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Abstract

Background: The hypertensive deoxy-corticosterone acetate (DOCA)-salt-treated pig (hereafter, DOCA pig) was
recently introduced as large animal model for early-stage heart failure with preserved ejection fraction (HFpEF).
The aim of the present study was to evaluate cardiovascular magnetic resonance (CMR) of DOCA pigs and weight-
matched control pigs to characterize ventricular, atrial and myocardial structure and function of this phenotype model.

Methods: Five anesthetized DOCA and seven control pigs underwent 3 T CMR at rest and during dobutamine stress.
Left ventricular/atrial (LV/LA) function and myocardial mass (LVMM), strains and torsion were evaluated from (tagged)
cine imaging. 4D phase-contrast measurements were used to assess blood flow and peak velocities, including
transmitral early-diastolic (E) and myocardial tissue (E’) velocities and coronary sinus blood flow. Myocardial
perfusion reserve was estimated from stress-to-rest time-averaged coronary sinus flow. Global native myocardial
T1 times were derived from prototype modified Look-Locker inversion-recovery (MOLLI) short-axis T1 maps. After
in-vivo measurements, transmural biopsies were collected for stereological evaluation including the volume fractions of
interstitium (VV(int/LV)) and collagen (VV(coll/LV)). Rest, stress, and stress-to-rest differences of cardiac and myocardial
parameters in DOCA and control animals were compared by t-test.

Results: In DOCA pigs LVMM (p < 0.001) and LV wall-thickness (end-systole/end-diastole, p = 0.003/p = 0.007) were
elevated. During stress, increase of LV ejection-fraction and decrease of end-systolic volume accounted for normal
contractility reserves in DOCA and control pigs. Rest-to-stress differences of cardiac index (p = 0.040) and end-diastolic
volume (p = 0.042) were documented. Maximal (p = 0.042) and minimal (p = 0.012) LA volumes in DOCA pigs were
elevated at rest; total LA ejection-fraction decreased during stress (p = 0.006). E’ was lower in DOCA pigs, corresponding
to higher E/E’ at rest (p = 0.013) and stress (p = 0.026). Myocardial perfusion reserve was reduced in DOCA pigs
(p = 0.031). T1-times and VV(int/LV) did not differ between groups, whereas VV(coll/LV) levels were higher in DOCA
pigs (p = 0.044).

Conclusions: LA enlargement, E’ and E/E’ were the markers that showed the most pronounced differences
between DOCA and control pigs at rest. Inadequate increase of myocardial perfusion reserve during stress might
represent a metrics for early-stage HFpEF. Myocardial T1 mapping could not detect elevated levels of myocardial
collagen in this model.
(Continued on next page)
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Background
Heart failure with preserved ejection fraction (HFpEF) is
a multifactorial heterogeneous clinical syndrome that is
recognized as an independent risk factor for mortality
and cardiovascular morbidity [1–3]. Mechanisms leading
to symptomatic heart failure with preserved ejection
fraction are incompletely understood, challenging the
investigation of experimental models at risk to develop
this syndrome [4]. Large animal models for HFpEF have
been sparsely proposed and studied [5]. The deoxy-
corticosterone acetate (DOCA)-salt-induced hyperten-
sive pig (hereafter, DOCA pig) has been introduced as a
large animal model for mineralocorticoid-induced hyper-
tension [6–8]. DOCA-salt-induced hypertension in the
pig is associated with concentric left ventricular (LV)
hypertrophy [9, 10], increased peripheral vascular resist-
ance [11–14], and alterations in the contractile appar-
atus in vascular smooth muscle cells [15, 16]. Recently
Schwarzl at al. [17] documented left atrial (LA) dilata-
tion, normal LV end-diastolic pressure at rest, but left-
ward shifted end-diastolic pressure–volume relationship,
myocyte hypertrophy, titin isoform shift, reduced total-
titin phosphorylation in the sub-endocardial layer, and
increased LV end-diastolic pressures at lower cardiac
output during maximum simulated exercise in DOCA
pigs. The authors concluded that this model of hyper-
tensive heart disease mimics the cardiac phenotype of
early-stage HFpEF [17, 18]. Imaging parameters of ven-
tricular, atrial and myocardial structure and function
were, however, not characterized for this large animal
model [17].
Cardiovascular magnetic resonance (CMR) is the

standard of reference for non-invasive assessment of car-
diac and myocardial function and morphology [19–22].
Employing CMR techniques such as cine imaging, myo-
cardial tagging and 4D flow imaging at rest and during
stress as well as myocardial T1 mapping should make it
possible to investigate cardiac and myocardial function,
evaluate stress-induced differences in cardiac or myocar-
dial function and performance, and identify myocardial
tissue alterations in a single investigation in DOCA pigs.
The aim of our explorative study was to evaluate com-

prehensive CMR imaging of DOCA pigs and weight-
matched control pigs at rest and during dobutamine
stress to characterize ventricular, atrial and myocardial
structure and function of this phenotype model of early-

stage HFpEF, and to identify potential non-invasive im-
aging markers of the disease.

Methods
The explorative study was approved by the local Bioethics
Committee of Vienna, Austria (BMWF-66.010/0091-II/
3b/2013) and conformed to the guide for the care and use
of laboratory animals, US National Institute of Health
(NIH Publication No. 85–23, revised 1996). Thirteen
female landrace pigs were enrolled. Arterial hypertension
was induced in six animals by subcutaneous implantation
of DOCA pellets (100 mg/kg, 90-day release, Innovative
Research of America, USA) in combination with a high-
salt, high-sugar, high- potassium diet. After 12 weeks of
treatment, animals were examined by CMR imaging at
rest and during dobutamine stress. One DOCA pig was
excluded from analysis because of heart rate and blood
pressure instability during the measurements, which
could be attributed to florid pericarditis when attempt-
ing to acquire histologic samples. Seven weight-
matched healthy animals served as controls. The char-
acteristics of the DOCA and the control animals are
summarized in Table 1.

Experimental preparation
Animals were sedated by intramuscular administration
of ketamine (20 mg · kg−1), midazolam (0.25 mg · kg−1)
and azaperone (5 mg · kg−1). Anesthesia was induced by
30–60 mg propofol (Propofol “Fresenius” 1 %-Emulsion,
Fresenius Kabi, Austria) to allow endotracheal intub-
ation. Pigs were mechanically ventilated (Titus, Dräger
Medical, Germany) and anesthesia was maintained with
sevoflurane (1.5–2.5 %), fentanyl (35 μg · kg−1 · h−1), mid-
azolam (1.2 mg · kg−1 · h−1), ketamine (2–8 mg · kg−1 · h−1)
and pancuronium (0.2 mg · kg−1 · h−1). Respiratory gases
(PM 8050 MRI, Dräger Medical, Germany), heart rate and
arterial blood pressure (Precess 3160, InVivo, FL, US)
were continuously monitored. Sheath accesses of the left
internal carotid artery and jugular vein were surgically
prepared. Blood samples collected from the arterial line
were used to control oximetric and metabolic parame-
ters (ABL700, Radiometer Medical ApS, Denmark). A
balanced crystalloid infusion (Elo-Mel Isoton, Fresius Kabi,
Austria) was administered at a fixed rate of 10 ml · kg−1 · h−1

throughout the protocol. Oral temperature of animals was
assessed by a sublingual thermometer and was maintained at
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38 °C during CMR imaging via air ventilation and/or
infusion of cold saline solution.

