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Self-organized pseudo-graphene on grain boundaries in topological band insulators
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Semimetals are characterized by nodal band structures that give rise to exotic electronic properties. The stability
of Dirac semimetals, such as graphene in two spatial dimensions, requires the presence of lattice symmetries, while
akin to the surface states of topological band insulators, Weyl semimetals in three spatial dimensions are protected
by band topology. Here we show that in the bulk of topological band insulators, self-organized topologically
protected semimetals can emerge along a grain boundary, a ubiquitous extended lattice defect in any crystalline
material. In addition to experimentally accessible electronic transport measurements, these states exhibit a
valley anomaly in two dimensions influencing edge spin transport, whereas in three dimensions they appear as
graphenelike states that may exhibit an odd-integer quantum Hall effect. The general mechanism underlying
these semimetals—the hybridization of spinon modes bound to the grain boundary—suggests that topological
semimetals can emerge in any topological material where lattice dislocations bind localized topological modes.
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I. INTRODUCTION

Graphene [1] and topological band insulators (TBIs) [2,3]
show exotic electronic transport properties that have motivated
the search for other materials exhibiting similar semimetallic
features. Semimetals are described by electronic band struc-
tures where the bands touch at isolated points or lines in the
Brillouin zone (BZ). In graphene, a two-dimensional (2D)
honeycomb lattice of carbon atoms, or in Dirac semimetals in
three dimensions, the bulk hosts a pair of pseudo-relativistic
gapless Dirac fermions, while the surface states of TBIs feature
gapless Weyl fermions—chiral massless particles extensively
studied in high-energy physics for the description of neutrinos.
Recently, the latter have been discovered also in the bulk of 3D
materials known as Weyl semimetals [4–7]. While the energy
spectra in all cases resemble each other, the stability of their
band structures has a dramatically different origin. In Dirac
semimetals the stability of the Fermi surface relies on lattice
symmetries, while Weyl semimetals and surface states of TBIs
are protected by the topology of the bulk band structure.
Therefore, it is of both fundamental and practical importance
to answer the following question: Can topologically protected
Weyl fermions (two-band semimetals) also appear in the bulk
of lower dimensional systems?

We here provide an affirmative answer to this question
by showing that grain boundaries (GBs)—ubiquitous crystal
defects in real materials that are usually considered as detri-
mental for their properties—can host time-reversal symmetry
(TRS) protected topological semimetals. GBs arise at the
interface of two crystal regions (grains) whose lattice vectors
are misaligned by an angle θ , as illustrated in Fig. 1(a).
For small opening angles a GB can be viewed as lattice
dislocations described by Burgers vector b arranged on an
array of spacing d = |b|/(tan θ ). While GBs are usually
considered as unwanted disorder, they have also been used
experimentally as probes of the superconducting state in
high-temperature superconductors [8–10]. Recently, they have

also been suggested for engineering thermoelectric devices
[11] and for experimentally tuning the surface states in a
3D TBI [12]. Our main result is that extended GB lattice
defects can host stable self-organized states of matter. We
show that GBs in the bulk of 2D and 3D TBIs can realize
stable TRS protected 1D and 2D semimetals, respectively,
which, in contrast to Dirac fermions in graphene, do not
exhibit pseudo-spin degeneracy. These “halved” graphenelike
states can be experimentally observed by measuring their
characteristic conductance through otherwise insulating bulk.
They are also intimately connected to the TBI surface states
and can influence surface transport: 1D GBs in the bulk of a 2D
TBIs exhibit a valley anomaly that under an applied electric
field results in a helical imbalance of the TBI edge states on
the two grains connected by the GB. Furthermore, 2D GBs in
the bulk of 3D TBIs may exhibit an odd-integer quantum Hall
effect.

II. SEMIMETALLIC STATES ON GRAIN-BOUNDARY
LATTICE DEFECTS

The physics of GBs can be derived from their elementary
building blocks—the lattice dislocations. It has been shown
that when a 2D TBI is in a so-called translationally active topo-
logical phase [13], where the band topology is characterized by
an odd number of band inversions at TRS momenta other than
the � point in the BZ, a lattice dislocation acts as an effective
magnetic π flux and binds a single Kramers pair of zero energy
spinon modes localized at the core [14–17]. These modes are
2D analogs of the famous spin-charge separated Jackiw-Rebbi
soliton states [18,19] realized in the Su-Schrieffer-Heeger
(SSH) model of polyacetylene [20,21]. The same mechanism
applies also to 3D TBIs in translationally active phases, which
generalize the characterization by weak indices [13,22]. The
natural lattice defect is a 1D dislocation line that behaves as
π -flux tube and binds counterpropagating helical modes akin
to edge states in 2D TBIs [23,24]. A complete catalog of
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FIG. 1. Grain boundary semimetal on a 1D grain-boundary in a
translationally active 2D TBI (the M phase of the BHZ model on
a square lattice; see Appendix A). (a) Schematic illustration of a
GB. The coordination discrepancy due to the angular mismatch θ

of lattice basis vectors results in an effective array of dislocations,
each described by Burgers vector b and marked by a “T” symbol,
of spacing d = |b|/ tan θ . (b) Real-space numerical tight-binding
calculation of the low-energy states in the presence of a GB, which
are described by an effective tight-binding model (inset). The spinons
bound to the dislocations hybridize with tunneling amplitude t , which
gives rise to an extended 1D state along the GB. The radii of the
circles indicate the amplitude of a wave function, associated with
the node at kx = π/d of panel (c), while the colors indicate the
phase. The system also includes slight disorder to separate clearly
the dislocation modes from the bulk states. (c) The characteristic
midgap bowtie dispersion of the hybridized spinon bands (orange)
and bulk bands (grey), corresponding to GB opening angle θ = 18.4◦

for which isolated dislocations along the GB are well defined, as the
function of the momentum 0 � kx � 2π/d along the GB. (d) The
same plot for the maximal opening angle θ = 45◦. While the picture
of isolated dislocations breaks down and the simple nearest-neighbor
hybridization based sinusoidal dispersion is lost, the defining TRS
semimetal dispersion with the nodes at the TRS momenta survives.
The data are for a 30 × 60 site or larger system with periodic boundary
conditions.

modes bound to dislocations in generic 3D TBIs is given by
the K − b − t rule, that relates the spectrum of the surface
states to the number of spinon modes bound to a dislocation
line piercing the surface [24].

When the spinon zero modes form an array, such as along
a GB, one expects them to hybridize into an extended state. In
the basis of two spinon modes, this state should be described
by a two-band model h(q) = h0(q) + h(q) · σ̃ . As σ̃ act in
the spinon basis, TRS requires h0(−q) = h0(q) and h(−q) =
−h(q). Thus based on these very general considerations only,
one expects a semimetal with two TRS protected nodes at the
TRS momenta q = 0 and q = π . These nodes are degenerate
when h0(q) either vanishes or is a constant, which, as we
show below, is determined by the presence of bulk inversion
symmetry.

To verify this prediction, we have carried out numerics
for GB defects in the translationally active phases of BHZ
tight-binding models for topological insulators with both TRS
and inversion symmetry [25] (see Appendix A for details).
Indeed, Figs. 1 and 2 show that GBs support propagating states

along their core. In the energy spectrum these states appear as
emergent midgap bowtie bands that, reminiscent of the valleys
in graphene, exhibit the expected two degenerate nodes at the
two distinct TRS momenta. We have verified that these bands
appear throughout the translationally active phases and persist
for all GB angles including the maximal opening angle of
θ = 45◦ close to which a GB can no longer be approximated
by an array of isolated dislocations. Thus when the chemical
potential of the parent TBI is at the nodes, a self-organized
graphenelike semimetal emerges.

III. EFFECTIVE MODELS FOR SEMIMETALS
ON GRAIN BOUNDARIES

Having numerically established the existence of extended
states on grain boundaries, we now turn to construct effective
models for these semimetals. The microscopic mechanism
underlying their emergence is the hybridization of topological
spinon modes bound to dislocations. We derive the hybridiza-
tion induced dynamics by employing the construction for
dislocation bound spinons that relies only on the existence of
edge states originating from the band inversion momenta Ki

and their symmetries [23]. The edge states relevant to construct
the spinon modes can be identified using the K − b − t-rule
[24].

