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Abstract
This review summarizes similarities and differences between the metabolic syndromes

in humans and equines, concerning the anatomy, symptoms, and pathophysiological

mechanisms. In particular, it discusses the structure and distribution of adipose tissue and its

specific metabolic pathways. Furthermore, this article provides insights and focuses on issues

concerning laminitis in horses and cardiovascular diseases in humans, as well as their overlap.
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Introduction
Metabolic syndrome in humans was first described almost

50 years ago by Camus (1), but there was little interest in

this disease until the late 1980s, when it gained new

attention as ‘syndrome X’ or ‘the deadly quartet’ (2, 3).

According to the Adult Treatment Panel III of

the National Cholesterol Education Program (NCEP) and

the American Heart Association/National Heart, Lung

and Blood Institute (http://www.nhlbi.nih.gov/health/

health-topics/topics/ms/), three of the five criteria –

waist circumference, hypertension, elevated glucose levels

in the fasting state, elevated triglycerides, and decreased

HDL cholesterol – have to be met to establish the diagnosis

of human metabolic syndrome (HMS) (4).

A similar disease in horses, called ‘equine metabolic

syndrome’ (EMS), was first described by Johnson et al. (5)

and commonly accepted by a consensus committee and

the veterinary public. Although equine disease resembles

what we know from humans in many aspects, distinct

differences have been defined concerning the vascular
structures affected by the disease, typically the coronary

vessels in humans, while horses present with an increased

risk of laminitis (6).

As pituitary pars intermedia dysfunction (PPID,

equine Cushing’s syndrome), EMS is a common endo-

crinologic disease with severe metabolic consequences in

equine medicine, and tends to affect young horses. EMS is

a very complex disorder that has been the focus of many

prior studies, as is HMS in human medicine (7).

In this paper, we aimed to review similarities and

differences between EMS and HMS, as this may allow

transfer of knowledge between both species.
Anatomy and physiology of adipose tissue

Adipose or fat tissue, a special form of reticular connective

tissue, consists mainly of adipocytes. White and brown

adipose tissues in both horses and humans must be

differentiated: the former tissue contains single lipid
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droplets and the latter contains numerous smaller

droplets. In addition to serving as fat storage, adipose

tissue has endocrine functions (8, 9, 10).

When weight is gained physiologically, the number of

fat cells does not change, but more lipids are stored in fat

cells, thereby causing an increase in cell size. By contrast,

obesity is characterized not only by hypertrophic expan-

sion of adipocytes, but also by a proliferation process

which increases the number of adipocytes (10).

There are two different types of adipocytes within

white adipose tissue: normal ‘white’ fat cells and ‘brite’

brown-in-white adipocytes. The latter express decoupled

protein 1, a classic marker of brown fat cells, although they

do not have the same molecular properties as brown fat

cells (11). The distribution of these ‘brite’ adipocytes

within white fat depots differed in mice (12). The different

distribution of these ‘brite’ adipocytes in fat depots affects

their metabolic processes, which could influence lipid

release in adipose tissue (12). However, the authors do not

mention any link with metabolic syndrome, and further

investigations are necessary to evaluate a relationship

between these ‘brite’ adipocytes and metabolic syndrome.

To date, there is a lack of studies in horses and humans

concerning this issue.

