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Recipe for IBD: can we use food to control inflammatory
bowel disease?
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Abstract The mucosal immune system and the microbiota in
the intestinal tract have recently been shown to play a key role
in the pathogenesis of inflammatory bowel disease (IBD).
Both of these can be influenced by food. Thus, we propose
dietary intervention as a therapeutic option for IBD. In this
review, we discuss the interaction of the intestinal mucosal
immune system and the intestinal microbiota in the context
of IBD. In addition, we discuss the impact of food components
on immune responses in IBD. Finally, we address the current
evidence of how this interaction (i.e., immune system–micro-
biota) can be modulated by food components, pre/probiotics,
and fecal microbiota transplantation (FMT) and how these
approaches can support intestinal homeostasis. By gathering
the vast amount of literature available on the impact of food on
IBD, we aim to distinguish between scientifically sound data
and theories, which have not been included in this review.

The role of the immune system and the intestinal
microbiota in IBD

IBD is a group of chronic disorders characterized by relapsing
inflammation of the gastrointestinal (GI) tract. The most com-
mon entities are Crohn’s Disease (CD) and Ulcerative Colitis
(UC). While CD is characterized by a segmental transmural
inflammation and granulomatous lesions of the whole GI
tract, inflammation in UC is mostly restricted to the colon
and the rectum. Both incidence and prevalence of IBD are
currently increasing worldwide [1].

Although the etiology of IBD has not yet been fully eluci-
dated, more than a hundred genetic risk loci have been iden-
tified so far. These genetic studies point toward an important
role of the immune system and its interaction with the micro-
biota in the development of IBD. The majority of these loci
are indeed linked to loss of barrier function (e.g., GNA12), to
host interaction with bacteria (e.g., NOD2), or to immune
pathways (e.g., IL-23) implicated in the control of cytokines,
such as interleukin (IL)-17 and IL-22 [2]. Notably, these cy-
tokines are profoundly involved in the regulation of the intes-
tinal mucosal barrier homeostasis and are triggered by signals
from the intestinal microbiota [3–5]. This reinforces the idea
that a deregulated immune response to intestinal microbiota is
involved in IBD pathogenesis [6].

In this section, we will refresh the knowledge on the intes-
tinal microbiota, how it interacts with the immune system, and
furthermore the role of the key cytokines (IL-23, IL-17, IL-22,
IL-10), which result from this interaction in the context of
IBD.

Intestinal microbiota

The human body coexists with around 1013 bacterial organ-
isms, which colonize different sides of the body, such as the
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intestine and the skin [7]. In the intestine, we refer to these
bacteria as the intestinal microbiota. The dominant phyla are
the Firmicutes (64%) that mostly comprise bacteria of the
Clostridia class, followed by Bacteroidetes, which account
for approximately 23% of the intestinal flora, Proteobacteria,
and Actinobacteria [8, 9]. The physiological metabolic activ-
ity of the microbiota is beneficial for the host. The intestinal
microbiota promotes, for example, the fermentation of indi-
gestible carbohydrates to, e.g., short-chain fatty acids (SCFA)
and absorption of complex lipids or vitamin synthesis
[10–12].

An altered microbiota has been associated with IBD, and a
variety of extra-intestinal diseases, such as obesity, type 1 and
type 2 diabetes, asthma, and liver disease highlighting the
systemic impact of the intestinal flora [13, 14]. Sequencing
analysis of intestinal biopsies or fecal samples of IBD patients
showed a different composition of mucosa-associated and fe-
cal microbiota compared to healthy controls with a reduced
microbial biodiversity as a hallmark of this disease [15]. More
detailed analysis revealed that certain bacteria species protect
from IBD while others appear to be pathogenic.

Various studies demonstrated a marked reduction of
Firmicutes within the microbiota of patients with IBD
[16–19]. Within the Firmicutes-phylum, in particular, the spe-
cies Faecalibacterium prausnitzii was shown to be protective
in chemically induced colitis in mice. This observation has
been further sustained by human twin studies [20, 21].

