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Abstract: The bifactor model is a widely applied model to analyze general and specific abilities.
Extensions of bifactor models additionally include criterion variables. In such extended bifactor
models, the general and specific factors can be correlated with criterion variables. Moreover,
the influence of general and specific factors on criterion variables can be scrutinized in latent multiple
regression models that are built on bifactor measurement models. This study employs an extended
bifactor model to predict mathematics and English grades by three facets of intelligence (number
series, verbal analogies, and unfolding). We show that, if the observed variables do not differ in their
loadings, extended bifactor models are not identified and not applicable. Moreover, we reveal that
standard errors of regression weights in extended bifactor models can be very large and, thus, lead to
invalid conclusions. A formal proof of the nonidentification is presented. Subsequently, we suggest
alternative approaches for predicting criterion variables by general and specific factors. In particular,
we illustrate how (1) composite ability factors can be defined in extended first-order factor models
and (2) how bifactor(S-1) models can be applied. The differences between first-order factor models
and bifactor(S-1) models for predicting criterion variables are discussed in detail and illustrated with
the empirical example.
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1. Introduction

In 1904, Charles Spearman [1] published his groundbreaking article “General intelligence objectively
determined and measured” that has been affecting intelligence research since then. In this paper Spearman
stated that “all branches of intellectual activity have in common one fundamental function (or groups
of functions), whereas the remaining or specific elements of the activity seem in every case to be wholly
different from that in all the others” (p. 284). Given Spearman’s distinction into general and specific
cognitive abilities, one fundamental topic of intelligence research has been the question to which
degree these general and specific facets are important for predicting real-world criteria (e.g., [2,3];
for an overview see [4]). In other words, is it sufficient to consider g alone or do the other specific
factors (also sometimes referred to as narrower factors) contribute in an essential way?

Around the year 2000, there was a unanimously agreed answer to this question. Several authors
concluded that specific abilities do not explain much variance beyond g (e.g., [5,6]). In the past decade,
however, this consensus has shifted from “not much more than g” (see [7]) to the notion that there
may be something more than g predicting real-world criteria. Reflecting this shift, Kell and Lang [4]
summarize that “recent studies have variously demonstrated the importance of narrower abilities
above and beyond g.” (p. 11). However, this debate is far from settled [8].
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An apparent issue in evaluating discrepant findings across studies is the statistical approach
applied. Much of the earlier evidence was based on hierarchical regression analyses, in which g
(the first unrotated principle component) was entered in the first and specific cognitive abilities in
the second step (e.g., [6]). Other studies relied on relative importance analysis (e.g., [9]), mediation
models, in which criteria are predicted by g which in turn is predicted by specific abilities (e.g., [10]),
as well as meta-analytical procedures (e.g., [11,12]). There is another prominent approach to separate
general from specific abilities: the bifactor model [13]. Although its introduction dates way back,
the bifactor model is recently and increasingly applied in studies predicting criterion variables by
general and specific factors, not only in the area of cognitive abilities and school performance measures
(e.g., [14–24]), but also in different other areas of psychological research such as motivation and
engagement (e.g., [25–27]), clinical psychology (e.g., [28–30]), organizational psychology (e.g., [31]),
personality psychology (e.g., [32,33]), and media psychology (e.g., [34]). The multitude of recently
published studies using the bifactor model shows that it has become a standard model for predicting
criterion variables by general and specific components.

In the current study, we seek to contribute to the debate on general versus specific cognitive
abilities as predictors of real-life criteria by taking a closer look at the bifactor model. We will describe
the basic idea of the bifactor model and its applicability for predicting criterion variables. We will also
apply it to the data set provided by the editors of this special issue. In particular, we will show that the
bifactor model is not generally identified when the prediction of criterion variables comes into play
and can be affected by estimation problems such as large standard errors of regression weights. To our
knowledge, this insight has not been published previously. Subsequently, we will illustrate and discuss
alternatives to the bifactor model. First, we will present a first-order factor model with correlated
factors as well as an extension of this model, in which a composite intelligence factor is defined by the
best linear combination of facets for predicting criterion variables. Second, we will discuss bifactor(S-1)
models, which constitute recently developed alternatives to the bifactor approach [35]. We conclude
that bifactor(S-1) models might be more appropriate for predicting criterion variables by general and
specific factors in certain research areas.

Bifactor Model

The bifactor model was introduced by Holzinger and Swineford [13] to separate general from
specific factors in the measurement of cognitive abilities. Although this model is quite old, it was
seldom applied in the first seventy years of its existence. It has only become a standard for modeling
g-factor structures in the last ten years [32,35–37]. When this model is applied to measure general
and specific cognitive abilities, g is represented by a general factor that is common to all cognitive
ability tests included in a study (see Figure 1a). In case of the three cognitive abilities considered in
this study (number series, verbal analogies, and unfolding), the general factor represents variance that
is shared by all three abilities. The cognitive ability tests additionally load on separate orthogonal
factors—the specific factors. So, each specific factor, also sometimes referred to as group factor
(e.g., [37]), represents a unique narrow ability. Because all factors in the classical bifactor model
are assumed to be uncorrelated, the variance of an observed measure of cognitive abilities can be
decomposed into three parts: (1) measurement error, (2) the general factor, and (3) the specific factors.
This decomposition of variance allows estimating to which degree observed differences in cognitive
abilities are determined by g or by the specific components.

The bifactor model is also considered a very attractive model for predicting criterion variables by
general and specific factors (e.g., [32]). It becomes attractive for such purposes since the general and
the specific factors—as specified in the bifactor model—are uncorrelated, thus representing unique
variance that is not shared with the other factors. Hence, they contribute independently of each other
to the prediction of the criterion variable. In other words, the regression coefficients in a multiple
regression analysis (see Figure 1c) do not depend on the other factors in the model. Consequently,
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the explained criterion variance can be additively decomposed into components that are determined
by each general and specific factor.

Figure 1. Cont.
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Figure 1. Bifactor model and its extensions to criterion variables. (a) Bifactor model without criterion
variables, (b) bifactor model with correlating criterion variables (grades), and (c) multiple latent
regression bifactor model. The factors of the extended models depicted refer to the empirical application.
G: general factor, Sk: specific factors; NS-S: specific factor number series, AN-S: specific factor verbal
analogies, UN-S: specific factor unfolding. Eik: measurement error variables, EG1/EG2: residuals,
λ: loading parameters, β: regression coefficients, i: indicator, k: facet.

On the one hand, these properties make the bifactor model very attractive for applied researchers.
On the other hand, many studies that used bifactor models to predict criterion variables, hereinafter
referred to as extended bifactor models (see Figure 1c), showed results that were not theoretically
expected. For example, some of these studies revealed loadings (of indicators either on the g factor or
on the specific factors) that were insignificant or even negative—although these items were theoretically
assumed as indicators of these factors (e.g., [19,25,27–30]). Moreover, it was often observed that one
of the specific factors was not necessary to predict criterion variables by general and specific factors
(e.g., [14,18,19,32,33]). Similar results were often found in applications of non-extended versions of the
bifactor model (see [35], for an extensive discussion of application problems of the bifactor model).

Beyond the unexpected results found in several studies that used bifactor models, its applicability
is affected by a more fundamental problem. When a bifactor model is extended to criterion variables,
the model is not globally identified—although the model without criterion variables is. As we will show
below, the extended bifactor model is not applicable if the indicators do not differ in their loadings:
it might be affected by estimation problems (e.g., large standard errors of regression coefficients) or
even be unidentified. Next, we will use the data set provided by the editors of the special issue to
illustrate this problem.
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2. Description of the Empirical Study

2.1. Participants and Materials

We analyzed the data set provided by Kell and Lang [38]. It includes data from n = 219 individuals.
Gender was almost equally distributed among the sample (53% female). Their mean age was 16 years
(SD = 1.49, range = 13 to 23).

The data set included three subtests of the Wilde Intelligence Test 2 [39]. These subtests were:
verbal analogies (complete a word pair so that it logically matches a given other word pair), number
series (find the logical next number in a series of numbers), and figural unfolding (identify the
3-dimensional form that can be created by a given two-dimensional folding sheet). The number of
correctly solved items within the time limit of each subtest serves as a participant’s score. For the
purpose of the current paper, we conducted an odd-even split of subtest items to obtain two indicators
per each subtest. If achievement tests are split into two parts, an odd-even split is recommended for
two main reasons. First, such tests usually contain a time limit. Hence, splitting tests in other ways
would result in unbalanced parcels (one parcel would contain “later” items for which the time limit
might have been more of a concern). Second, items are usually ordered so that item difficulty increases.
Hence, the odd-even split ensures that items with approximately equal difficulty are assigned to
both parcels.

