathy, anxiety, 

depression, pain – hypodopaminergic syndrome) and dop-

aminergic overdose (impulse control disorders, punding – 

hyperdopaminergic syndrome).2 Deficits in verbal fluency 

and WM appear early in the disease course of PD, and are 

present in mildly depressed PD patients as well as those with 

moderate to severe depression. Previous studies suggest that 

decline in these cognitive functions varies in relationship to 

the severity of depression.14 Costa et al14 showed that patients 

with PD and major depression performed significantly worse 

than those without depression on measures of episodic and 

WM, abstract reasoning, and visuospatial abilities. PD 

patients with minor depression showed some impairment 

in these tasks, but they did not reach statistical significance. 

Moreover, neuropsychological dysfunction increases with 

increasing severity of depression in PD patients and is 

primarily linked to dysexecutive function. Furthermore, it is 

likely that a common neuropathological process involving 

the BG, limbic system, thalamus and their connections with 

the dorsolateral pfC, orbitofrontal cortex, and the anterior 

cingulate underlies both depression and executive dysfunc-

tion in PD.15 So far, there are several studies evaluating the 

effects of STN-DBS on mood. First, studies that investigated 

mood effects during STN-DBS switched on (DBS-ON) or 

switched off (DBS-OFF) in PD and studies examining mood 

before and after STN-DBS surgery, respectively. DBS-ON 

correlated with prefrontal oxygenated hemoglobin changes 

relative to DBS-OFF in a mood-eliciting near-infrared 

spectroscopy study in response to both positive and negative 

videos.16 These changes were specific to emotional stimuli 

and were not seen during neutral stimuli, and results may sug-

gest that STN stimulation influences the prefrontal cortical 

representation of positive and negative emotions.16 In a study 

by Eisenstein et al,17 PD participants with STN-DBS, who 

had been diagnosed with current mood disorders, experienced 

greater STN-DBS-induced improvement in mood. However, 

Beck Depression Inventory (BDI) and anxiety scores did 

not modulate this mood response to STN-DBS, rather the 

categorical diagnosis of mood disorders. Some studies have 

found reduced depression, apathy and psychiatric symptoms 

with DBS-ON relative to DBS-OFF. Case studies demon-

strate that some patients experience adverse changes in mood-

related behavior with STN-DBS, including fits of laughter, 

hypomania, and severe transient depression.17 A review on 

STN-DBS-induced changes in non-motor symptoms (NMS) 

in PD showed that the number and the severity of most NMS 

decrease after STN-DBS, which can have a major impact on 

patients’ quality of life.18

Our aim was to determine STN-DBS-induced short-

term changes (DBS-ON vs DBS-OFF) in emotional WM 

and mood after bilateral STN-DBS. We chose an emotional 

WM task to investigate the effect of salient stimuli on WM 

performance. We correlated symptom severity, ie, the BDI-II, 

with performance in WM.

Material and methods
subjects
We assessed 16 non-demented patients (seven women; mean 

age 61.50±7.31 [range 49–72] years; mean disease duration 

10.88±4.48 [range 3–19] years) with PD who had undergone 

STN-DBS for severe PD motor fluctuations and were treated 

with chronic DBS for at least 12 months. Demographic and 

clinical data are shown in Table 1. Surgical implantation of 
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the leads (bilaterally in the STN) and the neurostimulation 

was performed as previously described.19 The DBS electrode 

used was model 3,389 (Medtronic Neurological Division) 

with four platinum-iridium cylindrical surfaces (1.27 mm 

diameter and 1.5 mm length) and a contact-to-contact separa-

tion of 0.5 mm. Contact 0 was the most caudal and contact 3 

was the most rostral. Electrode implantation was performed 

according to the standard procedures of the surgical center. 