Bacterial species from the Proteobacteria phylum have
mainly been reported as holding pathogenic potential in the
development of IBD. For example, Escherichia coli (E. coli)
was shown to be more abundant in patients with active IBD
[22]. In particular, adhesive-invasive E. coli (AIEC) is
enriched in the inflamed ileal mucosa of IBD patients and
might trigger local inflammation [23, 24].

Moreover, sulfate-reducing bacteria (SRB), most of which
belong to the Deltaproteobacteria class (Proteobacteria phy-
lum), are increased in IBD and have been shown to promote a
chemically induced colitis in mice underlining a possible role
in IBD pathogenesis [25, 26]. However, also species from
other bacterial phyla, such as Bacteroidetes, have shown path-
ogenic properties. For example, in a mouse model that is sus-
ceptible for colitis, the fecal microbiota was characterized by
expansion of the Prevotella genus and the TM7 phylum [27].

Interaction between the immune system
and the microbiota

The immune system has several sensors, which detect the
microbiota and its changes and consequently can promote
intestinal inflammation or maintain homeostasis. For the
maintenance of a physiological interaction, a highly regulated
network of microbial sensor systems has evolved.

The mucosal immune system recognizes the conserved
microbe-associated molecular patterns (MAMP) via pattern
recognition receptors (PRR), such as Toll-like receptors
(TLR) and nucleotide oligomerization domain (NOD)-like re-
ceptors (NLR). These specialized receptors respond to a vari-
ety of triggers, including unmethylated double-stranded DNA,
single-stranded RNA, and bacterial products [28]. Ligand-
receptor interaction induces the recruitment of signaling adap-
tors, such as myeloid differentiation primary response gene 88
(MyD88) and TIR domain-containing adapter-inducing
interferon-β (TRIF). Toll-like receptors are expressed by var-
ious cells of the immune system including dendritic cells
(DCs), macrophages, Tcells and B cells, and also by epithelial
cells [29].

A variety of bacterial products have been reported as TLR
ligands, such as lipopolysaccharide (LPS) from gram-negative
bacteria, peptidoglycans from gram-positive bacteria, or fla-
gellin derived from flagellated bacterial species [30]. Sensing
of these bacterial components by individual TLRs triggers
pro-inflammatory cytokines, such as TNF-α and can induce
also type I interferons [31]. The NLR receptor family features
a wide range of functions. Besides bacterial products, NLRs
also sense cell stress signals, for example, via reactive oxygen
species (ROS) or via oxidized mitochondrial DNA [32, 33].
Downstream signals of NLR activation have also been shown
to induce production of anti-microbial peptides as well as
goblet cell mucus production thereby directly promoting mu-
cosal barrier defense [34, 35].

Bacterial products are also sensed by inflammasomes,
which are multiprotein complexes assembling with the adapt-
er protein apoptosis-associated speck-like protein (ASC) and
procaspase-1. In response to PAMPs, activated caspase-1
cleaves the pro-forms of the pro-inflammatory cytokines IL-
1β and IL-18 [28]. Impaired microbial sensing has been
shown to impact the microbial composition and to promote
inflammation: global deletion of inflammasome components,
such as ASC or NLRP6, a member of the NLR family, asso-
ciates with dysbiosis with microbial shifts, and a subsequent
colitis [27].

Resulting cytokine: IL-23 mediates the interaction
between the microbiota and the immune system

Intestinal immune responses and intestinal tissue homeostasis
are regulated by cytokines, which are produced when the
abovementioned sensory systems are engaged. Within these
cytokines IL-23 has a prominent role in the intestine, specifi-
cally in IBD as highlighted by genome-wide association stud-
ies (GWAS) [2, 36]. Interleukin -23 is an important down-
stream signal of TLR-activation, and IL-23 signaling has been
shown in mouse and human studies to promote IBD [37–39].
Important triggers of IL-23 production are bacterial products,
such as flagellin. Flagellin is produced by bacteria belonging