We used two of the grades provided in the data set, mathematics and English. We chose these
grades because we wanted to include a numerical and a verbal criterion. For more details about the
data set and its collection, see Kell and Lang [38].

2.2. Data Analysis

The data was analyzed using the computer program Mplus Version 8 [40]. The observed intelligence
test scores were taken as continuous variables whereas the grades were defined as categorical variables
with ordered categories. The estimator used was the WLSMV estimator which is recommended for this
type of analysis [40]. The correlations between the grades are polychoric correlations, the correlations
between the grades and the intelligence variables are polyserial correlations whereas the correlations
between the intelligence variables are Pearson correlations. The correlation matrix of the observed
variables, on which the analyses are based, is given in Table 1. The correlations between test halves
(created by an odd-even split) of the same intelligence facets were relatively large (between r = 0.687 and
r = 0.787), thus showing that it is reasonable to consider the respective halves as indicators of the same
latent intelligence factor. Correlations between grades and observed intelligence variables ranged from
r = 0.097 to r = 0.378. The correlation between the two grades were r = 0.469.

Table 1. Correlations between Observed Variables.

NS1 NS2 AN1 AN2 UN1 UN2 Math Eng

NS1 4.456
NS2 0.787 4.487
AN1 0.348 0.297 4.496
AN2 0.376 0.347 0.687 4.045
UN1 0.383 0.378 0.295 0.366 5.168
UN2 0.282 0.319 0.224 0.239 0.688 5.539
Math 0.349 0.350 0.289 0.378 0.302 0.275
Eng 0.225 0.205 0.263 0.241 0.135 0.097 0.469

Means 4.438 3.817 4.196 4.018 4.900 4.411

Proportions of the grades

1: 0.123
2: 0.311
3: 0.297
4: 0.174
5: 0.096

1: 0.059
2: 0.393
3: 0.338
4: 0.174
5: 0.037

Note. Variances of the continuous variables are given in the diagonal. NSi = number series, ANi = verbal analogies,
UNi = unfolding, i = test half, Math = mathematics grade, Eng = English grade.
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2.3. Application of the Bifactor Model

In a first step, we analyzed a bifactor model with equal loadings (loadings of 1) on the general and
specific factors. All factors were allowed to correlate with the two criterion variables (see Figure 1b).
The estimation of this model did not converge—although a bifactor model with equal loadings but
without the two criterion variables fitted the data very well (χ2 = 10.121, df = 11, p = 0.520). These
estimation problems are due to the fact that a bifactor model with equal loadings and covariates
is not identified (i.e., it is not possible to get a unique solution for the parameter estimates). Their
nonidentifiability can be explained as follows: In a bifactor model with equal loadings, the covariance
of an observed indicator of intelligence and a criterion variable is additively decomposed into (a) the
covariance of the criterion variable with the g factor and (b) the variance of the criterion variable with
a specific factor. Next, a formal proof is presented.

In the model with equal factor loadings, an observed variable Yik is decomposed in the following
way (the first index i refers to the indicator, the second indicator k to the facet):

Yik = G + Sk + Eik

Assuming that the error variables Eik are uncorrelated with the criterion variables, the covariance
of the observed variables Yik and a criterion variable C can be decomposed in the following way:

Cov(Yik, C) = Cov(G + Sk + Eik, C) = Cov(G, C) + Cov(Sk, C)

The covariance Cov(Yik, C) can be easily estimated by the sample covariance. However, because
each covariance Cov(Yik, C) is additively decomposed in essentially the same two components, there
is no unique solution to estimate Cov(G, C) independently from Cov(Sk, C). Hence, the model is
not identified.

The decomposition of the covariance Cov(Yik, C) holds for all indicators of intelligence and all
specific factors. According to this decomposition there is an infinite number of combinations of
Cov(G, C) and Cov(Sk, C). While this formal proof is herein only presented for the covariance of
Cov(Yik, C), it also applies to polyserial correlations considered in the empirical application. In case of
polyserial correlations, the variable C refers to the continuous variable that is underlying the observed
categorical variable.

The nonidentification of the bifactor model with equal loadings has an important implication for
the general research question of whether g factor versus specific factors predict criterion variables. That
is, the model can only be identified and the estimation problems only be solved if one fixes one of the
covariances to 0, i.e., either Cov(G, C) = 0 or Cov(Sk, C) = 0. When we fixed Cov(Sk, C) = 0 for all
three specific factors of our model, the model was identified and fitted the data very well (χ2 = 17.862,
df = 21, p = 0.658). In this model, the g factor was significantly correlated with the mathematics
grades (r = 0.574) and the English grades (r = 0.344). Consequently, one would conclude that only g is
necessary for predicting grades. However, when we fixed Cov(G, C) = 0, the respective model was
also identified and fitted the data very well (χ2 = 14.373, df = 17, p = 0.641). In this model, the g factor
was not correlated with the grades; instead all the specific factors were significantly correlated with
the mathematics and the English grades (mathematics—NS: r = 0.519, AN: r = 0.572, UN: r = 0.452;
English—NS: r = 0.319, AN: r = 0.434, UN: r = 0.184). Hence, this analysis led to exactly the opposite
conclusion: The g factor is irrelevant for predicting grades, only specific factors are relevant. It is
important to note that both conclusions are arbitrary, and that the model with equal loadings is in no
way suitable for analyzing this research question.

The identification of models with freely estimated loadings on the general and specific factors is
more complex and depends on the number of indicators and specific factors. If loadings on the g factor
are not fixed to be equal, the model with correlating criterion variables (see Figure 1b) is identified
(see Appendix A for a more formal discussion of this issue). However, because there are only two



J. Intell. 2018, 6, 42 7 of 23

indicators for each specific factor, their loadings have to be fixed to 1. The corresponding model fitted
the data very well (χ2 = 8.318, df = 10, p = 0.598). The estimated parameters of this model are presented
in Table 21. All estimated g factor loadings were very high. The correlations of the mathematics
grades with the g factor and with the specific factors were similar, but not significantly different from 0.
For the English grades, the correlations differed more: The specific factor of verbal analogies showed
the highest correlation with the English grades. However, the correlations were also not significantly
different from 0. The results showed that neither the g factor nor the specific factors were correlated
with the grades. According to these results, cognitive ability would not be a predictor of grades—which
would be in contrast to ample research (e.g., [41]). However, it is important to note that the standard
errors for the covariances between the factors and the grades were very high, meaning that they were
imprecisely estimated. After fixing the correlations between the specific factors and the grades to 0,
the model fitted the data very well (χ2 = 16.998, df = 16, p = 0.386). In this model, the standard errors for
the estimated covariances between the g factor and the grades were much smaller (mathematics: 0.128,
English: 0.18). As a result, the g factor was significantly correlated with both grades (mathematics:
r = 0.568, English: r = 0.341). So, in this analysis, g showed strong correlations with the grades whereas
the specific factors were irrelevant. However, fixing the correlations of g with the grades to 0 and
letting the specific factors correlate with the grades, resulted in the very opposite conclusion. Again,
this model showed a very good fit (χ2 = 8.185, df = 12, p = 0.771) and the standard errors of the
covariances between the specific factors and the grades were lower (between 0.126 and 0.136). This
time, however, all specific factors were significantly correlated with all grades (Mathematics—NS:
r = 0.570, AN: r = 0.522, UN: r = 0.450; English—NS: r = 0.350, AN: r = 0.396, UN: r = 0.183). While
all specific factors were relevant, in this case the g factor was irrelevant for predicting individual
differences in school grades.

Table 2. Bifactor Model and Grades.

G-Factor
Loadings

S-Factor
Loadings

Residual
Variances Rel

Covariances

G NS-S AN-S UN-S Math Eng

NS1
1

0.651
1

0.615

0.882
(0.176)
0.198

0.802 G 1.887
(0.481) 0 0 0 0.286 0.150

NS2

0.971
(0.098)
0.630

1
0.613

1.022
(0.199)
0.228

0.772 NS-S 0 1.687
(0.331) 0 0 0.272 0.194

AN1

0.759
(0.161)
0.492

1
0.620

1.681
(0.255)
0.374

0.626 AN-S 0 0 1.726
(0.316) 0 0.283 0.270

AN2

0.838
(0.162)
0.573

1
0.653

0.993
(0.217)
0.245

0.755 UN-S 0 0 0 2.207
(0.441) 0.212 0.058

UN1

1.000
(0.199)
0.604

1
0.653

1.074
(0.215)
0.208

0.792 Math 0.393
(0.456)

0.353
(0.445)

0.371
(0.353)

0.315
(0.428)

UN2

0.781
(0.198)
0.456

1
0.631

2.181
(0.334)
0.394

0.606 Eng 0.206
(0.470)

0.252
(0.475)

0.355
(0.384)

0.086
(0.460)

0.469
(0.055)

Notes. Parameter estimates, standard errors of unstandardized parameter estimates (in parentheses), standardized
parameter estimates (bold type). Covariances (right side of the table) are presented below the diagonal, variances in
the diagonal, and correlations above the diagonal. Rel = reliability estimates, NSi = number series, ANi = verbal
analogies, UNi = unfolding, i = test half, Math = mathematics grade, Eng = English grade. All parameter estimates
are significantly different from 0 (p < 0.05) with the exceptions of parameters that are set in italics.

