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Abstract

The oscillating concentration of intracellular calcium is one of the most important examples for collective dynamics in cell
biology. Localized releases of calcium through clusters of inositol 1,4,5-trisphosphate receptor channels constitute
elementary signals called calcium puffs. Coupling by diffusing calcium leads to global releases and waves, but the exact
mechanism of inter-cluster coupling and triggering of waves is unknown. To elucidate the relation of puffs and waves, we
here model a cluster of IP3R channels using a gating scheme with variable non-equilibrium IP3 binding. Hybrid stochastic
and deterministic simulations show that puffs are not stereotyped events of constant duration but are sensitive to
stimulation strength and residual calcium. For increasing IP3 concentration, the release events become modulated at a
timescale of minutes, with repetitive wave-like releases interspersed with several puffs. This modulation is consistent with
experimental observations we present, including refractoriness and increase of puff frequency during the inter-wave
interval. Our results suggest that waves are established by a random but time-modulated appearance of sustained release
events, which have a high potential to trigger and synchronize activity throughout the cell.
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Introduction

Transient and repetitive increases in the concentration of

cytosolic Ca2+ are ubiquitous chemical cues in a cell. They are

crucial for neuronal adaptation, cell growth and myocyte function,

to name a few examples. The formation of complex intracellular

release patterns plays an important role in cell communication,

since Ca2+ achieves its functional specificity by differential

signaling in space, time, and amplitude [1]. It is therefore a

purpose of numerous research studies to understand the systemic

generation of cytosolic Ca2+ signals [2].

In many non-excitable cells, increasing the concentration of

inositol 1,4,5-trisphosphate (IP3) triggers Ca2+ release from the

endoplasmic reticulum (ER) by activating intracellular IP3

receptor (IP3R) channels in the ER membrane. Opening of

IP3R channels is induced by the binding of IP3 and Ca2+ [3] and

therefore Ca2+ released from open channels and diffusing through

the cell can recruit further IP3R channels to open. If the IP3

stimulation is modest, Ca2+ is released from spatially confined

clusters of intracellular Ca2+ channels [4]. Molecular interactions

within a cluster lead to coherent opening of its channels and result

in local elementary events called puffs [5–7]. The small number of

IP3R channels involved in a puff (*10) and the random

appearance of puffs suggest their spontaneous generation by

microscopic fluctuations, which has been related to classical

excitability in activator-inhibitor systems [8,9]. For larger stimu-

lation, however, Ca2+ forms more regular spatio-temporal waves

or whole-cell oscillations involving release by multiple clusters and

many channels [10–12].

The transition from small localized release to Ca2+ waves across

cells has been addressed by a large number of experimental and

theoretical studies, see e.g. [8,13–20]. The interest particularly

concerns the mechanism for the generation of waves or global

oscillations, because it controls the oscillation frequency, which is

known to regulate important cellular functions [21]. Ca2+ diffusion

coupling is responsible for communication between clusters

[11,22,23], thus mediating the synchronization of clusters into

oscillations and the propagation of waves, but it is less clear what

are the respective roles of increased IP3 stimulation and Ca2+

diffusion in the puff-to-wave transition. Enhanced synchronization

with increasing [IP3] can in principle be mediated by two IP3

dependent scenarios. In a first scenario (i) the excitability of

clusters grows with [IP3] so that a given amount of Ca2+, e.g.

diffusing from an active cluster, triggers puffs more frequently.

Cluster excitability is expected to increase with rising IP3

concentration because the number of channels with bound IP3

increases. In a second scenario (ii) the amount of Ca2+ diffusing

from an active cluster to clusters in its proximity increases with
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[IP3] for instance because of larger release current or longer

release. In both scenarios the likelihood of propagation of activity

from cluster to cluster increases with [IP3].

Recent modeling has often assumed that puffs are stereotyped

events with a relatively constant amplitude and life time.

Therefore, several studies focused on scenario (i), which implicates

that for larger stimulation the frequency of puffs increases.

Furthermore, it has been suggested that the occurrence of a

supercritical number of puffs during a short time interval leads to

nucleation of a wave from a cellular subdomain [24–26]. Taken

together, it follows that wave nucleations occur more often when

the puff frequency increases, i.e., for larger stimulation and

excitability. Several aspects of intracellular Ca2+ waves are in very

good accord with this explanation of the puff-to-wave transition,

particularly the large variability in the inter wave interval (IWI)

[26]. However, other important features of global releases,

including their long lifetime and the extended refractoriness, are

difficult to accommodate with present models and a realistic

biomathematical model showing wave nucleation and the

mentioned features remains to be devised. Here we pursue a

new model of intracellular Ca2+ release that exhibits the puff-to-

wave transition and the randomness of global releases and, in

addition, displays the previously unexplained facets of Ca2+ waves.

Our model is based on excitable dynamics of a single cluster

that goes beyond the activator-inhibitor schemes. To achieve its

complexity, the model incorporates the possibility of slowly

decaying release from a cluster [27]. This slow release phase

involves a residual domain, i.e., Ca2+ which is transiently present

in the cluster domain after a channel has closed. Then, the residual

domain provokes perpetual reopening of channels in the cluster.

This particularly happens when the timescale of recovery from

inhibition, tinh, is shorter than the typical decay time of the

residual domain, tdom, so that channels lose inhibiting Ca2+ before

[Ca2+] is below activating levels. It was found in [27], that in this

case termination of release necessitates a further negative

regulation, different from inhibition, and it was shown that this

‘‘inactivation’’ can be provided by transient unbinding of IP3 from

the receptor. This previously overlooked effect originates from

allosteric coupling between inhibiting Ca2+ binding and IP3

binding, which is a hallmark of IP3R gating [28].