146 Semin Immunopathol (2018) 40:145–156



to the clostridia class of the Firmicutes phylum, but also by
members of the Proteobacteria phylum, such as Escherichia
coli. Interestingly, patients with CD show flagellin-specific
circulating antibodies in contrast to healthy controls
underlining the immunogenicity of flagellin in the context of
intestinal inflammation [40].One of the cellular sources of IL-
23 are dendritic cells located in the lamina propria of the
epithelial layer, which produce IL-23 upon sensing bacterial-
derived flagellin via TLR-5 [41]. Recently, also CXCR1+
CXCR2+ neutrophils located in the inflamed colonic mucosa
of patients with IBD have been identified as a cellular source
of IL-23 [42]. IL-23 promotes an immune response character-
ized by the induction of other two key cytokines IL-17 and IL-
22. These cytokines are secreted by both innate and adaptive
immune cells, and they will be further discussed in the follow-
ing paragraphs.

Resulting cytokine: IL-17 and its protective
and pathogenic properties

In particular, the role of IL-17 in IBD became the subject of
controversial debate. Among the IL-17 family members, the
biological role of IL-17A and IL-17F are best characterized.
On the one hand, in line with the GWAS, IL-23-dependent
secretion of IL-17 was shown to promote T cell-mediated
colitis [43, 44]. Recently, also IL-17A derived from group 3
innate lymphoid cells (ILC) in response to IL-23 has been
shown to mediate intestinal inflammation in an innate colitis
model [45]. Likewise, IL-17F has been reported to play a
pathogenic role in colitis development with either redundant
or different functions compared to IL-17A [43, 46]. On the
other hand, there are studies reporting a protective effect of IL-
17A in various colitis models, such as dextran sulfate sodium
(DSS)-induced or T cell-mediated colitis models [47, 48].
Insights in mechanisms underlying the protective capacity of
IL-17A have recently been delineated: during DSS-colitis IL-
17A-dependent regulation of tight junctions can limit exces-
sive intestinal permeability and therefore promote barrier in-
tegrity. Of note, in this model, IL-17Awas produced by γδ T
cells in an IL-23-independent manner [49]. Beside ILC, also
TH17 cells can produce IL-17. These cells are a subtype of
effector T helper cells, which express high levels of IL-17A
and IL-17F and which are highly enriched in the inflamed
mucosal tissue of IBD patients [50, 51]. Interestingly, some
commensal bacteria, such as segmented filamentous bacteria
(SFB), can induce TH17 cells [52].

In conclusion, these findings suggest that IL-17A can have
dual functions, which might depend on the cellular source, on
the environment, such as the microbiota, and on the type of
intestinal pathology. Of note, IL-17A blockade using an anti-
body was not effective in IBD in humans [53]. However, by
understanding the context-dependent effect of IL-17A, one

may be able to identify a subset of IBD patients, which might
benefit from this therapy.

Resulting cytokine: IL-22 and its dual role at mucosal
surfaces

IL-22 acts also downstream of IL-23 and plays a central role in
promoting barrier homeostasis by regulating genes encoding
molecules associated with tissue repair or antimicrobial prop-
erties [54]. Both adaptive immune cells and cells of the innate
immune system can produce IL-22, and early studies demon-
strated that adaptive and innate IL-22 protects from IBD [55].
In particular, IL-22 produced by innate lymphoid cells is es-
sential for intestinal barrier control in a murine model for
enteropathogenic E. coli infection [56]. Innate -derived IL-
22 is also crucial in controlling SFB [57].

However, as shown for the IL-17 family, IL-22 can also
mediate pathogenic activity in intestinal inflammation. For
example, T cell-derived IL-22 promotes colitis upon transfer
of memory cells into Rag1-deficient recipients [58].
Furthermore, IL-22-mediated antimicrobial response sup-
presses the commensal flora and indirectly favors the coloni-
zation of enteropathogenic bacteria, such as Salmonella
enterica [59].

In conclusion, IL-22 has pathogenic and protective proper-
ties. Therefore, a tight control is essential. This control is
exerted on at least two levels. First, as mentioned above, the
production of IL-22 is regulated by IL-23. Second, there is an
endogenous inhibitor of IL-22, namely IL-22 binding protein
(IL-22BP). IL-22BP binds and blocks IL-22 activity. IL-22BP
can be produced by DCs, granulocytes, and T cells [60–62].
Interestingly, T cell-derived IL-22BP was shown to be upreg-
ulated in IBD and to promote IBD via blockade of the bene-
ficial effects of IL-22 [62].