1 For reasons of parsimony, we present standard errors and significance tests only for unstandardized solutions (across all
analyses included in this paper). The corresponding information for the standardized solutions leads to the same conclusions.
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We observed the same problem in a multiple regression analysis in which the grades were
regressed on the general and specific factors (see Figure 1c). In this model—which yielded the same
fit as the model with all correlations—all regression coefficients showed high standard errors and
were not significantly different from 0 (see Table 3). Fixing the regression coefficients on all specific
factors to 0 led to a fitting model with significant regression coefficients for the g factor, whereas fixing
the regression coefficients on the g factor to 0 resulted in a fitting model with significant regression
weights for the specific factors (with exception of the unfolding factor for the English grades). It is
important to note that in the multiple regression analysis the g factor and the specific factors were
uncorrelated. Therefore, the high standard errors in this model cannot be due to multicollinearity.
Instead, it shows that there are more fundamental application problems of the bifactor model for
predicting criterion variables.

Table 3. Multivariate Regression Analyses with the Mathematics and English Grades as Dependent
Variables and the g Factor and the Three Specific Factors as Independent Variables.

Mathematics
(R2 = 0.284)

English
(R2 = 0.113)

b bs B bs

G 0.205
(0.234) 0.282 0.115

(0.246) 0.158

NS-S 0.213
(0.264) 0.276 0.143

(0.283) 0.186

AN-S 0.218
(0.207) 0.286 0.200

(0.223) 0.264

UN-S 0.145
(0.198) 0.216 0.035

(0.208) 0.051

Notes. Regression parameter estimates (b), standard errors of unstandardized regression parameter estimates
(in parentheses), standardized regression estimates (bs), and coefficient of determination (R2). G = general factor,
NS-S = number series specific factor, AN-S = verbal analogies specific factor, UN-S = unfolding specific factor,
Math = Mathematics grade, Eng = English grade. None of the estimated parameters are significantly different from
0 (all p > 0.05).

3. Alternatives to Extended Bifactor Models

Because the application of bifactor models for predicting criterion variables by facets of intelligence
might lead to invalid conclusions, alternative models might be more appropriate for predicting criterion
variables by facets of intelligence. We will discuss two alternative approaches. First, we will illustrate
the application of an extended first-order factor model and then of an extended bifactor(S-1) model.

3.1. Application of the Extended First-Order Factor Model

In the first-order factor model there is a common factor for all indicators belonging to the same
facet of a construct (see Figure 2a). The factors are correlated; the correlations show how distinct or
comparable the different facets are. It is a very general model as the correlations of the latent factors
are not restricted in any way (e.g., by a common general factor) and it allows us to test whether the
facets can be clearly separated in the intended way (e.g., without cross-loadings). An extension of this
model to criterion variables is shown in Figure 2b. We applied this model to estimate the correlations
between the intelligence facet factors and the grades. Because the two indicators were created through
an odd-even split, we assumed that the loadings of the indicators on the factors did not differ between
the two indicators. For identification reasons, the default Mplus settings were applied, meaning that
the unstandardized factor loadings were fixed to 1 and the mean values of the factors were fixed to 0.
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Figure 2. Cont.
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Figure 2. Modell with correlated first-order factors. (a) Model without criterion variables, (b) model
with correlating criterion variables, (c) multiple latent regression model, and (d) multiple latent
regression model with composite factors. Fk: facet factors, Eik: measurement error variables, NS: facet
factor number series, AN: facet factor verbal analogies, UN: facet factor unfolding, CO1/CO2: composite
factors, EG1/EG2: residuals λ: loading parameters, β: regression coefficients, i: indicator, k: facet.

This model fitted the data very well (χ2 = 13.929, df = 15, p = 0.531) and did not fit significantly
worse than a model with unrestricted loadings (χ2 = 9.308, df = 12, p = 0.676; scaled χ2-difference = 2.933,
df = 3, p = 0.402). The results of this analysis are presented in Table 4. The standardized factor loadings
and therefore also the reliabilities of the observed indicators were sufficiently high for all observed
variables. The correlations between the three facet factors were relatively similar and ranged from
r = 0.408 to r = 0.464. Hence, the facets were sufficiently distinct to consider them as different facets
of intelligence. The correlations of the factors with the mathematics grades were all significantly
different from 0 and ranged from r = 0.349 (unfolding) to r = 0.400 (verbal analogies) showing that they
differed only slightly between the intelligence facets. The correlations with the English grades were
also significantly different from 0, but they differed more strongly between the facets. The strongest
correlation of r = 0.304 was found for verbal analogies, the correlations with the facets number series
and unfolding were r = 0.242 and r = 0.142, respectively.

The model can be easily extended to predict criterion variables. Figure 2c depicts a multiple
regression model with two criterion variables (the two grades in the study presented). The regression
coefficients in this model have the same meaning as in a multiple regression analysis. They indicate to
which degree a facet of a multidimensional construct contributes to predicting the criterion variable
beyond all other facets included in the model. If the regression coefficient of a facet factor is not
significantly different from 0, this indicates that this facet is not an important addition to the other
facets in predicting the criterion variable. The residuals of the two criterion variables can be correlated.
This partial correlation indicates that part of the correlation of the criterion variables that is not due
to the common predictor variables. Table 5 shows that the regression coefficients differ between the
two grades. Verbal analogies were the strongest predictor of both grades; it predicted both grades
almost identically well. The two other intelligence facets had also significant regression weights for
the mathematics grades, but their regression weights were small and not significantly different from 0
for the English grades. Consequently, the explained variance also differed between the two grades.
Whereas 23.3 percent of the variance of the mathematics grades was explained by the three intelligence
facets together, only 10.6 percent of the variance of the English grades was predictable by the three
intelligence facets. The residual correlation of r = 0.390 indicated that the association of the two grades
cannot be perfectly predicted by the three facets of intelligence.
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Table 4. Estimates of the Model with Correlated First-order Factors and Grades.

Factor
Loadings

Residual
Variances

Rel
Covariances

NS AN UN Math Eng

NS1
1

0.889

0.938
(0.200)
0.211

0.789 NS 3.519
(0.425) 0.464 0.461 0.394 0.242

NS2
1

0.886

0.967
(0.197)
0.215

0.785 AN 1.490
(0.274)

2.927
(0.394) 0.408 0.400 0.304

AN1
1

0.807

1.569
(0.290)
0.349

0.651 UN 1.661
(0.302)

1.338
(0.277)

3.680
(0.493) 0.349 0.142

AN2
1

0.851

1.118
(0.257)
0.276

0.724 Math 0.740
(0.127)

0.685
(0.126)

0.669
(0.134) 0.469

UN1
1

0.844

1.487
(0.365)
0.288

0.712 Eng 0.455
(0.136)

0.520
(0.128)

0.272
(0.133) 0.469

UN2
1

0.815

1.859
(0.390)
0.336

0.664

Notes. Parameter estimates, standard errors of unstandardized parameter estimates (in parentheses),
and standardized parameter estimates (bold type). Covariances (right side of the table) are presented below the
diagonal, variances in the diagonal, and correlations above the diagonal. Rel = reliability estimates, NSi = number
series, ANi = verbal analogies, UNi = unfolding, i = test half, Math = mathematics grade, Eng = English grade.
All parameter estimates are significantly different from 0 (p < 0.05).

Table 5. Multivariate Regression Analyses with Mathematics and English Grades as Dependent
Variables and the Three Intelligence Factors as Independent Variables.

Mathematics
(R2 = 0.233)

English
(R2 = 0.106)

b bs b bs

NS 0.113 **
(0.039) 0.213 0.073

(0.046) 0.137

AN 0.140 **
(0.046) 0.239 0.146 **

(0.050) 0.250

UN 0.080 *
(0.037) 0.153 −0.012

(0.041) −0.023

Notes. Regression parameter estimates (b), standard errors of unstandardized regression parameter estimates (in
parentheses), standardized regression estimates (bs), and coefficient of determination (R2). NS = number series,
AN = verbal analogies, UN = unfolding, Math = Mathematics grade, Eng = English grade. ** p < 0.01, * p < 0.05.