Image acquisition
CMR was performed on a 3 T MR scanner (Magnetom
Trio, Siemens Healthcare, Germany) using a phased-
array 6-channel body matrix coil together with a spine
matrix coil. Subjects were investigated in a single session
during free breathing in the supine position with elec-
trodes for electrocardiographic (ECG) gating positioned
on the chest. After assessment of cardiac and myocardial
function, blood flow and LV T1 times at rest, measure-
ments were repeated during stress, which was induced
by intravenous infusion of dobutamine (ERWO Pharma,
Austria) at rates of 2–5 μg · kg−1 · min−1, targeting a heart
rate increase of approximately 25 %.
For assessment of ventricular and atrial function,

retrospectively ECG-gated, 2D segmented fast low-angle
shot (FLASH) cine images (temporal resolution, 27 ms
interpolated to 40 cardiac phases; echo time, 2.7 ms; flip
angle, 15°-20°; voxel size, 1.9 × 1.6 × 6.0–8.0 mm3) were
obtained in the LV two-chamber, three- and four-
chamber views (Fig. 1), and in contiguous short-axis
slices covering the entire LV in 12–14 slices. Two-fold
averaging was used to suppress breathing artefacts.
Aortic cross section, vessel wall thickness, and aortic

peak blood velocity were evaluated on retrospectively
ECG-gated, two-dimensional spoiled gradient-echo-
based through-plane velocity encoded cine phase-
contrast images (velocity encoding, 110–200 cm · s−1;
temporal resolution, 30 ms interpolated to 40 cardiac
phases; echo time, 2.5 ms; flip angle, 18°; voxel size,
1.8 × 1.6 × 6.0 mm3; 2-fold averaging) with image orien-
tation adjusted perpendicular to the course of the prox-
imal ascending aorta 2 cm above the aortic valve.
Time-resolved three-directional phase-contrast imaging
(4D flow) data were acquired to measure mitral annular

tissue velocity and blood flow in the left heart, the pul-
monary veins and the coronary sinus; the structures
were covered by gapless slices with a retrospectively
ECG-gated, two-dimensional spoiled gradient-echo-
based three-directional velocity-encoded cine phase-
contrast sequence (velocity encoding in all directions,
110 cm · s−1; measured temporal resolution, 46 ms in-
terpolated to 25 cardiac phases per cardiac cycle; echo
time, 2.9 ms; flip angle, 15°; voxel size, 2.5 × 1.8 ×
4.0 mm3; 3-fold averaging).
To study myocardial strain, tagged cine images (Fig. 2)

were acquired with a retrospectively ECG-gated FLASH
with spatial modulation of magnetization (SPAMM) in
the short axis (basal, mid-ventricular and apical) and in
the 4-chamber orientation (grid spacing, 6 mm; tem-
poral resolution, 20 ms interpolated to 50 cardiac
phases; echo time, 3.3 ms; flip angle, 12°; voxel size,
1.8 × 1.3 × 6.0–8.0 mm3; 3-fold averaging).
An ECG-gated modified Look-Locker inversion recov-

ery (MOLLI) prototype sequence with single-shot bal-
anced steady-state free precession (bSSFP) readout,
motion correction and automatic T1 map generation
(MOLLI protocol 5(5)5(5)5; echo spacing, 2.6 ms; echo
time, 1.1 ms; flip angle, 35°; voxel size, 2.1 × 1.4 ×
8.0 mm3) was used to acquire myocardial T1 maps in
end-diastole (Fig. 3).

Left ventricular and myocardial function
Short-axis cine images were analyzed by syngo.via soft-
ware (MR Cardiac Function, Siemens Healthcare,
Erlangen, Germany). To assess LV volume vs. time
curves, LV epicardial and endocardial borders, excluding
papillary muscles from myocardium, were traced manually
in end-diastole and end-systole and semi-automatically
adjusted to all cardiac phases (Fig. 1). To define the basal
plane, the position of the mitral valve was evaluated from
the cine four-chamber view.

Table 1 Characteristics of control and DOCA animals

Controls (n = 7) DOCA (n = 5) Controls vs. DOCA

Parameter Rest Stress p Rest Stress p prest pstress

weight (kg) 58 ± 9 65 ± 2 0.090

BSA (m2) 1.05 ± 0.10 1.14 ± 0.03 0.085

Htc (%) 28 ± 2 28 ± 2 0.796

DB (μg · kg−1 · min−1) 2.7 ± 0.7 3.8 ± 1.0 0.045

HR (min−1) 89 ± 5 114 ± 3 < 0.001 86 ± 8 110 ± 13 0.014 0.424 0.488

mBP (mmHg) 87 ± 7 95 ± 13 0.061 106 ± 8 101 ± 12 0.538 0.001 0.400

sBP (mmHg) 103 ± 8 116 ± 9 0.004 125 ± 6 120 ± 11 0.536 < 0.001 0.493

dBP (mmHg) 75 ± 9 82 ± 16 0.077 96 ± 10 86 ± 12 0.122 0.003 0.614

RPP (102 mmHg · min−1) 92 ± 8 132 ± 11 < 0.001 108 ± 14 132 ± 17 0.026 0.034 0.990

BSA body surface area, Htc hematocrit, DB dobutamine infusion rate, HR heart rate, mBP mean blood pressure, sBP systolic blood pressure, dBP diastolic blood
pressure, RPP (= sBP × HR) rate-pressure product
p is related to the rest-stress comparison within each group. prest and pstress relate to group comparisons at rest and stress, respectively
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Normalized end-diastolic volume (EDV), end-systolic
volume (ESV), stroke volume, cardiac output, and LV
ejection fraction were evaluated from end-diastolic and
end-systolic cardiac phases with the body surface area
(BSA) estimated according to BSA (m2) = 0.0734 × weight
(kg)0.656 [23]. The duration of LV diastasis (tdiastasis) was
derived from LV volume vs. time curves as the time inter-
val starting after rapid LV filling and atrial contraction.
Derivative of LV volume-time curves provided assessment
of normalized peak ejection rate (PER), peak ejection time
(PET), as well as early (PFRE, PFTE) and active (PFRA,
PFTA) normalized peak filling rates and times (Fig. 1).
Papillary muscles were included when measuring nor-

malized left ventricular mass (LVMM), but they were
excluded in determining normalized mean end-diastolic
and end-systolic wall thickness and thickening at the
basal, mid-myocardial and apical levels; 16 myocardial
segments were evaluated, according to the American
Heart Association (AHA) segmentation scheme [24]. Glo-
bal normalized end-diastolic (WTED) and end-systolic

