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Abstract—Service oriented computing provides suitable means
to technically support distributed collaboration of heterogeneous
devices, for example those present in mobile environments. E.g.,
many applications are built on composite Web-Services. However,
when executing these applications in dynamic environments, fail-
ures of participating entities have to be optimistically coped with,
in order to avoid inconsistent system states and thereby provide
suitable correctness guarantees. Transactional coordination for
services so far lacks the possibility to adapt failure handling to
the current execution context, e.g. dynamically bound services at
runtime. In this paper, we employ transactional service properties
to ensure reliable, i.e., correct execution of workflows by still
respecting the autonomy of participants. We propose algorithms
to verifiy and alter the structure of the composition at runtime,
thus adapting the control flow to the current execution context
to ensure correct execution.

I. INTRODUCTION

When supporting collaboration in mobile networks, one has
to provides suitable means to deal with the characteristics
of these environments. Besides the decreased availability of
network links and resources, this particularly refers to the
dynamics of these networks (due to the mobility and wireless
communication channels) as well as the increased autonomy
of mobile participants as opposed to conventional fixed-wired
scenarios.

Service oriented architectures provide suitable means to
loosely coupling of components. Through composition of
components, new value-added services as well as applications
can be created. SOAs allow for dynamic discovery and binding
of services at runtime. This forms the basis for service
composition in mobile environments in which the execution
context (i.e., available services) is not known at designtime
and might differ from execution to execution.

Current workflow engines only allow for static deploy-
ment: Once deployed, the composition, i.e., its workflow,
remains fixed. There already exist approaches to flexibly
alter workflows at runtime according to the current execution
context, e.g. the bound service providers. Stein et al. [18]
provide several execution strategies in different environments
to maximize the profit and minimize the costs of the workflow.
Additionally, there exist approaches, which provide technical
means to dynamically alter e.g. deployed BPEL processes at
runtime, such as [20].

Especially due to less stability of network links in mobile
environments, it is indispensable to be able to cope with fail-
ures of different kinds to guarantee correct execution. Coping

with failures while respecting the autonomy of participants
might come at the cost of relaxing correctness criteria, such as
the strict atomicity and isolation of all components, which are
guaranteed in databases. These strict guarantees can only be
asserted by blocking of resources. However, in case of discon-
nections of participants, this leads to services blocking for an
arbitrary long time. In order to avoid blocking, “correctness”
is relaxed and e.g. assured by employing convenient forward-
and backward-recovery mechanisms to avoid inconsistent and
non-recoverable system states.
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Fig. 1. Workflow of the Mobile Planet MoP.

We will recurrently refer to the following application sce-
nario of mobile travel guide, which we call Mobile Planet
(MoP). MoP supports the user in finding points of interest and
booking activities according to defined preferences and present
offers. An example of a mobile ticket vendor who sells tickets
to the Blue Man Group (BMG, http://www.blueman.com)
show to tourists is shown in Figure 1. Additionally, transporta-
tion facilities organized and a table at a nearby restaurant is
reserved.

At first, a customer is asked to specify its requests (CRS),
e.g. number of traveling persons and dinner preferences. The
workflow then books tickets (BMG), organizes convenient
transportation and reserves a table at a restaurant in parallel
(intended by the AND-split). The threads are then synchro-
nized, and if all are completed, the customer agrees on the
legal terms and the booked tickets are delivered (Confirm).
Finally, the payment is performed, either by credit card (CC)
or by cash (Ch). Note that this time, as intended by the XOR-
split, one and only one branch is supposed to complete. So far,
the workflow specifies the execution of services, but it does not
yet define the behavior in the presence of any service failure.

In our scenario, we assume nodes to be equipped with
one or several wireless communication interfaces (e.g., IEEE
802.11, GSM or UMTS), which all feature quite different
characteristics in terms of bandwidth, communication range



and costs. Nodes may be reachable via more than one net-
working channel at a time. We target applications which allow
for delay tolerant networking. It is thus favorable to use ad-
hoc communication, if the costs of communicating (which
explosively increase, if roaming costs are involved) exceed
the value of the application.

In this paper, we propose a correctness criterion (semi-
atomicity) for workflows with respect to transactional prop-
erties of services. The contribution of the paper is an adaptive
workflow management system (AWM) which verifies the
correctness of specified workflows at runtimes and adapts the
structure of a workflow if the verification fails.

The paper is structured as follows: In Section II, we present
related work. In Section III the formal model of transactional
service composition is introduced. In Section IV, we at first
present our verification algorithm (IV-A). We then state, how
we adapt workflows at runtime (IV-B) in order to ensure cor-
rectness. In conclude in Section V by discussing experimental
results of our approach.

II. RELATED WORK

Many advanced transaction models (ATM), e.g. [6], [22]
have been proposed which support transactional processing
in distributed databases [10]. These use less strict notions of
atomicity and isolation in order to avoid blocking situations.
Although they are very powerful, they are not capable of
integrating structural requirements of complex applications in
one transaction. A variety of mobile transaction models (e.g.,
[7], [13], [14]) have been proposed, which are able to cope
with failures due to frequent disconnections. However, they
are not able to integrate different structural patterns as well.

In SOAs, workflow execution and transactional coordination
(e.g., for Web-Services (WS)) are two orthogonal concerns:
The execution of workflows is controlled by workflow engines.
Those provide support for the design, execution, visualization
and analysis of workflows however do not integrate trans-
actional guarantees. Transactional coordination, e.g. for WS,
is specified by the WS-Transaction Framework WS-Tx1 which
offers means for coordination of different services. It specifies
coordination types for short- (atomic transactions: WS-AT)
and long-running activities (business activities: WS-BA). WS-
AT relies on blocking of resources to achieve atomic outcome,
while WS-BA relies on the assumption that all components can
be compensated in case of failure. Workflow languages, e.g.,
BPEL, additionally provide compensation and failure handlers
which are used to specify custom-build failure handling. As
those enable designers to specify recovery for single failure
situations, no correctness guarantees can be given.