Notably, the multiple regression model can be formulated in a slightly different but equivalent
way: A latent composite variable can be introduced reflecting the linear combination of the facet
factors for predicting a criterion variable [42]; this model is shown in Figure 2d. In this figure,
we use a hexagon to represent a composite variable, an exact linear function of the three composite
indicators [43]. The values of this composite variable are the values of the criterion variable predicted
by the facet factors. They correspond to the predicted values ŷ of a dependent variably Y in a multiple
regression analysis. A composite variable combines the information in the single intelligence facets
in such a way that all aspects that are relevant for predicting the criterion variable are represented
by this composite factor. Consequently, the single facet factors do not contribute to predicting the
criterion variable beyond this composite factor. Their contribution is represented by their regression
weight determining the composite factor. While this composite factor is not generally necessary for
predicting the criterion variables, it might be particularly important in some specific cases. In personnel
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assessment, for example, one wants to select those individuals whose intelligence scores might best fit
the requirements of a vacant position. The composite score may be built to best reflect these specific
requirements (if appropriate criterion-related validity studies are available). The composite score
thus represents an intelligence score of this person, specifically tailored to the assessment purpose.
We argue that—if appropriate evidence allows for it—composite scores that are tailored to the purpose
at hand can be more appropriate than aggregating intelligence facets according to their loadings on
broader factors (e.g., on the first principal component of all observed intelligence measures or on
a g factor in a bifactor model). In fact, understanding a broader measure of intelligence as the best
combination of intelligence facets is in line with modern approaches of validity [44–47]. According to
these approaches, validity is not a property of a psychological test. Rather, a psychometric test can
be applied for different purposes (here: predicting different grades) and the information has to be
combined and interpreted in the most appropriate way to arrive at valid conclusions. Therefore, it
might not always be reasonable to rely on g as an underlying variable (“property of a test”) such as in
a bifactor model, but to look for the best combination of test scores for a specific purpose. Thus, also
from a validity-related point-of-view, the bifactor model might be—independently from the estimation
problems we have described—a less optimal model.

3.2. Application of the Bifactor(S-1) Model

A bifactor(S-1) model is a variant of a bifactor model in which one specific factor is omitted (see
Figure 3a). In this model the g factor represents individual differences on the facet that is theoretically
selected as the reference facet. Therefore, it is not a general factor as it is assumed in a traditional g factor
model. Rather, it is intelligence as captured by the reference facet. A specific factor represents that part
of a facet that cannot be predicted by the reference facet. Unlike the classical bifactor model, the specific
factors in the bifactor(S-1) model can be correlated. This partial correlation indicates whether two
facets have something in common that is not shared with the reference facet. A bifactor(S-1) can
be defined in such a way that it is a reformulation of the model with correlated first-order factors
(see Figure 2a) and shows the same fit [48]. Because first-order factor models usually do not show
anomalous results, the bifactor(S-1) model is usually also not affected by the estimation problems found
in many applications of the bifactor model [35]. Applying a bifactor(S-1) model may also be a better
alternative to bifactor models when it comes to predicting real-world criteria (see Figure 3b,c), because
this model avoids the identification and estimation problems inherent in the extended bifactor model.

Figure 3. Cont.
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Figure 3. Bifactor(S-1) model and its extensions to criterion variables. (a) Bifactor(S-1) model without
criterion variables, (b) bifactor(S-1) model with correlating criterion variables (grades), and (c) multiple
latent regression bifactor(S-1) model. The factors of the extended models depicted refer to the empirical
application. G: general factor, Sk: specific factors; NS-S: specific factor number series, AN-S: specific
factor verbal analogies, UN-S: specific factor unfolding. Eik: measurement error variables, EG1/EG2:
residuals, λ: loading parameters, β: regression coefficients, i: indicator, k: facet.
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Several researchers have applied the bifactor(S-1) model for predicting criterion variables by
cognitive abilities. This was the case even in one of the very early applications of bifactor models of
intelligence to predict achievement in different school subjects [49]. In their application of a bifactor(S-1)
model, Holzinger and Swineford [49] defined the g factor by three reference tests (without indicating
a specific factor) and a specific factor by eight tests having loadings on the g factor as well as on a
specific spatial ability factor.2 Also Gustafsson and Balke [2] selected one indicator (letter grouping) to
define the g factor of aptitudes. Other examples of applying bifactor(S-1) models are Brunner’s [17]
and Saß et al.’s [21] studies, in which a g factor of cognitive abilities was defined by fluid ability.
Likewise, Benson et al. [15] defined their g factor of cognitive abilities by the test story completion.
Notably, many applications of the standard bifactor model are essentially bifactor(S-1) models, because
often one of the specific factors in the standard bifactor model does not have substantive variance
(see [35]). In such cases, the specific factor without substantive variance becomes the reference facet
and defines the meaning of the g factor. Unfortunately, this is very rarely stated explicitly in such
cases. In bifactor(S-1) models, on the contrary, the g factor is theoretically and explicitly defined by
a reference facet, i.e., the meaning of g depends on the choice of the reference facet. Thus, another
advantage of the bifactor(S-1) model is that the researcher explicitly determines the meaning of the
reference facet factor and communicates it. Moreover, it avoids estimation problems that are related to
overfactorization (i.e., specifying a factor that has no variance).

In the bifactor(S-1) model, the regression coefficients for predicting criterion variables by facets
of intelligence have a special meaning. We will discuss their meaning by referring to the empirical
example presented. For applying the bifactor(S-1) model, one facet has to be chosen as the reference
facet. In the current analyses, we chose the facet verbal analogies as the reference facet, because it
was most strongly correlated with both grades. However, the reference facet can also be selected on a
theoretical basis. The bifactor(S-1) model then tested whether the remaining facets contribute to the
prediction of grades above and beyond the reference facet. Because the first-order model showed that
the indicators did not differ in their factor loadings, we also assumed that the indicators of a facet
showed equal factor loadings in the bifactor(S-1) model.

The fit of the bifactor(S-1) model with the two grades as correlated criterion variables (see
Figure 2a) was equivalent to the first-order factor model (χ2 = 13.929, df = 15, p = 0.531). This result
reflects that both models are simply reformulations of each other. In addition, the correlations between
the reference facet and the two grades did not differ from the correlations that were observed in the
first-order model. This shows that the meaning of the reference facet does not change from one model
to the other. There is, however, an important difference between both models. In the bifactor(S-1)
model, the non-reference factors are residualized with respect to the reference facet. Consequently,
the meaning of the non-reference facets and their correlations with the criterion variables change.
Specifically, the correlations between the specific factors of the bifactor(S-1) model and the grades
indicate whether the non-reference factors contain variance that is not shared with the reference facet,
but that is shared with the grades. The correlations between the specific factors of the bifactor(S-1)
model and the grades are part (semi-partial) correlations (i.e., correlations between the grades, on the
one hand side, and the non-reference facets that are residualized with respect to the reference facet,
on the other hand side).

The estimated parameters of the bifactor(S-1) model when applied to the empirical example
are presented in Table 6. All observed intelligence variables showed substantive loadings on the
common factor (i.e., verbal analogies reference facet factor). The standardized loadings of the observed

2 From a historical point of view this early paper is also interesting for the debate on the role of general and specific factors.
It showed that achievements in school subjects that do not belong to the science or language spectrum such as shops and
crafts as well as drawing were more strongly correlated with the specific spatial ability factor (r = 0.461 and r = 0.692) than
with the general factor (r = 0.219 and r = 0.412), whereas the g factor was more strongly correlated with all other school
domains (between r = 0.374 and r = 0.586) than the specific factor (between r = −0.057 and r = 0.257).
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verbal analogies indicators were identical to those obtained from the first-order factor model (because
the reference facet factor is identical to the first-order factor verbal analogies). The standardized
factor loadings of the non-reference factor indicators were smaller (between 0.332 and 0.412); they can
be interpreted as correlations between the indicators of the other non-reference facets (i.e., number
series and unfolding) and the common verbal analogies factor (i.e., reference facet). The standardized
loadings pertaining to the specific factors were higher (between 0.744 and 0.787) showing that the
non-reference facets indicators assessed a specific part of these facets that was not shared with the
common verbal reasoning factor. The common verbal reasoning factor was strongly correlated with
the mathematics grades (r = 0.400) and the English grades (r = 0.304). Significant correlations were
obtained between the specific factors and the mathematics grades (r = 0.203 and r = 0.235), but not
between the specific factors and the English grades. Hence, number series and unfolding were not
important for understanding individual differences in English grades, if individual differences in
verbal analogies were controlled for.

Table 6. Bifactor(S-1) Model with Correlated First-order Factors and Grades.