In addition to mature adipocytes, fat tissue contains

a so-called stromal vascular fraction, which is located

in loose connective tissue between fat cells and includes

macrophages, fibroblasts, pericytes, mast cells, micro-

vascular endothelial cells, and progenitor cells of the

adipogenic line. Fat cells or mature adipocytes are of

mesenchymal origin. The adipose tissue also constitutes a

reservoir of mesenchymal stem cells, which may serve as

an alternative cell source to bone marrow for tissue

engineering in humans and equids (13, 14). White fat

adipocytes are characterized by a single large fat droplet,

which forces the nucleus to be squeezed into a thin rim

at the periphery and a narrow hemline on the peripheral

cytoplasm. The polygonal cells have a diameter of up to

120 mm and are embedded in a network of reticular

fibers (collagen fibers of type III). White adipose tissue in

humans is macroscopically divided by connective tissue

septa into individual fat lobules, which are morpho-

logically, functionally, and angiologically independent

units. The areas of terminal circulation include an artery,

which is usually situated in the axis of the lobule, while

a paired vein collects blood on the surface. In contrast

to former reports, the fat tissue is a highly perfused tissue

(15, 16). Based on the cytoplasm area of fat cells, the

capillary bed reaches a high level in a similar density to

skeletal muscle. High vascularization of adipose tissue is
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important for the exchange of metabolites, high meta-

bolic activity of individual fat cells, and its vital endocrine

function (16). To the best of our knowledge, there is a lack

of literature regarding whether and to what extent the

horse differs in histology compared with humans.

The amount of fat tissue in the bodyweight of a

normal adult human male is w8–20 and 21–33% in an

adult female (17). Human fat is oily in consistency,

semiliquid, and deep yellow at body temperature. The

consistency of the fat depends on the melting point of

fatty acids found in the fat tissue. A large proportion

of fatty acid in adipose tissue in humans is oleic acid, a

monounsaturated fatty acid that is assigned to omega 9

fatty acids based on the location of their double bond.

The amount of fat tissue in the bodyweight of a

normal-weight horse is 5% (18). There are currently no

studies focusing on differences in the amount of fat

tissue in bodyweight according to breed, gender, or age.

The white adipose tissue of the horse is also yellow and has

an oily consistency. The yellow color is due to an increased

incorporation of exogenous fat-soluble pigments, such as

carotenoids (8). The most abundant fatty acid in the

adipose tissue of the horse is also oleic acid (19).

In conclusion, the functional and structural condition

of fat cells in horses and humans is widely comparable;

therefore, a transfer of scientific knowledge from

humans to equids might be possible. However, the per-

centage amount of body fat differs, which could lead

to different amounts of metabolic products influencing

the body system.

Horses with EMS present with a characteristic fat

distribution showing deposits such as a cresty neck and at

the comb, side of the chest, hip region, and tail head. Large

omental fat deposits are also present, but not visible (Fig. 1).

Abdominal obesity is very common in humans,

particularly males, suffering from HMS. Predominant fat

accumulation in the femoral–gluteal region, commonly

seen in females, is associated with a lower risk of metabolic

disease (20, 21, 22).

The intra-abdominal fat accumulation in humans

amounts to 10% of bodyweight and includes omental,

mesenteric, and perirenal fat. Visceral fat surrounds

internal organs (viscera) and is often used as a synonym

for intra-abdominal fat (23). According to the definition of

HMS corresponding to the International Diabetes Federa-

tion (IDF), the waist circumference has to be measured at

R80 cm in women and R94 cm in men (http://www.idf.

org, 09/08/2011). Mesenteric and omental fat is of greater

importance in the development of insulin resistance,

because their fatty acids and adipokines pass through the
This work is licensed under a Creative Commons
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Figure 1

Horse suffering from EMS and laminitis. The horse shows distribution of fat at characteristic sites. The rear limbs are positioned forward to relieve stress from

the front hooves, a condition associated with laminitis.
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enterohepatic circulation. Additionally, omental fat has a

more pronounced proinflammatory state than fat in other

locations (24, 25). However, there are other important

issues besides fat distribution which might influence the

development of HMS. Humans with a reduced energy

storage capacity in peripheral subcutaneous adipose

tissue, for example, show a higher fat content in the

liver, and skeletal and heart muscles. Consequently, they

are predisposed to insulin resistance and developing

type 2 diabetes mellitus (T2DM), an aspect that has to be

investigated in horses (17).