(WTES) wall thickness, as well as LV wall thickening, were
calculated as averages of segmental values.
Times of mitral valve opening (MVO), mitral valve

closure (MVC), and aortic valve opening (AVO)/closure
(AVC) were derived from cine 3-chamber images by
visual analysis (Fig. 1); in turn, these measurements
were used to assess LV isovolumetric contraction
(IVCT = AVO-MVC), isovolumetric relaxation (IVRT =
MVO-AVC) and ejection (LVET = AVC-AVO) times.
Index of myocardial performance (IMP) was calculated
from IMP = (IVCT + IVRT)/LVET [25].
Mitral annular plane systolic excursion (MAPSE) was

measured as the difference between the end-diastolic
and the end-systolic distance from apex to lateral mitral
annulus in 4-chamber view (Fig. 1).

Left atrial volumes
Left atrial (LA) volumes were evaluated from manually
tracing the LA area and length in 4- and 2-chamber
views (Fig. 1). Normalized LA volumes were determined

Fig. 1 Functional cine images and their evaluation. a Diastolic images of cine FLASH series in LV 2-chamber, 4-chamber, 3-chamber and mid-ventricular
short-axis views. Subepicardial (green line) and subendocardial (red line) contouring in short axis images was employed to derive LV volume vs. time curves,
wall thickness and left ventricular muscle mass (red dashed line). b Schematic drawing explaining derivation of left atrial volumes and mitral annular plane
systolic excursion (MAPSE). LV = left ventricle; LA = left atrium area (white plane); MV =mitral valve; PV = pulmonary vein; L4CH, L2CH = length of LA extension
in 4-chamber view and 2-chamber view, respectively; llat = distance from the apex to the lateral mitral annulus. c LV volume vs. time curve (black line) and
its derivative (gray line). ED = time of LV end-diastole; ES = time of LV end-systole; MDV=mid-diastolic time after rapid LV filling; BAC = time before atrial
contraction; EDV = LV end-diastolic volume; ESV = LV end-systolic volume; SV = LV stroke volume; tdiastasis = duration of LV diastasis; PER = peak
ejection rate; PET = peak ejection time; PFRE = early diastolic peak filling rate; PFTE = early diastolic peak filling time; PFRA = late diastolic peak
filling rate; PFTA = late diastolic peak filling time. Times of aortic valve closure (AVC), aortic valve opening (AVO), mitral valve closure (MVC), and
mitral valve opening (MVO) were assessed from cine 3-chamber view series. IVRT = isovolumetric relaxation time; IVCR = isovolumetric contraction time;
LVET = left ventricular ejection time
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from cardiac phases before mitral valve opening at LV
end-systole (maximum volume LAVmax) and before
mitral valve closure after LA contraction (minimum vol-
ume LAVmin). For consistency, the plane of the mitral
annulus was defined as the LA inferior border. Areas of
recesses of the mitral valve, pulmonary veins and left
atrial appendage were excluded by drawing a straight
line across these structures to adjacent atrial borders.
LA length was measured from the center of the mitral
plane to the superior margin of the LA in 4- and 2-
chamber views. Normalized LA volumes were estimated
using the bi-planar area-length method [26] from LAV =
0.85 × A2CH × A4CH/(L × BSA), where A2CH and A4CH are
the LA areas in 2-chamber and 4-chamber views, respect-
ively, and L is the length of the LA from either the 2-
or the 4-chamber view (whichever is shorter). LA total
ejection fraction (LATEF) was calculated according to
LATEF = 100 × (LAVmax-LAVmin)/LAVmax.

Phase-contrast imaging data evaluation
Aortic peak velocity and cross-sectional area were evalu-
ated from through-plane phase-contrast images by syn-
go.via (MR Flow Analysis, Siemens Healthcare, Erlangen,
Germany). Aortic vessel wall thickness (AWT) was

assessed from aortic cross section diameter measured
from outer and inner vessel borders at the cardiac phases
with maximum vessel cross section area at rest according
to AWT= (outer diameter – inner diameter)/2.
Transmitral early (E) and late (A) diastolic, pulmonary

venous systolic (S1, S2) and early diastolic (D) velocities,
coronary sinus net forward blood flow volume (Fig. 4),
and early diastolic lateral, septal and mean (E’) mitral
annular tissue velocities were evaluated from multi-
planar images reconstructed from 4D flow data using
prototype software (4D Flow, Siemens Healthcare,
Erlangen, Germany). Transmitral acceleration (AT)
and deceleration (DT) times were assessed from aver-
age mitral velocity vs. time curves. E/A, E/E’, (E/E’)/
EDV, and pulmonary venous S/D (with S as maximum
of S1 and S2) ratios were calculated from peak
through-plane velocities.

Evaluation of global myocardial perfusion and
perfusion reserve
Global myocardial perfusion (GMP) was derived as
quotient of coronary sinus net forward blood flow vol-
ume multiplied by heart rate (which represents the
time-averaged coronary sinus blood flow) and the left

Fig. 2 Cine tagged images and their evaluation. a End-diastolic and end-systolic images of cine tagging series in mid-ventricular short-axis and
4-chamber orientations. Yellow grid lines detected by the evaluation software are overlaid. b Derived time courses of LV myocardial radial (RR, red
line), circumferential (CC, blue line) and longitudinal (LL, green line) strains and of LV myocardial torsion (gray line). Extrema of curves are annotated.
c Derived time courses of LV myocardial radial (RR, red line), circumferential (CC, blue line) and longitudinal (LL, green line) strain rates and of LV
myocardial torsion rate (gray line). Systolic and early diastolic extrema of curves are annotated. ED = time of LV end-diastole; ES = time of
LV end-systole
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ventricular muscle mass [27]. Myocardial perfusion
reserve (MPR) was calculated from stress-to-rest
GMP [27].