G-Factor
Loadings

S-Factor
Loadings

Residual
Variances Rel

Covariances

NS-S AN UN-S Math Eng

NS1

0.509
(0.083)
0.412

1
0.787

0.938
(0.200)
0.211

0.789 NS-S 2.760
(0.333) 0 0.337 0.235 0.114

NS2

0.509
(0.083)
0.411

1
0.784

0.968
(0.197)
0.216

0.784 AN 0 2.928
(0.394) 0 0.400 0.304

AN1
1

0.807

1.568
(0.290)
0.349

0.651 UN-S 0.980
(0.244) 0 3.069

(0.442) 0.203 0.020

AN2
1

0.851

1.117
(0.257)
0.276

0.724 Math 0.391
(0.110)

0.685
(0.126)

0.356
(0.124)

UN1

0.457
(0.084)
0.344

1
0.771

1.487
(0.365)
0.288

0.712 Eng 0.190
(0.121)

0.520
(0.128)

0.035
(0.123)

0.469
(0.055)

UN2

0.781
(0.084)
0.332

1
0.744

1.858
(0.390)
0.336

0.664

Notes. Parameter estimates, standard errors of unstandardized parameter estimates (in parentheses),
and standardized parameter estimates (bold type). Covariances (right side of the table) are presented below
the diagonal, variances in the diagonal, and correlations above the diagonal. Rel = reliability estimates, NSi = umber
series, ANi = verbal analogies, UNi = unfolding, i = test half, AN = verbal analogies reference facet factor,
NS-S = number series specific factor, UN-S = unfolding specific factor, Math = Mathematics grade, Eng = English
grade. All parameter estimates are significantly different from 0 (p < 0.05) with the exceptions of parameters that are
set in italics.

An extension of the bifactor(S-1) model to a multiple regression model is depicted in Figure 3c.
The estimated parameters are presented in Table 7. For mathematics grades, the results show that the
specific factors have a predictive power above and beyond the common verbal analogies reference
factor. This was not the case for English grades. The differences between the bifactor(S-1) regression
model and the first-order factor regression model can be illustrated by comparing the unstandardized
regression coefficients in Tables 3 and 7. They only differ for verbal analogies, the facet taken as
reference in the bifactor(S-1) model. Whereas in the first-order factor model, the regression coefficient
of the verbal analogies facet indicates its predictive power above and beyond the two other facets,
its regression coefficient in the bifactor(S-1) model equals the regression coefficient in a simple
regression model (because it is not corrected for its correlation with the remaining non-reference
facets). Therefore, in the first-order factor model, the regression coefficient of verbal analogies depends
on the other facets considered. If other facets were added to the model, this would affect the regression



J. Intell. 2018, 6, 42 16 of 23

coefficient of verbal analogies (assuming that the added facets are correlated with verbal analogies).
Hence, in order to compare the influence of verbal analogies on the grades across different studies,
it is always necessary to take all other included facets into consideration. In the bifactor(S-1) model,
however, the regression coefficient of verbal analogies, the reference facet, does not depend on other
facets. Adding other facets of intelligence would not change the regression coefficient of verbal
analogies. As a result, the regression coefficient of verbal analogies for predicting the same criterion
variables can be compared across different studies without considering all other facets.

Table 7. Multivariate Regression analyses with the Mathematics and English Grades as Dependent
Variables and the Three Factors of the Bifactor(S-1) Model as Independent Variables (Reference Facet =
Verbal Analogies).

Mathematics
(R2 = 0.233)

English
(R2 = 0.106)

b bs b bs

AN 0.234 **
(0.038) 0.400 0.178 **

(0.040) 0.304

NS-S 0.113 **
(0.046) 0.188 0.073

(0.046) 0.122

UN-S 0.080 *
(0.037) 0.140 −0.012

(0.041) −0.021

Note. Regression parameter estimates (b), standard errors of unstandardized regression parameter estimates (in
parentheses), standardized regression estimates (bs), and coefficient of determination (R2). AN = verbal analogies
reference facet factor, NS-S = number series specific factor, UN-S = unfolding specific factor, Math = Mathematics
grade, Eng = English grade. ** p < 0.01, * p < 0.05.

It is important to note that the correlations and the regression coefficients in the bifactor(S-1) model
can change if one selects another facet as the reference facet. When we changed the reference facet in our
empirical example, however, neither the fit of the bifactor(S-1) model nor did the explained variance
in the criterion variables changed. When we used number series as reference facet, for example, the
regression coefficient of verbal analogies—now considered a specific facet—significantly predicted
English grades, in addition to the reference facet (see Table 8). When predicting mathematics grades,
the specific factors of verbal analogies and unfolding had an additional effect. Note that the choice of
the reference facet depends on the research question and can also differ between criterion variables
(e.g., verbal analogies might be chosen as reference facet for language grades and number series as
reference facet for mathematics and science grades).

Table 8. Multivariate Regression analyses with the Mathematics and English Grades as Dependent
Variables and the Three Factors of the Bifactor(S-1) Model as Independent Variables (Reference Facet =
Number Series).

Mathematics
(R2 = 0.233)

English
(R2 = 0.106)

b bs b bs

NS 0.210 **
(0.031) 0.394 0.129 **

(0.037) 0.242

AN-S 0.140 **
(0.046) 0.212 0.146 **

(0.050) 0.221

UN-S 0.080 *
(0.037) 0.136 −0.012

(0.041) −0.021

Note. Regression parameter estimates (b), standard errors of unstandardized regression parameter estimates (in
parentheses), standardized regression estimates (bs), and coefficient of determination (R2). NS = number series
reference facet factor, AS-S = verbal analogies specific factor, UN-S = unfolding specific factor, Math = Mathematics
grade, Eng = English grade. ** p < 0.01, * p < 0.05.
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4. Discussion

The bifactor model has become a standard model for analyzing general and specific factors [35,37].
One major advantage of the bifactor model is that all factors are uncorrelated. If one extends the
model to a multiple regression framework and uses this model to predict criterion variables by
general and specific factors, then the general and specific factors are independent sources of prediction.
So, the problem of multicollinearity is avoided. Hence, the regression weights indicate to which
degree general and specific abilities are important for predicting criterion variables. However,
our empirical application revealed severe identification and estimation problems which strongly
limit the applicability of the bifactor model for predicting criterion variables. First, the bifactor model
with criterion variables as covariates is not identified if (a) the indicators do not differ in their loadings
on the general and specific factors, and (b) both the general and specific factors are correlated with the
criterion variables. In the herein conducted empirical application of the bifactor model, the indicators
did not differ significantly in their loadings. Therefore, the extended bifactor model with equal loadings
could not be applied. Equal loadings might be rather common in intelligence research, because many
authors of intelligence tests might base their item selection on the Rasch model [50], also called the
one-parameter logistic model. The Rasch model has many advantages such as specific objectivity,
the fact that item parameters can be independently estimated from person parameters and that the
total score is a sufficient statistic for the ability parameter. Particularly, applications of bifactor models
on item parcels or items that do not differ in their discrimination—as is the case in the one-parameter
logistic model—will result in identification problems. The same is true for tests developed on the basis
of the classical test theory, where equal factor loadings are desirable for test authors (mostly because of
the ubiquitous use of Cronbach’s alpha, which is only a measure of test score reliability if the items do
not differ in their loadings). Hence, applying well-constructed tests in research on intelligence might
often result in a situation where the loadings are equal or similar.

However, in the case of equal loadings, the extended bifactor model is only identified if the
correlations (or regression weights) of either the general factor with the criterion variables or of the
specific factors with the criterion variables are fixed to 0. This has a serious implication for research on
general vs. specific factors predicting real-world criteria: The bifactor model is not suitable for deciding
whether the general or the specific factors are more important for predicting criterion variables. As we
have shown in the empirical application, one can specify the model in such a way that either the g
factor or the specific factors are the relevant source of individual differences in the criterion variables,
thereby making this model arbitrary for determining the relative importance of g versus specific
abilities. In order to get an identified bifactor model, we had to freely estimate the factor loadings of
the general factor. However, even for this (then identified) model, the standard errors of the correlation
and regression coefficients were so large that none of the coefficients were significant—although
generally strong associations between intelligence facets and school grades existed. Hence, applying
the bifactor model with criterion (or other) variables as covariates can result in invalid conclusions
about the importance of general and specific factors.

