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Disentangling the autism− anxiety overlap: fMRI of reward
processing in a community-based longitudinal study
N Mikita1, E Simonoff1,2, DS Pine3, R Goodman1, E Artiges4,5,6,7, T Banaschewski8, AL Bokde9, U Bromberg10, C Büchel10, A Cattrell11,
PJ Conrod12,13, S Desrivières11, H Flor14, V Frouin15, J Gallinat16, H Garavan17,18, A Heinz19, B Ittermann20, S Jurk21, JL Martinot4,5,6,22,
ML Paillère Martinot4,5,6,22, F Nees14, D Papadopoulos Orfanos15, T Paus23,24,25,26, L Poustka8,27, MN Smolka21, H Walter19, R Whelan28,
G Schumann11,29 and A Stringaris1,29

Up to 40% of youth with autism spectrum disorder (ASD) also suffer from anxiety, and this comorbidity is linked with significant
functional impairment. However, the mechanisms of this overlap are poorly understood. We investigated the interplay between
ASD traits and anxiety during reward processing, known to be affected in ASD, in a community sample of 1472 adolescents (mean
age= 14.4 years) who performed a modified monetary incentive delay task as part of the Imagen project. Blood-oxygen-level
dependent (BOLD) responses to reward anticipation and feedback were compared using a 2x2 analysis of variance test (ASD traits:
low/high; anxiety symptoms: low/high), controlling for plausible covariates. In addition, we used a longitudinal design to assess
whether neural responses during reward processing predicted anxiety at 2-year follow-up. High ASD traits were associated with
reduced BOLD responses in dorsal prefrontal regions during reward anticipation and negative feedback. Participants with high
anxiety symptoms showed increased lateral prefrontal responses during anticipation, but decreased responses following feedback.
Interaction effects revealed that youth with combined ASD traits and anxiety, relative to other youth, showed high right insula
activation when anticipating reward, and low right-sided caudate, putamen, medial and lateral prefrontal activations during
negative feedback (all clusters PFWEo0.05). BOLD activation patterns in the right dorsal cingulate and right medial frontal gyrus
predicted new-onset anxiety in participants with high but not low ASD traits. Our results reveal both quantitatively enhanced and
qualitatively distinct neural correlates underlying the comorbidity between ASD traits and anxiety. Specific neural responses during
reward processing may represent a risk factor for developing anxiety in ASD youth.

Translational Psychiatry (2016) 6, e845; doi:10.1038/tp.2016.107; published online 28 June 2016

INTRODUCTION
Anxiety is common in youth with autism spectrum disorder
(ASD)1–5 and in young people with sub-diagnostic autistic traits.6,7

Comorbid anxiety causes significant functional impairment in
young people with ASD8,9 and impacts on the quality of life of
their families.10 However, the mechanisms of this association are
poorly understood. While considerable research has examined the
neural correlates of anxiety in adolescents, few studies have

examined these correlates in children with symptoms of ASD. Here
we investigate whether aberrations in reward processing underlie
the co-occurrence of ASD traits and anxiety and whether they
predict the new onset of anxiety in youth with ASD traits.
Reward processing has been proposed to be central to

ASD,11,12 with aberrant processing of primary,13 social14,15 and
monetary rewards16 reported in children and young people with
ASD. Furthermore, studies in youth with ASD have reported
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associations between brain activations during reward processing
and ASD traits such as social communication difficulties17 and
restricted and repetitive behaviors.18 Some15,19 but not all
studies16 have suggested that the extent to which reward
processing in youth with ASD differs from typically developing
controls may depend on reward type.
Surprisingly, however, the question whether these reward

aberrations are inherent to ASD symptoms or related to disorders
that co-occur with ASD remains unanswered. This is a key
question considering that less than 10% of children with ASD are
free of any concomitant disorders according to some studies.20,21

Anxiety disorders and behavioral difficulties are consistently
identified as the most common comorbidities in youth with
ASD.9,22 These comorbid disorders are associated with aberrant
reward processing in their own right, and therefore could
influence reward processing in youth with ASD. Young people
with anxiety show disrupted frontostriatal activation when
anticipating reward23–25 and when receiving reward feedback.26

Youth with behavioral difficulties, in particular oppositional defiant
disorder (ODD) symptoms and irritability, often show aberrant
responses when rewards fail to appear, perhaps due to the
frustrative nature of negative outcomes.27,28

The aim of the present study is to use functional magnetic
resonance imaging (fMRI) to disentangle the interplay of ASD
traits and anxiety during reward processing. To enable the
investigation of these factors, we use a large, community-based
sample of adolescents with high vs low levels of ASD traits and
anxiety symptoms, who completed a widely used, modified
monetary incentive delay (MID) fMRI reward task. Our aim is to
distinguish between two important models of comorbidity.
One model assumes that neural correlates of comorbidity simply
reflect the co-occurrence of neural mechanisms seen with each
ASD traits and anxiety separately.29,30 In the other model, the
neural correlates of the comorbidity are unique, that is, not seen
with any of the two disorders. This distinction is crucial from an
etiological and clinical perspective, as finding unique correlates
would suggest that the comorbidity might represent a separate
nosological process, what has been termed a ‘third independent
disorder’.31 In addition, our aim is to establish the potential
predictive value of neural correlates of comorbidity. Using a
longitudinal design, we examine whether neural correlates found
in people with concurrent ASD traits− anxiety comorbidity can be
used to predict the likelihood of new-onset anxiety in those with
high ASD traits only. We achieve this aim in two steps.
First, we test the independent influence of each ASD traits and

anxiety on brain correlates of reward processing, and also examine
possible interaction effects between ASD traits and anxiety. The
latter is particularly important in order to assess whether
combined ASD traits and anxiety is associated with distinct
etiological mechanisms.30