The intended coordinates for the STN were 12 mm lateral 

from the midline, 3 mm behind the mid-commissural point, 

and 4 mm below the anterior commissure–posterior commis-

sure line. Adjustments to the intended surgical coordinates 

were made according to direct visualization of the STN on 

individual pre-operative (pre-op) stereotactic T2-weighted 

magnetic resonance imaging (MRI). Post-operative (post-op) 

MRI was performed in all patients to confirm targeting and 

suggested that at least one contact was within the STN. After 

surgery, dopamine agonists were withdrawn and levodopa 

(L-dopa) was reduced according to the improvement in 

motor state with DBS (Table 1). Written informed consent 

was obtained from the patients, and the ethics committee 

of the Charité University-Medicine in Berlin approved the 

study. In terms of psychotropic medications, one patient 

was taking clonazepam, one patient was taking citalopram 

(selective serotonin reuptake inhibitor), and one patient was 

taking antipsychotic medication (quetiapine) at the time of 

the study. No other psychotropic medications were reported. 

Other medications are shown in Table 1.

Questionnaires
Subjects were assessed on the Unified Parkinson’s Disease 

Rating Scale (UPDRS) part III motor scale, the revised 

edition BDI-II,20 and the Mattis Dementia Rating Scale 

(MDRS)21 pre-op and 12 months post-op. Depressive symp-

tom burden was defined as a BDI-II score above 17 points. 

The threshold for detecting depression can vary according 

to the type of patients.22 We set the threshold above 14 

up to 17 to detect mild clinical depression in PD patients. 

To our knowledge, a cutoff of 17 for the BDI-II has good 

sensitivity and specificity to detect clinical depression. Using 

the MDRS,21 cognitive decline was defined as an MDRS 

score ,130 (Table 1).

VaMs
The Visual Analog Mood Scale (VAMS)23 was applied to 

define short-term mood changes during each condition and 

was developed to evaluate current subjective mood state. 

We used a 16-item VAMS developed by Bond and Lader,23 

Table 1 clinical and demographical data

N Age Sex HY Levodopa 
equivalent 
BL

Levodopa 
equivalent 
12 months

DY MDRS 
BL

MDRS& 
12 months

BDI-IIa

BL
BDI-IIb

12 months
UPDRS III
ON
BL

UPDRS III
OFF
BL

UPDRS III
ON/ON
12 months

UPDRS III
OFF/OFF
12 months

1 69 F 2 1,305 360 16 141 140 13 9 11 28 4 25
2 49 M 2 610 0 6 144 144 11 3 3 29 0 39
3 55 M 2.5 700 375 16 144 133 17 5 16 36 6 33
4 62 M 2.5 1,125 890 8 138 138 9 5 12 21 10 28
5 54 M 3 1,880 553 10 142 134 7 5 13 42 4 47
6 55 M 2.5 1,575 1,000 8 144 142 2 4 20 34 14 46
7 63 M 3 1,100 720 11 144 144 11 8 14 34 12 33
8 52 M 4 875 200 15 134 144 17 16 0 42 14 38
9 72 F 2.5 653 1,278 8 na 144 17 17 10 20 19 29
10 70 F 2.5 100 0 4 144 144 4 na 26 na 14 34
11 64 F 4 1,544 460 19 144 nac 3 2 9 19 8 na
12 72 F 3 1,448 552 13 138 138 2 2 32 45 26 na
13§ 68 M 2 2,270 989.5 8 141 nac 17 # 32 56 12 na
14§ 60 F 2 573 137.5 7 142 142 7 # 20 27 18 na
15 58 F 2 829 1,370 10 142 nac 7 na 15 36 11 22.5
16 61 M 2.5 894 256 16 143 143 6 na 21 42 20 42