Furthermore, a higher basal lipolysis has been detected

in human adipocytes of omental and mesenteric adipose

tissues, compared with adipocytes of subcutaneous fat

tissue (26, 27, 28). The catecholamines stimulate lipolysis of

omental fat tissue to a higher degree than in subcutaneous

tissue, while insulin has a stronger inhibitory effect on

subcutaneous adipose tissue (24, 27). These differences are

partly due to the predominance of stimulating b-receptors

over antilipolytic a-adrenoreceptors, and lower insulin
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receptor affinity of mesenteric omental adipocytes respect-

ively (27, 29). In addition to differences in lipolysis at

different localizations of adipose tissue, lipogenesis differs

at various fat depots (30, 31, 32). There are also differences

in gene expression in visceral and subcutaneous fat in

humans; however, isolated and cultured human preadipo-

cytes are still capable of their full and unique pattern of

gene expression, regardless of their environment (33, 34,

35, 36). Further research is required, particularly in equines,

to evaluate the importance of the site of fat deposition

and differences in metabolism of these fat depots to assess

their role in the development of metabolic syndrome.

Human adipose tissue produces adipokines, such as

leptin, resistin, adiponectin, and visfatin. Furthermore,

it releases inflammatory mediators, such as monocyte

chemotactic protein 1 (MCP1 (CCL2)) and plasminogen

activator inhibitor (PAI1 (SERPINE1)), as well as pro-

inflammatory cytokines, such as tumor necrosis factor

alpha (TNFa (TNF)), interleukin 1 (IL1 (IL1A)), IL6, and

IL8 (CXCL8) (37, 38). Differences in the production of
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inflammatory mediators and their amount of expression

in various fat tissues have also been reported. Adipose

tissue around the nuchal ligament in horses is of particular

importance in the production of inflammatory mediators,

specifically IL1b and IL6. Furthermore, omental fat and

fat in muscles are suspected of playing an important

role in the development of a proinflammatory state,

because expression of TNF is increased and suppression

of cytokine signaling 3 (SOCS3) and Toll-like receptor 4

(TLR4) is significantly higher in comparison to subcu-

taneous fat in the area of the nuchal ligament (39, 40).

The gene expression of IL1, IL6, and TNFa was lower or

not different in obese, hyperinsulinemic horses compared

with euinsulinemic horses of normal weight (41). More-

over, no significant differences in gene expression of

TNFa, IL1b (IL1B), IL6, PAI1, or MCP1 mRNA were

recognized in different fat depots in horses affected by

EMS in comparison to healthy individuals (39). This is

surprising, as an increase in ILs was assumed to be a

causative factor in the pathogenesis of disease in previous

reports (9, 42). However, a positive correlation of TNF

expression, IL1 mRNA, and body condition score (BCS)

of horses was demonstrated in another study, in which

an increased cytokine expression seemed to be a risk factor

for the development of insulin resistance (9).

The importance of various inflammatory mediators

and their patterns of expression in the horse have been

controversially discussed. Marked differences seem to exist

between humans and equines. Further studies are required

to evaluate the reasons for these differences, as they may

be a key factor in the pathogenesis of equine disease.
Clinical signs

Metabolic syndrome affects all organ systems involved in

metabolism to various degrees, and therefore, the disease

results in an impaired energy metabolism of the entire

organism (43).

Metabolic syndrome in humans is characterized by

abdominal obesity, hypertension, dyslipidemia (hypertri-

glyceridemia, decreased HDL, and cholesterolemia), insulin

resistance, increased oxidative burst, vascular dysfunction,

increased coagulability (increased fibrinogen and tissue

PAI1), and inflammation of adipose tissue (44, 45, 46, 47,

48, 49, 50, 51). All these factors contribute to a generalized

proinflammatory state of the organism.