Second, we assess whether the brain activations found in our
cross-sectional interaction analyses represent a biomarker that
also predicts successive comorbidity32 between ASD traits and
anxiety, that is, whether such brain activations predict the new
onset of anxiety in those with high ASD traits. To achieve this, we
run regression models with anxiety at 2-year follow-up as the
outcome, and brain activations (relevant to the comorbid group)
as the predictor of interest, separately for participants with low vs
high ASD traits, controlling for baseline anxiety. To capture major
elements of reward processing, we enquire about two key stages:
reward anticipation and reward feedback. The former is often
associated with heightened frontostriatal activation in youth with
anxiety symptoms,23–25,33 whereas negative feedback is likely to
elicit frustration, possibly related to irritability/ODD symptoms that
are common in ASD1,5 but also in anxiety.34 For completeness, we
also examine positive reward feedback, since youth with ASD tend
to show reduced responsiveness to rewards in fMRI studies.35,36 By
using a community sample we avoid the risk of referral bias typical

of clinical or convenience samples, a pertinent issue when
investigating comorbidity,29 although the extent to which our
results translate to youth who meet the diagnostic criteria for
ASD remains to be tested. We also follow the emerging evidence
that ASD traits, but also the mechanisms underlying them, fall on
a continuum within the general population.37,38

MATERIALS AND METHODS
Participants
Data were obtained from the Imagen database established across eight
sites in France, UK, Ireland and Germany, which includes 2223 adolescents
recruited in schools. We used data from the first (age around 14 years)
and second waves (age around 16 years) of Imagen. Recruitment and
assessment procedures were described in detail previously.39 All local
ethics research committees approved the study. Written informed consent
was obtained from a parent or guardian, and verbal assent was obtained
from the adolescent. Any adolescents with IQo70 were excluded
from this study. After quality control for neuroimaging and behavioral
tests, final sample sizes were 1472 for reward anticipation, 1601 for
negative feedback and 1726 for positive feedback. Differences in sample
sizes across conditions are due to some fMRI contrasts being non-
estimable for some participants at the first-level analysis stage. Calculation
of the optimum number of participants needed for an fMRI study is difficult
to perform a priori. Conventional calculations to compute statistical power
for a given effect size are not applicable in imaging, primarily because the
MR signal in each voxel has a large degree of spatial and temporal
variability. Previous studies assessing the reliability of fMRI group-level
analyses have suggested that a sample size of n= 20− 24 is sufficient to
obtain good statistical power and accurate activation maps.40–42

Measures
IQ was estimated with the Wechsler Intelligence Scale for Children—Fourth
Edition, WISC-IV,43 in wave 1 and entered into Psytools (Delosis, London),
an online computer platform. Two standardized indices were calculated
from the WISC subtests applied during neuropsychological testing for
Imagen: Verbal Comprehension (derived from Vocabulary and Similarities
subtests) and Perceptual Reasoning (derived from Block Design and Matrix
Reasoning subtests).
ASD traits were assessed in wave 1 using the ASD section from the

Development and Well-Being Assessment (DAWBA;44 www.dawba.info), a
parent-reported, self-administered structured diagnostic interview with 15
questions about social difficulties, 14 questions about restricted, repetitive
behaviors and interests, and three questions about language development
to assess DSM-IV-defined ASD symptoms. The diagnostic algorithm derived
from the DAWBA ASD module shows strong agreement with that from
the Autism Diagnostic Interview—Revised45,46 and has a high predictive
value for ASD diagnoses in community settings.47 In line with the newest
characterization of ASD,48 we classified participants as having ‘high’ levels
of ASD traits if their parents/carers reported three or more symptoms on
the social difficulties subscale and three or more symptoms on the
restricted and repetitive behaviors subscale of the DAWBA ASD section.
Based on this criterion close to 5% of the sample had high ASD traits
(Table 1), consistent with the prevalence of clinically relevant autistic traits
reported in previous population-based studies.49