Notes: §Major Depressive Disorder recurrent, currently in remission (psychiatric comorbidity; lifetime), #questionnaire not sent back; &MMDr sTiM-ON, MeD-ON; 
na = not assessed, patient refused to switch off device for longer period; hY = hoehn-Yahr stage, staging ranges from 0 to 6 (most severe) at inclusion (OFF); aBDi-ii at 
inclusion; bBDi-ii at 12 months during sTiM-ON, MeD-ON. cMMse or DemTect result: (Pt 11= DemTect: 18; Pt 13= MMse: 28; Pt 15= MMse: 30); (Kinetra 10 cases; 
Activa PC 4 cases, Medtronic, St Jude 1 case, Boston Scientific 1 case); non-dopaminergic medication: Pt 1: Lantus 22 insulin Ie, s.c.; Pt 4: magnesium; Pt 5: torasemide, 
Pt 6: bisoprolol, ramipril; Pt 8: ass; Pt 9: metoprolol succinate; metformin, glibenclamide, trospium chloride, Pt 10: simvastatin, pantoprazole, metformin, ass, vitamin B, 
hydrochlorothiazide; Pt 11: pantoprazole, furosemide, Nebivolol, simvastatin, ass, ramipril; Pt 14: l-thyroxin, spironolactone, Dociton, omeprazole; Pt 15: rosuvastatin 
calcium, Nebivolol, metformin.
Abbreviations: DY, disease years; hY, hoehn-Yahr; MMse, Mini-Mental state examination; F, female; M, male; MDrs, Mattis Dementia rating scale; Bl, baseline; BDi, Beck 
Depression Inventory; UPDRS III, Unified Parkinson’s Disease Ratings Scale motor part III; Pt, patient; Med-ON, with dopaminergic treatment; Med-OFF, without dopaminergic 
treatment; sTiM, stimulation; DemTect, dementia detection; ass, acetylsalicylic acid. 
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which has been used in PD patients with STN-DBS24 and to 

examine the short-term effects on mood of STN-DBS-ON 

vs DBS-OFF.25 This scale was chosen because it was easy 

for participants to understand and complete and is repeat-

able over several sessions. The VAMS covers a wide range 

of moods, including most of the basic moods, and has been 

shown to be sensitive to changes in mood state in response 

to a range of drugs that are known to affect motor perfor-

mance. It also includes somatic and alertness items, which 

may be relevant to STN-DBS. The 16 items are loaded onto 

three psychometrically-validated factors: “Alert-Sedated” 

(alert, strong, clear-headed, well-coordinated, energetic, 

quick-witted, attentive, proficient, interested), “Contented-

Discontented” (contented, tranquil, happy, amicable, gregari-

ous) and “Calm-Sedated” (calm, sedated). Each of the items 

involves a 100 mm horizontal line with word pairs on both 

sides (eg, Alert-Sedated). Patients indicate the point along 

the horizontal line that best describes how they are currently 

feeling. The score for each mood ranges from 0 to 100, with 

100 presenting a maximal level of that mood and zero repre-

senting a minimal level (or absence) of that mood.

WM task
Participants were presented an adapted version of an emo-

tional N-back paradigm (EMOBACK)26 that requires partici-

pants to decide whether the current stimulus word matches 

the one presented here and two trials earlier (2-back). This 

paradigm involves a number of key processes within WM 

and reliably engages different dorsolateral prefrontal brain 

regions within a fronto-striatal network.26 The stimuli of the 

emotional N-back task consist of emotional words related 

to the distinct emotions, like sadness and joy, and neutral 

words and were drawn from the Berlin Affective Word List.27 

So far, the EMOBACK task has not been used in patient 

populations with movement disorders. It has been validated 

in two studies. Weigand et al28 described lateralized effects 

of prefrontal repetitive transcranial magnetic stimulation 

on emotional WM in healthy participants. In a second study 

by Scheidegger et al,29 the authors investigated ketamine 

in healthy subjects and showed that ketamine modulates 

cognition-emotion interaction in the brain by inducing lateral-

ized and valence-specific effects in emotion-related cortical 

midline regions, WM-related lateral prefrontal regions and 

insula. The EMOBACK task provides a novel means of 

studying the interface between WM and emotion. Partici-

pants performed four parallel versions (respective to the four 

stimulation/medication conditions) of the EMOBACK task 

12 months after STN-DBS to exclude repetition and memory 

effects. Participants were trained prior to the start of the task. 