Consider a system of two coupled helical edges along the
y axis described by the Hamiltonian

H0 = vkyσ
zμz + mμx, (1)

where σ z acts in the spin space, while μz = ±1 denotes the
two edges. In general, tunneling of magnitude m gaps out
the edge states at the interface of the two TBIs. However,
when an additional row of atoms for y > 0 is inserted between
the edges, or equivalently a dislocation with Burgers vector
b = ex is created at y = 0, the mass term for y > 0 becomes
mei

∑
i Ki ·b [23,24]. In a translationally active phase

∑
i Ki ·

b = π (mod 2π ) and thus the sign of the edge state tunneling
becomes y dependent. The system is then equivalent to the 1D
continuum SSH model with a mass domain wall [20,21]. In a
TRS system the domain wall binds a Kramers pair of localized
spinons, which for the Hamiltonian H0 live in a subspace
described by the projector P = (1 + σ zμy)/2.

To model a GB in a 2D translationally active topological
material, we consider a dislocation array of spacing d along
the x axis. Employing the construction described above, the
adjacent edge states then couple by a translationally and time-
reversal invariant Hamiltonian

HGB = t(cos kxμ
x + sin kxμ

y), (2)

where kx spans the reduced BZ 0 � kx � 2π/d. The coupling
strength t follows from the overlap of the edge states, that
is proportional to the overlap of the localized spinon wave
functions (see Appendix C), and thus scales as d : t ∼ e−d/ξ ,
implying that it is stronger for large opening angle GBs.
Projecting this coupling into the spinon subspace, consistent
with our prediction, we find that the spinons acquire dynamics
described by

P (HGB)P = t sin kxσ̃
y, (3)
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(a) (b)

FIG. 2. Grain-boundary semimetal localized on a 2D grain boundary in a translationally active 3D topological band insulator (the R phase
of the BHZ model on a cubic lattice; see Appendix A for details). (a) Schematic illustration of the 2D GB, which now realizes a sheet of parallel
1D edge dislocation lines that extend along the grain boundary. Each edge dislocation hosts a pair of propagating helical modes localized along
the dislocation cores that cross at kz = π . (b) On a GB of opening angle 18.4◦, the hybridization of the helical modes results in the semimetal
band structure with two anisotropic pseudo-relativistic fermions at (kx,kz) = (0,π ) and (π/d,π ). Along the GB we recover the same midgap
bowtie dispersion as in the 2D case (shown top right for kz = π ), while along the edge dislocations the hybridized modes (orange) still flow
into the bulk bands (gray) as a function of kz (bottom right for kx = π/d). The data are for a 60 × 60 × 90 system with periodic boundary
conditions.

where σ̃ y is an effective spin operator in the spinon subspace
(see Appendix B). Comparing this form to our numerics, Fig. 1
shows that this simple expression indeed captures the defining
nodal structure of the emergent midgap band for low opening
angle GBs in the presence of spin-rotational and inversion
symmetries (the large opening angle GBs require couplings
beyond nearest neighbor).

In Appendix B, we have considered in detail the general
case of breaking all the symmetries of the parent BHZ model.
In the effective model Sz conservation breaking via a Rashba
term is modelled with HR = αkyσ

y , inversion breaking with
HI = ∑

i miσ
iμy (mi can be either constant or proportional

to cos kx), and TRS breaking via the Zeeman terms HB =∑
i hiσ

i . In the presence of the Rashba term the projector to
the spinon subspace is given by

Pα = 1

2

[
1 + vσ z + ασy

√
v2 + α2

μy

]
(4)

and the effective Hamiltonian H2D = Pα(HGB + HI + HB)Pα

becomes

H2D = myα + mzv√
v2 + α2

+
(

vhz + αhy√
v2 + α2

+ t sin kx

)
σ̃ y . (5)

This expression shows that the key property determining the
response to TRS and inversion breaking is the spin texture
of the edge states: Only perturbations that couple to a spin
orientation present in the edge states appear in the effective
model (e.g., if Sz is conserved, only perturbations proportional
to σ z appear in the effective Hamiltonian).

This effective picture is fully consistent with our numerics
on the stability of the GB state (see Appendix D for the

details of the numerical calculations). First, Sz conservation
breaking Rashba coupling that is not strong enough to close
the bulk band gap preserves the semimetallic nodes. Second,
terms breaking the bulk inversion symmetry in general shift
the nodes to different energies, but, in contrast to interfaces
of TBIs with different velocities [26], cannot gap them
out. Third, TRS breaking terms gap the spectrum, but only
if they do not anticommute with Pα and only once their
magnitude is comparable to the bandwidth 2t resulting from
the hybridization. Furthermore, we have numerically found
that no moderate random disorder can open up a gap at
the nodes since the topological edge states underlying the
hybridizing dislocation modes persist as long as the disorder
does not drive the bulk out of the translationally active phase.
This also implies that broken translational invariance along
the GB, that can arise due to lattice reconstruction leading to
disordered dislocation positions, does not pose a fundamental
obstacle for the stability of the nodal band structure. Similar
to chemical potential disorder that deforms dislocation mode
wave functions, random bends along the GB result in random
tunneling couplings t . In terms of the low-energy theory around
the nodes, this gives rise to a random gauge field that only
shifts the cones [27]. As long as this shift is smaller than
the separation π/d of the cones in the BZ, the semimetallic
behavior is stable. We have numerically verified this argument
by considering random dislocation positions along the GB and
found qualitatively similar stability to the case of chemical
potential disorder. The self-organized semimetal on the GB
thus shares the topological stability of the edge states of the
parent state: The nodes are degenerate in energy only if the bulk
inversion symmetry is intact, but TRS is sufficient to protect
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FIG. 3. The experimental setups for identifying the signatures of the graphenelike semimetals. (a) The one-dimensional bowtie dispersion
of the spinon semimetal on a 1D GB implies a parity anomaly per spin component when an electric field �E is applied along the grain boundary.
The arrows indicate the shift in the spectrum from one valley to the other: When Sz is conserved, valley v1 accumulates an excess of spin down
(red), while valley v2 accumulates excess spin up (blue). These valleys can be associated with two coexisting channels that connect the helical
edge states from the opposing surfaces. When �E is applied along the GB, a current for both spin orientations is driven parallel to it. At the GB
termination points this current is predicted to flow into the edge states that propagate to opposite directions resulting in a doubled spin Hall
effectlike helical imbalance of the edge states on the two grains. Measuring the current imbalance I is the hallmark signature of the valley
anomaly exhibited by the spinon semimetal. (b) The spinon semimetal on a 2D GB may feature an odd-integer Hall effect with transverse
conductivity σxz = (2n + 1)e2/h in the presence of the perpendicular magnetic field �B. In the absence of external fields, another signature is
provided by the diagonal ballistic optical conductivity of σzz = (π/4)e2/h, which is half that of graphene.

the nodes themselves (no additional spatial symmetries with
respect to the GB need to be assumed).

This mechanism generalizes straightforwardly to 3D trans-
lationally active TBIs, where a GB consists of a 2D sheet
of parallel 1D dislocation lines, as illustrated in Fig. 2(a).
In a translationally active phase each dislocation binds a
Kramers pair of helical modes [23,24]. To derive a minimal
effective model for their hybridization, we employ again the
surface-state construction with a coupling between adjacent
surfaces. In the geometry of Fig. 2(a), this is described by the
Hamiltonian

H = v(kyσ
y + kzσ

z)μz + m(y)μx + HGB. (6)

Similar to the 2D case, we project this Hamiltonian into the
spinon subspace near kz = 0, which in the presence of TRS
breaking Zeeman terms HB and inversion breaking terms HI

gives the general minimal model (see Appendix B)

H3D = my + vkzσ̃
z + (hy + t sin kx)σ̃ y . (7)

This effective theory describes two linearly dispersing cones
at the two TRS momenta (kx,kz) = (0,π ) and (π/d,π )
with anisotropic velocities v along and t perpendicular to
the dislocation lines, respectively, consistent with Fig. 2(b).
This anisotropy is reduced for larger opening angles θ due
to an enhanced overlap between the helical modes whose
hybridization underlies the self-organized GB state. The two
cones separated in the BZ are degenerate in energy if the bulk
inversion symmetry with respect to the GB plane is preserved
(my = 0). On the other hand, if inversion is broken, the cones
appear at different energies. As with the 2D case, we have

numerically verified that the semimetal is stable in the presence
of moderate disorder and that the cones can only be gapped out
with a TRS breaking Zeeman terms normal to the GB plane
(see Appendix D).