Anxiety, ODD and depression prevalences were estimated based on the
established and widely used DAWBA computer algorithm,50,51 which
indicates the probability of receiving a DSM-IV-defined diagnosis based on
answers provided during the interview. DAWBA algorithm band 2 or above
was chosen as a cut-off for relevant psychiatric symptoms. Participants
were classified as having ‘any anxiety’ if they scored at band 2 or above for
at least one DSM-IV anxiety disorder; this algorithm identified 24% of the
sample (see Table 1).
Emotional symptoms were assessed using the parent-reported emotional

symptoms subscale from the Strengths and Difficulties Questionnaire
(SDQ).52 The scale includes three questions about anxiety, one question
about somatic symptoms and one about low mood. A score of 5 and
above indicates substantial risk of clinically significant emotional
problems52 and was used as a cut-off. We used emotional symptoms
instead of ‘any anxiety’ in confirmatory analyses (see below) to ensure that
our findings were not measure-specific.
Additional relevant symptoms of hyperactivity, conduct problems and

functional impairment were assessed using the parent-reported SDQ.52
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Modified MID task
In wave 1, the participants performed a modified version of the well-
established MID task53,54 to study neural responses to reward. The task has
three conditions: reward anticipation (anticipation of large win versus
anticipation of no win), receipt of negative feedback (feedback of missed
large win versus feedback of missed no win) and positive feedback
(feedback of hit large win versus feedback of hit no win). A detailed
description of the task is provided in Supplementary Appendix 1.

Magnetic resonance imaging data acquisition
Structural and functional magnetic resonance imaging (MRI) data were
acquired at eight Imagen assessment sites with 3-T MRI scanners of
different manufacturers (Siemens, Munich, Germany; Philips, Best, The
Netherlands; General Electric, Chalfont, St Giles, UK; Bruker, Ettlingen,
Germany). The scanning variables were chosen to be compatible with all
scanners. The same scanning protocol was used at all sites. In brief, high-
resolution T1-weighted three-dimensional structural images were acquired
for anatomical localization and co-registration with the functional time
series. fMRI blood-oxygen-level dependent (BOLD) images were acquired
with a gradient-echo, echo-planar imaging sequence. For the MID task, 300
volumes were acquired for each subject. Each volume consisted of 40
slices aligned to the anterior commissure−posterior commissure line
(2.4 mm slice thickness, 1mm gap) acquired in a descending order. The

echo time was optimized (echo time= 30 m, repetition time=2200 ms)
to provide reliable imaging of subcortical areas. See Supplementary
Appendix 1 for detailed description of the fMRI data acquisition.

Statistical analyses
Behavioral performance. We first tested whether participants were
motivated by the potential of winning a reward. As a proxy of task
engagement, we compared mean response accuracy in ‘no win’ and ‘big
win’ trials using a paired-samples t-test (two-tailed), separately for
participants with low and high ASD traits.

Imaging analyses. Imaging analyses were performed using the Statistical
Parametric Mapping suite (SPM 8, Functional Imaging Laboratory,
University College London, London, UK; www.fil.ion.ucl.ac.uk/spm).
Analyses were performed at an a priori voxel threshold of Po0.01 and
cluster threshold of Po0.05 with family-wise error (FWE) correction.
Gender, handedness, site of scanning, WISC Verbal Comprehension and
WISC Reasoning were included as covariates in all analyses, in line with
previous studies.35,55,56 All findings are reported at whole-brain level. (NB:
While SPM does not provide estimates of variance for between-groups
brain activation data, we performed Levene’s tests for equality of variances
on extracted region-of-interest data (ROI; significant regions from
whole-brain ANOVAs were extracted), which confirmed statistically equal
variances between the groups.)

Effects of ASD traits and anxiety on reward processing. We ran a 2 × 2
ANOVA (ASD traits: low vs high; any anxiety: low (DAWBA bands 0/1) vs
high (band 2 or above)) to test for main effects of ASD traits and anxiety,
and an ASD-by-anxiety interaction, separately for reward anticipation,
negative and positive feedback conditions. Where an ASD-by-anxiety
interaction was found, we ran follow-up t-tests to assess between-groups
differences in brain activations.

Covariates. We repeated the above ANOVAs twice, first adding ODD and
then depression into the model as potential confounders.

Effects of emotional problems. To ensure that our main findings were not
measure-specific, we ran confirmatory ANOVAs and t-tests using the SDQ
emotional symptoms subscale (cut-off at 5) instead of DAWBA-defined ‘any
anxiety’.

Longitudinal predictions. Our second aim was to assess whether the brain
activations found in cross-sectional interaction analyses above are (a) a
phenotypic manifestation of the co-occurrence between ASD traits and
anxiety, or (b) whether they represent a biomarker that predicts not only
cross-sectional, but also successive comorbidity between ASD traits and
anxiety. To test this we conducted logistic regression analyses with anxiety
(low vs high) at 2-year follow-up as the outcome, and brain activations
found in our cross-sectional interaction effects as predictors of interest.
Analyses were run in Stata 11,57 and the ROIs were extracted from the
contrast maps for a given reward condition, using MarsBaR toolbox in SPM
based on the WFUPickAtlas toolbox definitions.58 To ensure that the ROIs
predicted new onset of anxiety, baseline anxiety status was added to the
model as an additional predictor. We also added baseline ASD traits
(continuous variable) to the model, to ensure that the predictions were not
driven by the severity of ASD-specific impairments. To assess the specificity
of brain predictions, regressions were run separately within low and high
ASD trait groups. If an ROI predicted new-onset anxiety in one group but
not the other, a regression model was run across the whole sample with an
interaction term between ROI activations and ASD traits (low vs high) to
identify the strength of a possible interaction. These analyses were not
corrected for multiple comparisons since the ROIs were pre-defined based
on our cross-sectional results.