It is important to note that the high standard errors are not due to multicollinearity, but seem
to be a property of the model itself, as the estimated factor loadings were close to the situation of
non-identification (i.e., almost equal). Fixing either the correlations between the grades and the general
factor or between the grades and the specific factors results in lower standard errors and significant
correlations and regression weights. Again, however, it cannot be appropriately decided whether
the general factor or the specific factors are the relevant source of individual differences. This fact
even offers some possibilities for misuse. For example, proponents of the g factor might report the fit
coefficients of the model with all correlation coefficients estimated and with the correlation coefficients
of the specific factors fixed to zero. They might argue (and statistically test) that the two models fit
equally well and, therefore, report only the results of the reduced model showing significant g factor
correlations. This would lead to the conclusion that the specific factors are irrelevant for predicting
criterion variables. Conversely, proponents of specific factors might apply the same strategy and use
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the same arguments to show that g is irrelevant (e.g., only measuring response styles) and only the
specific factors are relevant. According to our analyses, both conclusions are arbitrary and not valid.
Because of this arbitrariness, the question arises what the general factor and the specific factors mean.

Because of the strong limitations of the extended bifactor model, we proposed two alternative
approaches. The first alternative is an extension of the first-order factor model to a latent multiple
regression model in which the criterion variables are regressed on different facet factors. The regression
weights in such a model reflect the impact of a facet on a criterion variable, after controlling for all other
facets. This is equivalent to residualizing a facet with respect to all other facets and removing that part
of a facet that is already shared with all remaining facets in the model. Thus, a regression weight of 0
means that the facet does not contribute to the prediction of the criterion variable above and beyond
all other facets in the model. When applied to general and specific abilities, we have shown that the
multiple regression model can be formulated in such a way that a composite factor is defined as the
best linear combination of different facets. The importance of a specific facet is represented by the
weight with which the specific facet contributes to the composite factor. Because of the properties of the
multiple regression models, the meaning of the composite factor can differ between different criterion
variables. That means that depending on the purpose of a study, the composite factor always represents
the best possible combination of the information (specific abilities) available. Our application showed
that we need different composite factors to predict grades in mathematics and English. For English
grades, the composite factor was essentially determined by the facet verbal analogies, whereas a linear
combination of all three facets predicted mathematics grades. From the perspective of criterion-related
validity, it might not always be best to rely on g as an underlying variable (“property of a test”) but
to use the best combination of test scores for a specific purpose, which might be viewed as the best
exploitation of the available information.

The first-order factor model can be reformulated to a model with a reflective general factor on
which all observed indicators load. In such a bifactor(S-1) model, the first-order factor of a facet taken
as reference facet defines the common factor. The indicators of the non-reference specific abilities are
regressed on the reference factor. The specific part of a non-reference facet that is not determined by
the common reference factor is represented by a specific factor. The specific factors can be correlated.
If one puts certain restrictions on the parameters in the bifactor(S-1) model, as done in the application,
the model is data equivalent to the first-order factor model (for a deeper discussion see [48]). The main
difference to the first-order factor model is that the regression weight of the reference facet factor
(the common factor) does not depend on the other facets (in a regression model predicting criterion
variables). The regression weight equals the regression coefficient in a simple regression analysis,
because the reference factor is uncorrelated with all other factors. However, the regression coefficients
of the remaining facets represent that part of a facet that does not depend on the reference facet.
Depending on the reference facets chosen the regression weights of the specific factors might differ.
Because the specific factors can be correlated a regression coefficient of a specific factor indicates the
contribution of the specific factor beyond the other specific factors (and the reference facet).

The bifactor(S-1) model is particularly useful if a meaningful reference facet exists. For example,
if an intelligence researcher aims to contrast different facets of intelligence against one reference
facet (e.g., fluid intelligence) that she or he considers as basic, the bifactor(S-1) model would be
the appropriate model. For example, Baumert, Brunner, Lüdtke, and Trautwein [51] analyzed the
cognitive abilities assessed in the international PISA study using a nested factor model which equals a
bifactor(S-1) model. They took the figure and word analogy tests as indicators of a common reference
intelligence factor (analogies) with which verbal and mathematical abilities (represented by a specific
factor respectively) were contrasted. The common intelligence factor had a clear meaning (analogies)
that is a priori defined by the researcher. Therefore, researchers are aware of what they are measuring.
This is in contrast to applications of g models in which specific factors have zero variance as a result
of the analysis. For example, Johnson, Bouchard, Krueger, McGue, and Gottesman [52] could show
that the g factors derived from three test batteries were very strongly correlated. They defined a
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g factor as a second order factor for each test battery. In the model linking the three test batteries,
each g factor has a very strong loading (1.00, 0.99, 0.95) with a verbal ability facet. Given these high
factor loadings, there is no room for a specific factor for verbal abilities and g essentially equals verbal
abilities. Therefore, the three very strongly related g factors were three verbal ability factors. Johnson,
te Nijenhuis, and Bouchard [53] could confirm that the g factors of three other test batteries were
also strongly correlated. In their analysis, the three g factors were most strongly linked to first-order
factors assessing mechanical and geometrical abilities. Consequently, the meaning of the g factors
might differ between the two studies. The meaning of g has always been referred to from looking at
complex loading structures and often it reduces to one stronger reference facet. An advantage of a
priori defining a reference facet has the advantage that the meaning of the common factor is clear and
can be easily communicated to the scientific community. The empirical application presented in this
paper showed that verbal analogies might be such an outstanding facet for predicting school grades.
If one selects this facet as the reference facet, the specific factors of the other facets do not contribute to
predicting English grades, but they contribute to mathematics grades.

5. Conclusions and Recommendations

Given the identification and estimation problems, the utility of the bifactor model for predicting
criterion variables by general and specific factors is questionable. Further research is needed to
scrutinize under which conditions a bifactor model with additional correlating criterion variables can
be appropriately applied. At the very least, when the bifactor model is applied to analyze correlations
with general and specific factors, it is necessary to report all correlations and regressions weights as well
as their standard errors in order to decide whether or not the bifactor model was appropriately applied
in a specific research context. In applications in which the correlations of some specific factors with
criterion variables are fixed to 0 and are not reported, it remains unclear whether one would not have
also found a well-fitting model with substantive correlations for all specific factors and non-significant
correlations for the general factor. In the current paper, we recommend applying two alternative
models, first-order factor models and bifactor(S-1) models. The choice between first-order factor
models and bifactor(S-1) models depends on the availability of a facet that can be taken as reference.
If there is a meaningful reference facet or a facet that is of specific scientific interest, the bifactor(S-1)
model would be the model of choice. If one does not want to make a distinction between the different
specific facets, the first-order factor model can be applied.
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Appendix A

In the text, it is shown that a bifactor model with a correlating criterion variable is not identified
if the indicators do not differ in their loading parameters. In this appendix, it will be shown that a
bifactor model with a correlating criterion variable is identified if the loadings on the general factor
differ. We only refer to the covariance structure. In all models of confirmatory factor analysis, either
one loading parameter per factor or the variance of the factor has to be fixed to a positive value to get
an identified model. We chose the Mplus default setting with fixing one loading parameter per factor
to 1. Because there are only two indicators per specific factor and the specific factors are not correlated
with the remaining specific factors, we fixed all factor loadings of the specific factors to 1. Whereas the
nonidentification of bifactor models with equal loadings refers to all bifactor models independently of
the number of indicators and specific facets, the identification of models with freely estimated loadings
on the general and specific factors depends on the number of indicators and specific factors. The proof
of identification of the bifactor model with correlating criterion variables in general goes beyond the
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scope of the present research and will not be provided. We only consider the models applied in the
empirical application.

In the following, a general factor is denoted with G, the facet-specific factors are denoted with
Sk, the observed variables with Yik, and measurement error variables with Eik. The first index i refers
to the indicator, the second indicator k to the facet. Hence, Y11 is the first indicator of the first facet
considered. A criterion variable is denoted with C. We consider only one criterion variable. We only
consider models in which the criterion variables are correlated with the factors. Because the regression
coefficients in a multiple regression model are functions of the covariances, the identification issues
also apply to the multiple regression model. Moreover, we will only consider the identification of
the covariances between the criterion variables and the general as well as specific factors because the
identification of the bifactor model itself has been shown elsewhere (e.g., [54]). In the models applied,
it is assumed that the criterion variables are categorical variables with underlying continuous variables.
The variables C are the underlying continuous variables. If the criterion variable is a continuous
variable, C denotes the continuous variable itself. In the model with free loadings on the general factor,
the observed variables can be decomposed in the following way:

Yik = λikG + Sk + Eik

with λ11 = 1. The covariance of an observed variable Yik with the criterion can be decomposed in the
following way:

Cov(Yik, C) = Cov(λikG + Sk + Eik, C) = λikCov(G, C) + Cov(Sk, C)

with
Cov(Y11, C) = Cov(G + S1 + E11, C) = Cov(G, C) + Cov(S1, C)

For the difference between the two covariances Cov(Y11, C) and Cov(Y21, C) the following
decomposition holds:

Cov(Y11, C)− Cov(Y21, C) = Cov(G, C) + Cov(S1, C)− λ21Cov(G, C)− Cov(S1, C)
= Cov(G, C)− λ21Cov(G, C) = (1 − λ21)Cov(G, C)