To address the puff-to-wave transition in the context of complex

cluster dynamics, we here analyze in detail the time courses of

release in their dependence on IP3 concentration. We are using the

most complete computer simulation of intracluster [Ca2+] that is

presently available. It allows us to incorporate the effects of

residual Ca2+ transients on channel opening. We find that with

increased IP3 concentration the number of IP3 molecules bound to

receptors (excitability, scenario i) and the amplitude of release

from a cluster only slightly increase, while the lifetime of the signal

increases dramatically (scenario ii). This growing event lifetime can

be related to the former finding of perpetual re-opening due to

residual Ca2+ in the domain. Crucially, the mean lifetime increases

because of the appearance of a subset of sustained release events at

increased [IP3], which thus constitutes a stimulation-dependent

transition in the release pattern. We further find that this effect

pertains to the increased variability in the number of channels that

have IP3 bound. It is then likely, that, for a subset of events, the

lifetime of residual domains increases because of larger total flux

from the cluster, while tinh typically remains constant [29]. As a

result, for sufficiently increased stimulation tdom is larger than tinh

and release becomes extended for several seconds until termina-

tion by IP3 loss.

The transition to a qualitatively altered regime in our cluster

model generates surprisingly many dynamical and statistical

features that are in excellent agreement with the experimental

descriptions of global releases. The modification in release shape

and duration can be related to a study of temporal profiles of Ca2+

liberation in Xenopus oocytes in response to [IP3] step increases,

which reported two distinct phases [30]. At moderate [IP3],

fluorescence recordings exhibit a fast but short release flux. For

larger [IP3], however, Ca2+ efflux involves first a time course

similar to that observed for small [IP3] followed by a second phase

of small amplitude release lasting several seconds. The fast and

slow processes correspond well to the dynamics in the excitable

system described by our model.

The prolongation of release in the simulations and the

comparison to experiments therefore hint at scenario (ii), i.e., it

is the magnitude of Ca2+ release that predominantly grows with

stimulation. This leads to a new explanation for the puff-to-wave

transition, in which generation of waves emerges from the

complex and stochastic excitable dynamics of a single cluster.

The fact that sustained events in our computations resemble waves

in their fluorescence traces suggests to identify these events with

global release. In our simulations we find accumulating amounts of

Ca2+ in the local domain during sustained events, which endows

them with higher potential to establish synchronized release of

multiple clusters. Thus, although a Ca2+ wave is a spatially

organized event involving many clusters, the capacity of triggering

or participating in a wave is a distinctive feature of long-lasting

events in our single cluster model, which, in this sense, qualifies

them as global events or waves. Propagation of waves, from our

point of view, is probabilistic and depends on the positions and

distances of adjacent channel clusters, but it is fundamentally the

change in release time course that primes the channels for global

release and that enables the synchronous opening of clusters.

As a distinctive feature of large- [IP3] simulations we find that

the IP3 unbindings and rebindings become very frequent for long-

lasting, wave-like events. During release many channels may lose

IP3 synchronously, while subsequently to the termination of

release they rebind IP3. These dynamics of IP3 binding/

unbinding, synchronized to the appearance of wave-like release,

causes a modulation of the number of activatable channels over

Author Summary

Intracellular calcium oscillations and waves are paramount
cellular signals. The frequency of global release events
regulates, for example, expression of genes. Knowledge
about the mechanism of oscillations and the factors that
determine their frequency is crucial when aiming at the
control of downstream processes. Many experimental and
modeling studies have demonstrated that a calcium cycle
consists of both deterministic and stochastic components,
but the respective mechanisms are under debate. Here we
aim to clarify both components by analyzing calcium
release in Xenopus oocytes and a computational model for
a cluster of IP3 receptor channels. Just as in calcium
fluorescence traces, in the computed sequences some of
the events are prolonged releases lasting for several
seconds. We find that synchronized unbinding and
rebinding of IP3 cause this modulation in time. Our
experimental and computational data show agreement
in many properties including wave period, extended
refractoriness, and release amplitude. Our analysis sug-
gests that global calcium concentrations are stochastically
oscillating because of a modulated but random appear-
ance of high-release events. Thus our approach integrates
both deterministic properties and stochasticity of waves,
and reveals key control parameters of calcium oscillations.

Transition from Puffs to Waves in an IP3R Cluster Model

PLOS Computational Biology | www.ploscompbiol.org 2 January 2015 | Volume 11 | Issue 1 | e1003965



timescales of minutes. The frequency of puffs occurring between

waves is then strongly modulated and exhibits the refractoriness

and increase of puff frequency known from experiments [11,31].

To the best of our knowledge, this crucial feature of Ca2+ waves

has not been addressed in modeling studies so far.

It is important to note that puffs in our simulations cannot be

compared directly to those of experiments with EGTA-loaded cells

[32,33]. Residual Ca2+ domains are suppressed by EGTA buffer,

so that sustained release may not be observed in this setup [27,34].

Appearance of long-lasting events in the present simulations

without exogenous buffer is therefore not in contradiction to the

short puffs occurring in experiments for large [IP3] and with

EGTA loading. EGTA thus prevents residual Ca2+ domains,

appearance of prolonged release and, consequently, unbinding of

IP3. Nevertheless, occasional stochastic IP3 binding/unbinding

may occur also in this situation and lead to puff variability. This

finding may also explain part of the fluctuating puff amplitudes

found in recent experiments with EGTA loaded SH-SY5Y cells

[33] but will not be discussed in the present study.

The article is organized as follows: We first describe the basic

components of our model, consisting of Markovian gating of the

IP3R channels and a reaction-diffusion system for the evolution of

cytosolic concentrations of Ca2+ and Ca2+ binding proteins. We

also summarize our numerical method. In contrast to our earlier

publication [27], we here employ the finite element method (FEM)

for three-dimensional concentration fields and a hybrid scheme to

couple local Ca2+ concentrations and channel gating states [35].

We then discuss our main findings based on simulation traces that

typically cover several thousands of seconds simulation time. Here,

we describe the distributions of event lifetimes and their

dependence on IP3 concentration. We then analyze the role of

IP3 unbinding for the lifetimes and discuss the stochastic

variability. Finally, we suggest that the large number of long-

lasting events for large IP3 concentration can be related to the

frequency of global events. We here define a global event by an

individual cluster’s capacity to trigger adjacent clusters. In the final

part of the paper, we draw a relation of such events to wave

generation and dynamics in the inter-wave period and compare

our results to experimental recordings.