Evaluation of myocardial strain
Tagged images were evaluated semi-automatically by
using prototype software (Heart Deformation Analysis
2.0, Siemens Healthcare, Erlangen, Germany and Univer-
sity of Auckland). A grid was aligned to the myocardial
tags at end-diastole and propagated throughout all im-
ages of the cardiac cycle (Fig. 2). Grids were manually
corrected to the tags if necessary. Myocardial circumfer-
ential (CC) and radial strain (RR) and strain rates (CC
rate, RR rate) were calculated by the software from the
motion of grid lines at the basal, mid-ventricular and
apical levels from the respective short axis slices. Longi-
tudinal myocardial strain (LL) and strain rates (LL rate)
were assessed from 4-chamber view images, while myo-
cardial torsion and torsion rates were assessed from the
strains of basal and apical short-axis slices (Fig. 2). From
time courses of strains, torsion and corresponding rates,
end-systolic maxima/minima of strains and torsion as
well as systolic and early diastolic maxima/minima of
rates were determined. Furthermore, LV circumferential
and radial strains and strain rates were calculated as
means of basal, mid-ventricular and apical values.

Evaluation of native myocardial T1 times
Segmental LV myocardial T1 times were derived by
manually outlining T1 maps according to the AHA seg-
mentation scheme, excluding blood pool, papillary mus-
cles, trabeculae and epicardial structures. Regions were
drawn to be as large as possible while avoiding inclusion
of subendocardial and subepicardial tissue boundaries
(Fig. 3). Global LV myocardial T1 was calculated as
mean of segmental values.

Electron microscopy and stereology
After in vivo measurements were completed, thoracot-
omy was performed and a bolus of 100 mmol potassium
was administered intracoronarily to sacrifice each ani-
mal. For electron microscopic analysis of the myocar-
dium, transmural biopsies were then collected from the
lateral left ventricular wall and fixed in 1.5 % glutaralde-
hyde, 1.5 % paraformaldehyde in 0.15 M Hepes buffer.
The samples were then stored in the fixative at 4 °C until
further processing. The processing steps included post-
fixation in 1 % osmium tetroxide solution, overnight
staining in half-saturated uranyl acetate solution, dehy-
dration in an ascending acetone series and finally em-
bedding in epoxy resin. From the embedded samples,
semi- and ultrathin sections were obtained for stereolog-
ical analysis. The following parameters were assessed by
the method of point counting [28]: volume fraction of

Fig. 3 Native myocardial T1 maps. Regions for assessment of
segmental myocardial T1 times (white lines) are overlaid. Segment 15
typically showed a susceptibility artefact from a prominent coronary
vein which was carefully excluded from evaluation

Reiter et al. Journal of Cardiovascular Magnetic Resonance  (2016) 18:63 Page 6 of 15



interstitium (VV(int/lv)), volume fraction of cardiomyo-
cytes (VV(myo,lv) = 1- VV(int/lv)), of blood vessels
(VV(ves/lv)) and of collagen fibrils either related to the
left ventricle (VV(coll/lv)) or to the interstitium (VV(coll/
int)) as reference volume. The total myocyte (V(myo,lv)),
collagen V(coll,lv) and blood vessel V(ves,lv) content in
the myocardium were obtained by multiplying LVMM
with VV(myo/lv), VV(coll/lv), and VV(ves/lv), respectively.

Statistical analysis
Mean values are given together with standard deviations.
Statistical analysis was performed using NCSS (Hintze, J.
(2008) NCSS, LLC. Kaysville, Utah). A significance level
of 0.05 was employed for statistical tests. Rest and stress
indices of left heart and myocardial function as well as
morphological and stereological parameters assessed in
DOCA and control animals were compared by 2-sample
t-test. Significances of differences of rest and stress indi-
ces or absolute and relative stress reserves were tested
by 1-sample t-test.

Results
DOCA pigs developed hypertension within 12 weeks.
At rest, arterial blood pressure (mean, systolic and dia-
stolic) and the rate-pressure product were higher in
DOCA pigs than in controls; the groups did not differ
significantly in weight, BSA and heart rate (Table 1). A
stress-induced heart rate increase of 25 % was reached
at significantly higher infusion rates in DOCA subjects
(controls, 2.7 ± 0.7 μg · kg−1 · min−1; DOCA, 3.8 ± 1.0 μg ·
kg−1 · min−1). During stress, blood pressure in DOCA
subjects failed to increase, and thus differences in blood
pressures and rate-pressure product disappeared be-
tween groups.

Left ventricular and myocardial function, left atrial volumetry
LVMM was higher in DOCA than in control animals
(Table 2). DOCA animals revealed concentric hyper-
trophy with increased WTED and WTES at rest and dur-
ing stress. LV wall thickening and MAPSE were different
between groups at rest but not during stress.
Stress-induced changes of systolic LV function indices

were comparable for DOCA and control animals except
for the increase in cardiac index, which was lower in
DOCA animals (controls, 63 ± 23 %; DOCA, 37 ± 12 %;
p = 0.040) and the decrease in EDV, which was higher in
DOCA animals (controls, −5 ± 11 %; DOCA, −20 ± 11 %;
p = 0.043). IVRT was longer in DOCA at rest but did
not differ significantly between groups during stress
(Table 3).
Minimal and maximal LA volumes were enlarged in

DOCA animals at rest. As maximal LA volume in the
DOCA group significantly decreased during stress,
LATEF, which was comparable between groups at rest,
was significantly smaller in the DOCA group during
stress (Table 2).

Phase-contrast velocity mapping
Aortic wall was thicker in DOCA pigs (Table 4). Aortic
blood peak velocity was higher in controls than in
DOCA animals at rest but equalized during stress. At
rest, the minimal, maximal and average aortic cross-
sectional areas were larger in DOCA than in control

Fig. 4 Evaluation of mitral, pulmonary venous and coronary sinus
blood flow parameters from 4D flow data. a Cross-sectional areas
were defined in multi-planar reformatted image planes of the anatomical
phase-contrast data. The definition of pulmonary venous and coronary
sinus cross sections are displayed. b Derived transmitral (black line),
pulmonary venous (gray line), and coronary sinus (light gray line)
average velocity vs. time courses. Peak through-plane velocities of
transmitral early (E) and late (A) diastolic, pulmonary venous systolic
(S1, S2) and early diastolic (D) were evaluated from respective peak
velocity vs. time curves. E-wave acceleration (AT) and deceleration
(DT) times were estimated by linear approximation of the acceleration
and deceleration phase of the early diastolic transmitral average
velocities. Coronary sinus net forwards blood volume was assessed
from integration of average velocity × cross-sectional area. ED = time
of LV end-diastole; ES = time of LV end-systole; MVC = time of mitral
valve closure; MVO = time of mitral valve opening
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pigs; with stress, these differences became insignificant
except for the difference in minimal aortic cross-
sectional area.
Early diastolic myocardial tissue peak velocity values

were lower in DOCA pigs and corresponded to higher
E/E’ in the DOCA group, even though transmitral in-
flow patterns did not differ between groups (Table 4).
(E/E′)/EDV was higher in DOCA pigs both at rest and
during stress.
The main differences in the pulmonary venous flow

patterns between the two groups were that DOCA pigs

showed significantly higher D-wave velocities at rest,
while controls displayed a significant stress-induced
increase in pulmonary venous peak velocities that was
not observed in the DOCA group. Accordingly, the S/D
ratio differed significantly between the two groups at rest
but not during stress.