RESULTS
Participant characteristics
As expected, participants with high ASD traits scored significantly
higher on all subscales of the DAWBA ASD section compared to
those with low ASD traits (Table 1) and had a higher proportion of
males. While the groups did not differ in age or performance IQ,
youth with high ASD traits scored lower on verbal comprehension.

Table 1. Demographic characteristics of the sample (mean± s.d. or
frequency data, showing results for participants with scans available
for the reward anticipation condition)

Low ASD traits High ASD traits

Baseline
n 1402 70
Male gender 657 (46.9%) 47 (67.1%)**
Age in years 14.4± 0.4 14.4± 0.4
WISC Verbal 112.0± 14.7 108.1± 15.1*
WISC Reasoning 108.1± 13.9 108.8± 14.4

ASD symptoms (DAWBA)
Total 0.3± 1.6 17.4± 5.5***
Social difficulties 0.2± 1.2 9.9± 4.1***
Repetitive behaviors 0.1± 0.5 6.8± 3.7***
Language development 0.1± 0.3 0.6± 0.9***

Continuous psychopathology (SDQ)
Emotional symptoms 1.8± 1.9 3.5± 2.9***
Conduct problems 1.6± 1.5 2.9± 2.2***
Hyperactivity 2.8± 2.2 4.5± 2.9***
Impact 0.6± 1.3 2.2± 2.4***

Diagnostic categories
Any anxiety 326 (23.3%) 30 (42.9%)***
Depression 44 (3.1%) 10 (14.3%)***
ODD 483 (34.5%) 43 (61.4%)***

2-year follow-up
n 1019 50
Male gender 465 (45.7%) 35 (70.0%)**

SDQ
Emotional symptoms 1.6± 1.9 2.9± 2.9**
Conduct problems 1.4± 1.4 2.0± 1.9*
Hyperactivity 2.2± 2.0 3.6± 2.5***
Impact 0.5± 1.4 1.3± 2.1*

Diagnostic categories
Any anxiety 196 (19.3%) 17 (34.0%)*
Depression 36 (3.5%) 6 (12.0%)*
ODD 295 (29.0%) 23 (46.0%)*

Abbreviations: ASD, autism spectrum disorder; DAWBA, Development
and Well-Being Assessment; ODD, oppositional defiant disorder; SDQ,
Strengths and Difficulties Questionnaire. *Po0.05; **Po0.01; ***Po0.001
(t-test or chi-square).
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Participants with high ASD traits scored higher on hyperactivity,
emotional and conduct problems, and showed higher functional
impairment. Those with high ASD traits were more likely to display
symptoms of anxiety, depression and ODD. Sample characteristics
were similar for the other two reward conditions (Supplementary
Tables S1A-C).

Behavioral performance
Paired-samples t-tests revealed that participants with high and
low ASD traits both responded more accurately in ‘big win’
compared to ‘no win’ trials (high ASD traits: 65.1% vs 57.9%,
t(69) = 3.90, Po0.001; low ASD traits: 67.4% vs 53.8%, t(1401) =
28.49, Po0.001), suggesting that both groups were motivated by
the potential of winning a reward. The increase in response
accuracy between ‘no win’ and ‘big win’ trials was higher for those
with low vs high ASD traits, t(1470) = 2.97, P= 0.003, d= 0.39.

Reward anticipation
We first conducted an ANOVA to test the effects of ASD traits
and anxiety on brain activations during reward anticipation.

Main effects. We found a main effect of ASD-trait severity and a
main effect of anxiety (Table 2). Participants with high ASD traits
(n= 70) showed lower BOLD responses in the right superior frontal
gyrus (SFG) extending to the anterior and midcingulate regions
relative to youth with low ASD traits (n= 1402). Participants with
anxiety symptoms displayed increased activation in the right
middle frontal and middle temporal gyri (MFG and MTG),
irrespective of ASD-trait severity.

Interaction. We also found an interaction between ASD traits and
anxiety in a cluster encompassing right MTG, superior temporal
gyrus and insula (Table 2). Figure 1 illustrates the interaction,
showing significantly increased activation at the cluster’s peak
in ASDANX relative to all other groups. Follow-up t-tests revealed
that the ASDANX (n= 30) group showed significantly increased
brain activation relative to ASDONLY (n = 40) in the left insula and
left inferior frontal gyrus (IFG), right MFG, as well as bilateral
inferior parietal lobule and temporal areas. ASDANX also displayed
increased activation in the left insula, left IFG and posterior brain
regions relative to ANXONLY (n= 326).

Covariates. All results remained significant after controlling for
the effects of ODD, and we found two additional clusters in
the ASD-by-anxiety interaction (ASDANX4all other groups in the
left IFG, insula and MFG). After controlling for the effects of
depression, all results remained significant, except for one cluster
in the ASDANX4ASDONLY comparison (activations in the left insula
and left IFG no longer significant).