Resulting cytokines: IL-10 and immune tolerance

Intestinal homeostasis is the result of a fine-tuned balance of
factors promoting immune responses and signals mediating
immune tolerance. A key player in limiting immune responses
is the anti-inflammatory cytokine IL-10 [63]. Polymorphisms
leading to a loss of function of the IL-10 receptor or IL-10
itself are associated with early-onset IBD reinforcing the the-
ory of a pathogenic loss of immune tolerance to intestinal
microbes [64, 65]. Microbial products can drive IL-10 expres-
sion by macrophages and DCs. By various mechanisms, such
as limiting antigen presentation and the expression of
costimulatory molecules or by down regulation of pro-
inflammatory cytokines, IL-10 mediates immune tolerance
[66, 67]. For example, germ-free mice colonized with the
human commensal species Bacteroides fragilis show induc-
tion of IL-10-producing regulatory T (Treg) cells via lipopoly-
saccharide A (LPA) [68]. In line with these results,
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administration of LPA itself has been shown to be protective
in different experimental models of colitis [68, 69]. Various
clostridia species have also been reported to induce IL-10-
producing Treg cells, and oral inoculation of these bacterial
strains mediates amelioration of chemically induced colitis
underlining the protective role of IL-10 in these models [70,
71]. Also, signaling of the NLR family member NOD2 in-
duces IL-10 expression, and NOD2 mutations are associated
with Crohn’s disease [72, 73].

Overall, IL-10 is a crucial player in controlling inflammatory
responses in the intestine. In particular, understanding the
microbiota-derived signals promoting Treg cell responses will
help to optimize flora-based therapeutic approaches for IBD.

Impact of food components on the intestinal
microbiota and on the local immune response in IBD

Epidemiological studies support the role of environmental factors
in pathogenesis of IBD. In particular, the association between
dietary intake and incidence of IBD points to food components
as a potential pathogenic agent. Indeed, certain food components,
such as polyunsaturated fatty acids (PUFA), omega-6 fatty acids,
andmeat seem to predispose for IBD,whereas fibers and fruits or
vegetables were associated with a decreased risk of CD or CU,
respectively [74].

While there is little evidence of food components having a
direct impact on IBD, they do impact in an indirect fashion
(Fig. 1). Food components essentially influence the intestinal
homeostasis by modulation of the microbiota and subsequent
activation of the immune system. Indeed, a controlled-feeding
study of ten donors showed that the microbiota responds by

compositional change within 24 h of initiating a low fat/high
fiber or high fat/low fiber diet [75]. Wu et al. showed that differ-
ent diets are associated with specific bacterial clusters of the
microbiota. Diets based on protein and animal fat compared to
carbohydrates were associated with two enterotypes according to
the levels of Bacteroides and Prevotella, both of which are gen-
era, which are involved in colitis development [75]. These ob-
servations are also supported by animal studies showing that a
high fat diet was associated with an increase in Firmicutes and a
reduction of species from the Bacteroides phylum [76]. Of note,
high-fat diets were also shown to promote chemically induced
colitis in mice and were associated with expression of inflamma-
tory cytokines and a decreased frequency of regulatory T cells
[77]. On the other hand, high-fat diet was also reported to de-
crease intestinal TH17 cells [78]. Collectively, these data indicate
that basic dietary components, such as fat and carbohydrates, can
specifically modulate the microbial composition of the intestine.

Further, important modulators of the microbiota are dietary
fibers. A diet low in fibers (considered the Western diet), results
in a loss of the microbial diversity as observed in IBD patients
[79]. Fermentable fiber is metabolized by the intestinal microbi-
ota, mainly by clostridia species, to SCFA, such as acetate and
butyrate. SCFA are strong modulators of the intestinal immune
system, and their effects are coordinated by specific metabolic
programs of immune cells [80].