Global myocardial perfusion and perfusion reserve
Under rest coronary sinus net forward blood volume
was larger in the DOCA pigs than in the control pigs,
but equalized under stress condition. Although global

Table 2 Parameters of cardiac and myocardial geometry and function

Controls (n = 7) DOCA (n = 5) Controls vs. DOCA

Parameter Rest Stress p Rest Stress p prest pstress

LVMM (g · m−2) 84 ± 7 111 ± 9 <0.001

WTED (mm · m−2) 6.3 ± 1.2 6.2 ± 1.4 0.934 8.3 ± 0.8 9.3 ± 1.6 0.224 0.007 0.006

WTES (mm · m−2) 9.6 ± 1.6 11.8 ± 2.2 0.009 13.0 ± 1.4 15.5 ± 1.9 0.012 0.003 0.012

WTH (mm · m−2) 3.3 ± 0.8 5.6 ± 1.7 0.019 4.8 ± 0.9 6.2 ± 1.1 0.074 0.020 0.489

MAPSE (mm) 11.1 ± 3.6 15.0 ± 3.7 0.078 6.9 ± 1.2 13.5 ± 4.9 0.040 0.037 0.586

EF (%) 52 ± 3 69 ± 7 0.001 53 ± 5 70 ± 2 < 0.001 0.840 0.749

EDV (ml · m−2) 124 ± 15 117 ± 12 0.293 125 ± 18 102 ± 26 0.008 0.862 0.203

ESV (ml · m−2) 59 ± 9 36 ± 10 0.005 59 ± 10 30 ± 9 < 0.001 0.983 0.360

SV (ml · m−2) 65 ± 8 81 ± 9 0.003 66 ± 11 71 ± 17 0.352 0.781 0.244

CI (l min−1 · m−2) 5.8 ± 0.9 9.4 ± 1.1 < 0.001 5.8 ± 1.0 7.8 ± 1.2 0.002 0.890 0.041

PER (ml · s−1 · m−2) −380 ± 54 −711 ± 219 0.005 −419 ± 95 −639 ± 114 0.002 0.389 0.523

PFRE (ml · s−1 · m−2) 307 ± 41 470 ± 75 0.002 332 ± 69 471 ± 49 0.007 0.449 0.979

PFRA (ml · s−1 · m−2) 302 ± 73 345 ± 99 0.223 334 ± 133 277 ± 118 0.192 0.599 0.304

LAVmax (ml · m−2) 34 ± 4 32 ± 8 0.444 48 ± 17 34 ± 14 0.012 0.042 0.798

LAVmin (ml · m−2) 14 ± 3 14 ± 4 0.655 25 ± 9 21 ± 8 0.222 0.012 0.054

LATEF (%) 58 ± 4 58 ± 11 0.990 48 ± 14 36 ± 10 0.265 0.104 0.006

LVMM left ventricular muscle mass, WTED end-diastolic wall thickness, WTES end-systolic wall thickness, WTH wall thickening, MAPSE mitral annular plane systolic
excursion, EF left ventricular ejection fraction, EDV left ventricular end-diastolic volume, ESV left ventricular end-systolic volume, SV left ventricular stroke volume,
CI left ventricular cardiac index, PER peak ejection rate, PFRE early diastolic peak filling rate, PFRA late diastolic peak filling rate, LAVmax left atrial maximum volume,
LAVmin left atrial minimal volume, LATEF left atrial total ejection fraction
p is related to the rest-stress comparison within each group. prest and pstress relate to group comparisons at rest and stress, respectively

Table 3 Time intervals and indices of left ventricular function

Controls (n = 7) DOCA (n = 5) Controls vs. DOCA

Parameter Rest Stress p Rest Stress p prest pstress

PET (ms) 82 ± 24 46 ± 23 0.006 110 ± 19 46 ± 16 0.007 0.053 0.972

PFTE (ms) 382 ± 35 286 ± 19 < 0.001 389 ± 37 289 ± 34 0.001 0.752 0.831

PFTA (ms) 586 ± 36 446 ± 13 < 0.001 622 ± 66 485 ± 67 0.007 0.255 0.160

IVRT (ms) 80 ± 15 78 ± 16 0.786 99 ± 10 93 ± 17 0.618 0.034 0.146

IVCT (ms) 46 ± 14 28 ± 8 0.013 56 ± 9 34 ± 11 < 0.001 0.175 0.330

LVET (ms) 205 ± 36 141 ± 22 0.008 194 ± 29 129 ± 53 0.005 0.600 0.606

IMP 0.64 ± 0.23 0.77 ± 0.18 0.353 0.82 ± 0.17 1.20 ± 0.82 0.313 0.179 0.201

tdiastase (ms) 90 ± 34 55 ± 28 0.017 94 ± 43 67 ± 14 0.139 0.858 0.408

PET peak ejection time, PFTE early diastolic peak filling time, PFTA late diastolic peak filling time, IVRT isovolumetric relaxation time, IVCR isovolumetric contraction
time, LVET left ventricular ejection time, IMP index of myocardial performance, tdiastase duration of left ventricular diastasis
p is related to the rest-stress comparison within each group. prest and pstress relate to group comparisons at rest and stress, respectively

Reiter et al. Journal of Cardiovascular Magnetic Resonance  (2016) 18:63 Page 8 of 15



myocardial perfusion did not differ significantly between
groups and increased with stress in both groups, myo-
cardial perfusion reserve was significantly smaller in the
DOCA group (Table 4).

LV myocardial strains and torsion
Circumferential, radial and longitudinal strains and
strain rates as well as torsion and torsion rates were
evaluated in all DOCA and 6 controls pigs. One control
pig was excluded from evaluation due to poor tagged
imaging quality.
Differences between DOCA and control pigs were

found in the longitudinal strain and torsion rates
(Table 5). Whereas systolic LL ratemin did not differ be-
tween groups at rest, it was smaller in DOCA animals

during stress. Systolic torsion ratemax showed the oppos-
ite behavior, being significantly higher in DOCA pigs at
rest but not during stress. Diastolic torsion ratemin did
differ significantly between groups; however, the torsion
ratemin failed to properly increase during stress in the
DOCA group (control, −19 ± 11° · s−1; DOCA, 0 ± 5° · s−1;
p = 0.015).