Symptoms of metabolic syndrome are used to identify

humans with an increased risk of cardiovascular disease

(52). Owing to endothelial dysfunction, affected individ-

uals have an increased risk of developing atherosclerosis,
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coronary flow reserve is impaired, and there are indepen-

dent associations among impaired coronary flow reserve,

increased stiffness of the aorta, systolic blood pressure,

and waist circumference (53, 54, 55). Symptoms of

atherosclerosis are found in the entire body, including

small vessels in the brain, extracranial carotid arteries,

and coronary vessels. Possible consequences of athero-

sclerosis are ischemia, thrombosis, angina pectoris, heart

attack, stroke, or sudden cardiac death (56).

Clinical signs in the horse include general (BCS R7/9;

57) or regional adiposity (cresty neck score R3/5), insulin

resistance, a predisposition to laminitis, and enhanced

oxidative burst (58, 59).

Laminitis, one of the most dangerous conditions in

horses, ponies, and donkeys, might be the counterpart to

central vascular dysfunction observed in humans. Severe

or recurrent laminitis may limit the performance of the

horse and may even result in euthanasia. Inflammation

and ischemia of the digital dermal tissue lead to

destruction of the interlaminar bond, which is the only

support of the distal phalanx within the hoof capsule,

and lameness, pedal bone rotation, and founder line for-

mation follows (Figs 2 and 3) (7, 60). Further signs

include hypertension, dyslipidemia, vascular dysfunction,

and increased coagulation (58, 61, 62, 63, 64, 65).

Another consequence of HMS is non-alcoholic fatty

liver disease. Pathological changes range from simple fatty

infiltration to advanced non-alcoholic steatohepatitis and

liver fibrosis (66, 67, 68). Studies on horses have not been

carried out thus far, but elevated liver enzyme levels are

occasionally found in affected horses, in particular g-GT,

corresponding to hepatic lipidosis detected in biopsy and

necropsy specimens (7, 64).

A carcinogenic effect is also associated with metabolic

syndrome in humans. It is assumed that females suffering

from HMS have an increased risk of developing breast

cancer (69). A predisposition to colon and rectal carci-

noma is also discussed (70). In addition, a twofold risk

of developing Barrett esophagus, a metaplastic transfor-

mation of the esophagus epithelium, has been reported

(51). Horses suffering from EMS are suspected of deve-

loping intestinal lipoma at a younger age, but further

investigation is warranted to confirm this hypothesis (71).

HMS is also associated with a higher prevalence of

rheumatoid arthritis compared with the general popu-

lation (72). Data in equines are missing.

Obese pregnant women have an increased risk of a

variety of gestational and perinatal problems, such as

gestational diabetes, fetal macrosomia, prematurity, birth

defects, pre-eclampsia, eclampsia, increased caesarean
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Figure 2

Lateromedial radiographic image of the right front limb of a horse showing rotation and evidence of sinking of the coffin bone.
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section rate, and stillbirth (73, 74). A prolonged estrous

cycle is observed in obese mares (9).

T2DM is of particular concern in humans suffering

from metabolic syndrome, and it may also develop in

horses in pronounced cases of EMS. At the time of diabetes

diagnosis, insulin resistance and relative insulin deficiency

may be present. Type 2 is the most common type of DM in

humans, accounting for about 90% of cases (http://www.

dft.org//types-diabetes). T2DM in horses may be more

common than generally considered and is the main

diabetes type observed in horses as well. Moreover,

T2DM is the end stage of EMS (71, 75).

Several risk factors have been associated with T2DM

and include a family history of diabetes, overweight,

dietary factors, physical inactivity, increasing age, high

blood pressure, ethnicity, impaired glucose tolerance,

history of gestational diabetes, and poor nutrition during

pregnancy (http://www.dft.org//types-diabetes).

Various international research centers have been

involved in identifying genes predisposed to T2DM in

humans. An association of T2DM with the calpain 10

(CAPN10) gene was initially identified, and later, its

association with the transcription factor 7-like 2
http://www.endocrineconnections.org
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(TCF7L2) gene, whose genetic variants in affected indi-

viduals increase the risk of diabetes by w1.5 times (76, 77).