They were given up to three practice blocks (25 trials each) 

per condition, with feedback on their performance, until they 

demonstrated that they fully understood the task and their 

performance stabilized to a cut-off of over 50% probability in 

the N-back task. Reaction times (RTs) and accuracy measures 

were obtained for each trial. The task was programmed using 

Presentation software (Version 16.2, Neurobehavioral Sys-

tems Inc., San Francisco, CA, USA). The order of the DBS 

status was randomized and patients were assessed for each 

condition with the parallel sets of the EMOBACK task on 

different consecutive days and during the morning. Patients 

were pseudo-randomly assigned to one of four groups, to test 

the effects of DBS-ON or DBS-OFF and “with dopaminergic 

treatment” (Med-ON) or “without dopaminergic treatment” 

(Med-OFF) on VAMS and emotional WM. Half of the 

patients started with ON conditions.

experimental set-up
All subjects were assessed on the UPDRS-III motor scale. 

On the morning of the DBS-OFF/Med-OFF testing, the 

neuropsychological evaluation started 30 minutes after the 

DBS device was switched off when a stable clinical status 

was achieved. It has been shown that about 75% of motor 

change occurs within 20 minutes after change of condi-

tion.30 Longer periods were not acceptable due to study 

constraints. Last dopaminergic drug intake was at least 

12 hours before. On the day of DBS-ON/Med-ON testing, 

the neuropsychological evaluation started with a delay of 

30 minutes after the last L-dopa intake and the initial motor 

score testing. The EMOBACK task was done in front of a 

computer. Participants were seated in a comfortable chair 

in a silent room, and the monitor was placed at eye level 

90 cm from the patients. They were instructed to press, as 

quickly as possible, a button on the left of the computer’s 

keyboard if a target word was presented, and a button on the 

right side if a non-target word was presented. The duration 

of stimulus presentation was 1,000 ms, the interstimulus 

interval was 2,000 ms, and a total of 15 words, negatively 

valenced, neutral, or positively valenced were presented 

per run. In total, ten runs were presented. The words were 

presented as white uppercase letters in the center of a black 

screen. The VAMS was given to the patients after the N-back 

task was undertaken, using paper and a pen. Data on RTs of 

the EMOBACK task of three patients had to be discarded 

from the analyses in order to reduce the influence of outliers. 

Four patients had not properly filled out the VAMS and these 

questionnaires were discarded from analysis.
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Statistical analysis
Questionnaires
All but the MDRS questionnaires were normally distributed 

(Shapiro-Wilk). As the number of pairs was small, we always 

compared the two most important randomized conditions, 

first the comparison DBS-ON/Med-ON vs DBS-OFF/Med-

OFF and calculated the stimulation effect (DBS-ON/Med-

OFF vs DBS-OFF/Med-OFF) if patients had participated 

in all four settings. 2×5 repeated measures (rm) ANOVA 

with two conditions (DBS-ON/Med-ON vs DBS-OFF/Med-

OFF) and five VAMS variables (contentedness, discontent, 

calmness, alertness, sedation) with Bonferroni corrections 

for alpha error accumulation due to multiple testing were 

applied. Student’s t-test and, if normalization was not given, 

non-parametric tests (Mann–Whitney U test, exact Wilcoxon 

sign rank test) were applied. Emotional 2-back WM task: 

differences in accuracy and RTs between DBS-OFF and 

DBS-ON were analyzed by means of 2×3 rmANOVAs (two 

factors: 1. “stimulation condition”: DBS-ON/Med-ON vs 

DBS-OFF/Med-OFF; 2. “valence” with three conditions, 

negative × neutral × positive) and post hoc Bonferroni 

correction. Means and standard deviations are shown in 

results. Pearson’s bivariate correlations and Spearman-Rho 

correlations between mood, cognition, and motor scores 

were calculated.

