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The non-linear optimization method developed by A. Konnov and V. Krotov [Autom. Remote Cont.
(Engl. Transl.) 60, 1427 (1999)] has been used previously to extend the capabilities of optimal control
theory from the linear to the non-linear Schrödinger equation [S. E. Sklarz and D. J. Tannor, Phys.
Rev. A 66, 053619 (2002)]. Here we show that based on the Konnov-Krotov method, monotonically
convergent algorithms are obtained for a large class of quantum control problems. It includes, in
addition to nonlinear equations of motion, control problems that are characterized by non-unitary
time evolution, nonlinear dependencies of the Hamiltonian on the control, time-dependent targets,
and optimization functionals that depend to higher than second order on the time-evolving states. We
furthermore show that the nonlinear (second order) contribution can be estimated either analytically
or numerically, yielding readily applicable optimization algorithms. We demonstrate monotonic con-
vergence for an optimization functional that is an eighth-degree polynomial in the states. For the
“standard” quantum control problem of a convex final-time functional, linear equations of motion
and linear dependency of the Hamiltonian on the field, the second-order contribution is not required
for monotonic convergence but can be used to speed up convergence. We demonstrate this by com-
paring the performance of first- and second-order algorithms for two examples. © 2012 American
Institute of Physics. [http://dx.doi.org/10.1063/1.3691827]

I. INTRODUCTION

Quantum control of light and matter uses external fields
to engineer constructive and destructive interferences to steer
a physical process into a desired direction.1, 2 The idea was
pioneered in the 1980s (Refs. 3–6) and gained widespread at-
tention with the advent of femtosecond lasers and pulse shap-
ing techniques.7 It was realized at about the same time that
constructive and destructive interferences need not be devised
by hand but can rather be obtained employing concepts from
engineering such as feedback and optimization.7–11 This has
significantly broadened the range of quantum control prob-
lems that can be tackled. In particular, optimal control theory
(OCT) has become a popular tool employed in areas as differ-
ent as vibrational dynamics of complex molecules,12, 13 quan-
tum dots and rings,14, 15 ultracold gases,16–19 multi-photon
excitations,20, 21 nuclear magnetic resonance,22, 23 and quan-
tum information.24–26

All these applications are based on quantum dynamics,
but differ in their (i) equation of motion, (ii) dependence of
the Hamiltonian on the control, and (iii) target functional.
(i) In standard applications of OCT to quantum control, the
equation of motion is the linear Schrödinger equation, e.g.,
Refs. 8, 17, 24, and 25. OCT can also be applied to examples
with a nonlinear equation of motion13, 16, 19 which is obtained
as an effective description in the framework of the mean-
field approximation. (ii) The dependence of the Hamiltonian

a)Present address: Laboratoire de Chimie Physique d’Orsay, Université de
Paris Sud, 91405 Orsay, France.

b)Electronic mail: christiane.koch@uni-kassel.de.

on the control is linear in most applications of OCT from
atomic, molecular, and chemical physics, reflecting a laser
field driving optically allowed transitions. This is changed to
a nonlinear dependence if multi-photon excitations20, 21 or a
parametrization of the control field19 is considered. (iii) Lin-
ear and bilinear target functionals have commonly been used
in application of OCT to quantum control to date.27 How-
ever, target functionals that are higher order polynomials in
the states of the system may be encountered in quantum infor-
mation applications.28 The type of dynamics and functionals
translates into different requirements that must be met by the
optimization algorithm. In particular for nonlinear equations
of motion, nonlinear dependencies of the Hamiltonian on the
control, time-dependent targets where the target operator is
non-semi-definite and target functionals that are higher order
polynomials in the states, it is not straightforward to construct
monotonically convergent algorithms. This is the problem that
we address here.