The most common risk factors in horses include

metabolic syndrome and PPID. Unfortunately, studies on

equine medicine are lacking concerning genetic issue or

other predisposing factors compared with human medicine.

In summary, a significant clinical overlap exists

between both species. The most interesting question

seems to be whether a comparable genesis exists for

cardiovascular disease in humans and laminitis in equines.
Pathophysiology of metabolic syndrome

Multiple hypotheses regarding the pathogenesis of meta-

bolic syndrome exist in human and equine medicine.

Some of them can be supported by evidence, while others

require further research.

One of these hypotheses regarding the development

of metabolic syndrome is the regulation of bodyweight

through the ponderostat. The ponderostat is a control or

supervisory point within the brain, probably located in

the hypothalamus, responsible for the regulation of body-

weight. Based on the regulation theory of cybernetics (78),
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Figure 3

Lateromedial radiographic image of a physiological positioned hoof with no evidence of rotation or sinking of the coffin bone.
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the ponderostat constantly compares the actual value

of the organism with the set point and responds to

weight loss with physical signals, such as hunger. The

mechanisms of the ponderostat are still poorly under-

stood, but probably do not depend directly on energy

supply. The regulation represents a very complex process,

which is influenced partly by the immune system (79).

The hormones leptin and oleoyl-estrone were postulated

as ponderostat signals. As the secretion capacity of leptin

differs within different fat depots depending on the age,

gender, and circadian rhythm, the likelihood that leptin

represents a true ponderostat signal is low (79, 80, 81, 82).

Recent studies have demonstrated that oleoyl-estrone

itself cannot be responsible for the control of body fat,

but a derivate might (83). In other words, the brain is

involved in the pathogenesis of metabolic syndrome, but

the exact mechanisms remain obscure.

White adipose tissue plays a key role in the develop-

ment of metabolic syndrome. Owing to an excessive

supply of energy, adipocytes increase in size causing

‘stress’ in adipose tissue. During expansion of hyper-

trophic adipocytes, a signaling cascade is initiated, leading

to the remodeling of tissue and recruitment of inflam-

matory cells. Owing to proinflammatory signals in adipose
http://www.endocrineconnections.org
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tissue, there is an increased activity of macrophages,

which leads to further inflammation of adipose tissue.

Persistent inflammation leads to accelerated lipolysis and

an increased amount of free fatty acids in the bloodstream

(84). Inflammation of adipose tissue induces production

of proinflammatory adipokines that increase their own

synthesis and synthesis of other systemic inflammatory

markers and vice versa. Consequently, secondary synthesis

of acute-phase proteins in the liver is induced (37). The

result is the development of an inflammatory condition

that becomes chronic, as causative excessive obesity

cannot be eliminated by the immune system (43). This

chronic disease does not follow a classic pattern and leads

to a variety of pathological events that have still not been

investigated in detail.

One of the major pathological events of metabolic

syndrome in both species is insulin resistance. On the

one hand, this is caused by inhibition of insulin signal

transmission pathways by adipokines and cytokines and,

on the other hand, by accumulation of intracellular fat

in insulin-sensitive tissue, such as skeletal muscle, liver,

and pancreas (85, 86).

Oxidative stress is also involved in the development

of insulin resistance. Highly reactive toxic oxygen and
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nitric oxide (NO) radicals, which occur frequently in

mitochondrial weakness, induce cytocidal changes to

receptor proteins influencing their functions (87).

Holbrook et al. (41) found significant increases in

neutrophil oxidative stress in obese horses with

hyperinsulinemia. One receptor protein that might be

damaged through oxidative burst is glucose transporter 4

(GLUT4 (SLC2A4)). This receptor is one of the insulin-

dependent GLUTs responsible for the uptake of glucose

into cells and is significantly less expressed on the cell

surface of muscle and adipose tissue of insulin-resistant

horses (88).