Materials and Methods

Ethics statement
Experiments were performed on immature oocytes obtained

from Xenopus laevis as described previously [4,13]. Frogs were

anaesthetized by immersion in a 0.15% aqueous solution of MS-

222 (3-aminobenzoic acid ethyl ester) for 15 min, and small pieces

of ovary removed by surgery following procedures approved under

UCI IACUC (University of California, Irvine, Institutional Animal

Care and Use Committee) protocol 1998-1337.

Modeling the intracellular Ca2+ dynamics
In this section we will describe the components of our

mathematical model for channel gating, ion and buffer diffusion,

and chemical reactions. The model consists of a Markov chain for

IP3R channel states [36] and partial differential equations for

spatial concentration fields (Ca2+ and buffers). For numerical

implementation, the two stochastic and deterministic paradigms

are coupled by the hybrid method introduced in [35].

Stochastic model of IP3R channel gating. The open and

close dynamics of IP3R channels are incorporated via a modified

DeYoung-Keizer (DYK) model [38,39]. Here, an IP3R channel

consists of four identical subunits, where each subunit possesses

three different binding sites: An activating site for Ca2+, an

inhibiting Ca2+ site, and an IP3 binding site. Hence, a subunit can

undergo transitions between eight different states Xijk (see Fig. 1

A). The index i indicates the state of the IP3 site, j the one of the

activating Ca2+ site and k the state of the inhibiting Ca2+ site. An

index is 1 if Ca2+ or IP3 are bound and 0 if not. A channel is

defined to be open if at least three of the four subunits are in the

state X110 [15]. The parameters defining the transition rates of the

model were fitted to patch-clamp data for type 1 IP3R channels in

[28,40,41] and are given in Table 1. These rates have been chosen

at values similar to our earlier publication [27] except for d4 (and

consequently d3), which has been adjusted by a factor of about 3 to

reflect a large shift in open probability in dependence on [IP3]. In

order to obey detailed balance, these parameters have to satisfy the

following condition:

d1d2~d3d4: ð1Þ

This relation is crucial for the unbinding dynamics of IP3 that we

will report on below [27].

It is important to note, that the binding of IP3 depends on

whether a subunit is inhibited or not: on the right hand side of the

DYK cube (Fig. 1 A), the equilibrium [IP3] (d3) is higher than on

the left hand side (d1, see Table 1). Hence, it is more likely that a

subunit will unbind IP3 if it is inhibited for sufficiently long times.

This behavior is related to the shift of the right branch in the open

probability graph with increasing [IP3] (i.e., d2wd4, see Fig. 1 B)

and the detailed balance condition (1). If two or more subunits of a

channel lose IP3, the channel is rendered unactivatable, because

the remaining subunits cannot lead to a channel opening

according to the criterion given above. Vice versa, we term a

channel as activatable, if at least three of its subunits have bound

IP3. While the loss of IP3 is promoted by inhibition, it still has to be

distinguished from normal inhibition due to its slower time scale

(see below). Furthermore, note that in our definition, an inhibited

channel might still be activatable (e.g., two subunits in X110 and

two subunits in X111).

To combine the stochastic channel events with deterministic

reaction-diffusion processes of Ca2+ and buffers, we employ the

hybrid algorithm described in [35]. To calculate the binding rates

of activating Ca2+, the [Ca2+] is evaluated at the center of the

channel pore.
Reaction-diffusion model. The interaction of Ca2+ with

buffers and the diffusion of Ca2+ and buffers are treated as a

system of coupled reaction-diffusion equations. In the following, c
and b will denote the free cytosolic [Ca2+] and bound buffer

concentration, respectively. The indices c and b will also be used to

distinguish between different other species-specific parameters.

Assuming simple reaction kinetics this leads to the following system

of PDEs:

Lc

Lt
~ Dc+2czbk{{ckz(B{b) ð2Þ

Lb

Lt
~ Db+2b{bk{zckz(B{b): ð3Þ

Dc, Db and B denote the diffusion coefficients of free Ca2+, bound

buffer and the total buffer concentration, respectively.

Reaction and diffusion take place in a cuboidal domain V with

boundary LV. The lower plane of the cuboid LVM represents

the ER membrane, on which a single cluster consisting of 16 IP3R

Transition from Puffs to Waves in an IP3R Cluster Model
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-channels is located. The channels are arranged in a 4|4 regular

grid. The spatial extent of the entire cuboid is 3|3|2:5 mm3.

The boundary conditions for c and b on the ER membrane are:

Dc~nn~++c~
J, at LVM

0, at LV\LVM

�
ð4Þ

Db~nn~++b~0, at LV: ð5Þ

Here, ~nn denotes the outer normal vector of the boundary of the

domain LV. J describes the flux through the membrane and

comprises three contributions:

J~PcS ~rr,tð Þ E{cð Þ{Pp
c2

K2
dzc2

zPl E{cð Þ, ð6Þ

where ~rr~(x,y,z) denotes the spatial position on the membrane

and E is the [Ca2+] in the ER lumen. In the following we assume

E to be constant.

The first term in Eq. (6) models flux through the IP3R -channels

from the ER to the cytosol. This term is controlled by the channel

state through the factor S ~rr,tð Þ, which is defined by:

S ~rr,tð Þ~
1, if there is an open channel k

and D~rr{~XX k DvRc,

0, otherwise:

8><
>: ð7Þ

Here, ~XXk and Rc denote the location of channel k (k~1,2, . . . ,16)

and the channel pore radius, respectively. The total current Ic

through the pore is determined by Pc and the finite extent of the

pore by:

Ic(t)~

ð
pore

2FPc E{c ~rr,tð Þ½ �d~AA, ð8Þ

Fig. 1. (A) Gating scheme of the modified DYK model used to model the states of a single subunit. The transition rates are determined
by [Ca2+] and [IP3] here denoted by c and p, respectively, and the ai and bi as given in Table 1. (B) Steady state open probability of the
modified DYK model for a single channel. For increasing [IP3], the open probability increases and the maximum of the open probability shifts to
higher [Ca2+].
doi:10.1371/journal.pcbi.1003965.g001