IV. EXPERIMENTAL CONSEQUENCES

Having established the topological stability of the emergent
semimetals on GBs, we now turn to their experimental
signatures. To detect the semimetallic state on the 1D GB
inside a 2D TBI, one can carry out a direct two-terminal
transport measurement analogous to the one used to detect
edge states in a 2D quantum spin Hall insulator [28]. When
an electric field E is applied along the GB with leads attached
to the GB ends, due to the two cones one should observe
conductance of

σ = 4e2/h, (8)

i.e., twice the value measured for the QSH edge states. A
more dramatic consequence of the helical bowtie dispersion
along a 1D GB is the existence of the parity anomaly [29] for
each helical band. In the presence of two chiral cones, it gives
rise to a valley anomaly that influences the edge transport.
As illustrated in Fig. 3(a), an electric field E along the GB
generates excess helicity of opposite orientations at the two
valleys that results in a net current flowing along the applied
field. Associating the two valleys with two coexisting channels
through which the helical edge states can flow from one GB
termination surface to the other, the valley anomaly results
in a helical imbalance of the edge currents at the two grains
on each side of the GB. This imbalance is proportional to the
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hybridization strength t and it represents a hallmark transport
signature of valley anomaly. To detect it, one can carry
out a two-terminal edge transport measurement illustrated
in Fig. 3(a). When the two edges connected by the GB are
biased by voltage V , a net current I ∼ t 4e2

h
V is expected as a

consequence of unequal helical currents. Recent experimental
observation of semimetallic transport on domain walls [30,31],
such as in bilayer graphene [32–35], is highly encouraging in
that an experiment of this kind can also be carried out for
GBs. In materials where spin is a good quantum number, i.e.,
spin-orbit coupling is negligible, the helical imbalance due
to applied electric field translates into a spin imbalance of
the edge currents on the two grains. In such cases the valley
anomaly could also be detected by measuring the magnetic
moment due to spin imbalance [36] or using Kerr rotation
microscopy [37,38].

While the cones of the graphenelike semimetal on a 2D
GB can also be viewed as two co-existing channels through
which the surface states of the 3D TBI can propagate between
the surfaces connected by the GB, this state is experimentally
most conveniently detected via two distinct “half-graphene-
like” transport signatures. First, the measured ballistic optical
conductivity is σzz = (π/4)e2/h, which is half the value
measured in graphene [39]. Second, when a magnetic field is
applied perpendicular to the GB in the setup shown in Fig. 3(b),
the nondegeneracy of each cone implies a contribution of
(n + 1/2)e2/h to the Hall conductivity, which in turn implies
an odd-integer quantum Hall effect with total Hall conductivity

σxz = (2n + 1)e2/h, (9)

when the cones are degenerate in energy (bulk inversion
symmetry is present). As there is always a known contribution
from the surface states, it is in principle possible to extract
the signal associated with the Hall conductance arising solely
from the GB semimetal. The emergent chiral symmetry of the
effective model (7) also suggests the existence of edge states
on the 1D GB edges on the 2D surfaces (see Appendix B).
These can contribute additional Fermi arclike features to the
surface states of the parent 3D TBI, which may be detectable
via optical conductivity measurements [40], or give rise to GB
edge transport when the cones occur at different energies due
to broken inversion symmetry [41].

V. DISCUSSION AND OUTLOOK

We have shown that TRS protected semimetals—helical
wires exhibiting a valley anomaly in two dimensions and
an anisotropic graphenelike state showing an odd-integer
quantum Hall effect in three dimensions—can emerge on
grain boundaries in TBIs. These states are self-organized
and enjoy the same topological stability as the TBI edge
states. The only requirement for their emergence is the
TBI to be of a translationally active type where lattice
dislocations bind a Kramers pair of localized modes. As grain
boundaries occur naturally in crystalline samples, or they
can be experimentally manufactured [42], the challenge is to
identify translationally active materials. A convenient guide to
candidates is given by the space-group classification of TBIs
[13]. For modeling purposes we used the M and R phases of
the 2D square and 3D cubic lattice, respectively, with the latter

having a potential realization in electron-doped BaBiO2 [43].
Nonetheless, our mechanism is completely general and the
outlined GB physics should therefore also appear in the already
experimentally verified translationally active materials. This
rapidly expanding list includes BixSb1−x with band inversions
at the L points [44], the topological Kondo insulator SmB6

with band inversions at three X points [45,46], and the
recently discovered bismuth iodide compounds that feature a
transitionally active phase with band inversions at the Y points
[47]. Topological semimetals are expected also on GBs in
the topological crystalline Sn-based compounds [48–50], that
feature band inversions at the L points as long as the protecting
symmetry is respected [13,24], as well as in Bismuth bilayers
with a band inversion at the M point, where a GB state has
been identified in a recent ab initio study [51].

Grain boundaries provide a natural setting for arrays of
localized topological solitons to hybridize in any crystalline
materials. The emergent extended states depend on the
topology and the symmetry class of the parent state. Our
general mechanism is readily applicable to model the distinct
GB states that may be realized in topological states of matter
with symmetries different than considered here. For instance,
lattice dislocations in Sr2RuO4, a candidate for chiral p-wave
superconductor, can host Majorana modes [52], which are
expected to hybridize into superconducting states [53]. A
full classification of extended states on GBs in crystalline
topological states of matter provides for a fascinating subject
of future work. Finally, our results demonstrate the potential
of extended lattice defects in exploring manifestations of
electronic band topology beyond the by now well understood
surface states.
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APPENDIX A: TIGHT-BINDING BHZ MODELS
FOR NUMERICS

1. 2D BHZ model

The 2D BHZ model is defined on a square lattice [25]
with two spin degenerate |s〉 and |px + ipy〉 type orbitals on
every latttice site. In natural units � = c = e = 1, the model
is defined by the nearest-neighbor tight-binding Hamiltonian

HTB =
∑
r,δ

(�†
rTδ�r+δ + H.c.) +

∑
r

�†
rμ�r. (A1)

Here {δ} = {ex,ey} denote the vectors connecting the nearest-
neighbor sites and ��

r = (s↑(r),p↑(r),s↓(r),p↓(r)) annihilates
the s and p type orbitals at site r. The tunneling of the spin-up
and spin-down electrons is given by

T ∗
δ,↓↓ = Tδ,↑↑ =

(
	s tδ/2
t ′δ/2 	p

)
,

that describes interorbital tunneling tδ = −i exp(iϕδ) and t ′δ =
−i exp(−iϕδ) whose phase is given by the polar angle ϕδ of the
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vector δ, and intraorbital tunneling of magnitude 	s/p = ±B.
The on-site energies are parametrized as μ = (M − 4B)τz ⊗
σ0, where the Pauli matrices τ and σ act in the orbital and
spin space, respectively. Here, τ0 and σ0 are the 2×2 identity
matrices. By performing a Fourier transform, the Hamiltonian
(A1) assumes the block-diagonal form

HTB =
∑

k

�
†
k

(
H (k) 0

0 H ∗(−k)

)
�k. (A2)

The Hamiltonians for each spin component can be decomposed
as H (k) = τ · d(k), where the vector d(k) has the compo-
nents dx,y(k) = ± sin(kx,y) and dz = M−2B[2 − cos(kx) −
cos(ky)]. The spin-up and -down blocks are related by the
time-reversal symmetry represented by an antiunitary operator
T = τ0 ⊗ iσyK , with K as the complex conjugation. The
energy spectrum for each spin component is given by E(k) =
±|d|, while the spectrum of the full Hamiltonian is doubly
degenerate.

The dispersion E(k) is gapped except for the values M/B =
0, 4, or 8, where the gap closes at the � (0,0), X (π,0), and Y

(0,π ), or M (π,π ) points of the Brillouin zone, respectively.
When 0 < M/B < 4 the system is in a topological � phase,
while for 4 < M/B < 8 the system is in a topological M

phase. For other values of M/B the system is topologically
trivial and does not have helical edge states. The � and M

phases are characterized by the same Z2 invariant and both
exhibit helical edge states. They are distinguished by lattice
defects that break translational symmetry: In the � phase a
lattice dislocation does not bind localized modes, while in
the M phase they act as π fluxes and bind localized zero-
energy modes [16]. Hence, we refer to the M phase as being
translationally active. In this phase the edge states appear
always at the projection of the M point to the surface BZ, i.e.,
they cross at k = π on the edge BZ.

The 2D BHZ model has additional symmetries besides
TRS. Explicitly, all the symmetries comprise

(i) Time-reversal symmetry T H (k)T −1 = H (−k) repre-
sented by T = i(σy ⊗ τ0)K satisfying T 2 = −1, where K

denotes complex conjugation.
(ii) Particle-hole symmetry PH (k)P −1 = −H (−k) repre-

sented by P = (σ0 ⊗ τx)K satisfying P 2 = 1.
(iii) Chiral symmetry CH (k)C−1 = −H (k) represented by

C = PT = iσy ⊗ τx .
(iv) Spin-rotation symmetry SzH (k)S−1

z = H (k) repre-
sented by Sz = σz ⊗ τ0.