The insulin receptor substrate 1 (IRS1), a substrate of

insulin receptor tyrosine kinase, gained increased interest

in human medicine as it plays a central role in the insulin-

stimulated signal transduction pathway (89, 90, 91, 92,

93, 94). However, Waller et al. (40) found no difference

in total content or serine phosphorylated IRS1 sampled

from visceral and subcutaneous adipose tissue and

skeletal muscle biopsies in horses with insulin resistance

compared with healthy subjects.

It is known that insulin resistance in muscle and

adipose tissue in humans leads to flooding of the liver

with free fatty acids, causing an increased triglyceride and

very-LDL synthesis in hepatocytes (95). The result is fatty

degeneration of the liver, increased synthesis of C-reactive

protein, fibrinogen, coagulation factors, and angiotensi-

nogen. The liver plays a major role in HMS regarding

the development of coagulation disorders, thrombosis,

vascular occlusion, and inflammation (96, 97).

Not only do free fatty acids lead to fatty liver

degeneration, but there is also a correlation with disturb-

ance in the intestinal microflora in HMS. Owing to

bacterial overgrowth and increased permeability of the

intestine, a greater amount of endotoxins and bacterial

DNA is transported to the liver via the portal vein. Once

they reach the liver, inflammation is induced due to

activation of the TLR (especially TLR4 and TLR9), a

receptor of the innate immune system, which potentiates

expression and secretion of proinflammatory cytokines.

This leads to the development of fatty liver degeneration

and, in turn, as well as in addition, this may induce insulin

resistance in insulin-sensitive tissues (98, 99, 100).

It is assumed that there is a correlation between TLR4

and downregulation of insulin response via SOCS3.

Cytokine signaling 3 is able to inhibit insulin signaling

pathways through leptin signaling in the hypothalamus,

as well as to inhibit insulin signaling pathways in the

adipose tissue and liver, which lead indirectly to insulin

resistance of peripheral organs (40).
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Additionally, an increased expression of the SOCS

may be caused by proinflammatory cytokines (101, 102).

An increase in SOCS3 protein in rodents leads to impaired

insulin response in the liver, adipose tissue, and skeletal

muscle (89, 103, 104). Whether this occurs in horses and

humans also requires further research.

A vicious circle exists in humans due to magnesium

deficiency, which may create an increasing excretion of

magnesium through the kidney induced by hyperglycemia

and hyperinsulinemia.This leads through differentpathways

to hypertension, glucose intolerance, and hyperlipidemia,

which additionally increases clearance of the electrolyte in

the kidney (105, 106). It remains to be elucidated whether

a magnesium deficiency in EMS exists and if there is an

association with laminitis. Magnesium deficiency may lead

to changes in the intracellular Ca2C/Mg2C ratio, which

induces an increase in vascular tone and increased secretion

of catecholamines through sympathetic nerve endings, and

this may ultimately lead to hypoperfusion in the vascular

bed of the hoof (105, 106, 107).

The most important and life-threatening feature in

humans is atherosclerosis, which is characterized by

chronic progressive degeneration of arteries with vascular

wall remodeling by connective tissue proliferation, intra-

and extracellular deposits of cholesterol, fatty acids, and

lime, as well as accumulation of collagen and proteo-

glycans. All these lead to increased vascular stiffness and

constriction. Two major hypotheses have been discussed

in the literature in recent decades to explain this process:

‘response to injury’ and ‘lipoprotein-induced athero-

sclerosis’ (108, 109, 110).

The ‘response to injury’ hypothesis is based on the

mechanical damage of the endothelial cell layer due to

trauma, high blood pressure, biochemical damage caused

by bacterial toxins, viral infections, or immune complex

formation and biophysical injury at the molecular level.

