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An air-liquid interphase approach 
for modeling the early embryo-
maternal contact zone
S. Chen1, S. E. Palma-Vera1,2, M. Langhammer1, S. P. Galuska1, B. C. Braun3, E. Krause4, 
A. Lucas-Hahn5 & J. Schoen1

We developed an air-liquid interphase culture procedure for mammalian oviduct epithelial cells leading 
to the formation of functional epithelial tissues, which generate oviduct fluid surrogates. These  
in vitro oviduct epithelia can be co-cultured with living zygotes and enable embryonic development up 
to the blastocyst stage without addition of embryo culture medium. The described strategy is broadly 
applicable to analyze early embryo-maternal interactions under standardized in vitro conditions.

Embryo-maternal interactions are necessary to initiate and maintain pregnancy and are supposed to be causal 
for early embryonic mortality (the most common reproductive failure in mammals) upon their disturbance1. 
Investigating the subtle local interactions between the mammalian pre-implantation embryo and the mater-
nal organism is technically challenging if not impossible in vivo. The first maternal “contact zone” for the early 
embryo is the oviduct epithelium, a simple, columnar shaped and ciliated epithelium, which is structurally and 
functionally defined by polarized distribution of organelles and proteins. Function, growth and survival of epi-
thelial cells correlate with their degree of polarity2,3. However, when grown under standard culture conditions 
(adherent submerged or suspension culture) oviduct epithelial cells (OEC) do not maintain an epithelial pheno-
type for prolonged culture periods and exhibit marked changes in their morphological and functional integrity4,5. 
To solve this problem we applied an air-liquid interphase (ALI) system to culture porcine OEC resulting in the 
formation of highly differentiated in vitro models6,7. While applications for human and later for bovine ALI-OEC 
have been established by other groups8,9, so far, embryo development could not be demonstrated in co-culture on 
these model systems.

For this purpose, we developed the first ALI culture strategy appropriate for long-term co-culture of ALI-OEC 
with developing embryos, requiring no embryo culture medium. We validated applicability of the procedure for 
murine, porcine and bovine OEC (MOEC, BOEC and POEC, respectively), since these species are frequently 
used model systems in reproductive biology.

The ALI culture procedure consisted of a proliferation phase and a differentiation phase (Fig. 1). Murine 
oviducts were enzymatically digested following a protocol reported for murine tracheal cells10. POEC and BOEC 
were isolated as described previously6,11. Isolated OEC were seeded on culture inserts and first grown under sub-
merged conditions in a proliferation-inducing medium for 7 d. After the proliferation phase (confluency reached) 
the medium was suctioned off the apical compartment. Cells were maintained under serum free (MOEC and 
POEC) or serum-reduced (3% FBS, BOEC) conditions with provision of growth medium from the basolateral 
compartment only and allowed to differentiate morphologically and functionally for another two (POEC and 
MOEC) or three weeks (BOEC). During the differentiation period ALI-OEC developed from flat cell layers to 
columnar shaped epithelia consisting of secretory and ciliated cells (Fig. 2) and maintained this differentiation 
status up to week eight, when the experiment was terminated (Fig. 3A–C). The epithelial layer build up a barrier 
function (as measured by trans-epithelial electrical resistance, TEER, Fig. 3D), which reached constant values 
after three (ALI-MOEC and -POEC) or four (ALI-BOEC) weeks of culture and stayed stable up to week eight.

After the differentiation period ALI-MOEC, -BOEC and -POEC formed an oviduct fluid surrogate (OFS) in 
the apical insert compartment (20–30 μ l in ALI-MOEC, 10–20 μ l in ALI-POEC and -BOEC in a 24 well insert 
format).
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To prove reproducibility of OFS formation, we tested its osmolality, its protein pattern in SDS-PAGE, and 
secretion of the marker protein oviductin (OVGP1) in five biological replicates per species. The OFS of all three 
species exhibited an in vivo-like osmolality (ALI-MOEC: 341 ±  4.4 mOs/kg, ALI-POEC: 348 ±  8.3 mOs/kg, 
ALI-BOEC: 340 ±  3.5 mOs/kg) with low variability. SDS-PAGE showed a reproducible species specific protein 
pattern (Fig. 4A). Oviductin is a marker-mucin almost exclusively expressed in oviduct epithelium. It is involved 
in zona pellucida hardening as well as sperm-oocyte interaction. Under standard in vitro conditions its expression 
was rapidly down-regulated4,5,12. Under ALI conditions, however, it was abundant in OFS from all three species 
and secreted in different glycosylated (and therefore potentially functional) forms as shown by N-glycosidase F 
(PNGaseF; cleaves complete N-glycans) and sialidase (releases sialic acids) treatment (Fig. 4B,C).