We utilize the nonlinear optimization algorithm by
Konnov and Krotov29 which had been translated to the lan-
guage of quantum mechanics and first employed for solving
a quantum control problem by Sklarz and Tannor.16 Specifi-
cally, Sklarz and Tannor realized that a generalized form of
the optimization functional yielding modified adjoint states is
required in order to apply OCT to a nonlinear Schrödinger
equation.16 We show that the work by Sklarz and Tannor ap-
plies also to quantum control problems that are characterized
by non-unitary time evolution, time-dependent targets, non-
linear dependencies of the Hamiltonian on the control and
target functionals that depend to higher than second order

0021-9606/2012/136(10)/104103/16/$30.00 © 2012 American Institute of Physics136, 104103-1
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on the time-evolving states. Translating the original proof by
Konnov and Krotov29 to quantum control, we furthermore
show that the parameters of the optimization algorithm can
be estimated analytically or numerically. We can thus give a
ready-to-use prescription of the algorithm where the param-
eters are determined by the physics of the problem. For the
case of a quadratic functional and linear equations of motion,
a first-order construction of Krotov’s method is sufficient to
guarantee monotonic convergence.16, 27 We show that in this
case, a second-order contribution may still be used to speed
up convergence.

The paper is organized as follows. The optimization algo-
rithm and the estimate of the algorithm’s parameters are pre-
sented in Sec. II with all mathematical details of the deriva-
tion found in the appendices. Sections III and IV are devoted
to applications of the optimization algorithm. We demon-
strate monotonic convergence for one example that requires
a second-order construction in Sec. III, and we present two
examples in Sec. IV for which the second-order construction
is not required but may be used to speed up convergence.
Section V concludes.

II. OPTIMIZATION ALGORITHM

A. Control problem

The control problem is characterized by stating the con-
trol target and possible additional costs in functional form,

J = JT [{ϕk(T )}] +
∫ T

0
Jt [{ϕk(t)}, ε(t)] dt , (1)

where we have separated final-time T and intermediate-time t
“costs.” {ϕk(t)} denotes a set of complex state vectors46 and
ε(t) is the external field or control that will be optimized. The
final-time cost is typically specified in terms of some desired
unitary operator Ô, for example,27

JT [{ϕk(T )}] = − λ0

N2
| Tr{Ô†P̂NÛ(T, 0; ε)P̂N}|2

= − λ0

N2

N∑
k,k′=1

〈ϕk(t = 0)|Ô†Û(T , 0; ε)|ϕk(t = 0)〉

× 〈ϕk′ (t = 0)|Û(T , 0; ε)†Ô|ϕk′(t = 0)〉. (2)

Here, Û(T , 0; ε) denotes the time evolution operator from the
initial time t = 0 to the final time T under the action of the
field ε, and λ0 is a weight. The dimension of the subspace
of the total Hilbert space, H, on which the target operator Ô
acts, HO , is denoted by N, and P̂N is the projector onto HO .
{|ϕk(t = 0)〉} ≡ {|k〉} is a suitable orthonormal basis spanning
this subspace. A single state-to-state transition is obtained by
taking Ô to be the projector onto the target state, i.e., N = 1.
In order to optimize one-qubit or two-qubit quantum gates,
N = 2 and N = 4, respectively. The functional is normal-
ized by 1/N2 such that the optimum corresponds to the weight
JT = −λ0.

The functional of Eq. (2) is quadratic in the states at fi-
nal time {ϕk(T)}. A linear dependence is obtained by tak-
ing the real part instead of the square modulus of the trace

and yields a phase-sensitive functional.27 Generally, express-
ing the functionals in terms of expectation values yields at
most a quadratic dependence on the states. A functional that
is a higher order polynomial in the states is obtained in the
context of quantum information when optimizing for a cer-
tain degree of entanglement rather than a specific unitary
transformation,28 see Sec. III below.

The intermediate-time cost Jt,

Jt [{ϕk(t)}, ε] = g [{|ϕk(t)〉}, ε(t), t]

= ga [ε(t), t] + gb [{ϕk(t)}, t] , (3)

is typically used to minimize the field intensity and to switch
the field smoothly on and off,

ga [ε(t)] = λa

S(t)
[ε(t) − εref(t)]

2 , (4)

where εref(t) denotes some reference field, S(t) is a positive
(shape) function, and λa a weight. Jt can also be used to for-
mulate time-dependent targets30–32 or constraints that depend
on the state of the system at intermediate times33 such as

gb [{ϕk(t)}] = λb

T N

N∑
k=1

〈ϕk(t)|D̂(t)|ϕk(t)〉 , (5)

where the dependence on the states again is quadratic. While
complicated dependencies of ga[ε] and gb[{ϕk}] are conceiv-
able, we require ga[ε] and gb[{ϕk}] to be additive, cf. Eq. (3).
This assumption is typically justified since costs or penalties
involving the field are usually not related to costs concerning
the dynamics of the system.