(v) C4 crystalline point-group symmetry in the x-y plane
represented by R = 1√

2
(ei(π/4) + e−i(π/4)τ z)ei(π/4)σ z

that maps
kx,y → ±kx,y , τ x,y → ∓τ y,x , and σx,y → ±σy,x . It gives
rise to an inversion symmetry IH (k)I−1 = H (−k) satisfying
I 2 = −1 represented by I = R2 = iσ z ⊗ τz, which can be
further decomposed into inversions along x and y axes as I =
IxIy , where Ix = iσ xτ 0 and Iy = iσ yτ z obey IiH (ki)I

−1
i =

H (−ki).
The Sz symmetry implies that the model can be viewed

as two copies of opposite chirality Chern insulators, one for
each spin component. This conservation is nongeneric and is
broken by spin-orbit coupling. For the BHZ model specific to

HgTe quantum wells, the orbital dependent Rashba form reads

Tδ → Tδ + i
R

2
(τ0 + τz)ez · (σ × δ). (A3)

This term breaks also the accidental P and C symmetries,
leaving the model with only TRS and the C4 point-group
symmetry. The latter can be further broken, while preserving
TRS, by terms of the form HI = ∑

i miσ
iτ i , with nonzero mi

breaking the inversions Ii . The coefficients mi are constant if
they originate from local potentials, or proportional to cos ki

when they result from tunneling processes.

2. 3D BHZ model

The 2D BHZ model on a square lattice can be generalized
to a 3D cubic lattice. The key difference is that in three
dimensions the model can no longer be viewed as two
decoupled Chern insulators of opposite chirality, and an Sz

conservation breaking spin-orbit coupling is needed for the
model to exhibit topological phases. Working directly in
the momentum space, the tight-binding model contains two
spin degenerate orbitals, which are in general described by a
Hamiltonian of the form

H = ε(k)1 +
∑

α

dα(k)γα +
∑
αβ

dαβγαβ,

where γα are the five Dirac matrices obeying the Clifford
algebra {γα,γβ} = 2δαβ , γαβ are the ten commutators γαβ =
1
2i

[γα,γβ]. Specifically, we take the following representation
for the γ matrices:

γ0 = σ0 ⊗ τz, γ1 = σx ⊗ τx, γ2 = σy ⊗ τx,

γ3 = σz ⊗ τx, γ5 ≡ −γ0γ1γ2γ3 = σ0 ⊗ τy, (A4)

with σ and τ being again the standard Pauli matrices acting
in the spin and orbital space, respectively. Taking into account
only nearest-neighbor terms and setting the lattice constant
to identity, the BHZ model in three dimensions is described
by the Hamiltonian (A 2) where dαβ = 0, d0 = M − 2B(3 −
cos kx − cos ky − cos kz), and d1,2,3 = sin kx,y,z. As with the
2D model, B is again the magnitude of the intraorbital hopping
and M is the difference of the on-site energies between the
two orbitals. However, one should keep in mind that while this
Hamiltonian bears formal similarity to the 2D one, (A2), the
explicit spin-orbit coupling is included in the γ matrices that
describe spin-flipping interorbital tunneling, whose magnitude
has been set to unity. The phase diagram exhibits now
topological phases for 0 < M/B < 4, 4 < M/B < 8, and
8 < M/B < 12. Only the last, the R phase with band inversion
only at the R point (π,π,π ), is a translationally active phase
where the surface states always cross at (π,π ) on the surface
BZs [13].

This model has also additional symmetries originating
from the orbital space. In addition to TRS, the model has
the global particle-hole and chiral symmetries described by
P = Kσyτy and C = iτ y , respectively. The cubic lattice
point-group symmetry gives rise to inversion I = τ z, which
can be again decomposed into inversion Ii = iσ iτ z normal to
each of the three axes. The P and C can again be broken by
HI = ∑

i miσ
iτ y without breaking TRS, with each nonzero

mi breaking again also the inversion Ii . Even in the presence
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FIG. 4. Illustration of the grain-boundary lattice used in the
simulations in the particular instance of spacing d = 8.

of such terms, the 3D model still has a residual particle-hole
symmetry τ xH (k)τ x = −H (−k), which can be further broken
by m0τ

x that also breaks all inversion symmetries.

3. Grain boundaries in tight-binding models

To simulate a GB in the tight-binding numerics, we consider
a lattice that consists of two parts with different number of
rows glued together across the GB defect. A lattice with a GB
of spacing d with translational invariance in the y direction
is created by taking the two halves with Lx and Lx/(d + 1)
rows of sites and leaving every (d + 1)th row unconnected,
a representative of which is illustrated in Fig. 4. Finally,
we corroborated our results with an alternative procedure
of simply matching two perfect crystalline regions under
an angle, schematically illustrated in Fig. 1(a) of the main
text. The resulting system with coordinate discrepancy then
produced the same qualitative results, as illustrated with the
45◦ result presented in the main text.

APPENDIX B: DERIVATION OF EFFECTIVE MODELS
FOR THE GB STATES

1. An effective model for the 1D GB inside a 2D TBI

We find the effective theory for the GB by coupling together
adjacent the helical edge states of a QSH insulator with
a periodic array of trenches with dislocation lines inserted,
following the construction of Ref. [23] for solitons bound to
dislocations. In the absence of Rashba coupling Sz is conserved

and two decoupled helical edge states along the y axis are
described by the Hamiltonian H0 = vkyσ

zμz, where the σ

matrices act in the spin space and the μz = ±1 denotes the
two edges. Proximity tunneling between the edge states is
described by the term mμx , which in general gaps the edge
states and merges the two QSH insulators into a single one.
When a semi-infinite row of atoms is inserted for y > 0,
creating a dislocation of Burgers vector b = ex at y = 0,
the tunneling term giving mass to the edge states across
the inserted row of atoms becomes m → ei

∑
i Ki ·b [23,24],

where Ki are the band inversion momenta from which the
edge states originate. In other words, in a translationally
active phase where

∑
i b · Ki = π (mod 2π ), the mass term

becomes position dependent such that m(y < 0) > 0, while
m(y > 0) < 0. The low-energy theory for a single trench is
then given by

H0 = vkyσ
zμz + m(y)μx, (B1)

which is equivalent to a continuum theory for a SSH model
with mass changing sign at y = 0. Such a model is known
to have two bound-state solutions at the mass domain wall,
one for each spin component. The general form of these
localized solutions is given by ψ = e(1/v)

∫
m(x)dxφ, with

the four-spinor obeying σ zμyφ = φ. This condition defines
the subspace where the localized soliton solutions live, with the
projector onto this subspace P = (1 + σ zμy)/2. Considering
a translationally invariant array of such bound modes, their
hybridization can be modelled by coupling the edge states
from adjacent trenches by introducing

HGB = t[cos(q)μx + sin(q)μy]. (B2)

Projecting this down to the spinon subspace yields the minimal
effective model PHGBP = t sin(q)σ̃ y , where the effective spin
operator is defined by σ̃ y = μy .

The effective model H0 + HGB has additional symmetries
represented by Sz = σ z, P = Kσzμz, C = σxμz, and I =
iσ xμx symmetries besides TRS. To derive an effective model
for the fully symmetry broken case, we consider edge states
with generic spin texture H0 = k(v · σ )μz + m(y)μx , where
we have defined the normalized vector v = (vx,vy,vz)/|v|. The
spinons live then in a subspace defined by the projector P =
[1 + (v · σ )μy]/2, which breaks the Sz, P , and C symmetries.
To consider the effect of breaking the inversion symmetry and
TRS, we introduce the perturbations HI = ∑

i miσ
iμy and

HT = ∑
i hiσ

i , respectively. Here the magnitudes hi of the
Zeeman terms are constants, while in general the inversion-
symmetry breaking arises from edge state tunneling and thus
mi ∼ cos(q). Projecting all these down to the spinon subspace
gives the effective model H2D = P (HGB + HI + HT )P , or
explicitly

H2D = m · v + (t sin q + h · v)σ̃ y . (B3)

The spectrum is given by E± = m · v ± (t sin q + h · v),
which for v = (0,α,v)/

√
α2 + v2 reduces to the one presented

in the main text. The key observation is that the effect of the
(spin-rotational symmetry breaking) spin-orbit coupling is to
change the spin texture of the edge states, and that controls
which terms perturb the effective model. Only inversion or
TRS breaking perturbations with a component parallel to the
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spin texture appear in the effective model, which explains why
in our numerics only certain perturbations affect the spectrum
in the full 2D BHZ model. In general, inversion breaking terms
shift the nodes at the TRS momenta to different energies, while
TRS breaking terms gap them out once their magnitude is of
the order of the bandwidth t resulting from the hybridization.
Other TRS invariant tunneling terms can also be added to the
Hamiltonian, but we have checked that they only deform the
band structure, while preserving the key features summarized
above. In the numerics on the BHZ model, they are responsible
for the suppression of the bandwidth of the semimetal when
spin-rotational symmetry is broken.