Global LV myocardial T1 times
Native myocardial T1 relaxation times were evaluated
in 5 DOCA and 6 control animals. One control pig
was excluded from evaluation due to poor image
quality. No differences between groups were found in
global native T1 times (controls, 1195 ± 36 ms; DOCA,
1161 ± 21 ms; p = 0.094).

Table 4 Phase-contrast velocity mapping-based parameters

Controls (n = 7) DOCA (n = 5) Controls vs. DOCA

Parameter Rest Stress p Rest Stress p prest pstress

Aortic vessel wall and aortic blood velocity

APV (cm · s−1) 113 ± 15 158 ± 26 0.001 92 ± 14 140 ± 31 0.011 0.033 0.308

AAmean (mm−2) 3.4 ± 0.4 3.7 ± 0.7 0.091 5.5 ± 0.5 5.0 ± 1.3 0.244 < 0.001 0.064

AAmin (mm−2) 2.8 ± 0.4 3.0 ± 0.6 0.211 4.6 ± 0.5 4.2 ± 1.1 0.229 < 0.001 0.044

AAmax (mm−2) 4.1 ± 0.4 4.5 ± 0.6 0.061 6.3 ± 0.5 5.7 ± 1.4 0.228 < 0.001 0.072

AWT (mm) 1.8 ± 0.3 2.3 ± 0.4 0.039

Transmitral and myocardial tissue velocities

E (cm · s−1) 63 ± 6 78 ± 9 0.001 56 ± 10 70 ± 11 0.001 0.181 0.222

A (cm · s−1) 47 ± 11 48 ± 9 0.714 43 ± 12 43 ± 13 0.801 0.532 0.404

E/A 1.4 ± 0.5 1.7 ± 0.5 0.100 1.4 ± 0.4 1.7 ± 0.5 < 0.001 0.861 0.886

AT (ms) 87 ± 17 79 ± 9 0.329 83 ± 14 70 ± 9 0.091 0.639 0.120

DT (ms) 152 ± 50 163 ± 66 0.705 169 ± 67 153 ± 16 0.639 0.622 0.760

E’sep (cm · s−1) 18 ± 4 20 ± 6 0.743 11 ± 3 14 ± 2 0.109 0.010 0.069

E’lat (cm · s−1) 21 ± 5 25 ± 6 0.346 14 ± 3 16 ± 3 0.213 0.067 0.019

E’ (cm · s−1) 20 ± 4 23 ± 6 0.492 13 ± 2 15 ± 2 0.130 0.007 0.025

E/E’ 3.3 ± 0.6 3.6 ± 0.7 0.185 4.4 ± 1.1 4.6 ± 0.6 0.707 0.038 0.031

(E/E’)/EDV (10−2 ml−1 · m2) 2.7 ± 0.5 3.1 ± 0.6 0.151 3.6 ± 0.9 4.8 ± 1.6 0.112 0.035 0.030

Pulmonary venous velocities

S1 (cm · s−1) 33 ± 9 48 ± 4 0.006 39 ± 18 46 ± 5 0.516 0.502 0.408

S2 (cm · s−1) 40 ± 10 49 ± 9 0.032 44 ± 18 44 ± 5 0.668 0.624 0.484

D (cm · s−1) 37 ± 10 56 ± 11 < 0.001 57 ± 17 58 ± 6 0.792 0.035 0.636

S/D 1.1 ± 0.2 0.9 ± 0.2 0.019 0.8 ± 0.2 0.8 ± 0.2 0.864 0.045 0.194

Coronary sinus

NFVCS (ml · m−2) 1.6 ± 0.5 2.7 ± 1.0 0.003 2.4 ± 0.6 2.8 ± 0.5 0.300 0.025 0.886

GMP (ml · min−1 · g−1) 1.6 ± 0.4 3.7 ± 1.4 0.002 1.9 ± 0.3 2.9 ± 0.5 0.029 0.197 0.268

MPR 2.2 ± 0.5 1.5 ± 0.4 0.028

APV aortic peak velocity, AAmean average aortic cross section area, AAmin minimal aortic cross section area, AAmax maximal aortic cross section area, AWT aortic wall
thickness, E early diastolic transmitral peak velocity, A late diastolic transmitral peak velocity, E’sept early diastolic septal wall mitral annular tissue velocity, E’lat early
diastolic lateral wall mitral annular tissue velocity, E’ average early diastolic mitral annular tissue velocity, S1 early systolic pulmonary venous peak velocity, S2
systolic pulmonary venous peak velocity, D early diastolic pulmonary venous peak velocity, S maximal systolic pulmonary venous peak velocity, NFVCS coronary
sinus net forward volume, GMP global myocardial perfusion, MPR stress-to-rest myocardial perfusion reserve
p is related to the rest-stress comparison within each group. prest and pstress relate to group comparisons at rest and stress, respectively
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Stereological analysis
Samples of five DOCA and three control pigs were eval-
uated. Volume fractions of the interstitium (VV(int/lv):
controls, 21 ± 2 %; DOCA, 19 ± 2 %; p = 0.283) and of
blood vessels (VV(ves/lv): controls, 4.4 ± 1.3 %; DOCA,
5.5 ± 0.4 %; p = 0.092) did not differ between the DOCA-
salt treated and control group. Volume fractions of col-
lagen with respect to both the LV (VV(coll/lv): controls,
1.7 ± 0.5 %; DOCA, 3.0 ± 0.7 %; p = 0.044) and the inter-
stitium (VV(coll/int): controls, 8 ± 3 %; DOCA, 16 ± 4 %;
p = 0.025) were significantly increased in the DOCA
group (Fig. 5). Total myocyte volume (V(myo/lv): con-
trols, 67 ± 1 ml; DOCA, 104 ± 16 ml; p = 0.009), total
collagen volume (V(col/lv): controls, 1.5 ± 0.4 ml;
DOCA, 3.8 ± 1.0 ml; p = 0.011) and total blood vessel
volume (V(ves/lv): controls, 3.7 ± 1.1 ml; DOCA, 7.1 ±
1.2 ml; p = 0.012) were higher in the DOCA pigs than in
the control pigs.

Discussion
CMR at rest and during dobutamine stress allowed
analysis and characterization of cardiac, cardiovascular
and myocardial function in pigs without and with
DOCA-salt treatment. Aside from LV hypertrophy,
DOCA animals displayed alterations in myocardial
muscle mechanics, left ventricular filling characteris-
tics, left atrial volumes and function, and myocardial
perfusion at rest and/or during stress. Significant eleva-
tion of collagen in the DOCA group shown by stereol-
ogy could not be resolved by native T1 mapping.