Forward-recovery for composite services, such as proposed
by [17], is a promising approach to deal with the unstable
availability of single participants in service oriented com-
puting. The authors propose the use of an abstract service
provider. Its responsibility is to dynamically replace a failing
service at runtime with semantically equivalent ones. Thus,

1http://www.ibm.com/developerworks/library/specification/ws-tx

specific failure situations are covered. But transactional execu-
tion of the whole workflow or subparts of it, is not considered.

Fauvet et. al [3] propose a high level operator for com-
posing Web-Services according to transactional properties.
Transactional execution relies on the tentative hold protocol
(THP). Services are distinguished according to their additional
capabilities: Support of 2PC, compensatability or neither.
While this approach is powerful it uses a proprietary operator.
Vidyasankar et. al [21] explore transactional properties in their
proposed multi-level composition model. It provides a user-
centric approach to describe desired transactional properties at
different levels of abstraction. While we employ transactional
properties at different levels of abstraction as well, as opposed
to those two approaches ( [3], [21]), we integrate transactional
composition in existing standards.

More recently, Stein et al. [18] proposed flexible provision-
ing of Web-Services to maximize the benefit of workflows
and reduce costs. They provide several provisioning strategies
regarding utility costs and failure probabilities to achieve
an optimized composition. We complement this work by
providing means to ensure transactionally correct execution
of flexible workflows, even in case of failure.

In order to verify the execution of Web-Service workflows,
several formalisms have been used, such as petri nets [9] or
finite-state-machines [1]. These introduce powerful means to
formally verify the execution of composite Web-Services but
do not consider transactional verification. Gaaloul et al. [4]
use an event based-approach to model transactional composite
services. They provide static verification mechanisms, however
adaptation of the workflow in case the verification fails, is
left to the designer. As it provides suitable means to specify
transactional behavior, we use this formalism in our work. We
additionally specify dynamic workflow alterations at runtime
to support correct execution.

Binding services at runtime is integrated in existing work-
flow languages, e.g. in BPEL using dynamic bindings using
lookups as partner links and can be performed by workflow
engines. However, in mobile environments, discovery and
matching of services at runtime is a challenging task. Many
powerful approaches to service discovery in mobile networks
exist, such as [2], [15], [16], as well as semantic description
languages, e.g., OWL-S, WSDL-S or DSD [11], [12], [23] to
support matching of service offers and requests.

III. TRANSACTIONAL COMPOSITION FORMALLY

In this section, we briefly introduce the formal model used
to specify transactional behavior of services and composite
services. As it is very powerful and suits our demands, our
model is based on the model proposed by Gaaloul et al. [4].
We introduce transactional properties of services and derive
those for the used workflow pattern. At the end of this section,
we introduce the correctness criterion which we employ for
workflows.2

2As we focus on the verification and adaptation algorithms (Section IV-A),
the description of the model is kept short. For a more detailed introduction,
we refer to [8].



A. Service Model

The behavior of a single service is modeled as a state-
machine (see Figure 2), using the following states: Initial
indicates that it has not been activated yet, after activation its
status is active. Failed and canceled indicate failed execution
(i.e., no changes are made persistent), due to an internal error
or externally triggered. If the service completed successfully,
its state is completed. The transitions between these states
are either internally triggered, i.e., by the service itself, or
externally triggered, i.e., by another entity, such as a workflow
engine, another service or a person.

Initial Active Completed

CompensatedFailedCancelled

activate

fail

cancel

complete

compensateretry

Fig. 2. State machine of a service.

B. Transactional Service Properties

We explore transactional properties of services in order to
ensure correct execution in terms of transactional support.
Transactional properties have already been considered in the
context of flexible transactions [24] and are also important for
verification of failure handling as specified by the designer
[4]. We classify services according to whether they can fail
(redoability), whether can be compensated (compensatability)
and whether they need to be recovered in case of failure
(consistent closure). Examples of the latter are read-only
registered transaction participants.

A service is considered to be compensatable (denoted as
boolean values S.comp and ¬S.comp respectively), if its
effects can be undone after completion (e.g., by invoking
a compensating service C).3 The redoability of a service
indicates whether a service can fail. I.e., a redoable service
(denoted as S.redo) will eventually complete, if its activation
is repeated a positive number of n times. We indicate the
need for recovery in case of failure by the term, whether
a service demands consistent closure wrt the outcome of
the whole workflow. A service demanding consistent closure
(S.consCompl) needs, once completed, recovery in case of
failure. A service, which does not demand consistent closure
does not need to be compensated in case of recovery.

For verification and adaptation purposes (see Section IV), it
is important to know whether a service is redoable and whether
its completion hinders the correctness of the workflow in case
of failure. Thus, it is important to know, whether a service is
compensatable or does not need consistent closure. We denote
this by the derived transactional property referred to as recov-
erability as follows: A service is considered to be recoverable
(denoted as S.recover), if it is either compensatable or it does
not demand consistent closure:

S.recover = S.comp ∨ ¬S.consCompl

3Non-compensatable services are sometimes referred to as pivot services.

In this paper, we focus on verification and adaptation
(see Section IV). For this purpose it suffices to consider
recoverability and redoability of services.4 The transactional
properties of a workflow element e are thus defined as follows:

Definition 1 (Transactional Properties of Element e):
The transactional properties of a workflow element e are
denoted as a tuple as follows:

PT (e) = (e.recover, e.redo)

Consider again the example workflow and the transactional
services properties as shown in Figure 3. BMG for example
with PT (BMG) = (1, 0) is recoverable (i.e., bought tickets
may be returned) but not redoable (if no more tickets are
available).
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Fig. 3. Running example with transactional properties.