The intestinal microbiota is also involved in the synthesis and
the metabolism of various vitamins, such as B-group vitamins
and vitamin K. On the other hand, vitamins have been shown to
modulate the microbiota, and to act directly on the immune sys-
tem; vitamin A and its down-stream metabolite retinoic acid
(RA) are involved in multiple immune processes, such as Treg
homeostasis and IgA antibody production [81, 82].
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Fig. 1 Schematic overview of interactions between diet, microbiota and immune system in the intestine
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Deciphering the role of food components in modulating the
intestinal immune system might help to use this potential to
expand treatment options for IBD. In this section, we summa-
rize current evidence of how certain food components (carbo-
hydrates, dietary fiber, fat, and vitamins) modulate the intes-
tinal immune system.

Carbohydrates, dietary fiber, and fat

Several studies showed a positive, but still not consistent, asso-
ciation between high carbohydrate intake and an increased risk of
IBD [74]. Based on sequencing analysis, carbohydrate consump-
tion significantly correlates with abundance of the Firmicutes
phylum and is associated with the Prevotella-enterotype [75].
Currently, there is a lack of studies investigating the specific
effect of carbohydrates or withdrawal of them from diet in
IBD. Thus, the exact role of carbohydrates in IBD is currently
not clear.

However, there are several studies pointing toward a role of
fat intake in IBD, although this role is still controversial. A pos-
itive association has been reported between high intake of satu-
rated fats, mono- and polyunsaturated fatty acids (PUFA), and an
increased risk of CD, whereas high total fats correlated with an
increased CU risk [74]. Likewise, high-fat diets promote chem-
ically induced colitis in mice and are associated with a decrease
in the frequency of regulatory T cells [77]. Furthermore, milk-
derived saturated fat can increase the availability of organic sulfur
by pathological conjugation of hepatic bile acids, thereby pro-
moting sulfate-reducing bacteria and an associated colitis in a
mouse model [83].

In contrast to the pathogenic properties, beneficial effects of
fat have also been reported. In particular, omega-3 (3-n) PUFA
might play a protective role in IBD [84]. Indeed, during chronic
colitis, transgenic mice synthesizing (n-3) PUFA de novo show
reduced polarization of TH17 cells. A possible mechanism, by
which PUFA control TH17 cell pathogenicity is the modulation
of cholesterol-derived ligands for RORγt, the major transcription
factor of TH17 cells and group 3 ILC [85].

Finally, dietary fiber has been linked to IBD. In a meta-
analysis, high intake of dietary fiber was associated with a
decreased risk of IBD [74]. As mentioned above, the metab-
olism of fiber requires the intestinal microbiota. Fermentable
fiber is metabolized mainly by clostridia species, to SCFA,
such as acetate and butyrate, which seem to exert the protec-
tive properties in IBD. Interestingly, fecal SCFA levels were
shown to be decreased in IBD patients [86]. Furthermore, a
protective role of SCFA is supported by animal studies.
Indeed, orally administered SCFA protected mice from T
cell-mediated colitis or intestinal lesions induced by cytostatic
agents [87, 88]. Several potential mechanisms explain these
protective properties. First, SCFA show direct anti-
inflammatory activity. SCFA can, for example, suppress
NF-κB and trigger expression of the Vitamin D receptor

(VDR, see below) [89, 90]. Furthermore, SCFA were shown
to modulate oxidative stress and to promote barrier function
by enhancing tight junction assembly [91]. Of note, the ben-
eficial effects of fiber on intestinal inflammation also involve
activation of the NLRP3 inflammasome by hyperpolarization
of the epithelial membrane [92].

Second, SCFA have indirect protective properties, which are
mediated via regulatory CD4+ T cells. Indeed, butyrate and pro-
pionate were shown to promote extra-thymic Treg generation
[93]. Furthermore, interaction of SCFA and G-protein-coupled
receptors (GPRs), such as GPR43, has been shown to mediate
enhancement of frequency and function of Tregs [88]. Besides
this interactionwithGPR, also the distinct metabolic programs of
immune cells explain the effect of SCFA on regulatory CD4+ T
cell generation. Compared to effector Tcells, such as TH17 cells,
which are reliant on glucose metabolism, the generation of reg-
ulatory CD4+ Tcells has been shown to be selectively dependent
on lipid oxygenation [80]. The increased expression of genes
regulating fatty acid oxidation enables Tregs to effectively use
SCFA as an energy source [94]. Of note, the protective effect of
colonization by Clostridia from clusters IVand XIVa with induc-
tion of regulatory T cells might also be mediated by SCFA but
underlying mechanisms still remain to be revealed [95].