Consequently, the covariance between the general factor and the criterion variable is identified by

Cov(G, C) = [Cov(Y11, C)− Cov(Y21, C)]/(1 − λ21)

with
λ21 = Cov(Y21, Y12)/Cov(Y11, Y12)

The covariances between the three specific factors and the criterion variable are identified by the
following equations:

Cov(S1, C) = Cov(Y21, C)− λ21Cov(G, C) = Cov(Y21, C)− Cov(Y21,Y12)[Cov(Y11,C)−Cov(Y21,C)]
Cov(Y11,Y12)(1−Cov(Y21,Y12)/Cov(Y11,Y12))

Cov(S2, C) = Cov(Y12, C)− λ12Cov(G, C) = Cov(Y21, C)− Cov(Y12,Y13)[Cov(Y11,C)−Cov(Y21,C)]
Cov(Y11,Y13)(1−Cov(Y21,Y12)/Cov(Y11,Y12))

Cov(S3, C) = Cov(Y13, C)− λ13Cov(G, C) = Cov(Y13, C)− Cov(Y13,Y12)[Cov(Y11,C)−Cov(Y21,C)]
Cov(Y11,Y12)(1−Cov(Y21,Y12)/Cov(Y11,Y12))

References

1. Spearman, C. General Intelligence objectively determined and measured. Am. J. Psychol. 1904, 15, 201–293.
[CrossRef]

2. Gustafsson, J.E.; Balke, G. General and specific abilities as predictors of school achievement.
Multivar. Behav. Res. 1993, 28, 407–434. [CrossRef] [PubMed]

http://dx.doi.org/10.2307/1412107
http://dx.doi.org/10.1207/s15327906mbr2804_2
http://www.ncbi.nlm.nih.gov/pubmed/26801141


J. Intell. 2018, 6, 42 21 of 23

3. Kuncel, N.R.; Hezlett, S.A.; Ones, D.S. Academic performance, career potential, creativity, and job
performance: Can one construct predict them all? J. Pers. Soc. Psychol. 2004, 86, 148–161. [CrossRef]
[PubMed]

4. Kell, H.J.; Lang, J.W.B. Specific abilities in the workplace: More important than g? J. Intell. 1993, 5, 13.
[CrossRef]

5. Carretta, T.R.; Ree, M.J. General and specific cognitive and psychomotor abilities in personnel selection:
The prediction of training and job performance. Int. J. Sel. Assess. 2000, 8, 227–236. [CrossRef]

6. Ree, M.J.; Earles, J.A.; Teachout, M.S. Predicting job performance: Not much more than g. J. Appl. Psychol.
1994, 79, 518–524. [CrossRef]

7. Ree, J.M.; Carretta, T.R. G2K. Hum. Perform. 2002, 15, 3–23.
8. Murphy, K. What can we learn from “Not much more than g”? J. Intell. 2017, 5, 8–14. [CrossRef]
9. Lang, J.W.B.; Kersting, M.; Hülsheger, U.R.; Lang, J. General mental ability, narrower cognitive abilities, and

job performance: The perspective of the nested-factors model of cognitive abilities. Pers. Psychol. 2010, 63,
595–640. [CrossRef]

10. Rindermann, H.; Neubauer, A.C. Processing speed, intelligence, creativity, and school performance: Testing
of causal hypotheses using structural equation models. Intelligence 2004, 32, 573–589. [CrossRef]

11. Goertz, W.; Hülsheger, U.R.; Maier, G.W. The validity of specific cognitive abilities for the prediction of
training success in Germany: A meta-analysis. J. Pers. Psychol. 2014, 13, 123. [CrossRef]

12. Ziegler, M.; Dietl, E.; Danay, E.; Vogel, M.; Bühner, M. Predicting training success with general mental ability,
specific ability tests, and (un)structured interviews: A meta-analysis with unique samples. Int. J. Sel. Assess.
2011, 19, 170–182. [CrossRef]

13. Holzinger, K.; Swineford, F. The bi-factor method. Psychometrika 1937, 2, 41–54. [CrossRef]
14. Beaujean, A.A.; Parkin, J.; Parker, S. Comparing Cattewll-Horn-Carroll factor models: Differences between

bifactor and higher order factor models in predicting language achievement. Psychol. Assess. 2014, 26,
789–805. [CrossRef] [PubMed]

15. Benson, N.F.; Kranzler, J.H.; Floyd, R.G. Examining the integrity of measurement of cognitive abilities in
the prediction of achievement: Comparisons and contrasts across variables from higher-order and bifactor
models. J. Sch. Psychol. 2016, 58, 1–19. [CrossRef] [PubMed]

16. Betts, J.; Pickard, M.; Heistad, D. Investigating early literacy and numeracy: Exploring the utility of the
bifactor model. Sch. Psychol. Q. 2011, 26, 97–107. [CrossRef]

17. Brunner, M. No g in education? Learn. Individ. Differ. 2008, 18, 152–165. [CrossRef]
18. Christensen, A.P.; Silvia, P.J.; Nusbaum, E.C.; Beaty, R.E. Clever people: Intelligence and humor production

ability. Psychol. Aesthet. Creat. Arts 2018, 12, 136–143. [CrossRef]
19. Immekus, J.C.; Atitya, B. The predictive validity of interim assessment scores based on the full-information

bifactor model for the prediction of end-of-grade test performance. Educ. Assess. 2016, 21, 176–195. [CrossRef]
20. McAbee, S.T.; Oswald, F.L.; Connelly, B.S. Bifactor models of personality and college student performance:

A broad versus narrow view. Eur. J. Pers. 2014, 28, 604–619. [CrossRef]
21. Saß, S.; Kampa, N.; Köller, O. The interplay of g and mathematical abilities in large-scale assessments across

grades. Intelligence 2017, 63, 33–44. [CrossRef]
22. Schult, J.; Sparfeldt, J.R. Do non-g factors of cognitive ability tests align with specific academic achievements?

A combined bifactor modeling approach. Intelligence 2016, 59, 96–102. [CrossRef]
23. Silvia, P.J.; Beaty, R.E.; Nusbaum, E.C. Verbal fluency and creativity: General and specific contributions of

broad retrieval ability (Gr) factors to divergent thinking. Intelligence 2013, 41, 328–340. [CrossRef]
24. Silvia, P.J.; Thomas, K.S.; Nusbaum, E.C.; Beaty, R.E.; Hodges, D.A. How does music training predict

cognitive abilities? A bifactor approach to musical expertise and intelligence. Psychol. Aesthet. Creat. Arts
2016, 10, 184–190. [CrossRef]

25. Gunnell, K.E.; Gaudreau, P. Testing a bi-factor model to disentangle general and specific factors of motivation
in self-determination theory. Pers. Individ. Differ. 2015, 81, 35–40. [CrossRef]

26. Stefansson, K.K.; Gestsdottir, S.; Geldhof, G.J.; Skulason, S.; Lerner, R.M. A bifactor model of school
engagement: Assessing general and specific aspects of behavioral, emotional and cognitive engagement
among adolescents. Int. J. Behav. Dev. 2016, 40, 471–480. [CrossRef]

27. Wang, M.-T.; Fredericks, J.A.; Ye, F.; Hofkens, T.L.; Schall Linn, J. The math and science engagement scales:
Scale development, validation, and psychometric properties. Learn. Instr. 2016, 43, 16–26. [CrossRef]

http://dx.doi.org/10.1037/0022-3514.86.1.148
http://www.ncbi.nlm.nih.gov/pubmed/14717633
http://dx.doi.org/10.3390/jintelligence5020013
http://dx.doi.org/10.1111/1468-2389.00152
http://dx.doi.org/10.1037/0021-9010.79.4.518
http://dx.doi.org/10.3390/jintelligence5010008
http://dx.doi.org/10.1111/j.1744-6570.2010.01182.x
http://dx.doi.org/10.1016/j.intell.2004.06.005
http://dx.doi.org/10.1027/1866-5888/a000110
http://dx.doi.org/10.1111/j.1468-2389.2011.00544.x
http://dx.doi.org/10.1007/BF02287965
http://dx.doi.org/10.1037/a0036745
http://www.ncbi.nlm.nih.gov/pubmed/24840178
http://dx.doi.org/10.1016/j.jsp.2016.06.001
http://www.ncbi.nlm.nih.gov/pubmed/27586067
http://dx.doi.org/10.1037/a0022987
http://dx.doi.org/10.1016/j.lindif.2007.08.005
http://dx.doi.org/10.1037/aca0000109
http://dx.doi.org/10.1080/10627197.2016.1202108
http://dx.doi.org/10.1002/per.1975
http://dx.doi.org/10.1016/j.intell.2017.05.001
http://dx.doi.org/10.1016/j.intell.2016.08.004
http://dx.doi.org/10.1016/j.intell.2013.05.004
http://dx.doi.org/10.1037/aca0000058
http://dx.doi.org/10.1016/j.paid.2014.12.059
http://dx.doi.org/10.1177/0165025415604056
http://dx.doi.org/10.1016/j.learninstruc.2016.01.008