C. Transactional Composition Using Workflow Patterns

The structure of service compositions is defined using
workflow patterns. Formally, a workflow pattern is a function
which given a set of services returns their control flow [19].
Components of such patterns are either patterns themselves
or services. In this paper, we limit our consideration to the
following basic workflow patterns:
Sequence WPSEQ (Si, . . . , Si+k): If services Si, Si+1,
. . . Si+k arranged in a sequence,5 a subsequent service is
enabled after the completion of its predecessor. The pattern
is also referred to as sequential or serial routing. In order
to successfully complete a sequence, all components have to
complete, therefore it can be expressed by the boolean formula
(Si ∧ Si+1 ∧ . . . ∧ Si+k).
AND-split, AND-join WPAND (Si, . . . , Si+k): At the split
point, the execution of the composition splits in concurrent
branches Si to Si+k. Each of them is executed independently
of the others. At the join point, the subsequent workflow is
continued as soon as all branches completed (Si∧ . . .∧Si+k).
This pattern also referred to parallel split or fork.
XOR-split, XOR-join6 WPXOR (Si, Sj): At the split point,
the workflow diverges into several branches, out of which
one is chosen. As these are never executed in parallel, the
subsequent workflow is continued as soon as one branch com-
pletes. Thus, one and only one branch completes. Successful

4Note, that for adding the appropriate failure handling mechanisms, com-
pensatability and consistent closure are needed as well.

5The elements are ordered according to their index.
6As OR-split and -join can be expressed by the XOR-pattern, we do not

seperately regard it.



execution of an XOR, containing two elements Si and Sj is
denoted by (Si ∧ ¬Sj) ∨ (¬Si ∧ Sj).

In our work, we consider elements of XOR-patterns to
be alternatives. Thus, the choice on which service within
the pattern to execute can be based on their transactional
properties.

As we want to verify the workflow with the bound services
at runtime, we analyze the composite service and derive the
transactional properties of patterns. Those are determined
according to the pattern and the properties of the enclosed
elements. The properties of a workflow pattern WP (E) are
denoted just as those of services, namely WP (E).recover
and WP (E).redo (see Definition 1). As the semantics of the
SEQUENCE- and AND-pattern are the same (i.e., all included
services have to complete in order to complete the pattern),
their transactional properties are derived in the same way:

1) Transactional Properties of the SEQUENCE- and AND-
pattern: A pattern WPT (E), which is a SEQUENCE- or an
AND-pattern, are derived as follows: The pattern is recover-
able, if and only if all elements of the pattern are recoverable:

WPT (E).recover ⇔ ∀e ∈ E : e.recover

The pattern, is redoable, if and only if all of its elements
are redoable. Then the execution of the whole pattern is, once
invoked, guaranteed to complete:

WPT (E).redo ⇔ ∀e ∈ E : e.redo

2) Transactional Properties of the XOR-pattern: The prop-
erties of an XOR-pattern are determined differently than
those of the SEQUENCE and AND-pattern, as one and only
one branch is to be completed. As it cannot be previously
stated which service will complete at runtime, the transactional
properties can only be determined for some (not all) cases.

The XOR-pattern WPXOR(E), is recoverable, if all its
elements are recoverable. If all elements are not recoverable,
then the pattern is not recoverable:

WP XOR(E).recover ⇐ ∀e ∈ E : e.recover
¬WPXOR(E).recover ⇐ ∀e ∈ E : ¬e.recover

Otherwise, if some elements are recoverable and some are not,
the recoverability cannot be previously determined.

However it can definitely be determined, whether the pattern
is redoable: If one redoable element within WPXOR exists,
then this element is an execution path of the pattern which is
guaranteed to complete. Thus, an XOR-pattern WP(E)XOR

is redoable, as soon as one element within the pattern is
redoable. Otherwise, it is not redoable:

WPXOR(E).redo ⇔ ∃e ∈ E : e.redo

Reconsider the example with the transactional proper-
ties as shown in Figure 3. According to these deriva-
tion rules, the AND-pattern is not recoverable and not re-
doable (PT (WPAND(BMG,T, R)) = (0, 0)). The XOR-
pattern on the other hand is recoverable and redoable
(PT (WPXOR(CC,Ch)) = (1, 1)).

3) Subtransaction Pattern: Additionally to the just men-
tioned control flow patterns, we employ an auxiliary pattern,
called SUBTRANSACTION-pattern WPsubTA(e). This is used,
whenever autonomous execution of elements endangers the
correctness of the execution. WPsubTA(e) contains a single
control flow pattern. It defines, that all elements contained by
this pattern have to be coordinated in an atomic subtransaction,
e.g., using a blocking protocol.7 This can be implemented us-
ing WS-AT. The WPsubTA pattern decreases the autonomy of
enclosed services. However, it is in some cases indispensable
in order to guarantee correct execution. WPsubTA(e) is neither
recoverable, nor retrieable i.e., its transactional properties are:
pT (WP subTA(e)) = (0, 0).

D. Data Dependencies

In addition to the control flow, we consider given data-
dependencies between elements. A data dependency as:

Definition 2 (Data-dependency: Si → Sj): A data-
dependency of the form Si → Sj exists, if Sj is
dependent on the output of Si. Thus, Sj cannot be
executed before Si.

Clearly, data-dependencies are transitive: If dependencies
Si → Sj and Sj → Sk exist, then Sk is transitive dependent
on Si, thus it cannot be executed before Si. Initially, we
assume that no data dependencies within parallel elements of
AND-patterns and generally no cyclic data dependencies exist.

E. Semi-Atomicity in the Presence of Transactional Properties

Emplyoing the transactional properties of services (see
Section III-B), we now define the notion of correct execution.
Intuitively, the execution of the workflow is correct, if the
workflow is completed (cf. commit). Additionally, correct
execution involves situations, in which the workflow is abored
(i.e., unsuccessfully terminates). In these situations, all ser-
vices, which demand compensation, need to be compensated.

This notion of correctness (commit or abort) seems to be
closely related to atomicity of database transactions. These
employ blocking protocols, such as the 2PC (two phase com-
mit) to reach atomic outome. However, blocking of resources
is counterproductive in the environment of loosely coupled
components. Several notions of relaxed atomicity have been
introduced in the past to increase the autonomy of participants:
E.g., semantic atomicity [5] and semi-atomicity [24] allow for
commitment of subtransactions at different times. Appropri-
ate compensation mechanisms enable backward-recovery of
already committed subtransactions in case of failure.