In conclusion, several studies underline the central role of
metabolites in controlling the balance of inflammatory and reg-
ulatory immune responses based on immune cell-specific meta-
bolic programs.

Vitamins D and A

Vitamin deficiency is a common feature of IBD. Malnutrition
due to decreased food intake, increased requirements,malabsorp-
tion, and maldigestion as possible causes are being discussed. A
recent retrospective study in IBD patients showed high frequen-
cies of Vitamins D and A deficiency [96]. There is now growing
evidence for immunological action of these vitamins, for both
adaptive and innate immunity.

Indeed, several studies demonstrated that vitamin D en-
hances the development of TH2 cells, a T helper cell subset
characterized by the production of the anti-inflammatory cy-
tokines IL-4, IL-5, and IL-13. Furthermore, the suppression of
TH17 cells and the induction of IL-10-producing Treg cells in
response to vitamin D have been reported [97, 98].
Interestingly, TLR triggering has been shown to promote
Vitamin D receptor expression and downstream signals in-
cluding the production of anti-microbial peptides [99].

Furthermore, Vitamin D might influence IBD via interac-
tions with the microbiota. Indeed, absence of the Vitamin D
receptor can directly impact the intestinal microbiota with an
increase in Bacteroides, which was associated with an in-
creased susceptibility toward DSS-induced colitis [90].

In line with the mouse studies, there are also human data
supporting the role of Vitamin D in IBD. First, VDR gene
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polymorphisms are linked to increased IBD susceptibility
[90]. Second, in a prospective study, low Vitamin D levels
were associated with increased risk of surgery and hospitali-
zation of IBD patients, and oral Vitamin D supplementation
was associated with a reduced risk of relapse in Chrohn’s
disease (CD) in a randomized double-blind placebo-con-
trolled study [100, 101]. In line with these results, a recent
cross-sectional study also showed a positive correlation of
Vitamin D deficiency and IBD disease activity [102].

Vitamin A is a group of nutritional organic compounds.
The exact role of Vitamin A in IBD is currently unknown.
However, there are some data linking vitamin A-derived me-
tabolites to the immune response in the intestine. One example
is retinol, which is one principal compound of the vitamin A
group that is metabolized to retinoic acid (RA) by the sequen-
tial action of retinol dehydrogenase (RDH) and retinaldehyde
dehydrogenase (RALDH) enzymes [103]. Dendritic cells are
the major source of RA in the intestine that is produced in
response to inflammatory signals. Local RA induces the con-
version of naïve CD4+ T cells into Treg cells and inhibits the
differentiation of TH17 cells thereby promoting immune tol-
erance [82, 104]. Furthermore, in a recent study, RA has been
shown to induce IL-22 secretion by γδ T cells and innate
lymphoid cells with protective effects in murine colitis
models. By directly targeting the IL-22 promotor, RA en-
hanced production of antimicrobial peptides [105]. Thus,
RA might impact IBD via IL-17 and IL-22-mediated effects.

Therapeutic opportunities: pro/prebiotics, diet
intervention, and fecal microbiota therapy

To maintain homeostasis, a fine-tuned balance between im-
mune tolerance and immune activation toward the intestinal
microbiota is critical. Regarding IBD patients, observations
have shown that this critical balance is deregulated favoring
chronic immune activation. There are several possible ways to
reset this balance with the aim of treating IBD patients. The
first is to target the microbiota directly by microbiota trans-
plantation; the second is to target the microbiota indirectly by
diet (Fig. 1). In addition, there are also several therapies,
which aim to modify the microbiota composition, such as
the use of probiotic bacteria, and different diets have already
been tested in IBD.

This section will provide a summary of the most recent
evidence relating to the role of probiotics, prebiotics, diets,
and fecal microbiota transplantation in the treatment of IBD.