Consequently, growth factors and cytokines stimulate

proliferation and migration of smooth muscle cells from

multilayer media into intima; fat deposition leads to

formation of foam cells, fat-laden immune cells of

macrophage type, in the intima and media, which leads

to plaque formation. A modification of this hypothesis is

based on the suspected endothelial dysfunction caused by

a singular injury or by a gradually occurring imbalance of

endothelial function. The ‘lipoprotein-induced athero-

sclerosis’ hypothesis is based on a rapid uptake of

chemically modified LDL by macrophages and subsequent

conversion into foam cells. This hypothesis involves

injury of endothelial cells only as a partial step in a

sequence of complex operations (108, 109, 110).
This work is licensed under a Creative Commons
Attribution 3.0 Unported License.

http://www.endocrineconnections.org
http://dx.doi.org/10.1530/EC-14-0038
http://creativecommons.org/licenses/by/3.0/deed.en_GB
http://creativecommons.org/licenses/by/3.0/deed.en_GB


E
n
d
o
cr
in
e
C
o
n
n
e
ct
io
n
s

Review A Ertelt et al. Metabolic syndromes in humans
and equines

8–13 3 :R88
Based on current knowledge, atherosclerosis does not

occur in horses, but it remains to be evaluated why

arteriosclerosis is not a feature of EMS. It has to be

considered that there is a different amount of HDL and

LDL cholesteryl esters in horses compared with humans.

There is no plasma cholesteryl ester transfer protein in

horses and there is only a small percentage of LDL

cholesteryl esters derived from HDL cholesteryl esters.

However, LDLs are responsible for considering the ‘lipo-

protein-induced atherosclerosis’ hypothesis (111). Horses,

on average, do not reach the age of humans. However,

there are horses, especially ponies, which reach an age of

up to 50 years without any presentation of atherosclerosis.

Another difference is diet: horses are usually strict

vegetarians. Further research is required to answer specific

questions, such as: what prevents the horse from having

this aspect of metabolic syndrome, and could this

mechanism be used as a preventative measure in humans?

Little is known about the pathogenesis of laminitis

and its association with EMS (112). Damage to the lamellar

(dermo-epidermal) interface in the horse’s hoof can result

in structural changes, such as distal phalanx disorienta-

tion and lameness, both of which are defining features of

laminitis (113, 114). However, the role of inflammation,

as well as the mechanism leading to hypoperfusion and

damage to the endothelium of vessels of lamellar tissue in

hyperinsulinemic laminitis, has not been adequately

defined. The basic principles of endothelial damage may

be partly identical to humans. However, the consequence

of this endothelial damage in the vessels of the hoof seems

to be liable to other mechanisms, because it does not result

in the same structural changes observed in arteriosclerosis

(42, 60, 113, 114, 115).

It has already been mentioned that the mechanism

leading to injury of the endothelium of vessels, or rather

clinical onset of laminitis, is the consequence of a chronic

mild generalized inflammatory reaction with a concomi-

tant increase in oxidative stress. This is characterized by an

increased activity of the NAD(P)H oxidase, which leads to

increased production of reactive oxygen radicals. Further-

more, there is a decreased activity of superoxide dismutase,

glutathione peroxidase, and heme oxygenase 2, which

represent the key enzymes of the antioxidant defense

system. Their impairment can result in damage and

endothelial dysfunction of blood vessels in the hoof (50).

Another hypothesis is based on the increased

coagulatory state in blood vessels of the hoof, due to

increased expression of coagulation factors in the liver,

which can ultimately lead to hypoperfusion through to

ischemia (96, 97).
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Induction of hyperglycemia followed by endogenous

hyperinsulinemia in horses was associated with histo-

pathological evidence of laminitis (116).

Histopathological changes early in disease progression

included a decreased secondary epidermal lamellar (SEL)

width and increased histomorphological evidence of

SEL basal (and suprabasal) cell death. Increased cellular

proliferation in SELs, infiltration of the dermis with small

numbers of leucocytes, and basement membrane (BM)

damage occurred later. Some lesions, such as narrowing of

the SELs, were progressive over time. Cellular pathology

preceded leucocyte infiltration and BM pathology, indi-

cating that the latter changes may be secondary or

downstream events in hyperinsulinemic laminitis (116).