2. Effective model for the 2D GB inside a 3D TBI

Similar analysis can be carried out to derive an effective
minimal model for the 2D GB. Let us assume that the
dislocation sheets are inserted in the y-z plane, such that the
dislocation lines run in the z direction, while the GB is oriented
in the x direction. The coupled surface states in the presence
of the dislocation sheet are then described by the Hamiltonian

H0 = v(kzσ
z + kyσ

y)μz + m(y)μx, (B4)

which is a direct generalization of the 2D case. kz is still a good
quantum number and soliton solutions at the dislocation can be
found immediately considering the kz = 0 case. The projector
onto their subspace is now given by P = (1 + σyμy)/2.

Allowing again for a generic spin texture along the
hybridization direction and including also the inversion and
and TRS breaking terms, in direct analogy to the 2D case, we
arrive at the effective model

H3D = m · v + vkzσ̃
z + (h · v + t sin q)σ̃ y, (B5)

where we have defined the effective spin operators σ̃ z = σ zμz

and σ̃ y = μy . For v = (0,1,0) this reduces again to the case
presented in the main text. As with the 2D case, we find that the
key property determining the response to symmetry breaking
perturbations is the spin texture of the surface states.

Fermi arclike surface states on GB edges

In the presence of the inversion symmetry (m · v = 0), the
effective model possesses also chiral symmetry. This means
that it can be viewed as a 1D SSH model [20], but with a GB
momentum q dependent mass M(q) = h · v + t sin q. Due to
the chiral symmetry, this model has two topologically distinct
phases: for M(q) < 0 the band structure is topologically trivial
and characterized by a winding number ν = 0, while for
M(q) > 0 the winding number evaluates to ν = ±1 and the
system is in a topological phase and exhibits edge states.
Thus when the TRS breaking is negligible compared to the
hybridization, the mass depends on the momentum q along
the GB such that M(q) > 0 for 0 < q < π , while M(q) < 0
for π < q < 2π , and the edge states of the GB semimetal span
only half of the 1D edge Brillouin zone of the GB.

Thus when the 2D GB inside a 3D TBI terminates on the
2D surface, we predict the extended GB state to contribute
additional Fermi arclike features on the surface states. These
states appear as localized flat bands at the GB edges parallel to
the Burgers vector describing the dislocations that constitute
the GB. Since in a real material the GB edge BZ spans only the

reduced BZ 0 < q < 2π/d, these features are expected to be
more pronounced for GB defects with a large opening angle.
As long as they do not hybridize with the TBI surface states,
which does not happen as long as the surface cones occur at
different momenta, they can coexist and could in principle be
detected via low-frequency optical conductivity measurements
[40]. Alternatively, breaking inversion symmetry will in
general shift the cones to different energies, which makes the
flat edge states dispersing and can lead to edge currents at the
GB edges [41].

APPENDIX C: 1D TIGHT-BINDING PICTURE
FOR SPINON HYBRIDIZATION

Here we present a complementary picture in terms of
localized spinon wave-function hybridization. It enables us
to directly connect the spinon hopping magnitude t to the
hybridization energy ε that arises when two spinon binding
dislocations are in proximity of each other.

In the context of the 2D BHZ model, the localized spinon
zero modes �s = ∑

r φs(r)�s,r can be solved analytically for
a vanishing Rashba coupling near M/B → 8 [16,17]. For
a single spin component with the dislocation located at the
origin, the modes are given by the orbital space spinors

φ↑(r) = sin(λr)

N
√

r
e−r/ξ

(
e−iθ

i

)
, (C1)

where we use polar coordinates r = (r,θ ), ξ = 2B is the corre-
lation length, λ = √

1 − 4MB/2B, and N is a normalization
constant. TRS requires that φ↓(r) = φ∗

↑(r) and guarantees that
even if these two modes are localized on the same dislocation,
they do not hybridize even in the presence of a Rashba coupling
(although the wave functions and the orientation of the spinors
in the combined spin-orbital space will be modified). Thus
isolated dislocations deep in the M phase bind a Kramers
pair of exponentially localized modes, whose wave func-
tions exhibit spatial oscillations at the wavelength λ, which
depends on the microscopic parameters.

In the presence of many dislocations, all the modes �i,s

bound to each dislocation remain near zero energy as long
as the separation d between all the dislocations satisfies
d � ξ . When two dislocations are brought into proximity
(d ≈ ξ ), the wave functions overlap. This gives rise to a
finite (possibly spin-flipping) tunneling amplitude tss ′,|i−j | ∼∫

drφ†
s,i(r)φs ′,j (r). This hybridizes the spinon modes and gives

rise to a pair of Kramers degenerate modes at finite energy
ε ∼ t (assuming Sz conservation, i.e., t = t↑↑ = t↓↓ and t↑↓ =
t↓↑ = 0), localized simultaneously on both dislocations. In
principle, the hybridization energy ε could be analytically
obtained, but as the analytic solution is available only in
the M/B → 8 regime, we perform instead a numerical
analysis. Figure 5(a) shows that the two-dislocation hybridiza-
tion energy obeys the qualitative form ε(d) ∝ cos(λd)e−d/ξ

throughout the M phase, with the wavelength λ decreasing
with smaller M/B. These oscillations in the hybridization
energy, that can cause a change in the sign as the function of
dislocation separation d and thus energetically favor different
specific separations, follow directly from the oscillating tails
of (C1) and they are qualitatively similar to π -flux vortices in
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(a) (c)

(b)

FIG. 5. (a) The hybridization energy ε as the function of the
separation d between two dislocations in units of the bulk band gap
	. For different values of M/B the hybridization energy always
exhibits exponential decay and characteristic oscillations that exhibit
clear sinusoidal oscillations at larger separations (inset). The kinks as
functions of d are artefacts of simulating smooth dislocation transport
by adiabatically switching on and off the relevant couplings. (b) The
two dislocation hybridization energies ε in the GB geometry as the
function of the GB angle θ in units of the bulk band gap 	. (c)
The midgap spectra of the 2D BHZ model across the reduced Brillouin
zone 0 < kx < 2π/d for different GB angles θ = arctan(|b|/d) and
the approximation of each by the unperturbed minimal effective
model H2D = t sin q over 0 < q < 2π with the hybridization energy
ε(d) = t/2 as the only input. As the dislocation separation d ∼ θ−1

increases, the nearest-neighbor approximation becomes more valid
and we find excellent agreement. All data have been produced using
a 90 × 60 system with M/B = 6.

other Dirac-like systems [54,55]. We also find that while the
localized spinon modes (C1) possess full rotational symmetry
near M/B → 8, for smaller values they become anisotropic as
the band gap minimum switches from the M point (full rotation
symmetry) to the X and Y points (C4 symmetry). It follows that
also the hybridization energy becomes anisotropic depending
on the microscopic parameters. This may have consequences
on the nature of the emergent state if the several GBs formed
arrays of the same dimensionality as the parent state.

A grain boundary at small opening angles θ is well
approximated by a 1D array of lattice dislocations. These
again hybridize pairwise, with the hybridization energy ε as
the function of the GB opening angle θ shown in Fig. 5(b).
It is thus natural to ask whether the bandwidth of the 1D
GB can be traced back to the pairwise hybridization energy
ε. To study this, we take t = 2ε as the simplest ansatz.
This is motivated by the fact that TRS and translationally
invariant spinful free 1D fermions with imaginary tunneling
amplitude iε have the spectrum E± = ±2ε sin q. Figure 5(c)
shows that as the opening angle θ of the grain boundary gets
smaller, i.e., the spacing d = |b|/ tan θ between the dislo-
cations becomes larger and nearest-neighbor approximation
is justified, the spectrum of the mid gap GB bands in the
full BHZ model is indeed accurately approximated with the

relevant two-spinon hybridization energy ε(d) as the only
input. This directly connects the more general edge state
construction to the hybridization of the localized spinon modes
and corroborates this picture in the context of the BHZ
models.