Results
At 12 months post-op, patients showed significant 

improvement in motor symptoms with STN-DBS, with 

a significant mean reduction in UPDRS III of 50% 

(DBS-OFF mean
pre-op

 =32.80±8.21; DBS-ON/Med-

OFF mean
post-op

 =16.82±9.64; Student’s t-test, T=3.884; 

P=0.004). Group mean BDI was also significantly reduced 

with STN-DBS (DBS-OFF mean
pre-op

 =11.55±5.12; 

DBS-ON/Med-OFF mean
post-op

 =8.0±5.17; T=2.512; 

P=0.036; 30% reduction). Post-op MDRS was available in 

10/16 patients, with values that were similar to pre-op values 

(DBS-OFF mean
pre-op

 =141.3±3.52; DBS-ON/Med-OFF 

mean
post-op

 =140.1±4.22; P=0.51). None of the patients 

reported cognitive decline with DBS (Table 1).

VaMs analysis DBs-ON/Med-ON vs 
DBs-OFF/Med-OFF
We found a significant main effect for stimulation con-

dition (F
(1,11)

 =7.693; P=0.018) and VAMS variables 

(F
(4,8)

 =9.775; P=0.004) and a significant interaction effect 

between stimulation condition and VAMS variables 

(F
(4,8)

 =5.868; P=0.017) (Figure 1). Post hoc analyses 

revealed a significant increase in contentedness (%) with 

DBS-ON/Med-ON compared to DBS-OFF/Med-OFF 

(mean
off/off

 =38.73±24.41; mean
on/on

 =79.01±17.66; P=0.001, 

Bonferroni corrections; n=12) and a reduction of discontent-

edness (mean
off/off

 =44.11±17.37; mean
on/on

 =26.04±20.43; 

F
(df)1

 =5.445; P=0.029). Furthermore, we revealed a sig-

nificant increase in alertness (mean
off/off

 =51.59±24.54; 

mean
on/on

 =72.75; F
(df)1

 =6.758; P=0.016) and a tendency for 

a significant reduction of sedation (mean
off/off

 =47.34±27.10; 

mean
on/on

 =29.73±14.57; F
(df)1

 =3.92; P=0.060) for DBS-ON/

Med-ON vs DBS-OFF/Med-OFF. The factor calm-

ness was not significantly different between conditions 

(mean
off/off

 =59.07±12.29; mean
on/on

 =61.03±8.23; F
(df)1

 = 
0.211; P=0.650).

subpopulation analysis
In a subgroup of seven patients, a further analysis 

was done on DBS-ON/Med-OFF to disentangle the 

short-term effects of DBS and medication on mood. A 

significant stimulation effect was found for contented-

ness with DBS-OFF/Med-OFF vs DBS-ON/Med-OFF 

(mean
off/off

 =38.73±24.41; mean
on/off

 =79.08±15.05; P=0.001, 

Bonferroni corrections; n=7), as well as an improvement in 

alertness (mean
off/off

 =49.88±21.04; mean
on/off

 =64.85±24.25; 

Z=-2.366; P=0.018, n=7) and a reduction in sedation 

(mean
off/off

 =50.71±23.39; mean
on/off

 =35.83±27.01; Z=-2.366; 

P=0.018, non-parametric, n=7).

emotional N-back task
Table 2 and Figure 2 show accuracy and RT for both condi-

tion and emotional valence.