Emotional problems. The results were broadly consistent with
anxiety analyses and are described in detail in Supplementary
Table S2A.

Negative feedback
Main effects. We found a main effect of ASD-trait severity and
a main effect of anxiety (Table 3). Participants with high ASD
traits (n = 78) showed lower activation in the right superior and
medial frontal gyri relative to youth with low ASD traits (n= 1523).
Irrespective of ASD-trait severity, participants with anxiety symp-
toms (n= 396) showed decreased activation in the following
regions following negative feedback: bilateral caudate, bilateral
IFG, right SFG, left MFG, left inferior parietal lobule and left MTG.

Interaction. We also found an interaction between ASD traits
and anxiety severity in the right caudate and putamen, prefrontal

regions and left MTG. While anxiety did not affect brain activations
in these regions in youth with low ASD traits, young people
with ASD traits and anxiety showed markedly lower activations
compared to ASDONLY (Figure 2). Follow-up t-tests revealed that
ASDANX (n = 35) had significantly decreased brain activation
in bilateral MFG and IFG extending to the anterior cingulate,
left precentral gyrus, and corpus callosum extending to the left
caudate compared to ASDONLY (n= 43). ASDANX also displayed
decreased activation in bilateral caudate and putamen relative to
ANXONLY (n= 361).

Covariates. After controlling for the effects of ODD, the ASD-by-
anxiety interaction remained significant, and we found an
additional cluster encompassing the left caudate and left IFG.
The main effect of anxiety remained significant in three out of six
previously found clusters (the following clusters lost significance
after controlling for ODD: right SFG k= 120, PFWE = 0.084; left MFG
and IFG k= 114, PFWE = 0.104; left caudate and sgACC k= 121,
PFWE = 0.081). The main effect of ASD was just below threshold for
significance (frontal cluster k= 131, PFWE = 0.056). The ASDANXo
ANXONLY t-test remained significant, but 3/4 clusters in the
ASDANXoASDONLY comparison lost significance (right MFG and
IFG k= 105, PFWE = 0.084; left MFG and IFG k= 109, PFWE = 0.070;
left IFG/rolandic operculum k= 79, PFWE = 0.260).
All results remained significant after controlling for the effects

of depression, except for one cluster in the ASDANXoASDONLY

comparison (activation in the left rolandic operculum no longer
significant, k= 107, PFWE = 0.084). We also found two additional
clusters encompassing the left IFG, left caudate and left putamen
in the ASD-by-anxiety interaction.

Emotional problems. The results were broadly consistent with
anxiety analyses and are described in detail in Supplementary
Table S2B.

Positive feedback
Main effects. Across the whole sample, we found a main effect of
ASD-trait severity. Youth with high ASD traits (n = 81) displayed
increased activation in the bilateral thalamus and pallidum,
as well as right putamen, compared to youth with low ASD
traits (n= 1645; Table 4). This finding remained significant after
controlling for the effects of ODD, but lost significance after
controlling for the effects of depression (right-sided cluster
PFWE = 0.061, k= 148; left-sided cluster PFWE = 0.671, k= 65). No
main effect of anxiety was found.

Interaction. We did not find a significant interaction.

Emotional problems. We did not find a main effect of ASD traits
in our analyses with SDQ emotional subscale. Instead, we found a
main effect of emotional problems in the left middle occipital
gyrus (Supplementary Table S2C). No interaction was found.

Longitudinal predictions
Finally, we investigated whether brain correlates of reward
processing found in our interaction analyses, and relevant to the
comorbid group, represent a mechanism underlying successive
comorbidity between ASD traits and anxiety.

Reward anticipation. The following ROI predictors were tested
(all right-sided): MTG, insula, Brodmann area (BA) 32 (dorsal
cingulate), caudate, thalamus and medial frontal gyrus (medFG,
defined using the ‘frontal_sup_medial’ mask from the automatic
anatomical labelling atlas in WFUPickAtlas).
High ASD traits: In participants with high ASD traits, increased
activations in the right medFG and right BA 32 during reward
anticipation were associated with a higher likelihood of anxiety at
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follow-up, with baseline anxiety and ASD traits included in the
model (ORmedFGright = 62.33, 95% CI [1.46− 2668.54], P= 0.031;
ORBA32right = 33.22, 95% CI [1.47− 750.36], P= 0.028; Supple-
mentary Table S3A).
Low ASD traits: None of the ROIs significantly predicted new-
onset anxiety in participants with low ASD traits.
Interaction effects across the whole sample: The interaction term
between ASD traits and right medFG was a significant predictor of
new-onset anxiety at follow-up (OR = 17.34, 95% CI (1.45− 207.03),
P= 0.024). Likewise, the interaction between ASD traits and right
BA 32 significantly predicted future anxiety (OR = 15.75, 95% CI
(1.32− 187.48), P= 0.029).
No significant results were found for the remaining ROIs.

Negative feedback. None of the ROIs we tested (right-sided:
medFG, MFG, caudate, putamen, BA 32; left MTG) predicted
dichotomous anxiety status at follow-up in either ASD traits
group.