Assumptions have been made that hyperinsulinemia

in EMS is due to the vasoregulatory properties of insulin.

Insulin is able to reduce the synthesis of nitric oxide,

which is an important vasodilator. However, there is no

effect of insulin on the synthesis of MAPK, which induces

vasoconstriction. In combination, the result is a superior

drift to vasoconstriction, which could play an important

role in the pathogenesis of laminitis (114, 115, 116, 117,

118, 119, 120, 121).

Another potential mechanism by which insulin-

induced laminitis develops may be significant in endothelin

receptor (ETR) expression (121, 122). Endothelin 1 (ET1) is

a potent vasoconstrictor produced by vascular endothelial

cells binding to at least two receptors, ETRA (EDNRA) and

ETRB (EDNRB) (123). ETRB is located primarily in the

endothelium, and activation of ETRB removes ET1 from

the circulation, thereby resulting in vasodilation (124, 125).

ETRA is located primarily in vascular smooth muscle, and

activation of ETRA in human patients causes cell growth

and contraction of smooth muscle cells, resulting in hyper-

tension (125). A study by Gauff et al. (122) indicated

that localization and expression of ETRA and ETRB varied

within lamellar tissue of the equine forelimb. The results

of the study suggested that the vasoconstrictive effect of

hyperinsulinemia is caused primarily by activation of ETRA

located in smooth muscle of blood vessels (122).

In addition, insulin-like growth factor 1 (IGF1), a

polypeptide with close structural homology to insulin and

well-known effects in terms of activating cell proliferation

and tissue growth and repair, might be another key in the

pathogenesis of laminitis (126).

Gene expression for IGF1 receptor (IGF1R) and

insulin receptor were decreased by 13- to 32-fold during

a prolonged euglycemic, hyperinsulinemic clamp test

during mid-developmental and acute phases of insulin-

induced laminitis. There was no increase in serum IGF1
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concentrations during prolonged euglycemic, hyperinsu-

linemic clamp, consistent with downregulation of both

receptors by insulin. Stimulation of IGF1R by insulin may

lead to inappropriate lamellar epidermal cell proliferation

and lamellar weakening, a potential mechanism for

hyperinsulinemic laminitis. Targeting this receptor may

provide insights into the pathogenesis or identify a novel

therapy for hyperinsulinemic laminitis (127, 128).

The development of laminitis may also follow an

increased activity of TLR4, as part of the generalized

chronic low-grade inflammatory reaction, which is associ-

ated with downregulation of insulin response via SOCS3

and is responsible for increased expression and secretion of

proinflammatory cytokines. Both pathways lead indirectly

to insulin resistance and damage of endothelial cells. TLR4

is gaining increasing attention and its activity may serve as

an early marker of insulin resistance in the horse (71, 129).

Another indicator of chronic inflammation in the vascular

bed of the hoof is increased expression of TNFa, which

also promotes insulin resistance. An increase in this

inflammatory marker could be assessed in ponies with

hyperinsulinemia and previous laminitis (58).

As is commonly known, metalloproteinases play an

important role in weakening lamellar tissue during

laminitis. Therefore, it is of interest if there is an increased

activity of these metalloproteinases in lamellar tissue in

horses suffering from hyperinsulinemia.

It seems most likely that the pathogenesis of laminitis

in EMS is based on multiple factors. At present, no definite

evidence exists as to what extent proinflammatory

conditions, coagulative changes, and disruption of insulin

pathways are involved in the development of the disease.
Summary

Metabolic syndrome in humans differs in several aspects

from the equine disease. The most important pathological

factor in humans is affection of the cardiovascular system,

and in horses, the development of laminitis. The

mechanisms that lead to these potentially life-limiting

consequences are not fully comparable, although the

changes in both species take place in the vascular system.

However, inflammatory conditions in adipose tissue and

effects on metabolic and biochemical processes show

similarities between both species.
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