APPENDIX D: DISORDER ANALYSIS
OF THE GRAIN-BOUNDARY STATES

Here we present numerical data on the stability of the
graphenelike spinon semimetal when random chemical po-
tential disorder is included in the parent TBI. The GB
states are expected to be stable for two physically motivated
complementary reasons: (i) The spinons are rooted in the edge
states, which cannot be removed by moderate disorder, and (ii)
the localized spinon wave functions are only locally deformed,
which can only result in random tunneling along the GB, but
not in a random chemical potential that can gap the modes out.
From the point of view of the spinon tight-binding model the
latter translates to a random gauge field around the chiral cones
that only shifts them around, but cannot gap them out unless
the mean displacement is of the order of the cone separation in
momentum space. Thus large opening angle GBs are expected
to be most stable.

To substantiate these general arguments, we have studied
the effect of local random disorder on the bipartite hybridiza-
tion energies ε that enter the 1D tight-binding model as
tunneling amplitudes. Figure 6(c) shows data for the 2D
BHZ model demonstrating that even if the disorder averaged
hybridization energies are strongly influenced by local random
disorder, disorder strengths of up to 50% are insufficient to
cause random sign flips. Thus while any disorder potential
contains a Fourier component that corresponds to nodal
scattering (perfect sign dimerization would gap out nodes even
at maximal separation of π ), we expect the spinon semimetals
to be very stable. Indeed, numerical data presented in Fig. 6(d)
shows remarkable resilience with gapless midgap bands again
persisting for disorder strengths of up to 50%. Due to the
general arguments given above, similar stability applies also
to the 2D GB semimetal in the 3D BHZ model.

This stability analysis also implies that perfect translational
invariance of the GB is not a necessary condition for the
stability of the GB semimetals. Random spinon tunneling can
arise also due to random turns along the GB and thus the
stability under local random disorder also implies stability in
the absence of disorder, but with broken translational invari-
ance along the GB. Indeed, Figure 6(d) shows that the gapless
midgap state persists also for randomized GB positions along
the GB. We therefore conclude that translational invariance
on average is sufficient for graphenelike semimetal to emerge
along them.

Finally, in Fig. 6(b) we have also considered effects of
TRS breaking Zeeman terms. In agreement with the effective
minimal model derived from the edge states, we find hz

shifting the Sz conserving spectrum in energy and gapping
it when hz > 2t . No other Zeeman term orientation affects the
spectrum as the edge spins are polarized in the z direction.
When the Rashba term is included and the edge states pick up
a component parallel to the propagation in the y direction, we
find also hy having a similar effect. Likewise, we have checked
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(a) (a)

(b) (d)

FIG. 6. Stability of the graphenelike spinon semimetal. (a) Inclusion of a Rashba term of magnitude R breaks Sz conservation, which leads
to suppression of the bandwidth and different velocities at the cones, but TRS guarantees that the cones are stable. (b) An Sz conservation
preserving Zeeman term of magnitude hz gives rise to a mass for the spinons. In the hybridized spectrum it shifts the spinon bands to
opposite directions in energy and thereby moves the cones towards each other. The cones annihilate and gap out at a quadratic band touching
point when hz = 2ε. (c) When local chemical potential disorder of magnitude w is introduced, i.e., μ is a random variable picked from box
distribution [(1 − w)(M − 4B),(1 + w)(M − 4B)], the hybridization energies ε become also disordered with the fluctuations, as quantified by
the standard deviation Std(ε) around the mean 〈ε〉 increasing monotonously. The rate of increase depends on the microscopic details around
the nearest-neighbor two-dislocation hybridization energy corresponding to different GB angles θ as show in Fig. 5(b). (d) In the full 2D TBI,
we find that the gapless spinon semimetal persists at least up to 50% chemical potential disorder (n enumerates the states), which is insufficient
to close the bulk gap (inset). We have also simulated randomized dislocation positions (dislocations along a GB of spacing d are randomly
displaced by up to d lattice constants) and find similar stability. All data have been produced using a 90 × 60 system in two dimensions with
M/B = 6. The disorder data have been produced for system size 42 × 30 with periodic boundary conditions and averaged over 100 disorder
realizations.

the same edge state spin texture dependence of the inversion
breaking terms that, consistent again with the effective model,

in general shift the nodes to different energies, but do not gap
them out.
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group classification of topological band-insulators, Nat. Phys.
9, 98 (2013).

245406-10

http://dx.doi.org/10.1103/RevModPhys.81.109
http://dx.doi.org/10.1103/RevModPhys.81.109
http://dx.doi.org/10.1103/RevModPhys.81.109
http://dx.doi.org/10.1103/RevModPhys.81.109
http://dx.doi.org/10.1103/RevModPhys.82.3045
http://dx.doi.org/10.1103/RevModPhys.82.3045
http://dx.doi.org/10.1103/RevModPhys.82.3045
http://dx.doi.org/10.1103/RevModPhys.82.3045
http://dx.doi.org/10.1103/RevModPhys.83.1057
http://dx.doi.org/10.1103/RevModPhys.83.1057
http://dx.doi.org/10.1103/RevModPhys.83.1057
http://dx.doi.org/10.1103/RevModPhys.83.1057
http://dx.doi.org/10.1126/science.aaa9297
http://dx.doi.org/10.1126/science.aaa9297
http://dx.doi.org/10.1126/science.aaa9297
http://dx.doi.org/10.1126/science.aaa9297
http://dx.doi.org/10.1103/PhysRevX.5.031013
http://dx.doi.org/10.1103/PhysRevX.5.031013
http://dx.doi.org/10.1103/PhysRevX.5.031013
http://dx.doi.org/10.1103/PhysRevX.5.031013
http://dx.doi.org/10.1088/0953-8984/27/11/113201
http://dx.doi.org/10.1088/0953-8984/27/11/113201
http://dx.doi.org/10.1088/0953-8984/27/11/113201
http://dx.doi.org/10.1088/0953-8984/27/11/113201
http://dx.doi.org/10.1103/PhysRevLett.107.127205
http://dx.doi.org/10.1103/PhysRevLett.107.127205
http://dx.doi.org/10.1103/PhysRevLett.107.127205
http://dx.doi.org/10.1103/PhysRevLett.107.127205
http://dx.doi.org/10.1103/PhysRevLett.77.2782
http://dx.doi.org/10.1103/PhysRevLett.77.2782
http://dx.doi.org/10.1103/PhysRevLett.77.2782
http://dx.doi.org/10.1103/PhysRevLett.77.2782
http://dx.doi.org/10.1103/PhysRevLett.76.1336
http://dx.doi.org/10.1103/PhysRevLett.76.1336
http://dx.doi.org/10.1103/PhysRevLett.76.1336
http://dx.doi.org/10.1103/PhysRevLett.76.1336
http://dx.doi.org/10.1103/RevModPhys.74.485
http://dx.doi.org/10.1103/RevModPhys.74.485
http://dx.doi.org/10.1103/RevModPhys.74.485
http://dx.doi.org/10.1103/RevModPhys.74.485
http://dx.doi.org/10.1126/science.aaa4166
http://dx.doi.org/10.1126/science.aaa4166
http://dx.doi.org/10.1126/science.aaa4166
http://dx.doi.org/10.1126/science.aaa4166
http://dx.doi.org/10.1038/nphys2898
http://dx.doi.org/10.1038/nphys2898
http://dx.doi.org/10.1038/nphys2898
http://dx.doi.org/10.1038/nphys2898
http://dx.doi.org/10.1038/nphys2513
http://dx.doi.org/10.1038/nphys2513
http://dx.doi.org/10.1038/nphys2513
http://dx.doi.org/10.1038/nphys2513


SELF-ORGANIZED PSEUDO-GRAPHENE ON GRAIN . . . PHYSICAL REVIEW B 93, 245406 (2016)

[14] Y. Ran, A. Vishwanath, and D.-H. Lee, Spin-Charge Separated
Solitons in a Topological Band Insulator, Phys. Rev. Lett. 101,
086801 (2008).

[15] X.-L. Qi and S.-C. Zhang, Spin-Charge Separation in the
Quantum Spin Hall State, Phys. Rev. Lett. 101, 086802
(2008).

[16] V. Juricic, A. Mesaros, R.-J. Slager, and J. Zaanen, Universal
Probes of Two-Dimensional Topological Insulators: Dislocation
and Pi-Flux, Phys. Rev. Lett. 108, 106403 (2012).