DISCUSSION
We found independent effects of ASD traits and anxiety on neural
correlates of reward processing. We also found interaction effects
whereby youth with combined ASD traits and anxiety showed
distinctively high right MTG and insula activation when anticipat-
ing reward, and low prefrontal activation during negative feed-
back. Moreover, in participants with ASD traits, brain activation

Table 2. The effects of ASD traits and anxiety on BOLD responses during reward anticipation

Peak MNI coordinates

Region Brodmann area Cluster size (voxels) x y z Z P (FWE)

Interaction: ASD traits x anxiety
R middle and superior temporal gyri, R insula 21/22/13 283 45 − 16 − 11 3.97 0.001

57 − 37 − 8 3.80
63 − 16 − 11 3.71

Higho low ASD traits
R superior and medial frontal gyri extending bilaterally
to the dACC and MCC

9/24/32 936 − 18 17 37 4.88 o0.001

18 17 49 4.72
9 50 37 4.58

Any anxiety4no anxiety
R middle frontal gyrus 8 254 39 23 43 4.41 0.002

21 59 37 3.89
42 8 49 3.66

R middle temporal gyrus 21 209 45 − 16 − 11 3.98 0.008
60 − 16 − 5 3.67
57 − 37 − 11 3.47

ASDANX4ASDONLY

R middle temporal gyrus 21 257 57 − 37 − 8 4.56 o0.001
63 − 13 − 2 4.31
69 − 37 − 2 3.90

R middle frontal gyrus 8 251 42 23 43 4.27 o0.001
42 11 52 3.71
42 32 43 3.45

L insula, L inferior frontal gyrus 13/45/47 162 − 42 17 − 11 4.27 0.011
− 36 17 1 3.43
− 45 17 7 3.36

L inferior parietal lobule 40 124 − 57 − 43 55 3.86 0.047
− 48 − 61 52 3.33
− 66 − 37 37 3.11

L superior and middle temporal gyri 39/22/40 246 − 60 − 67 7 3.71 0.001
− 51 − 82 7 3.70
− 51 − 79 22 3.68

R inferior parietal lobule 40 256 51 − 52 55 3.60 o0.001
60 − 34 55 3.49
48 − 34 64 3.41

ASDANX4ANXONLY
L insula, L inferior frontal gyrus 47 186 − 42 17 − 8 4.68 0.017

− 36 14 4 3.65
− 54 20 1 3.57

L and R cuneus and calcarine 18/17 222 − 12 − 82 10 4.30 0.006
12 − 85 10 3.77
− 6 − 76 22 3.38

Abbreviations: ANXONLY, high anxiety and low ASD traits; ASD, autism spectrum disorder; ASDANX, high ASD traits and anxiety; ASDONLY, high ASD traits, low
anxiety; BOLD, blood-oxygen-level dependent; dACC, dorsal anterior cingulate cortex; FWE, family-wise error correction; L, left hemisphere; MCC, middle
cingulate cortex; MNI, Montreal Neurological Institute; R, right hemisphere.
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patterns during reward anticipation predicted new onset of
anxiety 2 years later.

ASD traits
During both reward anticipation and negative feedback, we
observed attenuated BOLD activation in prefrontal regions in
participants with high compared to low ASD traits. When
anticipating reward, participants with high ASD traits showed
reduced activation in dorsal ACC and right dorsal prefrontal cortex
(PFC) (BA 9), regions involved in working memory, cognitive
salience detection and monitoring of reward-based behavioral
responses.59–61 Participants with ASD traits may attach less
salience to rewards, consistent with previous studies showing
reduced reward sensitivity in ASD youth.17,36 During negative
feedback, youth with ASD traits showed reduced activation in the
right medial PFC compared to those with low ASD traits. Previous
studies in healthy adults showed that while obtaining an expected
reward is associated with an increase in medial PFC activation,
reward omission leads to decreased activation in this region.62,63

This functional modulation was proposed to reflect medial PFC’s
role in tracking rewarding outcomes. In this context, our results
may indicate that participants with high ASD traits find the lack of
expected reward relatively more punishing or aversive64 than
those with low ASD traits. Combined with increased activation in
reward-sensitive structures (putamen, thalamus, pallidum)65 in
participants with high ASD traits following positive feedback, our
results suggest that inadequate salience detection during reward
anticipation may have led to exaggerated responses to both
positive and negative reward outcomes.

Anxiety
Participants with anxiety showed increased activation in the right
MFG during reward anticipation, but decreased right MFG
activation following negative feedback, compared to participants
without anxiety. MFG is part of the lateral PFC,66 a region
implicated in cognitive control via inhibition of prepotent
behavioral responses.67–69 Increased activation in right MFG
during anticipation suggests that participants with higher anxiety
symptoms required more cognitive effort to maintain stimulus−
reward representations active when faced with competing
events.68 This is consistent with previous studies where anxious
adolescents showed more emotional interference70 and heigh-
tened concern about making errors23 during reward processing
compared to controls. However, we did not find the expected
pattern of enhanced striatal activation during the anticipation of
reward, which occurs specifically in social anxiety disorder.71,72

This could relate to the low rate of social anxiety in our sample.
Conversely to reward anticipation, following negative reward
feedback, anxious participants displayed reduced activation in the
lateral PFC (right MFG and SFG, bilateral IFG) and bilateral caudate.