Table 1. Channel gating parameters ai , bi and the dissociation coefficient di~bi=ai of the modified DYK model.

i ai in 1/(mMs) bi in 1/s di in mM

IP3 while not inhibited 1 0.20 2|10{4 0.001

Inhibition with IP3 2 0.02 1.56 78

IP3 while inhibited 3 0.40 0.80 2

Inhibition without IP3 4 0.10 3:9|10{3 0.039

Activation 5 100 25 0.25

doi:10.1371/journal.pcbi.1003965.t001

Transition from Puffs to Waves in an IP3R Cluster Model
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where F~eNa is the Faraday constant. To calculate the flux

coefficient Pc from the channel current Ic~0:07 pA [42–45] we

approximate the integral in Eq. (8) by Ic&2FR2
cpPcE. For the

chosen parameters (Rc~6 nm), the [Ca2+] at an open channel

pore reaches peak values up to 70{80 mM. Hence, with

E~700 mM the above approximation is roughly satisfied. Since

smaller pore radii (and hence larger Pc) achieve larger peak pore

concentrations, a dependency of the dynamics of the DYK model

on the channel pore radius arises. To avoid this problem, we do

not drive the DYK model with the concentration measured at the

channel pore, but universally set it to 150 mM, for open channels.

Further, this method allows us to significantly reduce computation

time since one can choose larger pore radii and hence a lower grid

resolution for the FEM.

The second term in Eq. (6) models SERCA pumps. Standard

models as the one in Eq. (6) are of Hill equation type with Hill

coefficient 2 [46]. Kd is the dissociation constant of the pumps.

The maximal pump current, Vp, was estimated to 10–16 mM s21

[47]. Note that this number is based on a volume source and needs

to be cast into a flux through a boundary by multiplying the

volume current by the domain extension dz. This results in units of

moles per surface area and time, as is required for the boundary

flux.

The last term in Eq. (6) models a small leakage of Ca2+ from the

luminal to cytosolic domain. Besides its possible physiological

relevance, it here also serves to balance the system at rest state, i.e.,

it compensates the SERCA pumps when there are no open

channels. Hence, to achieve a resting [Ca2+] of a few tens of nM

(c0) in the cytosolic domain and few hundreds of mM in the ER (E),

equating the two last terms of Eq. (6) provides a dependence of Pl

on Pp:

Pl~
Ppc2

0

E{c0ð Þ K2
dzc2

0

� � : ð9Þ

The PDEs (2, 3) were solved on a conforming, locally refined

grid using the finite element library DUNE [48,49]. Parallelization

for 4–16 CPUs was achieved by domain decomposition [37].

Time integration of the resulting system of coupled ODEs was

performed with a linear implicit three stage Runge-Kutta

algorithm using parameters known as ROWDA3 [50].

To check whether the domain size is sufficiently large, i.e.

whether the noflux boundary conditions would significantly affect

intra-cluster [Ca2+] evolution, we compared simulations of one

event (first event shown in Fig. 2 G) with simulations of the same

openings and closings in a much larger domain (9|9|7:5 mm3).

In these simulations (data not shown), we did not observe a

significant effect of domain size on intra-cluster [Ca2+] and hence

conclude that the noflux boundary conditions are a reasonable

choice.

Experimental Ca2+ imaging in oocytes
Experimental results on Ca2+ imaging of puffs and waves in

Xenopus oocytes are previously unpublished data acquired during

experiments described in [11]. Full experimental methods are

given in that paper.

Results

The system of Eqs. (2, 3) was solved for various values of

IP3 concentration. The typical simulation interval was set to

Fig. 2. Exemplary simulations for [IP3] = 10 nM (A-D) and [IP3] = 70 nM (E-H). In A and E the local [Ca2+] ‘line scans’ along a line on the ER
membrane running through the cluster’s center is shown. Warmer colors correspond to larger Ca2+ concentration and indicate the opening of
channels. Because the line does not directly intersect with a channel pore, the nanodomain structure around a channel is not fully visible. The
corresponding number of open channels is shown in B and F. C and G display the average concentration in the cluster vicinity (500 nm box), D and H
show the number of activatable channels, i.e., the number of channels that have bound IP3 to at least three of their subunits.
doi:10.1371/journal.pcbi.1003965.g002

Transition from Puffs to Waves in an IP3R Cluster Model
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2500–3000 s. Because larger [IP3] leads to higher channel activity,

generally richer statistics are produced with increasing [IP3].

Values of parameters introduced in the preceding section are given

in Table 2.

Fig. 2 shows representative traces for two simulations, one for

low (10 nM, A-D) and one for high (70 nM, E-H) [IP3]. Fig. 2 A

and E display evolutions of ‘line scans’ through the midpoint of the

cluster directly at the membrane, while B and F present the

evolution of the number of open channels in the cluster. C and G

show the spatial average of the Ca2+ concentration in a box

containing the cluster vicinity defined by dimensions

0:5|0:5|0:5 mm3 and centered around the cluster. Finally D

and H present the evolution of the number of activatable channels

in the cluster. Initial conditions of channels of each run were

chosen randomly from a steady state regime with low excitability

(i.e. high [Ca2+]). Transient intervals of 100 s were excluded from

all statistics below.

Event lifetime
To investigate the collective behavior of the IP3R channels, we

group synchronous channel openings in collective events. We

define a collective event based on intervals, during which the

spatially averaged [Ca2+] in the cluster vicinity (500 nm box)

exceeds a threshold value of 0.1 mM. All events containing only a

single channel opening were filtered out. Using the spatial average

of [Ca2+] to define a collective event serves to facilitate comparison

to experiments on Ca2+ puffs and waves in cells with dye buffer,

where the number of open channels underlying a release event is

not directly known.

Following our event definition, we determine its lifetime or

duration from the interval in which the Ca2+ concentration

exceeds 0.1 mM. Simulations as those in Fig. 2 show that for low

[IP3] we find short events lasting up to one or two seconds at most.