Probiotics

An option to influence the composition of intestinal microbi-
ota is the use of probiotics. Specific microorganisms are
deemed probiotic based on their scientifically proven effect

on the promotion of health or prevention and treatment of a
specific disease. Probiotics, such as Escherichia coli Nissle
1917 and VSL#3 seem to be efficient in UC as outlined below.
However, there is not sufficient evidence to support the use of
probiotics in daily clinical practice in Crohn’s disease [106].

Patients with CU in remission treated with Escherichia coli
Nissle 1917 compared to immunosuppressive therapy with 5-
aminosalicylic acid showed a comparable clinical relapse rate
[107]. Likewise, this probiotic shows the same efficacy in
maintaining remission compared to 5-aminosalicylic acid
[108]. Furthermore, VSL#3, which contains four strains of
Lactobacillus was shown to induce a significantly higher rate
of remission compared to placebo in mild-to-moderately ac-
tive UC [109].

Probiotics show signs of exerting their effects via at least
twomechanisms. First, probiotics are able to enhance mucosal
barrier function. They were shown to promote secretion of
IgA and mucins [110] and tight junction function [111, 112].
Second, probiotics interact with the local immune system. An
example is that some probiotic strains can enhance regulatory
T cell responses, downregulate the expression of pro-
inflammatory cytokines, such as TNF-α and IFN-γ [113,
114], and induce the production of a variety of anti-
inflammatory cytokines, e.g., IL-10 and TGF-β [115].

Finally, probiotics impact the IL-22-mediated antimicrobial
response. It has been shown that tryptophan is metabolized by
a subset of commensal Lactobacilli, a bacterial genus
contained in many probiotic products, to indole-3-aldehyde
(IAld). IAld induced AhR-dependent IL-22 production by
ILC and mediated both antifungal activity and amelioration
of chemically induced colitis [116].

Prebiotics

Prebiotics are indigestible substances, mostly carbohydrates
that can be metabolized by beneficial bacterial strains hence
enhancing their activity. Prebiotics in clinical use include
fructo-ol igosaccharides (FOSs) , inul in, galac to-
oligosaccharides (GOSs), and soybean oligosaccharides that
stimulate mainly bifidobacteria species [117]. There is not
much clinical evidence of therapeutic efficacy of prebiotics
in IBD.

Patients with active CD were randomized and treated with
fructo-oligosaccharides (FOSs) versus placebo with no signif-
icant difference in clinical response [118]. In a more recent
study, De Preter et al. observed a significantly reduced clinical
disease activity after 4 weeks of treatment with a prebiotic
combination of oligofructose and inulin [119]. In this trial,
an increase of fecal butyrate was shown after prebiotic treat-
ment. This SCFA has been shown to induce T cell apoptosis
and suppression of IFN-γ-mediated inflammation in colonic
epithelial cells [120]. Therefore, the observed impact of pre-
biotics is probably linked to promotion of probiotic effects
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including bifidobacteria-mediated increase in IL-10 expres-
sion [121].

Diets: elemental and polymeric

Exclusive enteral nutrition (EEN) is a dietary therapy com-
prised of a period of 6–8 weeks of exclusive liquid feeding
with either elemental or polymeric formulae. Elemental diets
contain all essential nutrients and protein in the form of free
amino acids whereas polymeric formulae comprise non-
hydrolyzed proteins and long-chain triglycerides. These for-
mulae were developed to improve nutrient absorption and to
limit mucosal antigen exposure.

Interestingly, several studies demonstrated effectiveness of
EEN in the treatment of CD equivalent to the use of cortico-
steroids mainly in pediatric patients [122, 123]. In contrast,
results of trial testing the efficacy in treatment of adults, were
apparently controversial [124, 125].

One possible reason for the discrepancy between the effi-
cacy of ENT in pediatric and adult patients might be the higher
chance of non-compliance by adult patients, which in turn
might be related to an increased intolerance of the formula
observed in adult patients.