When deploying Web-Services, transactional support is
specified by the WS-Transaction Framework WS-Tx. Ser-
vices can either be executed as an atomic unit (WS-
AtomicTransaction) which employs the 2PC to reach atomic
commit. As mentioned before, we aim at avoiding blocking of
resources whenever possible. The other possibility is to group

7Solitary exception are indirect conflict elements, see Section IV-A.



services into activities (WS-BusinessActivity) which assume
compensatability of all components. If this assumption does
not hold for only one services within such an activity, severe
failures might occur, as we will discuss in Section V.

As stated in [8], we explore transactional service properties
to specifiy semi-atomicity. We employ the accepted termina-
tion states model to identify representationsl sets of services
whose completion reflects the successful execution of the
composite service. If alternatives i.e., WPXOR patterns, exist,
multiple of these sets exist. We thus define semi-atomicity of
an executed composite service to be, that

• either all services belonging to one execution path leading
to an ATS, are completed and no other service which
demands consistent completion is completed (commit) or

• no service demanding consistent completion is completed
(abort).

As recovery for services which do not demand consistent
completion is disregarded, this relaxes the semi-atomicity as
defined for flexible transactions. Note, that semi-atomicity
specifies the correctness for a termination of a workflow i.e.,
an executed workflow.

IV. ADAPTIVE WORKFLOW MANAGEMENT

Using semi-atomicity as the correctness criterion, we now
define our algorithm to ensure transactionally correct execu-
tion of a workflow ω. We therefore perform two basic steps
(see Figure 4): At first, a given workflow ω is verified in
the current execution context by considering all transactional
properties of all involved entities. If the verification fails, the
control flow structure of the workflow is adapted to ensure
correct execution in a second step. We execute the verification
and adaptation every time, flexible service providers are bound
at runtime. For both steps, verification and adaptation, we
employ different representations of the workflow, which are
introduced in the respective sections.

Deployment

Specification of ω

S
e
rv

ic
e
 

D
is

co
v
e
ry Verification Adaptation

Execution

Fig. 4. System architecture of transactional workflow management system.

A. Verification

For verification purposes, we convert a given workflow ω
to its tree representation (denoted as Tω). Simply for clarity,
inner nodes are round, leaf nodes are rectangular shaped.
Inner nodes represent the patterns of the workflow, leaf nodes

represent the included services. The all-embracing pattern of
the workflow is the root node of the tree.

Note, the children of the SEQUENCE-node have to be
ordered according to their position in the sequence. For all
other patterns, the order of child nodes is irrelevant. In Figure
5, the tree representation of the running example is depicted.
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(1,0)
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(0,0)
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Fig. 5. Tree representation of the running example.

Intuitively, a workflow is guaranteed to semi-atomically
terminate, if in case of failure of any service,

• the execution of the workflow can be either backward-
recovered (thus all previously completed services are
recovered)

• or there exists at least one alternate execution path to an
ATS which is guaranteed to complete i.e., it is redoable.

To formalize this, we define the property semi-atomicity
preservation (SAP ) of workflow elements. It denotes, whether
the execution of an element will in any case result in semi-
atomic commit or abort. A workflow is correct, i.e., SAP , if all
possible executions result in semi-atomic termination. In the
following, we define elements, whose execution may hinder
semi-atomic termination of a workflow (conflict elements). We
will then use these definitions to formalize the verification
criterion SAP for workflow elements (in Section IV-A2).

1) Conflict Elements: In this section, we examine pairs of
elements, which hinder the correct execution of a worklow
ω. Intuitively, those are pairs of elements, which may cause
failure situations, which cannot be healed by backward- or
forward-recovery. The semi-atomicity of an executed workflow
is not preserved, if an element e which is not recoverable (i.e.,
pT (e) = (0, ∗)) is completed, while another element e′, which
is not retrieable (i.e., pT (e′) = (∗, 0)) failed (and no alternative
exists). Those are defined as transactional conflict elements.

Definition 3 (Transactional Conflict {ei, ej}C): A
transactional conflict between workflow elements ei and
ej (denoted as {ei, ej}C) exists, if ei is not recoverable
and ej is not redoable, i.e.:

pT (ei) = (0, ∗) and
pT (ej) = (∗, 0).

If such a pair of elements exists within a workflow, they
cannot be executed independently of each other. Recall for
example, the transportation service T (Figure 3) which is not
recoverable but redoable i.e., pT (T ) = (0, 1). BMG on the



other hand is recoverable but not redoable i.e., pT (BMG) =
(1, 0). {T,BMG}C is then a conflicting pair of elements. If
they are executed concurrently, T might complete while BMG
fails. This termination is not semi-atomic i.e., not correct.
Rearranging them to WPSEQ(BMG,T ) however, will in any
case result in semi-atomic termination. Rearranging elements
in any order is only possible, if no data-dependency exists. We
therefore additionally regard directed transactional conflicts.

Definition 4 (Directed Transactional Conflict (ei, ej)C):
A directed transactional conflict between workflow
elements ei and ej (denoted as (ei, ej)C) exists, if the
transactional conflict {ei, ej}C and a (direct or indirect)
data dependency ei to ej exist. I.e.:

{ei, ej}C and
ei → ej exist.

Directed transactional conflicts between pairs of elements
cannot be solved by rearranging them. Their order re-
mains fixed according to the data-dependency. In this case,
semi-atomicity can only be preserved by utilizing a sub-
transaction pattern WPsubTA, altering the workflow to be
WPsubTA(WPSEQ(ei, ej)). This results in decreased auton-
omy of these elements.

Considering the correlation between directed transactional
conflicts, one easily identifies, that they are transitive in the
following way: If directed transactional conflicts (e1, e2)C and
(e2, e3)C exist, it concludes from Definition 4 that pT (e2) =
(0, 0) and (e1, e3)C exists as well (see Figure 6, left side).

e1
(0,*)

e2 e3
(*,0)

e1
(0,*)

e2 e3
(*,0)

(*,0) / (0,*) / (1,1)
(0,0)

Fig. 6. Transitivity of conflicts (left) and enclosed conflict elements (right).