To characterize the protein content of the OFS we performed proteome analysis by mass spectrometry. 
Murine, bovine and porcine OFS contained proteins previously reported to be highly abundant in oviductal fluid 
in vivo13 (table of most abundant OFS proteins: Suppl. Table 1; complete proteome data: Suppl. Table 2). Along 
with OVGP1 many other proteins, which are proven to influence fertilization and/or embryonic development 
(e.g. osteopontin, components of the plasminogen/plasmin system, heat shock proteins, lactoferrin) are present in 
the oviductal fluid surrogate (OFS) formed by the ALI-OEC systems. In total 1756, 2979 and 3094 proteins were 
identified in murine, porcine and bovine OFS, respectively. The only fully available, comprehensive proteome 
study of in vivo oviductal fluid was conducted in sheep and was very recently published13. Taking this data set 
as reference ~97% (murine: 96.9%; porcine: 96.3%; bovine: 96.8%) of the proteins detected in the OFS are also 
abundant in the sheep oviductal fluid in vivo.

Figure 1. Scheme of the two-step ALI-OEC establishment procedure. 

Figure 2. Oviduct epithelial cells of different mammalian species grown at the air-liquid interphase (ALI). 
Immunodetection of epithelial markers in murine, porcine and bovine oviduct tissue (from left to right; upper 
pictures) and respective ALI-OEC (lower pictures) after 21 d (ALI-MOEC and -POEC) or 28 d (ALI-BOEC) of 
culture. Red: nuclei; green: beta-catenin (cell-cell adhesions); blue: acetylated tubulin (cilia); bar =  10 μ m.
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To finally prove the functional integrity of the cell culture system, we tested the capability of the in vitro 
formed epithelial tissue to support embryo development in long-term co-culture. Zygotes were either produced 
in vitro (IVM/IVF; bovine) or in vivo (mouse and pig). After IVF or flushing from the in vivo oviducts, potential 
zygotes were briefly washed in PBS and placed in the OFS on top of the ALI-OEC in groups of 10–30 (Suppl. 
Video 1). Two experimental setups were conducted in each species. First, co-cultures were terminated on d 2 to 
determine cleavage rate. Second, we prolonged embryo co-culture to test whether the milieu of the OFS provided 
by the ALI-OEC supports further embryonic development (mouse: 4.5 d, pig 7 d and cattle 8 d). In all three spe-
cies cleavage as well as blastocyst formation could be observed without supplementation of any embryo culture 
medium (Table 1, Fig. 5).

In sum, we developed a culture procedure for the formation of an in vivo-like oviduct tissue substitute from 
primary oviduct epithelial cells. We demonstrated that the formed tissue is fully functional in terms of morpho-
logical differentiation (polarization, columnar shape, ciliary activity) and in terms of oviductal fluid surrogate 
formation supporting embryo development in vitro without additional embryo culture medium supply.

The blastocyst rates in co-culture could not yet match the outcome of optimized standard IVEP procedures. 
Therefore the model could be further improved by a) simulation of the hormonal changes taking place during 
the periconceptional period and b) development of a sequential culture system using oviductal as well as uterine 
epithelial cells. This might increase the efficiency of the system both quantitatively and qualitatively. Further 
experiments including in vivo embryo transfer then have to be conducted to assess the quality of ALI-produced 
blastocysts.

The presented culture strategy is broadly applicable to analyze early embryo-maternal interactions under 
standardized in vitro conditions. It can prospectively serve as a tool to advance IVEP procedures by analyzing 
specific components of the dynamic oviduct milieu regarding their impact on the early embryo. This might facili-
tate the development of new strategies (e.g. media supplements) for livestock as well as for human ARTs.

Methods
Media and reagents. DMEM/Ham’s F12, FBS, HEPES, penicillin/streptomycin and amphotericin B were 
purchased from Merck Millipore, while other reagents were obtained from Sigma unless otherwise indicated. 