[17] A. Mesaros, R.-J. Slager, J. Zaanen, and V. Juricic, Zero-energy
states bound to a magnetic π -flux vortex in a two-dimensional
topological insulator, Nucl. Phys. B 867, 977 (2013).

[18] R. Jackiw and C. Rebbi, Solitons with fermion number 1
2 ,

Phys. Rev. D 13, 3398 (1976).
[19] R. Jackiw and P. Rossi, Zero modes of the vortex-fermion

system, Nucl. Phys. B 190, 681 (1981).
[20] W. P. Su, J. R. Schrieffer, and A. J. Heeger, Soliton excitations

in polyacetylene, Phys. Rev. B 22, 2099 (1980).
[21] A. J. Heeger, S. Kivelson, J. R. Schrieffer, and W.-P. Su, Solitons

in conducting polymers, Rev. Mod. Phys. 60, 781 (1988).
[22] J. E. Moore and L. Balents, Topological invariants of time-

reversal-invariant band structures, Phys. Rev. B 75, 121306(R)
(2007).

[23] Y. Ran, Y. Zhang, and A. Vishwanath, One-dimensional topo-
logically protected modes in topological insulators with lattice
dislocations, Nat. Phys. 5, 298 (2009).

[24] R.-J. Slager, A. Mesaros, V. Juricic, and J. Zaanen, Interplay
between electronic topology and crystal symmetry: Dislocation-
line modes in topological band insulators, Phys. Rev. B 90,
241403(R) (2014).

[25] B. A. Bernevig, T. L. Hughes, and S.-C. Zhang, Quantum spin
hall effect and topological phase transition in hgte quantum
wells, Science 314, 1757 (2006).

[26] R. Takahashi and S. Murakami, Gapless Interface States be-
tween Topological Insulators with Opposite Dirac Velocities,
Phys. Rev. Lett. 107, 166805 (2011).

[27] M. S. Foster and A. W. W. Ludwig, Interaction effects on two-
dimensional fermions with random hopping, Phys. Rev. B 73,
155104 (2006).

[28] M. König et al., Quantum spin hall insulator state in HgTe
quantum wells, Science 318, 766 (2007).

[29] H. B. Nielsen and M. Ninomiya, The Adler-Bell-Jackiw
anomaly and Weyl fermions in a crystal, Phys. Lett. B 130,
389 (1983).

[30] L. Ju et al., Topological valley transport at bilayer graphene
domain walls, Nature (London) 520, 650 (2015).

[31] E. Y. Ma, Y.-T. Cui, K. Ueda, S. Tang, K. Chen, N. Tamura,
P. M. Wu, J. F. Y. Tokura, and Z.-X. Shen, Mobile metallic
domain walls in an all-in-all-out magnetic insulator, Science
350, 538 (2015).

[32] I. Martin, Y. M. Blanter, and A. Morpurgo, A. F. Topological
Confinement in Bilayer Graphene, Phys. Rev. Lett. 100, 036804
(2008).

[33] F. Zhang, A. H. MacDonald, and E. J. Mele, Valley Chern
numbers and boundary modes in gapped bilayer graphene,
Proc. Natl. Acad. Sci. USA 110, 10546 (2013).

[34] A. Vaezi, Y. F. Liang, D. H. Ngai, L. Yang, and E. A. Kim,
Topological Edge States at a Tilt Boundary in Gated Multilayer
Graphene, Phys. Rev. X 3, 021018 (2013).

[35] W. Jaskolski, M. Pelc, L. Chico, and A. Ayuela, Existence of
nontrivial topologically protected states at grain boundaries in
bilayer graphene: Signatures and electrical switching, Nanoscale
8, 6079 (2016).

[36] K. C. Nowack et al., Imaging currents in HgTe quantum wells
in the quantum spin Hall regime, Nat. Mater. 12, 787 (2013).

[37] Y. K. Kato et al., Observation of the spin Hall effect in
semiconductors, Science 306, 1910 (2004).

[38] V. Sih et al., Spatial imaging of the spin Hall effect and
current-induced polarization in two-dimensional electron gases,
Nat. Phys. 1, 31 (2005).

[39] R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J.
Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, Fine structure
constant defines visual transparency of graphene, Science 320,
1308 (2008).

[40] A. G. Grushin, J. W. F. Venderbos, and J. H. Bardarson,
Coexistence of Fermi arcs with two-dimensional gapless Dirac
states, Phys. Rev. B 91, 121109(R) (2015).

[41] S. T. Ramamurthy and T. L. Hughes, Patterns of electro-
magnetic response in topological semi-metals, Phys. Rev. B 92,
085105 (2015).

[42] Z. Wang, M. Saito, K. P. McKenna, L. Gu, S. Tsukimoto,
A. L. Shluger, and Y. Ikuhara, Atom-resolved imaging of
ordered defect superstructures at individual grain boundaries,
Nature (London) 479, 380 (2011).

[43] B. Yan, M. Jansen, and C. Felser, A large-energy-gap oxide
topological insulator based on the superconductor BaBiO3, Nat.
Phys. 9, 709 (2013).

[44] D. Hsieh et al., A topological Dirac insulator in a quantum spin
Hall phase, Nature (London) 452, 970 (2008).

[45] N. Xu et al., Direct observation of the spin texture in SmB6 as
evidence of the topological Kondo insulator, Nat. Commun. 5,
4566 (2014).

[46] D. J. Kim, J. Xia, and Z. Fisk, Topological surface state in
the Kondo insulator samarium hexaboride, Nat. Mater. 13, 466
(2014).

[47] G. Autes et al., A novel quasi-one-dimensional topological
insulator in bismuth iodide β-Bi4I4, Nat. Mater. 15, 154 (2016).

[48] T. H. Hsieh et al., Topological crystalline insulators in the SnTe
material class, Nat. Commun. 3, 982 (2012).

[49] P. Dziawa et al., Topological crystalline insulator states in
Pb1−xSnxSe, Nat. Mater. 11, 1023 (2012).

[50] Y. Tanaka et al., Experimental realization of a topological
crystalline insulator in SnTe, Nat. Phys. 8, 800 (2012).

[51] E. N. Lima, T. M. Schmidt, and R. W. Nunes, Topologically-
protected metallic states induced by a one-dimensional extended
defect in a 2D topological insulator, arXiv:1601.04741.

[52] T. L. Hughes, H. Yao, and X.-L. Qi, Majorana zero modes in
dislocations of Sr2RuO4, Phys. Rev. B 90, 235123 (2014).

[53] V. Lahtinen, A. W. W. Ludwig, J. K. Pachos, and S. Trebst,
Topological liquid nucleation induced by vortex-vortex interac-
tions in Kitaev’s honeycomb model, Phys. Rev. B 86, 075115
(2012).

[54] M. Cheng, R. M. Lutchyn, V. Galitski, and S. Das Sarma,
Splitting of Majorana Modes Due to Intervortex Tunneling in a
p+ip Superconductor, Phys. Rev. Lett. 103, 107001 (2009).

[55] V. Lahtinen, Interacting non-Abelian anyons as Majorana
fermions in the honeycomb lattice model, New J. Phys. 13,
075009 (2011).