The average duration of release events for [IP3] = 10 nM is about

0.5 s, roughly equal to the duration of puffs in experiments on

Xenopus oocytes [10]. However, for high [IP3] we can observe

both the short fast-decaying events as well as events characterized

by sustained release lasting up to 10 s, akin to release waves

observed in the same cell type.

Fig. 3 shows the distribution of event durations for different

[IP3], as well as the average event duration depending on [IP3].

For all IP3 concentrations, the majority of events (w 60%) was

shorter than one second. However, while for low [IP3] all events

are shorter than 3 s, for increasing [IP3] the distribution develops a

wide shoulder. This results in a qualitative change in the

distribution accompanied by increased average and increased

variance of event durations (Fig. 3 inset). Interestingly, models of

release termination by inhibiting Ca2+ binding would suggest that

larger release amplitudes could only accelerate termination [42].

However, in Fig. 3 we observe both, larger amplitudes and

lifetimes, at higher [IP3]. To understand this behavior we will now

study the IP3 binding to the receptors.

IP3 binding variability and impact on release time course
A notable feature of the simulations in Fig. 2 is that the number

of activatable channels (i.e. channels that have bound a sufficient

amount of IP3 to be able to open) is fluctuating both for low (D)

and for high (H) IP3 concentration. Unbinding of IP3 during

release was first observed in a model of sustained Ca2+ release

from IP3R channel clusters [27]. Note that the IP3 concentrations

used in the prior and in the present work exceed the value of the

dissociation constant d1 by far (see Table 1) and hence saturated

IP3 binding sites, i.e., 16 activatable channels, could be expected.

We will now discuss how the impact of varying IP3 concentra-

tion on event lifetime is mediated by the dynamics of IP3 binding

and unbinding, i.e. the dynamics of the number of activatable

channels. Events with a higher number of participating channels

will generally last longer (see below). A simple approach to

elucidate this relation is to count the number of activatable

channels at the beginning of each event. The distribution of this

number of activatable channels is shown for three different IP3

concentrations in Fig. 4. Here we can find similar features as

before: for increasing [IP3] the histogram gets skewed to the right

leading to a much increased shoulder. Both the average and the

Table 2. Model parameters of the reaction-diffusion equations.

Parameter Symbol Value Unit

Diffusion coefficient Dc 223 | 106 nm2/s

Cytosolic resting Ca2+ c0 0.02 mM

ER resting Ca2+ E 700 mM

Diffusion coefficient Db 104 nm2/s

Total concentration B 200 mM

On-rate kz 150 1/(mMs)

Off-rate k{ 300 1/s

IP3R pore radius Rc 6 nm

Channel flux coefficient Pc 4.58 | 106 nm/s

Channel current Ic 0.07 pA

SERCA pump coefficient Pp 20,000 nm/s

SERCA pump dissociation Kd 0.05 mM

Leak flux coefficient Pl 903 nm/s

Domain size V 3|3|2:5 mm 3

# of IP3R channels N 4|4 1

inter channel distance d 120 nm

doi:10.1371/journal.pcbi.1003965.t002
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standard deviation of the distribution increase with [IP3] (inset).

However, the increase of the average number of activatable

channels is relatively small, rising from four channels at

[IP3] = 10 nM to about five channels at 80 nM. On the other

hand, the variability doubles for the same range of [IP3]. Thus, it is

plausible, that the increased variability determines the appearance

of extended events.

What causes the increase of variance in the number of

activatable channels with increasing [IP3]? This effect can be

understood with the help of Fig. 2, D and H. First, the number of

activatable channels generally decreases during release because of

dissociation of IP3, and it does so with much larger magnitude for

long events found at large [IP3] (see Fig. 2 H). Then, after event

termination, the cluster is slowly reactivated by IP3 rebinding. The

resulting rise in the number of activatable channels can be

understood as steadily increasing cluster excitability. Hence, at

some point, random fluctuations will trigger a new event, resetting

some of the channels back to an unactivatable state and closing the

circle. While for low [IP3], the speed of reactivation is too slow to

accumulate a high number of activatable channels, the higher

reactivation speed for large [IP3] sometimes allows to reach a

nearly fully activatable cluster and thus causes the large variability.

Fig. 5 A shows that there is indeed a strong correlation between

the number of activatable channels and the event duration. Events

starting with only a low number (below 4 or 5) of activatable

channels reliably terminate fast. For an intermediate number of

activatable channels (6 to 9), there still is a strong stochastic

variability of event durations. Finally, for a sufficiently high

number almost all events last longer than a few seconds. In other

words: a high number of activatable channels is necessary to

produce a long event. In the intermediate regime (6 to 9

activatable channels), the time course of the events furthermore

depends on the details of the channels’ states, e.g. whether

activatable channels have 3 or 4 subunits with bound IP3 (data not

shown).

Taken together, these findings suggest that the increase of

release lifetime seen in Fig. 3 is primarily mediated by the increase

of variability for larger [IP3], and not by the increase of mean

number of activatable channels (Fig. 4). The nonlinear increase of

duration with the number of activatable channels leads to a

substantial increase of lifetime for higher [IP3].

We may also ask for the reason of the substantial loss of IP3 for

some release events. If the number of channels opening

synchronously is large, termination by inhibitory Ca2+ binding

(i.e. subunit transitions from X110 to X111) is often incomplete,

mostly because the residual Ca2+ remaining locally after each

channel closing is large enough to reopen the channel [27]. The

timescale for recovering from inhibition, tinh, is given by the

inverse of the rate b2~1:56 s21: tinh*1=b2*0:6 s. Hence, during

a single long-lasting event (i.e. longer than tinh), a channel can

easily switch back and forth between inhibited, open and resting

states. Because inhibition does not guarantee termination for those

events, inactivation of channels by IP3 dissociation is needed. This

can clearly be seen from Fig. 5 B. The long-lasting events will

result in a cluster configuration where only a few or even no

channel at all remain activatable at the end of release events.