Figure 3. Characterization of ALI-OEC in long-term culture. (A–C) Murine, porcine and bovine ALI-OEC 
(from top to bottom) after 56 d in culture. HE staining; magnification x400. Bar = 10 μm. (D) TEER of murine, 
porcine and bovine OEC during long-term culture at the ALI.
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Media used in this culture procedure are modifications of a protocol reported for mouse tracheal cells [10]. The 
basic medium consisted of DMEM/Ham’s F12, 15 mM HEPES, 100 U/ml penicillin, 100 μ g/ml streptomycin and 
0.25 μ g/ml amphotericin B. The proliferative medium (M1) for d 0–d 7 was basic medium supplemented with 5% 
FBS, 10 μ g/ml insulin, 5 μ g/ml transferrin, 0.1 μ g/ml cholera toxin, 25 ng/ml epidermal growth factor, 30 μ g/ml  
bovine pituitary extract. Differentiation medium (M2, from d 7 onwards) for ALI-MOEC and -POEC (M2a) was 
serum free: basic medium supplemented with 1 mg/ml BSA, 5 μ g/ml insulin, 5 μ g/ml transferrin, 0.025 μ g/ml 
cholera toxin, 5 ng/ml epidermal growth factor, 30 μ g/ml bovine pituitary extract. For ALI-BOEC the differentia-
tion medium (M2b) consisted of basic medium with 3% FBS and 2% Nuserum (Corning). All culture media were 
freshly added with 0.05 μ M retinoic acid directly before use.

Figure 4. Protein characterization in oviductal fluid surrogates (OFS). (A) Protein patterns in murine, 
porcine and bovine OFS (from top to bottom). Five biological replicates. Ma =  marker; 1–5 =  animal 1–5; 
C =  cell lysate (epithelial cells after isolation from oviduct tissue); Me =  growth medium. (B) Immunodetection 
of oviductin (OVGP1) in murine, porcine and bovine (from left to right) OFS after SDS-PAGE and Western 
Blot. 1–5 =  OFS from donor animal 1–5. (C) Immunodetection of oviductin (OVGP1) in murine, porcine and 
bovine OFS after glycosidase digestion, SDS-PAGE and Western Blot. 1 =  murine, 2 =  porcine, 3 =  bovine OFS, 
respectively; -S =  digested with sialidase; -P =  digested with PGNaseF.

Trial No. of zygotes*
Cleavage rate %  

(No. of ≥2cell embryos)**
Blastocyst rate%  
(No. blastocyst)**

MOEC

1 49U 67.35 (33) —

2 13U 92.31 (12) —

3 19U — 52.63 (10)

POEC

1 21U +  20II 90.24 (37) —

2 35U +  3II 84.21 (38) —

3 57U +  35II — 48.91 (45)

BOEC

1 109U 66.10 (72) —

2 121U 56.20 (68) —

3 98U — 7.14 (7)

Table 1.  Zygote development on murine, porcine and bovine ALI-OEC. *U =  uncleaved potential zygotes, 
II =  2-cell embryos. **Cleavage was assessed after 2 days, and blastocyst rate after 4.5 (mouse), 7 (pig) or 8 
(cattle) days of co-culture on ALI-OEC.
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Animals. The FBN mice strain Fzt:DU14 was included in this study. Porcine and bovine tissue samples were 
slaughterhouse by-products and collected in local abattoirs. All animal procedures were done in accordance to 
national and international guidelines and approved by the institutional Animal Protection Board at FBN.

Isolation and culture of MOEC. For the isolation of MOEC 6–8 weeks old female mice were killed in 
oestrus (detected by vaginal cytology). Both oviductal tubes were resected from the reproductive tract, washed 
in cold basic medium, combined and sliced into small pieces and incubated in basic medium with 0.15% Pronase 
at 4 °C overnight. The next day the sample was centrifuged at 250 ×  g for 8 min and the pellet was subsequently 
digested in 300 μ l of 0.5 mg/ml DNase I for 10 min. After passing through a 100 μ m cell strainer, the dissociated 
cells were centrifuged and re-suspended in M1 medium. The cell yield from each mouse was approximately 
1–3 ×  105 epithelial cells.

A schematic diagram for the insert-supported culture is shown in Fig. 1A. 24-well inserts with a pore size 
of 1.0 μ m (Merck Millipore) were coated with 100 μ l/insert human placental collagen (1 mg/ml) overnight and 
washed three times with PBS afterwards. 1–1.5 ×  105 cells isolated from single mice were seeded per insert. From 
d 0 to d 6 (proliferation phase), cells were held submerged in medium with 200 μ l of M1 medium in the apical 
compartment and 1 ml of M1 in the basal compartment. From d 7 onwards (differentiation phase) cells were 
switched to air-liquid interphase (ALI), with access to M2a medium only in the basal compartment. Cultures 
were maintained at 37 °C, 5% CO2, with medium refreshment twice per week. Apical fluid was removed from the 
upper compartment during each medium change.