The exact mechanism of EEN in IBD is unknown, but
several possibilities are being explored. First, the effects might
be linked to the intestinal microbiota. During the dietary treat-
ment, profound modification of all predominant bacterial
groups were observed with a decrease in microbiota diversity
[126]. Interestingly, a reduction of the protective commensal
Faecalibacterium prausnitzii was reported, which might help
to explain a therapy failure in some cases [127]. Second, re-
sults from in vitro experiments showed that the components of
EEN reduced inflammatory responses, which is supported by
a human study showing reduced mucosal expression of IL-1β
and IFN-γ after EEN treatment [128–130]. Finally, also pro-
motion of barrier function has been reported: EEN based on a
polymeric formula prevented TNF-α-mediated tight junction
dysfunction in vitro [131].

Overall, conflicting results regarding the clinical effective-
ness and the loss of protective microbiota species point out
that a more defined formula or more stringent diet is needed to
effectively use this therapy for adult IBD patients. For pediat-
ric IBD patients, EEN is an established therapy [132]. Even
though it has proven effective, understanding the molecular
and cellular mechanisms by which EEN promotes its benefi-
cial effects will help to improve the outcome of pediatric IBD
by creating optimized formulae.

Fecal microbiota therapy

The idea of modulating dysbiosis to treat IBD gave rise to the
proposal of direct microbiota transplantation with a donor mi-
crobiota as a potential therapeutic option (Fig. 1). Fecal

microbiota therapy has been successfully used in treating re-
fractory Clostridium difficile infection, a colitis triggered by
antibiotic-induced dysbiosis [133]. Low frequencies of ad-
verse events have been reported [134]. Fecal microbiota trans-
fer has also shown therapeutic efficacy in inflammatory dis-
eases that are associated with an altered microbiota, such as
diabetes and obesity [135].

Data evaluating FMT in IBD still present some limitations.
Initial evidence of the role of microbiota transplant in IBDwas
shown in case reports as having lead to a relief of symptoms in
disease refractory to sulfasalazine [136, 137]. In a following
retrospective case series, FMT has been shown to induce re-
mission after 4 months of treatment [138]. Further cases have
been reported. The proven efficacy of FMT in adults with IBD
and a recent phase 1 trial showed a clinical response rate of
67% and clinical remission of 33% of children and young
adults after FMT, respectively [139–141]. Amore recent study
reported the efficacy in CU patients based on intensive dosing
of FMT derived from multiple donors [142]. The intense ap-
plication of 40 FMT during 8 weeks and pooling stool of up to
seven donors was the factor which distinguished this trial from
recent studies that failed to induce remission, although fecal
microbiota changes could be observed [143, 144].

The regimen used by Paramsothy et al. [142] showed a
higher microbiota diversity after the fecal transplant, which
was also observed 8 weeks after the treatment. However, the
invasive and intense form of FMT application is challenging
for the patient, and it is still not clear how long patients need to
be treated in order to maintain remission.

The role of FMT in the treatment of IBD remains to be fully
defined, and more controlled clinical trials are necessary to
critically assess its therapeutic effect. It is currently not clear
whether antibiotic pretreatment is necessary and which meth-
od of administration is the most effective. In the
abovementioned study of Pramsothy et al., [142] specific taxa
were associated with a positive outcome and others with a
negative outcome. These results might be helpful to improve
the design of the FMT. Standardized microbiota samples that
can be ingested in the form of a pill might display a future
option.

Future perspectives

Taken together, the abovementioned studies point to the fact
that the local immune response to intestinal microbiota could
be one key mechanism involved in IBD pathogenesis.
Numerous risk loci and independent observations described
above point to a model where deregulation of the interaction
between the immune system and the microbiota favors chron-
ic intestinal inflammation. However, further insights are need-
ed to better decipher the molecular and cellular mechanisms
and to develop future therapeutic approaches without the
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current limitations, such as lack of long-term remission. We
hope to have highlighted the need for a unified, scientifically
sound basis for future development in this growing field. The
identification of food components with an anti-inflammatory
function can help to further control IBD and serve as a proof
of concept for an approach to induce and maintain remission
that could potentially be extended to other immune-mediated
diseases. Keeping in mind that each patient’s immune system
and microbiota may respond to food components differently,
individual dietary approaches will be essential.
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