Interaction effects
The key aim of this study was to examine the interplay of ASD
traits and anxiety symptoms during reward processing. We
explored interaction effects to test whether the co-occurrence of
ASD traits and anxiety was associated with a quantitative change
in, or a qualitatively unique pattern of, reward-related brain
activations. We found that youth with combined ASD traits and
anxiety showed a unique pattern of high right insula activation
during reward anticipation, as well as increased right MTG
activation during anticipation and markedly low right-sided
caudate, putamen, medial and lateral PFC activation during
negative feedback. These effects remained significant after
controlling for the effects of possible confounders (depression
and ODD symptoms). Interestingly, insula hyperactivation was not
observed in any of the main effects above, suggesting that youth
with ASD traits and anxiety may display a qualitatively different
pattern of neural activations during reward anticipation. The insula
is implicated in ‘aversion-related’ reward processing59,73 particu-
larly in anticipating and predicting salience of aversive events,74–77

as well as in interoceptive processing.78–80 Interestingly, inter-
oceptive prediction errors have been proposed to play a role in
mood and anxiety disorders78,81 and theory of mind.82 Future
studies should test directly whether the distinct pattern of
activations observed during reward anticipation in our ‘combined’
group is related to interoceptive prediction errors, a possible
etiological mechanism underlying the comorbidity between ASD
and anxiety. Reduced right-sided caudate, putamen and medial
PFC (BA 10) activation during negative feedback suggests that
participants in the combined group may have found not receiving
the reward more aversive than other participants, similarly to
reward anticipation. We also found reduced lateral PFC activation
in the combined group following negative feedback. Interestingly,
some but not all activation patterns that characterize the
interaction effect were also found in the main effect of ASD traits
(BA 10) and anxiety (right lateral PFC and right caudate),
suggesting shared and unique neural substrates of negative
reward feedback in youth with combined ASD traits and anxiety.

Longitudinal findings
In participants with high but not low ASD traits, increased right
medFG and right dorsal cingulate activations during reward
anticipation were associated with increased likelihood of anxiety
symptoms 2 years later. Predictions were significant after
controlling for baseline anxiety, showing that MRI can predict
new onset of anxiety problems.

Clinical implications
Our findings suggest that the presence of combined ASD traits
and anxiety is associated with both a quantitatively potentiated
neural response to negative reward feedback (interaction showing
a further reduction in prefrontal activations found in main effects)
as well as emergence of qualitatively different neural correlates
during reward anticipation (activation in the right insula found
exclusively in the interaction). This suggests that shared and
distinct etiological mechanisms might be involved in the
comorbidity between ASD and anxiety, and, if replicated, carries
important clinical implications. If the co-occurrence of anxiety in
ASD is underpinned by a distinct pathophysiological mechanism,
the comorbid group may need to be recognized as a distinct
nosological category and be researched in its own right. Moreover,
it is possible that medication response in this group is also
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Figure 1. Interaction between autism spectrum disorder (ASD) traits
and anxiety. Showing mean blood-oxygen-level dependent (BOLD)
responses during reward anticipation and 95% confidence intervals
at the cluster peak [45, -16, -11] located in the middle temporal
gyrus. A similar pattern of results emerged for a peak in the right
insula.

Disentangling the autism− anxiety overlap
N Mikita et al

6

Translational Psychiatry (2016), 1 – 10



different. We know already from ADHD literature that the
effectiveness of methylphenidate is reduced in some youth with
ASD83 and in those with comorbid ADHD and anxiety.84–86 In

addition, a specific biomarker of anxiety in ASD could aid
differential diagnosis in cases where comorbid anxiety may be
phenomenologically indistinguishable from ASD.87

Table 3. The effects of ASD traits and anxiety on BOLD responses during negative reward feedback

Peak MNI coordinates

Region Brodmann
area

Cluster size
(voxels)

x y z Z P (FWE)

Interaction: ASD traits x anxiety
R superior and medial frontal gyri 10 223 21 59 7 4.95 0.003

27 59 1 4.84
18 47 22 4.34

R caudate, R putamen, R middle and inferior frontal gyri 10 301 21 23 1 4.73 o0.001
27 38 − 5 4.46
21 23 13 3.76

L middle temporal gyrus 183 − 51 − 76 13 4.05 0.010
− 57 − 70 10 3.87
− 24 − 85 16 3.36

HighoLow ASD traits
R superior and medial frontal gyri 10 137 21 44 1 4.33 0.046

18 53 13 4.06
30 56 − 2 3.71

Any anxietyono anxiety
R superior frontal gyrus extending to R medial frontal gyrus 10 145 21 59 7 5.08 0.034

21 62 19 3.62
6 65 28 2.75

R caudate, R inferior frontal gyrus 449 18 47 22 4.79 o0.001
21 23 1 4.67
27 38 − 5 4.29

L inferior parietal lobule 184 − 36 − 46 28 4.62 0.009
− 24 − 58 25 4.53
− 24 − 52 34 3.87