Isolation and culture of POEC and BOEC. Isolation of oviductal cells from large farm animals as pig 
and cattle was performed as previously reported by our group6,11. Briefly, oviducts were collected from a local 
slaughterhouse and transported immediately on ice for laboratory processing. After washing in PBS, each ovi-
ductal tube was filled up with 1 mg/ml collagenase 1 A and incubated for 1 h at 37 °C. Big epithelial clusters were 
collected with a cell strainer and then further digested in accutase (Life technologies) for 10 min. Thereafter cells 
were centrifuged and re-suspended in M1 medium for seeding.

While the culture of POEC was performed as described for MOEC (see above), for BOEC the procedure had 
to be modified: 1. Cells were maintained on 0.4 μ m-pore-size 24 well inserts (no collagen coating); 2. Medium for 
the differentiation phase was M2b.

Histology and immunofluorescence. The preparation of tissue and inserts for histology has been 
described previously15. After embedding, 4 μ m paraffin sections were cut for haematoxylin/eosin (HE) and 
immunofluorescence staining (N =  5 from different donor animals per species). Antigen retrieval was carried 
out by cooking slides in 10 mM citrate buffer. The primary antibodies were rabbit anti-beta-Catenin (1:1000, Cell 
Signalling 9562) and mouse anti-acetylated tubulin (1:1000, Sigma T7451). Goat anti-mouse Alexa 488 (1:40, 
Invitrogen A11017) and goat anti-rabbit IgG Alexa 546 (1:200, Invitrogen A11071) were used as secondary anti-
bodies. Nuclei were counterstained with TO-PRO-3 (1:500, Invitrogen T3605). Images were captured by the 
confocal laser scanning microscope LSM 800 equipped with ZEN software (Carl Zeiss).

Transepithelial electrical resistance assessment. Before harvesting the ALI cultures, transepithelial 
electrical resistance (TEER) was measured by the EVOM2 Epithelial Voltohmmeter (WPI) following the manu-
facturer’s instructions (N =  5 from different donor animals per species).

Characterization of oviduct fluid surrogates (OFS). SDS PAGE, Western blot, immunodetection of ovi-
ductin (OVGP1) and oviductin glycosylation analysis. On d 21 (ALI-MOEC and -POEC) or d 28 (ALI-BOEC) 
of culture, apical fluid was suctioned off. 3–5d later OFS was collected for analysis. The collected fluid was centri-
fuged at 250 ×  g for 8 min to remove cell fragments and the supernatant was immediately kept at − 70 °C. 10–30 μl 
of OFS could be recovered from each 24-well insert. OFS from ALI-MOEC, -POEC and -BOEC (5 different 
donor animals per species) were run on SDS-PAGE gels (Commassie staining: 10 μ l OFS, 12% gel; Western Blot: 
5 μ l OFS, 7.5% gel). Oviductin was detected after Western Blot (1:1000, Santa Cruz sc-46430) and visualized 

Figure 5. Mammalian embryos produced by co-culture with ALI-OEC. (A) Hatching porcine blastocyst  
(d 7; Hoechst staining; magnification x100). (B) murine blastocyst (d 4.5; Hoechst staining; magnification 
x400). (C) Bovine blastocyst (d 8; Hoechst staining; magnification x400).
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by a POD-coupled secondary antibody (1:3000, Santa Cruz sc-2020) and chemiluminescence (ECLprime, GE 
Healthcare). To test for oviductin glycosylation OFS samples were incubated (37 °C, overnight) with sialidase 
(Neuraminidase from vibrio cholerae, 0.15 mU/μ l, Roche) or PNGaseF (70 U/μ l, New England BioLabs), respec-
tively, before SDS-PAGE, Western Blot and oviductin detection.