For small [IP3], however, the short event durations leave less

probability for IP3 unbinding. Thus, those short events are a

consequence of sufficient inhibition and little reopening probabil-

ity, because with a smaller number of open channels less Ca2+ is

extruded and residual Ca2+ domains are smaller [34].

Classification of events into puffs and waves
The experimental observations of puffs and waves, as well as the

diversity of the simulated release events for high [IP3] in terms of

duration and event shape, call for an attempt to classify the

observed release events into two different categories. The first

category shall contain the short-termed puffs, observable for all

concentrations of IP3. The other category shall contain the long

events showing low channel activity tails and termination by IP3 -

unbinding, which we identify as waves. A simple classification

criterion for the events is given by their potential to trigger another

event at a close-by, imaginary cluster, i.e. their potential to support

a Ca2+ release wave. Therefore, we classify a release event as wave

if it induces a local [Ca2+] of at least 0.25 mM (corresponding to

the dissociation constant of activation, d5, see Table 1) in the

entire domain. Otherwise the event is classified as puff. For a

Fig. 3. Distribution of event durations for [IP3] of 10 nM (red
bars), 35 nM (green bars) and 70 nM (blue bars). For
[IP3] = 10 nM only 3 of 90 events lasted longer than 2 s (3.3%). For
[IP3] = 20 nM only 10 of 166 events lasted longer than 3 s (6.0%). For
[IP3] = 80 nM, 72 of 309 events lasted longer than 3 s (23%). Error bars
denote the sampling error of the histogram. The inset shows the
average event duration and its standard deviation.
doi:10.1371/journal.pcbi.1003965.g003

Fig. 4. Distribution of the number of activatable channels at
the beginning of the events for [IP3] = 10 nM (red bars), 35 nM
(green bars) and 75 nM (blue bars). Dashed lines mark the mean
value. Inset: The average number of activatable channels at the
beginning of an event depends on [IP3]. Vertical bars are standard
deviations.
doi:10.1371/journal.pcbi.1003965.g004
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detailed discussion of the classification criterion please refer to the

supplemental information.

In Fig. 2 G, waves are indicated by a shaded background.

Interestingly, the Ca2+ signals between 250 s and 275 s in Fig. 2 G

clearly differ from the homogeneous signals produced by waves.

With the above wave criterion, this burst of channel openings is

identified as a sequence of distinct puffs.

To compare the temporal structure of the release events, we

averaged the time courses of the number of open channels over all

events for each value of [IP3]. We then normalized the average

time courses for different [IP3] to a peak value of 1. Fig. 6 displays

the average time courses for 10 nM and 70 nM concentrations.

The solid red line shows the resulting average puff for small IP3

concentration. The fact, that for [IP3] = 10 nM we solely observed

puffs, is reflected by a simple exponentially decreasing average

number of open channels representing puff termination by Ca2+

inhibition on a fast time scale. However, the dotted blue line shows

that for large IP3 concentration an increased second release phase

appears, while for times below 200 ms no deviation from the

profile of puffs occurs. Furthermore, Fig. 6 presents averaging of

the same events for 70 nM concentration of IP3, but now with two

groups separating into puffs and waves according to our criterion

described above. The solid blue (puffs) and green (waves) curves

indicate that our classification between puffs and waves worked

out well, as the average event shape for puffs at [IP3] = 70 nM

shows a decay very similar to that of puffs for [IP3] = 10 nM.

Analyzing the event shape for waves, we can clearly distinguish the

two termination mechanisms: the first 200 ms are dominated by

inhibition, while afterwards the slow IP3 unbinding takes over.

A prominent feature of our model for large [IP3] is that here

puffs and waves coexist. Occurrences of waves or global oscillation

require the interaction of several clusters, and this interaction may

affect dynamical aspects of the release, including oscillation period

and variability [53]. Nonetheless, consideration of local dynamics

generally allows revealing insights into the global aspects and the

local dynamics often keep a dominating influence in many

oscillating systems. Thus, having distinguished waves from puffs,

we now interpret the repeated occurrence of wave-like events as a

slow oscillation in the local dynamics and identify the period of

global oscillations by the IWI in our simulations. Fig. 7 shows

averages for IWI and inter puff interval (IPI) depending on [IP3].

Similar as shown by experiments [11], our model predicts

decreasing IWI for increasing [IP3]. The wave periods are

generally in the same range as the periods of global oscillation

measured in various cell types [11,12,52]. Recent experiments by

Thurley et al. [55] showed exponential dependence of average

period of global oscillations with stimulation, which is consistent

with the scaling of IWI data in Fig. 7. Furthermore, there is a

linear relation between the average and standard deviation of the

IWI in our simulation results (inset). The slope of the regression

line is 0.88 in simulations, which is similar to what was found for

several cell types including astrocytes [26]. For HEK cells [26,55],

Hepatocytes [54] and Xenopus oocytes [4,13], smaller variability

was measured. This can possibly be understood from more

complex effects of coupling, where synchronization can cause

higher regularity of periodic dynamics [53].

Modulated dynamics during IWIs and comparison to
experiments

In [11,24] it was shown that in Xenopus oocytes puffs appear in

the phase between succeeding global waves. Exemplary fluores-

cence traces from experiments with this cell type are shown in

Fig. 8A. Here a wave can be identified as a group of large events

that appear within temporal proximity at neighboring cluster sites.

Fig. 5. (A) Event duration depends on the number of activatable channels at the beginning of an event. While low numbers of activatable
channels very likely will lead to short events, large numbers do not necessarily lead to long events. (B) The number of activatable channels at
the end of an event as a function of the duration. Bars denote standard deviations. Absent bars indicate single observations.
doi:10.1371/journal.pcbi.1003965.g005

Fig. 6. Average event shapes of waves and puffs. To compare
behavior at different [IP3] concentrations, peaks were normalized to 1.
For high [IP3], event classification into waves and puffs nicely separates
the termination mechanisms into fast inhibition for puffs, and a mix of
inhibition and slow IP3 inactivation for waves.
doi:10.1371/journal.pcbi.1003965.g006
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The remaining events are then identified as puffs and their

amplitude has been obtained as peak fluorescence level from traces

such as shown in the figure. These amplitudes are plotted in

Fig. 8B versus the phase during the IWI, where the phase has been

defined as the ratio of time that has passed since the last wave and

the total difference between preceding and next wave. Fig. 8C

shows for comparison the corresponding puff events from

numerical simulations. As seen from Fig. 7, the three data sets

for high [IP3] are quite similar, suggesting to pool them for better

statistics. It is evident from the two plots, that events are absent at

the very early phase after waves and that large-amplitude events

occur only towards the end of the interval.