On the other hand, if the conflict (e1, e3)C exists and data-
dependencies e1 → e2 and e2 → e3 (see Figure 6, right side),
it again follows from Definitions 3 and 4, that

• e2 conflicts with e1 (i.e., (e1, e2)C exists), if e2 is non-
redoable,

• e2 conflicts with e3, if it is non-recoverable (i.e., (e2, e3)C

exists) or
• if e2 is recoverable and redoable (i.e., pT (e2) = (1, 1))

it neither conflicts with e1 nor e3.
In the last case, we refer to e2 as an indirect conflict element.
For the sake of simplicity, we forego an explicit notation of
indirect conflict elements: Thus, as those are surrounded by at
least one directed transactional conflict, they are included in
subtransactions as well. However, as they offer full flexibility,
they do not need to be coordinated.

2) Correctness of Workflow Elements: We will now employ
these definitions and observations to derive conditions under
which workflow elements are correct, i.e. SAP . Recall that a

workflow element is SAP , if all possible executions result in
semi-atomic termination. The execution of one single service
is thus always SAP as all introduced termination states are
semi-atomic. When regarding workflow patterns, it depends
on the type of the pattern and the included elements, whether
it is SAP . In the following, regarding the tree representation,
we consider solely direct child nodes of pattern nodes.

Proposition 1 (SAP of a Sequence WPSEQ ): A
sequence pattern WPSEQ(E ) is SAP

⇐⇒
a. all of its elements e ∈ E are SAP and
b. no transactional conflicts {ei, ej}C , with ei, ej ∈

E and i < j exist

Proof:

• ’=⇒’: Assume WPSEQ(E ) to be SAP . Claim: All e ∈ E
are SAP and no transactional conflict {ei, ej}C , with
ei, ej ∈ E and i < j exists. Proof by contradiction:

– Assume it exists e ∈ E which is not SAP . Thus,
execution of e can result in non semi-atomic termi-
nation of e and thus of WPSEQ(E ). This contradicts
the assumption.

– Assume it exists {ek, el}C with ek, el ∈ E and
k < l. If ek (pT (ek) = (0, ∗)) completes and
el (pT (el) = (∗, 0)) fails, the execution is not
semi-atomic, thus WPSEQ(E ) is not SAP . This
contradicts the assumption.

• ’⇐=’: Assume all elements e ∈ E to be SAP and
no transactional conflict {ei, ej}C , with ei, ej ∈ E and
i < j to exist. Claim: WPSEQ(E ) is SAP . Proof by
contradiction:
Assume WPSEQ(E ) is not SAP . Then,

– it either exists an element e ∈ E which is not SAP
and whose execution may cause WPSEQ(E ) not to
be SAP ,

– or it exists el ∈ E which is not retrieable (pT (el) =
(∗, 0)) and ek ∈ E which is not recoverable
(pT (ek) = (0, ∗)), such that in case of failure of el

the previous completion of ek prevents SAP termi-
nation. Thus, l < k. Then {ek, el}C is transactional
conflict.

Both cases contradict the assumption.

Recall that elements of a WPSEQ are ordered in increas-
ing order of their index. The propositions uses transactional
conflicts (i.e., not directed) as services which are aligned in
sequence do not necessarily need to be data-dependent on their
predecessors. As opposed to sequences, no order of elements
of a WPAND is given. Thus, a WPAND is SAP in the
following case:



Proposition 2 (SAP of an WPAND ): An AND pattern
WPAND(E ) is SAP

⇐⇒
a. all of its elements e ∈ E are SAP and
b. no transactional conflicts {ei, ej}C , with ei, ej ∈

E exist

Proof: Analogous to proof of Proposition 1.

• ’=⇒’: Assume WPAND(E ) to be SAP . Claim: All e ∈
E are SAP and no transactional conflict {ei, ej}C , with
ei, ej ∈ E exists. Proof by contradiction:

– Assume it exists e ∈ E which is not SAP . Thus,
execution of e can result in non semi-atomic termi-
nation of e and thus of WPAND(E ). This contradicts
the assumption.

– Assume it exists {ek, el}C with ek, el ∈ E. If
ek (pT (ek) = (0, ∗)) completes and el (pT (el) =
(∗, 0)) fails, the execution is not semi-atomic, thus
WPAND(E ) is not SAP . This contradicts the as-
sumption.

• ’⇐=’: Assume all elements e ∈ E to be SAP and no
transactional conflict {ei, ej}C , with ei, ej ∈ E to exist.
Claim: WPAND(E ) is SAP . Proof by contradiction:
Assume WPAND(E ) is not SAP . Then,

– it either exists an element e ∈ E which is not SAP
and whose execution may cause WPAND(E ) not to
be SAP ,

– or it exists el ∈ E which is not retrieable (pT (el) =
(∗, 0)) and ek ∈ E which is not recoverable
(pT (ek) = (0, ∗)), such that in case of failure
of el the parallel completion of ek prevents SAP
termination. Then {ek, el}C is transactional conflict.

Both cases contradict the assumption.

As no data-dependencies between elements of a WPAND

exist, rearranging recoverable elements before non-recoverable
conflicting elements and redoable elements after those is used
to avoid conflicts.

According to its definition, only one branch of an WPXOR

pattern is executed. Therefore it follows, that an WPXOR

pattern is SAP if and only if all of its elements are SAP .
3) Verification Algorithm: Utilizing the just stated proposi-

tions, we are now able to define our verification algorithm of
a workflow. It takes the tree representation Tω of a workflow
ω as input and returns true, if it is correct, i.e. SAP and false,
if it is not SAP . Tω is traversed bottom-up:

//traverse T_w bottom-up
for (every node n in T_w) {

//verify the node:
if (node n is !SAP)

return false;
else

if (node n is a pattern)

derive p_T(n);
}
return true;

The algorithm inspects whether all children of ω are SAP ,
and if so, whether the enclosing pattern is SAP . Since a work-
flow ω is always composed by workflow patterns, Propositions
1 and 2 guarantee the correctness of the algorithm.

Recall our running example of MoP: Its tree representation
is depicted in Figure 5. The verification algorithm traverses
the tree bottom up. As all leaf nodes are services, all of them
are per definition SAP . After that, the WPAND node (labeled
AND) is inspected. Proposition 2 states, that it is SAP , if
no transactional conflict exists. However, T transactionally
conflicts with both BMG and R, thus transactional conflicts
{T,BMG}C and {T,R}C exist. Therefore, this node and thus
the whole workflow is not SAP .