Left ventricular hypertrophy and myocardial alterations
In accordance with previous studies, DOCA pigs devel-
oped hypertension and concentric LV hypertrophy, with
a normal-sized LV chamber and increased LV muscle
mass [9, 10, 17]. Stereological interstitial volume fraction
was comparable in DOCA and control animals, indicat-
ing that hypertrophy in this early-stage HFpEF model
results from enlargement of both cardiomyocytes and
interstitial space. In the study by Schwarzl et al. [17],
picrosirius red staining did not indicate higher levels of
collagen in DOCA pigs compared to control animals.
Stereological analysis in the present study revealed
increased levels of collagen (i.e., a higher collagen vol-
ume relative to the interstitial space, relative to the LV
myocardium and to the absolute volume). Notably,
increased levels of collagen and reduced total-titin
phosphorylation [17] in DOCA pigs could be inter-
preted as a sign of a transition from hypertensive heart
disease to HFpEF [29–32].
Native T1 times did not resolve the higher myocardial

collagen content documented by the stereological evalu-
ation [33, 34]. This can be understood by the fact that
voxel-based evaluation of magnetic relaxation time maps
displays an effective T1 time of all compartments in the
voxel. An increased LV volume fraction of collagen tends
to increase myocardial T1 times [33], whereas an
increased volume fraction of cardiomyocytes should
decrease T1. Even though not significant, lower native
myocardial T1 times in early-stage HFpEF animals rep-
resent the larger compartment (1- VV(int/lv) in stereo-
logical analysis) of hypertrophied cardiomyocytes rather

Table 5 Left ventricular myocardial strain and torsion

Controls (n = 6) DOCA (n = 5) Controls vs. DOCA

Parameter Rest Stress p Rest Stress p prest pstress

CCmin,LV (%) −16 ± 1 −17 ± 2 0.887 −17 ± 2 −18 ± 3 0.404 0.728 0.284

RRmax,LV (%) 34 ± 12 39 ± 11 0.163 33 ± 4 35 ± 5 0.533 0.764 0.481

LLmin,LV (%) −13 ± 2 −13 ± 3 0.495 −12 ± 1 −11 ± 2 0.342 0.187 0.337

torsionmax (°) 4.6 ± 1.4 5.7 ± 1.6 0.560 6.1 ± 0.9 7.0 ± 1.2 0.061 0.098 0.231

CC ratemin,LV (% · s−1) −90 ± 11 −139 ± 19 0.009 −96 ± 13 −155 ± 16 < 0.001 0.436 0.182

RR ratemax,LV (% · s−1) 185 ± 52 337 ± 66 < 0.001 188 ± 36 309 ± 81 0.015 0.908 0.540

LL ratemin (% · s−1) −77 ± 11 −120 ± 15 0.002 −68 ± 6 −95 ± 13 0.004 0.120 0.024

torsion ratemax (° · s
−1) 29 ± 3 47 ± 15 0.044 44 ± 8 62 ± 17 0.103 0.002 0.193

CC ratemax,LV (% · s−1) 83 ± 4 119 ± 30 0.023 89 ± 11 129 ± 20 0.005 0.240 0.542

RR ratemin,LV (% s−1) −190 ± 81 −229 ± 90 0.132 −192 ± 41 −222 ± 53 0.348 0.956 0.881

LL ratemax (% · s−1) 51 ± 19 71 ± 17 0.104 47 ± 10 58 ± 10 0.143 0.670 0.171

torsion ratemin (° · s
−1) −24 ± 6 −43 ± 13 0.009 −28 ± 9 −28 ± 7 0.921 0.457 0.072

CCmin,LV minimal left ventricular circumferencial strain, RRmax,LV maximal left ventricular radial strain, LLmin,LV minimal left ventricular longitudinal strain, torsionmax

maximal left ventricular torsion, CC ratemin,LV systolic minimum circumferencial strain rate, RR ratemax,LV systolic maximal radial strain rate, LL ratemin systolic
minimal longitudinal strain rate, torsion ratemin systolic minimal torsion rate, CC ratemax,LV early diastolic maximal circumferencial strain rate, RR ratemin,LV early
diastolic minimal radial strain rate, LL ratemax early diastolic maximal longitudinal strain rate, torsion ratemax early diastolic maximal torsion rate
p is related to the rest-stress comparison within each group. prest and pstress relate to group comparisons at rest and stress, respectively
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than the elevated levels of collagen in the slightly smaller
compartment of interstitium (VV(int/lv) in stereological
analysis) in a voxel.

Blood supply and myocardial perfusion
In accordance with other investigations of vessel wall
thickening in DOCA pigs [12, 14], our study found
significantly enlarged aortic cross-sectional areas and in-
creased aortic vessel wall thickness in the DOCA group.
In addition to this aortic remodeling, the absolute
myocardial vessel volume compartment V(ves/lv) was
enlarged in DOCA pigs, which could be due to the
increase of vessel wall thickness, number of coronary
vessels, coronary vessel dilatation, or all together; micro-
vascular rarefaction as found in HFpEF patients at
higher levels of myocardial fibrosis [35] is, however, not
directly supported.
Although the exact cause for the altered myocardial

vessel volume compartment in DOCA pigs cannot be
specified on the basis of stereological data, structural
changes in the myocardial microvasculature are in line
with the impairment of the myocardial perfusion reserve

observed in DOCA pigs: Coronary sinus net forward
volume was higher in DOCA pigs at rest maintaining
normal global myocardial perfusion of the hypertrophic
myocardium. During stress, myocardial perfusion in
DOCA pigs increased mainly due to a rise in heart rate
(indicated by the insignificant stress-to-rest difference of
coronary sinus net forward volume), resulting in a
significantly reduced myocardial perfusion reserve in
DOCA pigs compared to controls. These findings at rest
and stress were also reported in patients with HFpEF
[36] and were attributed to microvascular dysfunction as
well as a reduced vasodilator reserve [36, 37].

Left ventricular and myocardial function
During β-adrenergic stress, an adequate increase in LV
ejection fraction and a decrease in ESV accounted for
normal contractility reserves in both groups. However,
EDV significantly decreased during stress in DOCA
pigs, inhibiting stroke volume and cardiac index from
properly increasing with the heart rate. A similar re-
sponse was reported in patients with HFpEF during dy-
namic exercise [38, 39].