To assess quantitatively the data, we have statistically evaluated

Fig. 8B, C by pooling puffs from phase intervals of 0.1 and

determining the number of events for each bin as well as the mean

and standard deviation of their peak amplitudes. The connected

dots in Fig. 8D show clearly that the frequency of puffs in

experiments is strongly diminished in the early time after each

wave. Similarly, we can calculate the temporal distribution of puffs

in between waves from simulations. The bars in Fig. 8D are a

stacked histogram of those phases for all data sets with high [IP3].

From what was observed above, in our model a wave will likely

result in a transiently unactivatable cluster with few IP3 bound

(compare Fig. 2H and 5B). Thus, there is a refractory time where

no puffs can arise, which lasts to about 30% of the IWI.

The decrease of puff density at the last two bars at the end of the

IWI is likely caused by the fact, that a wave also needs some

preceding ‘‘silent’’ phase where the accumulation of activatable

channels is not interrupted and partially reset by puffs. A similar

decrease of puff frequency just before the wave onset is present in

the experimental data. It is more clearly seen for cells with

moderate and large IWI, as evident from Fig. 3 in [11].

We finally compare the evolution of puff peak amplitudes for

both experimental and simulation data (Fig. 8E). There is very

good agreement for behavior of amplitudes (solid lines) and

standard deviations (dashed lines). The refractory effect is much

smaller for the amplitude of puffs than for their frequency.

However, there is a noticeable increase in standard deviation from

close to 0.2 to 0.5. More importantly, there is a small number of

large amplitude events that are absent in the first half of the IWI

but are present in the second half (see B and C). These events

represent the large elementary releases that possess the potential to

synchronize to a global release wave.

Discussion

In this paper we have modeled Ca2+ release from clusters of

intracellular channels where unbinding of IP3 occurs during

release. The possibility of such unbinding appearing even if

surrounding IP3 concentrations seem saturating was discovered

recently in numerical simulations using a very simple model of

spatial coupling of channels [27]. While we have used the mean-

field description of Ca2+ concentration within the cluster in the

prior publication, we here use the FEM with a locally refined

spatial grid and adaptive time steps to accurately calculate the

complex spatio-temporal Ca2+ and buffer distributions. In the

present publication we focus on the changes of release dynamics

and the role of IP3 unbinding for different IP3 concentrations.

Our main finding is that there is a complex dynamics in the

fraction of subunits bound to IP3. The character of this dynamical

variation depends on the IP3 concentration. For small [IP3] there

are relatively rare and asynchronous unbindings during the active

release phase (i.e., during puffs) so that IP3 unbinding contributes

little to termination of puffs, puff dynamics and lifetime. Typically,

during a puff at most one channel becomes unactivatable because

of IP3 loss. Nevertheless, the frequent occurrence of puffs leads to

accumulated unbinding, so that the number of activatable

channels is much smaller than the number of channels in the

cluster. Additionally, because of the stochastic nature of unbinding

and rebinding, there is a variability of the number of activatable

channels at the beginning of each puff. As a result, the dynamics of

IP3 loss and rebinding modulates the number of channels that

open during a puff, which may contribute significantly to the puff

amplitude variability observed in recent experiments [31,33].

Note, however, that in recent studies of puffs cells were loaded

with EGTA, which suppresses residual domains and thus affects

IP3 binding. Therefore, comparison of our current simulations to

these findings is not straightforward.

The IP3 dynamics at large [IP3] is very different from that

observed at small [IP3]. Most importantly, we find a fraction of

release events that last much longer than the typical puff. These

events exist because, for higher IP3 concentration, a larger number

of activatable channels in a cluster is sometimes present and hence

larger Ca2+ domains and a reduced probability of channel closing

follow. We further find that many channels synchronously

dissociate IP3 during the long-lasting release events. It had been

shown in [27] that this behavior can be caused by the extended

release during long events or waves, during which most channels

repeatedly enter the inhibited state. This increasingly exposes the

channels to IP3 unbinding, so that most of the channels lose IP3.

This leads to the paradoxical situation, that for larger IP3

concentration more channels dissociate IP3 than for small

concentration of IP3. Eventually, the loss of IP3 causes termination

of release because of reduction of activatable channel numbers

over a timescale of several seconds. Subsequently, a few seconds

after termination, IP3 rebinds to the receptors and appropriates

them for the next opening.

Fig. 7. Average inter wave interval (IWI, black) and inter puff
interval (IPI, blue) for different [IP3]. For [IP3] = 10 nM, no waves
could be observed. An IPI is defined as time between the end of the
preceding and the beginning of the succeeding puff. If two puffs were
split by a wave, the IPI was excluded. Error bars denote standard
deviations. Inset: Similar to data from [52] there is a clear linear
correlation between the average and standard deviation (SD) of the IWI.
The resulting coefficient of variation is decreasing from CV&0:9 for
[IP3] = 0.01 mM to CV&0:5 for [IP3] = 0.08 mM. The slope of the
regression line is 0:88, the minimal average IWI (i.e., the intersection
with the x-axis) is 17 s.
doi:10.1371/journal.pcbi.1003965.g007
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It is interesting to note, that, because of growing dissociation,

the increase of [IP3] from 10 nM to 80 nM is accompanied by

only a slight increase of the typical number of activatable channels

from 4 to 5 (Fig. 4, inset). However, it is also pertinent that the

variability in activatable numbers at the beginning of an event is

increasing with [IP3] so that for large [IP3] sometimes a number of

8 or more channels are available for opening. Statistically

speaking, these are the events of long lifetime and a temporal

pattern of striking resemblance with global release in Xenopus

oocytes [10,24,30]. Parker and coworkers have shown that for

small IP3 concentrations typically only a short release event is

observed. For larger IP3 concentration, some release events consist

of two phases: a short high-amplitude spike and a small-amplitude

and slowly decaying second release phase, similar to what is

observed in our simulations during long-lasting events. The

similarities in the temporal evolution gave us the cue to consider

sustained release events in our simulations as global releases or

waves.