Figure 1 results of the VaMs: alertness and contentedness increase during DBs 
switched on and medication.
Notes: *Significant P,0.05. **Significant P,0.01.
Abbreviations: DBs, deep brain stimulation; VaMs, Visual analog Mood scale.
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emotional N-back task: accuracy
The rmANOVA for accuracy revealed a significant differ-

ence for the factor “stimulation condition” (F
(1,14)

 =4.898; 

P=0.044), with a higher overall accuracy with DBS-ON vs 

DBS-OFF (mean
on/on

: 82% vs mean
off/off

: 76%), but no signifi-

cant difference between emotional valences (F
(2,13)

 =0.319; 

P=0.732) and no significant interaction between condition 

and valence (F
(2,13)

 =1.396; P=0.282).

emotional N-back task: rTs
Overall, response times for negatively valenced words were 

faster (mean
neg

: 813.74±48.65 ms) compared to positive 

stimuli (mean
pos

: 851.85±56.15 ms; P=0.025; 95% confi-

dence interval: -70.449, -5.769), regardless of stimulation 

condition.

emotional N-back task: rT for correct 
responses
Similarly, the rmANOVA for RT of correct responses 

revealed no main effect for the factor stimulation condition 

(DBS-ON/Med-ON vs DBS-OFF/Med-OFF) (P=0.641) 

(Table 2). A significant main effect was observed for the fac-

tor emotional valence (P=0.026), but no significant interaction 

effect between stimulation condition and valence occurred 

(P=0.128). Patients showed faster response times for negative 

stimuli (mean
neg

: 808.58±49.51 ms) than for positive stimuli, 

regardless of stimulus condition (mean
pos

: 904.42±68.04 ms).

rT for incorrect responses
The rmANOVA for RT of incorrect responses revealed no 

main effect for stimulation condition (DBS-ON/Med-ON 

Table 2 results of the emotional working memory task: mean and standard deviations N-back task

N-back task Responses Emotional stimuli Group (stimulation condition) P-value§,b

Valence DBS-ON/Med-ON DBS-OFF/Med-OFF

RT (ms) Overall 
responses

Negative 781.79±174.58 845.69±203.72 P=0.994b

Neutral 779.75±176.65 914.06±296.34 P=0.266b

Positive 814.87±190.75 888.83±237.56 P=0.095b

all§ 792.13±197.16 882.86±345.70 P=0.025*,#,§

RT (ms) correct 
responses

Negative 777.74±182.31 839.41±196.79 P=0.845b

Neutral 846.03±281.11 907.23±279.95 P=0.696b

Positive 929.31±251.50 879.54±284.08 P=0.584b

all§ P=0.026*,&

Accuracy§ 
(%) 

Negative 85±12 76±17 P=0.015*,b

Neutral 80±17 77±14 P=0.508b

Positive 81±16 76±15 P=0.348b

all§ 82±12 76±16 P=0.044*,§

Notes: §aNOVa with repeated measures (factor group × rT and factor group × accuracy); bpaired t-tests between ON and OFF; *significant P,0.05; #rTs for all words 
regardless of valence; &significant main effect for the factor emotional valence.
Abbreviations: rTs, reaction times; DBs, deep brain stimulation; Med-ON, with dopaminergic treatment; Med-OFF, without dopaminergic treatment.

Figure 2 results of the eMOBacK (emotional N-back paradigm).
Notes: (A) results of the eMOBacK: accuracy during DBs switched on and medication for all emotional valenced stimuli. The repeated measures aNOVa for accuracy 
revealed a significant difference for the factor “stimulation condition” (F(1,14) =4.898; P=0.044) with a higher overall accuracy with DBs-ON vs DBs-OFF (meanon/on: 82% vs 
meanoff/off: 76%). (B) results of the eMOBacK: rTs during DBs switched on and medication for all emotional valenced stimuli. rTs for negatively valenced words were faster 
compared to positive stimuli, regardless of stimulation condition. *Significance P,0.05.
Abbreviations: DBs, deep brain stimulation; rTs, reaction times.
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vs DBS-OFF/Med-OFF) (P=0.134) and no significant 

valence effect (P=0.520) or interaction (valence × condition) 

effect (P=0.723).