J. Intell. 2018, 6, 42 22 of 23

28. Byllesby, B.M.; Elhai, J.D.; Tamburrino, M.; Fine, T.H.; Cohen, C.; Sampson, L.; Shirley, E.; Chan, P.K.;
Liberzon IGalea, S.; Calabrese, J.R. General distress is more important than PTSD’s cognition and mood
alterations factor in accounting for PTSD and depression’s comorbidity. J. Affect. Disord. 2017, 211, 118–123.
[CrossRef] [PubMed]

29. Ogg, J.A.; Bateman, L.; Dedrick, R.F.; Suldo, S.M. The relationship between life satisfaction and ADHD
symptoms in middle school students: Using a bifactor model. J. Atten. Disord. 2016, 20, 390–399. [CrossRef]
[PubMed]

30. Subica, A.M.; Allen, J.G.; Frueh, B.C.; Elhai, J.D.; Fowler, C.J. Disentangling depression and anxiety in relation
to neuroticism, extraversion, suicide, and self-harm among adult psychiatric inpatients with serious mental
illness. Br. J. Clin. Psychol. 2015, 55, 349–370. [CrossRef] [PubMed]

31. Furtner, M.R.; Rauthmann, J.F.; Sachse, P. Unique self-leadership: A bifactor model approach. Leadership
2015, 11, 105–125. [CrossRef]

32. Chen, F.F.; Hayes, A.; Carver, C.S.; Laurenceau, J.P.; Zhang, Z. Modeling general and specific variance in
multifaceted constructs: A comparison of the bifactor model to other approaches. J. Pers. 2012, 80, 219–251.
[CrossRef] [PubMed]

33. Debusscher, J.; Hofmans, J.; De Fruyt, F. The multiple face(t)s of state conscientiousness: Predicting task
performance and organizational citizenship behavior. J. Res. Pers. 2017, 69, 78–85. [CrossRef]

34. Chiu, W.; Won, D. Relationship between sport website quality and consumption intentions: Application of a
bifactor model. Psychol. Rep. 2016, 118, 90–106. [CrossRef] [PubMed]

35. Eid, M.; Geiser, C.; Koch, T.; Heene, M. Anomalous results in g-factor models: Explanations and alternatives.
Psychol. Methods 2017, 22, 541–562. [CrossRef] [PubMed]

36. Brunner, M.; Nagy, G.; Wilhelm, O. A tutorial on hierarchically structured constructs. J. Pers. 2012, 80,
796–846. [CrossRef] [PubMed]

37. Reise, S.P. The rediscovery of the bifactor measurement models. Multivar. Behav. Res. 2012, 47, 667–696.
[CrossRef] [PubMed]

38. Kell, H.J.; Lang, J.W.B. The great debate: General abilitiy and specific abilities in the prediction of important
outcomes. J. Intell. 2018, 6, 24.

39. Kersting, M.; Althoff, K.; Jäger, A.O. WIT-2. Der Wilde-Intelligenztest. Verfahrenshinweise; Hogrefe: Göttingen,
Germany, 2008.

40. Muthén, L.K.; Muthén, B.O. Mplus User’s Guide, 8th ed.; Muthén & Muthén: Los Angeles, CA, USA, 1998.
41. Roth, B.; Becker, N.; Romeyke, S.; Schäfer, S.; Domnick, F.; Spinath, F.M. Intelligence and school grades:

A meta-analysis. Intelligence 2015, 53, 118–137. [CrossRef]
42. Bollen, K.A.; Bauldry, S. Three Cs in measurement models: Causal indicators, composite indicators,

and covariates. Psychol. Methods 2011, 16, 265–284. [CrossRef] [PubMed]
43. Grace, J.B.; Bollen, K.A. Representing general theoretical concepts in structural equation models: The role of

composite variables. Environ. Ecol. Stat. 2008, 15, 191–213. [CrossRef]
44. Cronbach, L.J. Essentials of Psychological Testing, 3rd ed.; Harper & Row: New York, NY, USA, 1970.
45. Kane, M.T. Validating the interpretations and uses of test scores. J. Educ. Meas. 2013, 50, 1–73. [CrossRef]
46. Messick, S. Validity. In Educational Measurement, 3rd ed.; Linn, R.L., Ed.; Macmillan: New York, NY, USA,

1989; pp. 13–103.
47. Newton, P.; Shaw, S. Validity in Educational and Psychological Assessment; Sage: Thousand Oaks, CA, USA, 2014.
48. Geiser, C.; Eid, M.; Nussbeck, F.W. On the meaning of the latent variables in the CT-C(M–1) model:

A comment on Maydeu-Olivares & Coffman (2006). Psychol. Methods 2008, 13, 49–57. [PubMed]
49. Holzinger, K.J.; Swineford, F. The relationship of two bi-factors to achievement in geometry and other

subjects. J. Educ. Psychol. 1946, 27, 257–265. [CrossRef]
50. Rasch, G. Probabilistic Models for Some Intelligence and Attainment Test; University of Chicago Press: Chicago,

IL, USA, 1980.
51. Baumert, J.; Brunner, M.; Lüdtke, O.; Trautwein, U. Was messen internationale Schulleistungsstudien?—

Resultate kumulativer Wissenserwerbsprozesse [What are international school achievement studies
measuring? Results of cumulative acquisition of knowledge processes]. Psychol. Rundsch. 2007, 58, 118–145.
[CrossRef]

52. Johnson, W.; Bouchard, T.J., Jr.; Krueger, R.F.; McGue, M.; Gottesman, I.I. Just one g: Consistent results from
three test batteries. Intelligence 2004, 32, 95–107. [CrossRef]

http://dx.doi.org/10.1016/j.jad.2017.01.014
http://www.ncbi.nlm.nih.gov/pubmed/28110158
http://dx.doi.org/10.1177/1087054714521292
http://www.ncbi.nlm.nih.gov/pubmed/24514584
http://dx.doi.org/10.1111/bjc.12098
http://www.ncbi.nlm.nih.gov/pubmed/26714662
http://dx.doi.org/10.1177/1742715013511484
http://dx.doi.org/10.1111/j.1467-6494.2011.00739.x
http://www.ncbi.nlm.nih.gov/pubmed/22092195
http://dx.doi.org/10.1016/j.jrp.2016.06.009
http://dx.doi.org/10.1177/0033294115625269
http://www.ncbi.nlm.nih.gov/pubmed/29693526
http://dx.doi.org/10.1037/met0000083
http://www.ncbi.nlm.nih.gov/pubmed/27732052
http://dx.doi.org/10.1111/j.1467-6494.2011.00749.x
http://www.ncbi.nlm.nih.gov/pubmed/22091867
http://dx.doi.org/10.1080/00273171.2012.715555
http://www.ncbi.nlm.nih.gov/pubmed/24049214
http://dx.doi.org/10.1016/j.intell.2015.09.002
http://dx.doi.org/10.1037/a0024448
http://www.ncbi.nlm.nih.gov/pubmed/21767021
http://dx.doi.org/10.1007/s10651-007-0047-7
http://dx.doi.org/10.1111/jedm.12000
http://www.ncbi.nlm.nih.gov/pubmed/18331153
http://dx.doi.org/10.1037/h0053536
http://dx.doi.org/10.1026/0033-3042.58.2.118
http://dx.doi.org/10.1016/S0160-2896(03)00062-X


J. Intell. 2018, 6, 42 23 of 23

53. Johnson, W.; Te Nijenhuis, J.; Bouchard, T.J., Jr. Still just 1 g: Consistent results from five test batteries.
Intelligence 2008, 36, 81–95. [CrossRef]

54. Steyer, R.; Mayer, A.; Geiser, C.; Cole, D.A. A theory of states and traits: Revised. Annu. Rev. Clin. Psychol.
2015, 11, 71–98. [CrossRef] [PubMed]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.intell.2007.06.001
http://dx.doi.org/10.1146/annurev-clinpsy-032813-153719
http://www.ncbi.nlm.nih.gov/pubmed/25062476
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Description of the Empirical Study 
	Participants and Materials 
	Data Analysis 
	Application of the Bifactor Model 

	Alternatives to Extended Bifactor Models 
	Application of the Extended First-Order Factor Model 
	Application of the Bifactor(S-1) Model 

	Discussion 
	Conclusions and Recommendations 
	
	References