L middle temporal gyrus 182 − 60 − 70 7 4.12 0.010
− 51 − 76 13 3.85
− 51 − 67 13 3.33

L middle and inferior frontal gyrus 193 − 48 29 − 5 4.04 0.007
− 30 44 22 3.97
− 30 41 14 3.72

L caudate extending to the subgenual ACC 24/25 144 − 9 23 − 5 3.71 0.036
− 18 23 4 3.67
− 12 14 4 3.41

ASDANXoASDONLY

R middle and inferior frontal gyri (extending to the midcingulate/ACC) 46/32 143 27 32 31 4.30 0.015
33 38 16 4.12
42 35 13 3.66

L inferior and middle frontal gyri 46 136 − 48 29 − 2 4.20 0.020
− 36 26 13 3.39
− 45 32 19 3.38

L rolandic operculum / precentral gyrus, L inferior frontal gyrus 22 120 − 63 5 4 4.00 0.040
− 54 2 7 3.65
− 57 14 7 3.55

L and R lateral ventricles, corpus callosum (extending to L caudate) 179 9 − 10 22 3.60 0.004
− 6 − 19 25 3.35
− 1 25 3.35

ASDANXoANXONLY
R putamen and R caudate extending to subcallosal gyrus / gyrus rectus,
R superior and medial frontal gyri

34/13/10 472 27 59 1 5.33 o0.001

15 56 7 4.70
18 20 1 3.89

L putamen and L caudate, L middle frontal gyrus 47 227 − 30 44 − 8 4.17 0.003
− 12 11 1 4.00
− 21 23 1 3.88

Abbreviations: ACC, anterior cingulate cortex; ASD, autism spectrum disorder; ANXONLY, high anxiety and low ASD traits; ASDANX, high ASD traits and anxiety;
ASDONLY, high ASD traits and low anxiety; BOLD, blood-oxygen-level dependent; FWE, family-wise error correction; L, left hemisphere; MNI, Montreal
Neurological Institute; R, right hemisphere.
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Second, although MRI findings predicted only a small portion of
the variance in new onset of anxiety at follow-up, brain activations
were a significant predictor that could be used in establishing
useful biomarkers of anxiety risk in youth with ASD traits. Our
design strengthens the implication that the pattern of right-sided
medFG and dorsal cingulate activations during reward processing
is not merely a marker of anxiety, but may reflect an underlying
mechanism by which young people with ASD traits become
anxious. Ultimately, finding an MRI biomarker of anxiety in ASD
has a potential of guiding treatment interventions and measuring
treatment response, which is especially useful in cases where the
value of clinical interview is limited due to social communication
difficulties.5

Third, recent evidence suggests that disrupted processing of
reward may lead to decision-making problems.88 Future studies
should investigate whether reward-processing deficits can explain
the presence of executive function deficits in ASD,89 and explore
the role of comorbid anxiety in the process.

Limitations
Although we investigated both anticipation and feedback phases
of reward processing, task learning was performed outside of
the scanner; therefore it was not possible to study the neural
correlates of stimulus− reward learning. Second, due to sample
size limitations we did not distinguish between different types
of anxiety disorders. Future studies should test whether the
differential impact of specific types of anxiety on reward process-
ing, seen in typically developing youth,90 holds in youth with ASD

traits. Third, while our a priori choice of a cluster-forming threshold
of Po0.01 at the voxel level is in line with previous reward-
processing fMRI studies in adolescents that used the same91 or
more lenient92 voxel-wise thresholds, and a large sample size
is likely to limit the rate of false positives,41 it is still important
that our results are replicated in an independent sample. Finally,
the relative contribution of anxiety and ASD-specific difficulties
to reward processing in youth with a clinical diagnosis of ASD
remains to be studied.
In conclusion, over and above the independent effects of ASD

traits and anxiety, we found qualitatively distinct and quantita-
tively potentiated neural correlates of reward processing in youth
with combined anxiety and ASD traits. Future studies should
assess whether the apparent co-occurrence of ASD and anxiety is
associated with distinct etiological mechanisms.
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Figure 2. Interaction between autism spectrum disorder (ASD) traits
and anxiety. Showing mean blood-oxygen-level dependent (BOLD)
responses during negative reward feedback and 95% confidence
intervals at cluster 1 peak [21, 59, 7] in the right superior frontal
gyrus. The same pattern of results emerged for the two other
clusters with peaks in the right caudate and left middle temporal
gyrus, and middle frontal gyrus.

Table 4. The effects of ASD traits and anxiety on brain activation patterns following positive feedback

Peak MNI
coordinates

Region Brodmann area Cluster size (voxels) x y z Z P (FWE)

High4low ASD traits
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24 − 10 4 4.78
21 − 22 7 3.74

L thalamus, L globus pallidus, midbrain, extending to L hippocampus 185 15 − 16 − 5 4.23 0.021
− 15 − 7 1 4.21
−9 22 1 3.66

Abbreviations: ASD, autism spectrum disorder; FWE, family-wise error correction; L, left hemisphere; MNI, Montreal Neurological Institute; R, right hemisphere.
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