Fig. 5 Dot plots of volume fractions of the interstitium VV(int/lv), of the blood vessels VV(ves/lv), and of collagen VV(coll/lv) with respect to the LV
myocardium, as well as volume fraction of collagen with respect to the interstitium VV(coll/int) in controls and DOCA pigs. Lines indicate mean
values, p values refer to t-test
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Echocardiographic studies in HFpEF patients docu-
ment reduced longitudinal and circumferential strain
[40] as well as failure to increase LV ejection fraction
and global longitudinal strain rate during stress [41]. In
our study, DOCA pigs with early-stage HFpEF did not
show failure to increase LV ejection fraction during
stress, but they demonstrated a significantly lower LL
ratemin compared to control animals; thus systolic func-
tion – though normal at rest – showed signs of impair-
ment during stress. These results are in accordance with
findings in hypertensive patients with LV hypertrophy,
where authors showed that systolic dysfunction may de-
velop in parallel to diastolic dysfunction [40, 42, 43].
Moreover and in line with findings in patients with
hypertensive LV hypertrophy [44], MAPSE was reduced
in the DOCA group at rest but significantly increased
during stress enabling adequate increase in LV ejection
fraction with heart rate.
E’ was significantly decreased in the DOCA group at

rest and during dobutamine stress, and accordingly E/E’
and (E/E’)/EDV ratios were higher in DOCA than in
control animals. It was previously shown in HFPEF pa-
tients that E/E’ correlates well with the LV end-diastolic
pressure [39]. The significant higher E/E’ in DOCA com-
pared to control pigs at rest and during stress indicates
slightly higher LV filling pressures in DOCA animals,
which is up to statistical significance in accordance
with the invasive results reported by Schwarzl et al.
[17]. Decreased E’ and increased (E/E’)/EDV might be
interpreted as marker for increased diastolic myocardial
stiffening in DOCA pigs [32], caused by both, increased
levels of collagen shown in the present study and re-
duced total-titin phosphorylation reported by Schwarzl
et al. [17]. Similar changes in E’ and (E/E’)/EDV were
observed also in HFpEF patients [32, 39, 45]. In DOCA
pigs, increased (E/E’)/EDV may further be related to
the prolonged IVRT at rest [46, 47] and/or subtle
stress-induced myocardial ischemia [48], as indicated
by the lower global myocardial perfusion reserve during
dobutamine in the hypertrophied LV myocardium in
DOCA pigs.
Due to increased D-wave peak velocities in the

DOCA group, the pulmonary venous S/D ratio was
significantly lower at rest in DOCA pigs than in control
pigs. As LV relaxation is the main determinant of
pulmonary venous flow [49, 50], observed pulmonary
venous flow patterns in DOCA pigs again indicate al-
tered LV relaxation. The observed failing of systolic and
diastolic pulmonary venous peak velocities to increase
during stress in the DOCA group could be due to a
mild LA pressure increase [17, 50], which could in turn
be related to the increased E/E’ in DOCA animals.
LV torsion is known to be dependent on LV shape,

and in LV concentric hypertrophy increased torsion is

due to an increased lever arm for epicardial fibers [51].
Accordingly, torsion and systolic torsion ratemax were
higher in DOCA than control pigs. Diastolic torsion
ratemin significantly increased during β-adrenergic
stimulation in the control group, indicating that intra-
ventricular pressure gradients appropriately increased
[52]. In DOCA animals, the difference in torsion ratemin

between stress and rest failed to properly increase; this
failure relates to reduced intraventricular pressure gradi-
ents and impairment of LV relaxation [53].

Left atrium
DOCA pigs showed significantly increased LA volumes
at rest; this could be interpreted as a marker of altered
diastolic function, LA pressure and early diastolic filling
[54]. During stress, maximal LA volumes significantly
decreased in the DOCA group (in parallel with EDV),
augmenting impairment of LATEF. Melenovsky et al.
[45] found that among various systolic, diastolic, and
vascular function abnormalities seen in patients with LV
hypertrophy and patients with HFpEF, LA dilatation and
reduced LATEF were the most useful for discriminating
between the two groups.

Limitations
Several limitations of the present study need to be ac-
knowledged. The study had a small sample size; there-
fore it was not possible to assess correlations between
studied parameters. Moreover, samples for stereological
analysis were collected in a sub-group of animals only
from the LV lateral wall and, for reasons of feasibility,
not by a random sampling scheme.
Cardiac, myocardial and vascular CMR parameters

were obtained for comparison from DOCA-treated and
non-DOCA treated landrace pigs in anesthesia. As there
were no obvious cardiovascular malformations and no
outliers in the studied parameters, it is quite likely that
all the non-DOCA treated pigs represent a normal col-
lective. Neither the effect of the subcutaneous implant-
ation procedure nor the overall effects of anesthesia
were controlled in the current study.
All CMR measurements were performed under

mechanical ventilation, which reduced limitations on
temporal resolution of cine acquisitions, in particular.
The fact that diastolic functional parameters like E’, E/A
or IVRT compare well with echocardiographic normal
values in pigs [55, 56] might be interpreted as sign for
an adequate choice of temporal resolution of cine se-
quences to unmask possible differences in diastolic
function of DOCA and control pigs. Breathing motion
was typically suppressed by averaging, except for the
MOLLI sequence. Automated motion correction, how-
ever, enabled appropriate reconstruction of T1 maps.
4D flow data were acquired with one velocity encoding
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optimized for LV intra-cavity blood flow, and all flow
results were determined a posteriori from this dataset.
The multiple acquisitions of smaller data sets with opti-
mized velocity encoding and optimized resolution
might have improved the accuracy of results but would
have further prolonged investigation time.
The comprehensive imaging protocol allowed the inves-

tigation of only one stress level. In accordance with results
found in HFpEF patients [57], chronotropic responsive-
ness to low-dose dobutamine was slightly reduced in
DOCA pigs compared to controls, necessitating increased
dobutamine infusion rates for DOCA pigs when targeting
a heart rate increase of approximately 25 % in all subjects.
While equalizing chronotropic responses during stress
in DOCA and control pigs, dobutamine dosage and its
inotropic, lusitropic and vasodilative effects were not
controlled. Continuous and monotone responses of
myocardial functional parameters found at small in-
creases of infusion rates of dobutamine in the low-dose
regime in HFpEF and control patients [57] suggest, that
only small differences in observed stress-to-rest re-
serves might be expected compared to applying con-
stant dobutamine infusion rates in all pigs.
Finally, invasive intra-cardiac hemodynamic measure-

ments were not performed during CMR examinations, as
appropriate MR-compatible equipment was not available.

Conclusions
The present study documents numerous alterations in
CMR-derived indices of cardiac and myocardial function
at rest and during stress in pigs with DOCA-salt induced
early-stage HFpEF. LA enlargement, metrics of myocardial
tissue velocity, pulmonary venous and transmitral blood
flow velocities presented as potential CMR markers of
early-stage HFpEF at rest, highlighting the important role
of LA impairment in the development of HFpEF. Inad-
equate increases in myocardial perfusion reserve and car-
diac index during dobutamine stress may prove to be
useful new CMR metrics for the diagnosis of HFpEF, and
could probably account for exercise intolerance in early
stages of disease. Myocardial T1 mapping, however, could
not detect elevated levels of myocardial collagen found by
stereology in DOCA pigs.
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