B. Adaptation
If the verification fails, we adapt the structure of a workflow

to ensure correct execution (recall Figure 4). The verification
is performed for every non-verified WPXOR node and for the
whole workflow, if it could not be validated. In the following,
for the sake of simplicity, we refer to the algorithm being
executed on a workflow ω, returning an adapted workflow ω′.

For adaptation purposes, we consider the data-dependency
graph Dω(V,E) of a workflow ω. Dω(V,E) is an acyclic
directed graph. Its set of vertices V contains all mandatory
elements of ω, thus all WPXOR nodes of Tω and all services
s of ω which are not element of an WPXOR. A directed
edge (vi, vj) between nodes vi and vj exists, if there exists a
direct data-dependency in the form vi → vj . In Figure 7, the
Dω(V,E) of the running example is depicted.

CRS

BMG

T
R

Cf
X1

Fig. 7. Dω(V, E) of the running example.

1) Minimal Set of Coordinated Elements: Using SAP as
the correctness criterion, a workflow ω is correct, if no failure
situation may occur, which cannot be recovered. However,
those may be avoided by including the whole workflow ω
in a blocking subtransaction pattern WPsubTA. As mentioned
before, this limits the autonomy (and loosely coupling) of
involved entities. Thus, we spare the usage of WPsubTA

patterns if possible. The following theorem states, which
elements of a workflow have to be coordinated in order to
ensure SAP .

Theorem 1 (Minimal Set M of Coordinated Elements):
Let ECP be the set of directed transactionally conflict
elements of the workflow ω i.e.,

ECP := {e | ∃ e′ such that (e, e′)C or (e′, e)C}.



Let further be EZ the set of elements of ω, which are
not recoverable and not redoable, i.e.

EZ := {e | pT (e) = (0, 0)}.

M is defined as follows:
M :=

{
∅ if ECP = ∅ and |EZ | ≤ 1

ECP ∪ EZ otherwise

Then, the following holds:
a. If M is coordinated using a WPsubTA pattern i.e.,

WPsubTA (WP(M)), SAP of the workflow can
be ensured.

b. If SAP of the workflow is ensured by coordinating
a set of elements M ′ i.e., WPsubTA (WP(M ′)),
then M ′ is a superset of M , i.e. M ′ ⊇ M .

Proof: is straightforward however tedious using
Propositions 1 and 2.

• a. Assume: M is coordinated. Claim: SAP of the work-
flow can be ensured. Proof by contradiction:
Assume, there exists an element ei /∈ M , such that
execution of the tuple of elements ei, ej hinders SAP .
ei, ej are then either aligned in sequence or in parallel.
Thus, one of the following is true:

– {ei, ej}C ∈ WPSEQ (ei, ej), with i < j. Since ei /∈
M : No data dependency ei → ej exists and at most
one of them exposes pT (e) = (0, 0). Otherwise, ei

were element of M . Thus, they can be rearranged in
WPSEQ (ej , ei) which is then SAP . This contradicts
the assumption. (Existence of conflict {ej , ei}C ∈
WPSEQ (ej , ei), with j < i results in alignment
WPSEQ (ej , ei) accordingly.)

– {ei, ej}C ∈ WPAND (ei, ej). Since ei /∈ M :
No data dependency ei → ej exists and at most
one of them exposes pT (e) = (0, 0). Otherwise, ei

were element of M . Rearranging the pattern to be
WPSEQ (ej , ei) (or WPSEQ (ei, ei)) ensures SAP .
This contradicts the assumption.

• b. Assume: SAP of ω is ensured by coordinating M ′

(i.e., WPsubTA (WP(M ′))). Claim: M ′ is a superset of
M (i.e., M ′ ⊇ M ). Proof by contradiction:
Assume, ∃ e ∈ M , which is not coordinated (i.e., e /∈
M ′). Thus, one of the following holds:

– If e ∈ ECP ⇒ ∃ e′ ∈ M with (e, e′)C (or (e′, e)C).
As a data dependency between those two exists, they
have to be aligned in sequence WPSEQ (e, e′) (or
WPSEQ (e′, e)). According to Proposition 1, this
sequence is not SAP . Rearranging is not possible
due to the data dependency. Thus, ω is not SAP .
This contradicts the assumption.

– Else if, e ∈ EZ , then (according to the definition of
M ),
∗ another element e′ ∈ EZ exists. e and e′ then

form transactional conflicts {e, e′}C and {e′, e}C .

Therefore, neither aligning them in sequence (see
Proposition 1), nor in parallel (see Proposition 2)
ensures SAP .

∗ or a directed transactional conflict (ei, ej)C ∈
ECP exists (recall pT (ei) = (0, ∗) and pT (ej) =
(∗, 0)). {ei, e}C , {e, ej}C (and {ei, ej}C) then
form transactional conflicts. No sequential align-
ment of e, ei and ej ensures SAP according to
Proposition 1, as any alignment regarding the data
dependency ei → ej , still contains transactional
conflicts. Proposition 2 states, that no parallel
alignment of e, ei and ej ensures SAP either.

This contradicts the assumption.

Theorem 1 illustrates, that M is the minimal set of elements
which needs to be coordinated in order to ensure SAP .
Therefore, if this set of elements is enclosed by a WPsubTA

pattern, an alignment of all other elements can be found,
such that the workflow is correct. Again, please note, that for
simplicity reasons indirect conflict elements are not explicitly
labeled and thus not excluded from the WPsubTA pattern.
However, as they offer full flexibility, they do not have to
be coordinated in the subtransaction.