Fig. 8. Comparison of inter-wave dynamics for experiments and simulations. (A) shows representative fluorescence traces from 3 puff sites
in Xenopus oocyte. Waves were identified as large signals that occurred approximately at the same time at all cluster sites. (B, C): scatter plot of puff
amplitudes in experimental (B) and simulated traces (C). The amplitude of a puff is defined by the peak fluorescense for experimental data and the
peak number of open channels for simulated data. The horizontal axis is the inter-wave phase with 0 corresponding to the time of the preceding
wave and 1 corresponding to the time of the next wave. Experimental data was pooled from four experiments, simulation data was pooled from
traces for 60, 70, and 80 nM [IP3]. The amplitudes of experimental and simulated data were then rescaled to their respective mean amplitude. The
data was grouped into 10 intervals (shaded regions); filled markers and error bars denote the mean and standard deviation of each group,
respectively. (D) Temporal distribution of puff frequency between two waves after binning of data in 0.1 phases. (E) Mean (solid lines with standard
error) and standard deviations (dashed lines) of binned amplitudes for simulations (black) and exeriments (gray).
doi:10.1371/journal.pcbi.1003965.g008
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For further comparison with experiments, we need to classify

events based on a quantitative criterion and we here use the

potential of an event to trigger release in neighboring clusters as

that quantity. This enables us to identify the two types of events as

global release or waves and as the small Ca2+ puffs that occur in

between waves. In our model, the occurrence of puffs between

waves is modulated by the slow recovery of IP3 binding to the

receptors. We compare our results in detail to experimental

statistics from waves in Xenopus oocytes. Both experiments and

simulations show almost no puffs in the early phase after each

wave, but a strong increase of puff frequency during the IWI. In

contrast, the increase of puff amplitudes during the IWI is modest,

while a small number of large amplitude events occurs towards the

end of the IWI. To our knowledge, we present the first model that

exhibits the increase of puff frequency before waves, which is a

hallmark of Ca2+ stochasticity. It is questionable whether other

possible refractory mechanisms, including ER depletion of Ca2+,

can generate a similar effect.

We here argue that the frequency of global release events

derives from the frequency of large events as defined in our model.

The fact that in oocytes not every Ca2+ puff causes a wave can be

immediately understood, since the stochastic variability of Ca2+

release events produces only a subset of events that can lead to

global release. The resulting period of waves is indeed in the range

of experimental observations in many cell types. We have here

assumed that the period of waves is set by a single cluster site in the

cell that emanates the waves. This assumption may be justified for

some cell types, where waves appear repeatedly at focal sites [11].

For other cell types it may be more realistic to assume that every

cluster site can initiate a wave and the period of waves is then set

by the first long release event in any of the clusters and the period

of waves or global oscillation becomes shorter than the IWI of the

individual cluster.

At the center of the effects described in this paper is the repeated

burst-like opening of channels because of residual Ca2+ and the

subsequent IP3 unbinding during release. How realistic is this

scenario? IP3 unbinding depends first on the respective dissocia-

tion constants for IP3 binding, specifically the constants d1 and d3.

The values of d1 and d3 in the DYK model, as obtained from

fitting to patch clamp experiments, differ by orders of magnitude,

which reflects the fact that the open probability peak of the IP3R

channel moves to larger Ca2+ concentrations with increasing [IP3]

(see [27] for a detailed discussion). This contrast in dissociation

constant was incorporated in many models of Ca2+ release.

However, since the time a channel spends in the inhibited state is

relatively short, it is also necessary for an effect that the unbinding

rate b3 be sufficiently large. Note that this rate constant is not

directly observable from experiments and was in the present study

chosen to the order of 1 s21 to allow unbinding during long release

events (duration w1 s). It should also be noted that IP3 unbinding

during occupancy of the inhibited state is not a unique property of

the DYK scheme. Other models of IP3 gating also allow

dissociation of IP3 from the inhibited configuration. This process

presumably reflects the shift of the open probability curve with

growing [IP3] and should therefore be universal for IP3 gating

models. This particularly holds for sequential binding models [56]

and newer models that are based on channel states and not subunit

states [29].

Finally, we would like to suggest further experimental studies

that could help to validate our approach. One experimental

verification could result from the model’s prediction of long

duration events even in absence of coupling to other clusters.

These long puffs do so far not appear in experiments since

addition of exogenous buffer EGTA is used to prevent waves at

large IP3 concentration. In contrast, our finding could be tested

from experiments on genetically engineered cells that only possess

one cluster. Further indirect evidence may be obtained from

comparison to experiment with repeated stimulations with IP3 and

Ca2+ which were described for oocytes [10] and, more recently,

for Purkinje cells [57]. Such experimental protocols require

simulations with fixed initial conditions for comparison, which is

different from our current focus on long-time simulations.

Another debated issue of calcium oscillations regards the

occurrence of concomitant oscillations of free IP3 concentrations.

It is puzzling that in some cells [IP3] oscillates together with [Ca2+]

while in other cells this is not the case [58]. This [IP3] oscillation

has been attributed to further metabolic processes, where changes

in Ca2+ concentration affect the synthesis and degradation of [IP3]

[59]. However, our model provides an alternative explanation in

that for certain situations the unbinding of IP3 from the receptors

during a wave could lead to larger free IP3 concentrations and

rebinding to lower concentrations. Quantitative comparison of our

predictions of this oscillation mechanism may be possible with a

more detailed knowledge of concentrations of IP3 receptors in

different cell types and provide an explanation for the presence or

absence of concomitant [IP3] oscillations independent of possible

metabolic IP3 processes.
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