Protein identification by LC-MS/MS. The OFS recovered from ALI-MOEC, -POEC and -BOEC (N =  1 per spe-
cies) were run on a SDS-PAGE gel and cut into 13 equal-sized Coomassie-stained bands. In-gel protein digestion 
was performed as previously described16. Digested samples were re-dissolved in 0.1% TFA and 5% acetoni-
trile, and peptides were analyzed by a reversed-phase capillary liquid chromatography system (Ultimate 3000 
nanoLC system, Thermo Scientific) connected to an Orbitrap Fusion mass spectrometer (Thermo Scientific). 
LC separation was performed on an in-house packed 75 μ m inner diameter PicoTip column (25 cm) packed 
with ReproSil-Pur C18AQ particles, 3 μ m, 120 Å (Dr. Maisch). The flow rate was 200 nL/min using a gradient 
of 3− 30% B in 60 min. Mobile phase solvent A contained 0.1% formic acid in water and mobile-phase solvent 
B contained 0.1% formic acid in acetonitrile. For MS/MS measurements, FT survey scans were acquired with 
a resolution of 120.000. The data-dependent acquisition (DDA) mode and monoisotopic precursor ions with 
charge states 2 and 3 were selected. HCD MS/MS spectra were acquired in the linear ion trap using a quadrupole 
isolation window of 1.6 Da.

Protein identification was performed using Mascot Distiller (version 2.5.1.0). Processed data were searched 
against a SwissProt database (version 2014_12; 547,085 sequences). The mass tolerance of precursor and sequence 
ions was set to 10 ppm and 0.35 Da, respectively. A maximum of two missed cleavages was allowed. Methionine 
oxidation and the acrylamide modification of cysteine were used as variable modifications. Scaffold (version 2.01; 
Proteome Software Inc.) was used to validate MS/MS based peptide and protein identifications. Peptide identifi-
cations were accepted if their probability was established at >  70%, as specified by the Peptide Prophet algorithm. 
Protein identifications were accepted if their probability was established at >  90% and if they contained at least 
two identified tryptic peptides.

Osmolality of OFS. The osmolality of apical fluids collected from ALI-MOEC, -POEC and -BOEC, was meas-
ured using the cryoscopic osmometer (Gonotec) according to the manufacturer´s instructions. Measurement was 
performed with 15 μ l of apical fluid (N =  5 inserts, 3–5 different donor animals per species).

Embryo co-culture. ALI-OEC preparation before Co-culture. On culture day d 21 (ALI-MOEC and 
-POEC) or d 28 (ALI-BOEC) apical fluid was suctioned off the insert, 3d (ALI-MOEC) or 5d (ALI-POEC and 
-BOEC) later around 10–30 μ l fresh apical fluid was regenerated inside the insert. As co-culture was carried out at 
37 °C (murine zygotes) or 38.5 °C (porcine and bovine zygotes) in a humidified atmosphere of 5% O2 and 5% CO2, 
ALI-POEC and -BOEC were step-wise adapted to these conditions over 2–3 days before co-culture.

Zygote production. Mice. 20 virgin females of the mouse line Fzt:DU (10–12 weeks old) were randomly 
selected. Potential zygotes were collected from the oviducts of naturally mated female mice approx. 12 h post 
conception (vaginal plug).

Pig. For collection of in-vivo derived porcine embryos, in total 10 sows were slaughtered and potential zygotes 
and 2-cell embryos were recovered approximately 12 h after artificial insemination.

Cattle. Bovine ovaries were collected from a local slaughterhouse and transported in DPBS with 1% penicillin 
to the laboratory within 3 h after slaughter. Upon arrival, cumulus oocyte complexes (COCs) were recovered 
using DPBS supplemented with 0.2% BSA. The COCs were matured in Medium 199 supplemented with 5% 
estrous cow serum, 0.07 IE/ml FSH, 0.03 IE/ml HCG, 1 μ g/ml estradiol, 2 mM L-glutamine and 1% penicillin/
streptomycin at 38.5 °C (5% CO2) for 24 h. After maturation, 10 COCs were transferred to each 100 μ l droplet 
of fertilization medium. Motile sperm were recovered by swim-up separation of frozen-thawed semen. 3 ×  104 
sperm were added to each fertilization droplet (Tyrode’s albumin lactate pyruvate medium) and incubated with 
the matured COCs for 18 h.

Co-Culture. On d 24 (ALI-MOEC), d 26 (ALI-POEC) or d 33 (ALI-BOEC) of culture potential zygotes of all 
three species were transferred to the apical side of the respective OEC cultures in groups of 10–30.

As exact evaluation of cleavage is difficult on the inserts, three experimental trials were performed: in trial 1 
and 2 the experiment was terminated on d 2 of co-culture to determine the percentage of cleaved embryos. In trial 
3 embryos were further cultured until d 4.5 (mice), 7 (pig) or 8 (cattle) to evaluate if embryonic development was 
further supported by ALI-OEC. Blastocysts were fixed in buffered formol saline (4%) and stained with Hoechst 
33258.
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