Using this theorem, we are able to show that our algorithm
produces optimal results with respect to the size of WPsubTA

patterns.
2) Adaptation Algorithm: We now define our algorithm

which adapts a given input workflow ω to an output workflow
ω′ which ensures SAP . Our algorithm proceeds by traversing
the data dependency graph Gω(V,E). Since edges represent
the existing data dependencies between elements, those are
topologically processed by passing through Gω(V,E). While
traversing Gω, we append elements to our output data struc-
ture ω′. Intuitively, recoverable (non-conflicting) elements are
aligned before conflicting elements. Those are only followed
by (non-conflicting) redoable elements. The algorithm operates
in 4 steps, we start off by initializing the following variables:

• VCP is the set of all directed transactional conflict ele-
ments:
VCP := {e | ∃ e′, with e, e′ ∈ V such that (e, e′)C or

(e′, e)C},
• VZ is the set of all non recoverable, non redoable ele-

ments:
VZ := {e | e ∈ V, pT (e) = (0, 0)},

• VI is the set of all indirect conflict elements,
• VM is the union of the previous sets as follows:

VM :=
{

∅ if VCP = ∅ and |VZ | ≤ 1
VCP ∪ VZ ∪ VI otherwise ,

• C denotes the set of all current nodes of V i.e., all v ∈ V
which do not have an incoming edge.

• Initialize output workflow ω′.
We start traversing Gω(V,E) by processing non-conflicting

recoverable elements. Propositions 1 and 2 both state, that a
pattern is correct, if no transactional conflicts exist. Therefore,
recoverable nodes may be aligned in sequence or parallel with-
out causing transactional conflicts among them. This ensures



that the output of this step is SAP . If more that one current,
recoverable node exists, they are aligned in parallel as no data-
dependency exists among them. Otherwise, they are aligned
in sequence. This is formalized as follows:

while (C contains elements {r}
with p_T(r) = (1,*)) {

if (|{r}| > 1) {
append WP_AND({r}) to w’;

} else {
append r to w’;

}
update G_w, update C;

}

By updating Gω(V,E), already processed nodes and their
respective outgoing edges are deleted. Thereby, the set of
current nodes C is also altered.

This loop is executed until the set of current nodes does not
contain any recoverable nodes. Therefore, if the set of conflict
nodes VM is not empty (VM 6= ∅), the set of current nodes
C then at least contains one element m, which is in the set
of nodes that needs to be coordinated i.e., m ∈ VM .8 As only
recoverable elements are appended to the output workflow ω′

so far, ω′ is recoverable i.e., pT (ω′) = (1, ?).
In the next step, elements which need to be coordinated, are

processed. As stated above, if VM is non-empty, there exists
at least one element m ∈ VM which is also a current node,
that is m ∈ C. In Theorem 1, we proved that all elements
in VM need to be coordinated in order to ensure SAP of
the workflow. Thus, in this step, all elements v ∈ VM are
appended to ω′. Again, if no data dependency exists, they are
aligned in parallel, otherwise, they are appended according to
the data-dependencies. If only one element v with pT (v) =
(0, 0) exists (thus v ∈ VZ) and no other conflicting elements
exist i.e., VM = ∅, v does not need to be coordinated. It
is aligned behind recoverable and before retrieable elements.
This is formalized as follows:

if (V_M != {}){
M := {}
while (C contains elements {m},

with {m} elem V_M) {
if (|{m}| > 1) {

append WP_AND({m}) to M;
} else {

append m to M;
}
update G_w, update C;

}
append WP_subTA(M) to w’;

} else if (|V_Z| == 1) {
append v elem V_Z to w’;
update G_w, update C;

}

Due to the transitivity of conflicts and the properties of
enclosed conflict elements (recall Figure 6), all elements which

8This holds, as otherwise there would exist at least one non-recoverable,
non-conflicting node n in C, from which a path (that is a data-dependency)
to an element m ∈ VM existed. As n is non-recoverable it would then
transactionally conflict with m ∈ VM .

lie on a path in Gω from one conflict node mi to any another
mj are in VM . Either, they are conflicting elements themselves,
or indirect conflict elements. Therefore, as soon as the set of
current nodes does not contain any m ∈ VM , VM is completely
processed. Thus, the subtransaction is closed.

In this step, we appended a WPsubTA pattern (or only one
element v ∈ VZ) to a recoverable workflow. According to
Proposition 1, the resulting workflow ω′ is still SAP .

By now – if existent – all conflict elements are processed
and appended to ω′. Therefore, only retrieable elements are left
to process. If there were a non-retrieable element v ∈ C, v
would transactionally conflict with the WPsubTA pattern, thus
v were a conflicting element and would have been included
in VM . Retrieable elements are appended in the same manner
as recoverable elements at the beginning:

while (C contains elements {r}) {
if (|{r}| > 1) {

append WP_AND({r}) to w’;
} else {

append r to w’;
}
update G_w, update C;

}
return w’;

Just as with recoverable elements, retrieable are arranged
in parallel, if no data dependencies exist. Otherwise, they are
topologically sorted regarding their data-dependencies. As no
transactional conflicts exists among retrieable elements, the
alignment of those at the end of ω′ - and thus the output of
the algorithm ω′ - is SAP . The algorithm terminates, if the
set of current nodes is empty: All nodes of Gω(V,E) have
been processed and added to ω′.
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Fig. 8. Workflow as initially designed ω (a) and adapted ω′ (b).

Consider for example the abstract workflow ω depicted in
Figure 8.a. It consists of eight services (S1 through S8) with
the given transactional properties and a set of seven data-
dependencies (depicted as dashed lines). The verification for
ω fails: Among others, the transactional conflict {S3, S4}C

exists and according to Proposition 2, ω is thus not SAP .
The according data-dependency graph of ω is shown

in Figure 9. Note that, since WPXOR(S7, S8) is correct,
the adaptation is performed for the whole workflow and
WPXOR(S7, S8) is generalized as node X1 in the graph.

By analyzing the workflow, the conflict elements are de-
tected: (S3, S5)C directly transactionally conflict, additionally
S6 ∈ VZ . Thus VM = {S3, S5, S6}. Conflicting nodes
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Fig. 9. Data-dependency graph of the example in Figure 8.

(v ∈ VM ) are shaded in gray in Figure 9. The algorithm starts
by traversing recoverable elements and appending those to the
output workflow ω′ (ω′ is depicted in Figure 8.b). The set of
current nodes C initially contains S1. Thus, regarding the data-
dependency, WPSEQ(S1, S2) is appended to ω′ in the first
step of the algorithm. After that, the set of current nodes C
contains S3, S4 and S6, none of which is recoverable. There-
fore, all conflict nodes v ∈ VM are then enclosed in a sub-
transaction (WPsubTA(WPAND(WPSEQ(S3, S5), S6))) and
appended to ω′. The set of current nodes C then contains S4,
which is redoable. Thus, WPSEQ(S4, X1) is appended to ω′.