Comparison between correct and false responses 

revealed a significant effect (F
(1,14)

 =29.122; P=0.000) 

with faster response times for correct responses (mean: 

811.84±59.53 ms) compared to incorrect responses (mean: 

1013.62±59.53 ms). There was no interaction effect between 

stimulation condition and correct/incorrect responses 

(F
(1,14)

 =0.283; P=0.603).

To evaluate whether improved accuracy with DBS-ON 

for the WM task was directly related to increased alertness, 

we correlated the individual change in accuracy with change 

in the VAMS alertness, contentedness, and sedation score. 

However, we failed to show a direct relationship. There 

was no significant correlation between the improvement 

in accuracy in the WM task and the change in alertness 

(Spearman-rho =-0.185; P=0.586) after 12 months follow-up 

of DBS treatment. No significant correlations were found 

between the change in the self-rating questionnaire BDI-II 

and improvement in accuracy in the WM task (Spearman-

rho =0.156; P=0.646), and no correlation between the change 

in MDRS and the improvement in accuracy (Spearman-

rho =-0.289; P=0.339). The decrease in L-dopa-equivalent 

medication did not correlate with improvement in accuracy 

in the WM task (Spearman-rho =0.364; P=0.166). Moreover, 

changes in accuracy did not significantly correlate with age 

or disease duration.

Discussion
Our main results are that WM task performance improved 

with short-term STN-DBS. Patients with DBS-ON performed 

the task with a higher overall accuracy, regardless of the 

emotional valence of the stimuli. Response times were faster 

for negative than positive stimuli, regardless of stimulation 

condition. Furthermore, PD patients who were DBS-ON/

Med-ON rated themselves subjectively as more alert and 

content compared to DBS-OFF/Med-OFF. Importantly, in 

a subgroup of patients this effect was induced by short-term 

STN-DBS alone.

It is noteworthy that PD patients without DBS treatment 

often suffer from impairments in executive functions, such as 

WM deficits, and the well-known dopamine depletion in the 

striatum probably contributes to these impairments through 

decreased connectivity between task-related brain networks.31 

On the contrary, PD patients compared to controls have 

shown a compensatory increased activation in WM-related 

brain areas (ie, pfC) to maintain behavioral performance in 

the presence of network deficits.32 Our results demonstrate 

that task performance in the WM task may be modulated 

through DBS. Importantly, and in line with previous inves-

tigations, the cognitive effects observed in patients with PD 

following STN-DBS reflect the intrinsic role of the STN in 

non-motor domains. Previous research comparing two dif-

ferent targets, involving counterbalanced “ON” vs “OFF” 

stimulation following DBS for PD suggests that neurocogni-

tive performance is slightly lower with DBS-OFF.10 Further 

large controlled studies and numerous cohort studies have 

demonstrated conflicting results on global cognitive abilities, 

attention, and memory and executive functions after STN-

DBS.7,31,33 For example, a randomized, controlled trial of 

bilateral STN and globus pallidus internus (GPi)-DBS vs best 

medical treatment found that DBS patients experienced small 

decrements on measures of WM, processing speed and visual 

delayed recall.33 Selzler et al34 examined the effects of STN-

DBS on motor disability and visual WM, with participants 

in the Med-OFF condition and DBS-ON or DBS-OFF, and 

concluded that DBS improved clinical motor function but 

had little effect on WM performance. Whereas some STN-

DBS and GPi-DBS studies have reported WM improvements 

after treatment,9,10 others have shown either no change35 or 

worsening of WM.11,36 Electrode placement is critical with 

respect to non-motor function during STN-DBS. Preventing 

stimulation of the limbic and associative parts of the STN 

might help to reduce stimulation-induced behavioral side 

effects. Moreover, the passage of the chronic lead through 

the head of the caudate nucleus can increase the risk of global 

cognitive decline.13 In our study, we demonstrated improve-

ment in accuracy and no changes in response times for WM 

during short-term DBS. On one hand, this might contradict 

an improvement in WM in PD patients due to DBS; on the 

other, it might exclude increased impulsivity due to DBS. 