245406-11

http://dx.doi.org/10.1103/PhysRevLett.101.086801
http://dx.doi.org/10.1103/PhysRevLett.101.086801
http://dx.doi.org/10.1103/PhysRevLett.101.086801
http://dx.doi.org/10.1103/PhysRevLett.101.086801
http://dx.doi.org/10.1103/PhysRevLett.101.086802
http://dx.doi.org/10.1103/PhysRevLett.101.086802
http://dx.doi.org/10.1103/PhysRevLett.101.086802
http://dx.doi.org/10.1103/PhysRevLett.101.086802
http://dx.doi.org/10.1103/PhysRevLett.108.106403
http://dx.doi.org/10.1103/PhysRevLett.108.106403
http://dx.doi.org/10.1103/PhysRevLett.108.106403
http://dx.doi.org/10.1103/PhysRevLett.108.106403
http://dx.doi.org/10.1016/j.nuclphysb.2012.10.022
http://dx.doi.org/10.1016/j.nuclphysb.2012.10.022
http://dx.doi.org/10.1016/j.nuclphysb.2012.10.022
http://dx.doi.org/10.1016/j.nuclphysb.2012.10.022
http://dx.doi.org/10.1103/PhysRevD.13.3398
http://dx.doi.org/10.1103/PhysRevD.13.3398
http://dx.doi.org/10.1103/PhysRevD.13.3398
http://dx.doi.org/10.1103/PhysRevD.13.3398
http://dx.doi.org/10.1016/0550-3213(81)90044-4
http://dx.doi.org/10.1016/0550-3213(81)90044-4
http://dx.doi.org/10.1016/0550-3213(81)90044-4
http://dx.doi.org/10.1016/0550-3213(81)90044-4
http://dx.doi.org/10.1103/PhysRevB.22.2099
http://dx.doi.org/10.1103/PhysRevB.22.2099
http://dx.doi.org/10.1103/PhysRevB.22.2099
http://dx.doi.org/10.1103/PhysRevB.22.2099
http://dx.doi.org/10.1103/RevModPhys.60.781
http://dx.doi.org/10.1103/RevModPhys.60.781
http://dx.doi.org/10.1103/RevModPhys.60.781
http://dx.doi.org/10.1103/RevModPhys.60.781
http://dx.doi.org/10.1103/PhysRevB.75.121306
http://dx.doi.org/10.1103/PhysRevB.75.121306
http://dx.doi.org/10.1103/PhysRevB.75.121306
http://dx.doi.org/10.1103/PhysRevB.75.121306
http://dx.doi.org/10.1038/nphys1220
http://dx.doi.org/10.1038/nphys1220
http://dx.doi.org/10.1038/nphys1220
http://dx.doi.org/10.1038/nphys1220
http://dx.doi.org/10.1103/PhysRevB.90.241403
http://dx.doi.org/10.1103/PhysRevB.90.241403
http://dx.doi.org/10.1103/PhysRevB.90.241403
http://dx.doi.org/10.1103/PhysRevB.90.241403
http://dx.doi.org/10.1126/science.1133734
http://dx.doi.org/10.1126/science.1133734
http://dx.doi.org/10.1126/science.1133734
http://dx.doi.org/10.1126/science.1133734
http://dx.doi.org/10.1103/PhysRevLett.107.166805
http://dx.doi.org/10.1103/PhysRevLett.107.166805
http://dx.doi.org/10.1103/PhysRevLett.107.166805
http://dx.doi.org/10.1103/PhysRevLett.107.166805
http://dx.doi.org/10.1103/PhysRevB.73.155104
http://dx.doi.org/10.1103/PhysRevB.73.155104
http://dx.doi.org/10.1103/PhysRevB.73.155104
http://dx.doi.org/10.1103/PhysRevB.73.155104
http://dx.doi.org/10.1126/science.1148047
http://dx.doi.org/10.1126/science.1148047
http://dx.doi.org/10.1126/science.1148047
http://dx.doi.org/10.1126/science.1148047
http://dx.doi.org/10.1016/0370-2693(83)91529-0
http://dx.doi.org/10.1016/0370-2693(83)91529-0
http://dx.doi.org/10.1016/0370-2693(83)91529-0
http://dx.doi.org/10.1016/0370-2693(83)91529-0
http://dx.doi.org/10.1038/nature14364
http://dx.doi.org/10.1038/nature14364
http://dx.doi.org/10.1038/nature14364
http://dx.doi.org/10.1038/nature14364
http://dx.doi.org/10.1126/science.aac8289
http://dx.doi.org/10.1126/science.aac8289
http://dx.doi.org/10.1126/science.aac8289
http://dx.doi.org/10.1126/science.aac8289
http://dx.doi.org/10.1103/PhysRevLett.100.036804
http://dx.doi.org/10.1103/PhysRevLett.100.036804
http://dx.doi.org/10.1103/PhysRevLett.100.036804
http://dx.doi.org/10.1103/PhysRevLett.100.036804
http://dx.doi.org/10.1073/pnas.1308853110
http://dx.doi.org/10.1073/pnas.1308853110
http://dx.doi.org/10.1073/pnas.1308853110
http://dx.doi.org/10.1073/pnas.1308853110
http://dx.doi.org/10.1103/PhysRevX.3.021018
http://dx.doi.org/10.1103/PhysRevX.3.021018
http://dx.doi.org/10.1103/PhysRevX.3.021018
http://dx.doi.org/10.1103/PhysRevX.3.021018
http://dx.doi.org/10.1039/C5NR08630B
http://dx.doi.org/10.1039/C5NR08630B
http://dx.doi.org/10.1039/C5NR08630B
http://dx.doi.org/10.1039/C5NR08630B
http://dx.doi.org/10.1038/nmat3682
http://dx.doi.org/10.1038/nmat3682
http://dx.doi.org/10.1038/nmat3682
http://dx.doi.org/10.1038/nmat3682
http://dx.doi.org/10.1126/science.1105514
http://dx.doi.org/10.1126/science.1105514
http://dx.doi.org/10.1126/science.1105514
http://dx.doi.org/10.1126/science.1105514
http://dx.doi.org/10.1038/nphys009
http://dx.doi.org/10.1038/nphys009
http://dx.doi.org/10.1038/nphys009
http://dx.doi.org/10.1038/nphys009
http://dx.doi.org/10.1126/science.1156965
http://dx.doi.org/10.1126/science.1156965
http://dx.doi.org/10.1126/science.1156965
http://dx.doi.org/10.1126/science.1156965
http://dx.doi.org/10.1103/PhysRevB.91.121109
http://dx.doi.org/10.1103/PhysRevB.91.121109
http://dx.doi.org/10.1103/PhysRevB.91.121109
http://dx.doi.org/10.1103/PhysRevB.91.121109
http://dx.doi.org/10.1103/PhysRevB.92.085105
http://dx.doi.org/10.1103/PhysRevB.92.085105
http://dx.doi.org/10.1103/PhysRevB.92.085105
http://dx.doi.org/10.1103/PhysRevB.92.085105
http://dx.doi.org/10.1038/nature10593
http://dx.doi.org/10.1038/nature10593
http://dx.doi.org/10.1038/nature10593
http://dx.doi.org/10.1038/nature10593
http://dx.doi.org/10.1038/nphys2762
http://dx.doi.org/10.1038/nphys2762
http://dx.doi.org/10.1038/nphys2762
http://dx.doi.org/10.1038/nphys2762
http://dx.doi.org/10.1038/nature06843
http://dx.doi.org/10.1038/nature06843
http://dx.doi.org/10.1038/nature06843
http://dx.doi.org/10.1038/nature06843
http://dx.doi.org/10.1038/ncomms5566
http://dx.doi.org/10.1038/ncomms5566
http://dx.doi.org/10.1038/ncomms5566
http://dx.doi.org/10.1038/ncomms5566
http://dx.doi.org/10.1038/nmat3913
http://dx.doi.org/10.1038/nmat3913
http://dx.doi.org/10.1038/nmat3913
http://dx.doi.org/10.1038/nmat3913
http://dx.doi.org/10.1038/nmat4488
http://dx.doi.org/10.1038/nmat4488
http://dx.doi.org/10.1038/nmat4488
http://dx.doi.org/10.1038/nmat4488
http://dx.doi.org/10.1038/ncomms1969
http://dx.doi.org/10.1038/ncomms1969
http://dx.doi.org/10.1038/ncomms1969
http://dx.doi.org/10.1038/ncomms1969
http://dx.doi.org/10.1038/nmat3449
http://dx.doi.org/10.1038/nmat3449
http://dx.doi.org/10.1038/nmat3449
http://dx.doi.org/10.1038/nmat3449
http://dx.doi.org/10.1038/nphys2442
http://dx.doi.org/10.1038/nphys2442
http://dx.doi.org/10.1038/nphys2442
http://dx.doi.org/10.1038/nphys2442
http://arxiv.org/abs/arXiv:1601.04741
http://dx.doi.org/10.1103/PhysRevB.90.235123
http://dx.doi.org/10.1103/PhysRevB.90.235123
http://dx.doi.org/10.1103/PhysRevB.90.235123
http://dx.doi.org/10.1103/PhysRevB.90.235123
http://dx.doi.org/10.1103/PhysRevB.86.075115
http://dx.doi.org/10.1103/PhysRevB.86.075115
http://dx.doi.org/10.1103/PhysRevB.86.075115
http://dx.doi.org/10.1103/PhysRevB.86.075115
http://dx.doi.org/10.1103/PhysRevLett.103.107001
http://dx.doi.org/10.1103/PhysRevLett.103.107001
http://dx.doi.org/10.1103/PhysRevLett.103.107001
http://dx.doi.org/10.1103/PhysRevLett.103.107001
http://dx.doi.org/10.1088/1367-2630/13/7/075009
http://dx.doi.org/10.1088/1367-2630/13/7/075009
http://dx.doi.org/10.1088/1367-2630/13/7/075009
http://dx.doi.org/10.1088/1367-2630/13/7/075009