Taking a closer look at the proposed adaptation algorithm,
it is easy to see that, if existent, all v ∈ VM are coordinated
using a WPsubTA pattern. As stated before, we abandon to
coordinate indirect conflict elements v′ ∈ VI . Due to their full
flexibility, they do not endanger correct execution, even if not
coordinated in a subtransaction. As VM \VI corresponds to the
minimal set M of coordinated elements (see Theorem 1), our
algorithm produces optimal results with respect to the number
of coordinated elements.

V. DISCUSSION

In this section, we discuss our approach to support trans-
actional service composition. We implemented the Adaptive
Workflow Management framework (AWM) as a proxy of
the Apache ODE engine. The implementation employs Java
Web-Services; transactional properties are assembled via WS-
Policies.

We want to briefly present comparisons of AWM to existing
techniques which guarantee transactional correctness of com-
posite services. Comparing AWM to solely coordinating all
services, e.g. using WS-AT, our approach reduces the number
of blocked resources if possible. It only blocks as many
resources as WS-AT in the worst case (i.e., if all services are
conflicting elements ∈ VM ). Considering Theorem 1 (minimal
set of coordinated elements), our algorithm outputs optimal
results with respect to the number of coordinated elements.

Transactional support of long-running activities is conven-
tionally implemented using business activities (e.g., WS-BA).
Those assume the compensatability of all involved entities.
However, if this assumption does not hold for one (or more)
services, one risks incorrect (non-recoverable) system states.
Incorrect termination is e.g. inevitable if a non compensatable
service commits while another one fails.

Figure 10 shows the probability that a workflow will semi-
atomically terminate (SA-probability pSA) when being exe-
cuted using WS-BA and AWM. The higher pSA, the more
likely the workflow will correctly terminate. The results in

a)

b)

Fig. 10. SA-probability of WPSEQ(S1, . . . , S10) (a)
[WPAND(S1, . . . , S10)(b)] varying the index i of one [number k
of] non-compensatable service[s].

Figure 10 both depict average values of 100 executions. In
Figure 10.a we included one non-compensatable service in a
sequence WPSEQ(S1, . . . , S10). We varied the index i of the
non compensatable service (on the x-axis). Additionally, we
varied the probability, that individual services will successfully
complete (which we refer to as success probability denoted
as ps). Those were normally distributed around 0, 3 (gray
solid line), 0, 5 (gray dashed line) and 0, 7 (gray fine dashed
line) with a standard deviation of 5%. As our algorithm
guarantees semi-atomic termination, the SA-probability pSA

for our approach AWM (black solid line) is 1 for all indices i
independent of the success probability. For the rerefence ap-
proach WS-BA, it can be seen, if only one non-compensatable
services is included, pSA is remarkably decreased (down to
40% for ps(Si) = 0, 7 and i = 1). The experiment shows,
the earlier the non-compensatable service is aligned (thus,
the lower i), the lower is the resulting SA-probability, thus
the higher the risk of inconsistent system states. Additionally,
in this setup, the higher the individual success probability of
services ps, the lower is the resulting SA-probability pSA. That
is, if the success probability of single services is lower, the
higher is the probability for a failure before the i-th service is
executed (resulting in a semi-atomic abort of the workflow).
Therefore, in this scenario with only one non-compensatable
service, the optimization potential - which AWM exploits -



ranges from roughly 10% (ps = 0, 7 and i = 7) to over 60%
(ps = 0, 7 and i = 1).

In Figure 10.b, the results for a parallel alignment of
services S1, . . . , S10 are depicted. This time, we varied the
number of non compensatable services k from k = 1, . . . , 10.
Again, AWM ensures correct execution, thus the resulting SA-
probability pSA for AWM (black solid line) is 1. For WS-
BA it can be seen, the more non compensatable services are
present, the lower the probability that the execution will result
in correct termination: The greater k, the greater the possibility
of successful completion of one of these k non compensatable
services in the presence of the failure of another one. Again, as
in Figure 10.a, the probability for the workflow to result in a
correct state (i.e., SA-probability) is lower for higher success
probability ps = 0, 7 than for ps = 0, 3. The optimization
potential that AWM exploits in this case ranges from roughly
30% (ps = 0, 3, k = 2) to over 90% (for k = 10).

We additionally evaluated AWM according to the number
of coordinated elements m in the resulting workflow ω′. m is
dependent on the transactional conflict elements, thus on the
properties of services and the data-dependencies present. Cru-
cial parameters are the ratio of recoverable elements pREC and
redoable elements pRED respectively. If no data dependencies
exist within ω, m converges to the number of non recoverable
and non redoable elements (1 − pREC) ∗ (1 − pREC) ∗ n.
If the ratio of recoverable services is pREC = 0, 5 as is
the ratio for redoable services pRED = 0, 5, m converges
to (1 − 0, 5) ∗ (1 − 0, 5) ∗ n = 0, 25 ∗ n. We also per-
formed experiments varying the number and types of data-
dependencies in a workflow. Even if almost all elements are
data-dependent on another one, employing AWM reduced m
to rougly 0, 75 ∗ n. Thus, AWM reduced m as opposed to
WS-AT by about 25%. This is due to the explicit handling of
indirect conflict elements, which AWM spares to coordinate.

These basic evaluation results already confirm, that AWM
increases the autonomy of participants (as opposed to ap-
proaches employing blocking of resources) by still guarantee-
ing correct execution. Especially in mobile environments, the
autonomy of services on the one hand and correct execution of
composite services despite their transactional properties on the
other hand, are especially important objectives to achieve. In
this paper, we proposed an approach to transactionally support
mobile service composition: By exploring transactional prop-
erties, a composition is validated, if all executions are correct,
i.e., SAP . If the verification fails, our adaptation algorithm
alters the workflow ω to ω′ at runtime to ensure correctness
in the notion of semi-atomicity.
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