Interestingly, our patients also showed higher alertness and 

contentedness during short-term DBS-ON, which could itself 

improve WM function. However, a direct relation of DBS-

induced changes could not be shown. Following STN-DBS 

positron emission tomography studies have demonstrated 

increased blood flow to dorsolateral and motor regions of pfC 

in addition to the anterior cingulate,37 which may account for 

the motor benefits but might also account for WM improve-

ment following DBS.

The impact of emotional content on WM has been exam-

ined in only a small number of studies, providing conflicting 

results. At the behavioral level in healthy subjects, negative 

stimuli were shown to have both impairing and facilitating38 

effects on WM, while an improved performance was dem-

onstrated for positive stimuli.39 Grimm et al26 showed that 

emotional stimuli in the context of a WM task yielded 
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increased activation in WM-related lateral prefrontal regions, 

whereas cognitive effort enhanced deactivation in emotion-

related cortical midline regions. Our results did not show a 

significant difference between the various emotional stimulus 

categories for PD patients after STN-DBS. The absence of 

difference between the emotional stimuli categories may be 

explained by the small sample size, ie, the lack of power of 

the statistical test.

Alertness and contentedness increased after STN-DBS. 

Subjectively perceived mood changes associated with STN-

DBS are reported in both positive and negative directions.40 

The direct effect of DBS on limbic-associative STN is 

thought to influence emotional modifications,41 ie, improve-

ment in apathy with acute stimulation, acute well-being such 

as euphoria and a decrease in sedation, mania, and impulsive 

behavior in high conflict situations or aggressive behavior.41 

The higher alertness and contentedness in our patients are 

in line with the general notion of STN stimulation-related 

increase in appetitive functioning, whereas long-term effects 

of chronic worsening of apathy have been related to reduction 

in dopamine replacement therapy.41

In contrast to a previous study,42 we did not find a correla-

tion between age or disease duration with task performance, 

possibly due to small and rather homogenous sample size.

Several limitations of this study have to be addressed. 

A limitation is that we had no age-matched healthy control 

group. Although accuracy improved significantly during 

DBS-ON compared to DBS-OFF, the study could not make 

any conclusions about the improvement resulting from a gen-

uine impairment in drug and DBS naïve patients. However, 

we compared the group against DBS-OFF/Med-OFF. In the 

same vein, due to this experimental set-up we could not 

draw conclusions upon differences between PD patients and 

controls for contentedness, discontentedness or alertness. 

Another important limitation is the fact that patients did not 

perform the emotion WM task with DBS-ON/Med-OFF. 

Therefore, we cannot show if the effect observed in this 

task was caused by the medication or electrical stimulation. 

A possible effect of the medication on this task could be a 

reduced speed due to sedation. However, we did not find 

any RT changes. A further limitation was that to improve 

precision, it would have been necessary to register electro-

myography on the finger muscle, which has been done in 

previous studies.43 Another limitation is the lack of a task 

evaluating only the finger motor speed, as control task was 

not applied. In addition, the use of self-report questionnaires, 

utilization of VAMS, and the small sample size make this 

study less representative.

In conclusion, we showed that STN-DBS can improve 

neurocognitive activity in fronto-striatal circuits, rather than 

detrimental effects. The differences in our study in neurop-

sychological outcomes of STN-DBS between conditions 

are small and they must be interpreted with caution given the 

small size of our sample. Future studies should investigate 

effects in patients under STN-DBS across different WM 

loads. However, the results of the current study are consis-

tent with results from previous studies12,17,24,42 in identifying 

cognitive and mood changes after short-term STN-DBS. The 

present work adds further evidence for improvement in NMS 

of PD patients with STN-DBS.
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