The time evolution operator required to evaluate the func-
tional, Eq. (2), can be obtained by solving the equation of mo-
tion for each of the basis states,

d

dt
|ϕk(t)〉 = − i

¯
Ĥ[ϕk, ε]|ϕk(t)〉 ,

= |fk(ϕk, ε)〉, k = 1, . . . , N. (6)

An explicit dependency of the Hamiltonian on the state,
Ĥ[ϕk], will occur for nonlinear Schrödinger equations such as
the Gross-Pitaevski equation or Hartree-Fock-like equations
where the Hamiltonian is second order in the states.13, 16, 19, 34

The dependency of the Hamiltonian on the field can be lin-
ear, corresponding to one-photon dipole coupling, or higher
order for non-resonant multi-photon transitions. Equation (6)
can be extended to account for non-unitary time evolution by
considering the density operator to be a vector in Liouville
space and replacing the Hamiltonian by the Liouvillian.35

B. Optimization equations

The essence of Krotov’s method16, 29 consists in disentan-
gling the interdependency of the states and the control by con-
structing an auxiliary functional L[{ϕk}, ε, �] that depends on
the states, the control, and an arbitrary scalar potential � such
that for any �, L[{ϕk}, ε, �], and J[{ϕk}, ε] are identical
and minimization of L[{ϕk}, ε, �] is completely equivalent
to minimization of J[{ϕk}, ε]. This is achieved by adding a
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vanishing quantity,

L[{ϕk}, ε,�] = G({ϕk(T )}) − �({ϕk(0)}, 0)

−
∫ T

0
R({ϕk(t)}, ε(t), t)dt (7)

with

G [{ϕk(T )}] = JT [{ϕk(T )}] + �({ϕk(T )}, T ) ,

R [{ϕk(t)}, ε(t), t] = − (ga[ε(t), t] + gb[{ϕk(t)}, t])

+∂�

∂t
+

N∑
k=1

∇|ϕk〉�|fk[ϕk, ε, t]〉

+
N∑

k=1

〈fk[ϕk, ε, t]|∇〈ϕk |� .

It is sufficient to expand the functional �({|ϕk〉}, t) up to sec-
ond order in the states to ensure the necessary monotonicity
conditions for arbitrary change of the state vectors,

�({ϕk}, t) =
∑

k

[〈χk(t)|ϕk(t)〉 + 〈ϕk(t)|χk(t)〉]

+ 1

2

∑
kl

〈�ϕk(t)|σ̂ (t)|�ϕl(t)〉, (8)

with first-order expansion coefficients χ k(t) and �ϕk(t) the
change in the state ϕk(t), given by �ϕk(t) = ϕ

(i+1)
k (t) − ϕ

(i)
k (t)

where the superscripts (i) and (i + 1) denote propagation un-
der the old and new fields, ε(i)(t) and ε(i+1)(t), respectively.
Due to the freedom of choice in �, the operator σ̂ (t) in the
second order term can be chosen to ensure the extremum con-
dition with respect to the state changes. If J is to be mini-
mized, σ̂ (t) will be chosen to maximize it with respect to the
change in the states. Any change in the field leads then to
monotonic decrease of J.16, 29

Requiring the first-order derivatives of L with respect to
|ϕk(t)〉, 〈ϕk(t)|, and ε(t) to vanish, yields a set of coupled con-
trol equations for the first-order expansion coefficients χ k(t)
and the field. Since all involved functionals are real, it is suffi-
cient to state the equation for the kets, the bra equations being
given by the adjoints,

d

dt

∣∣χ (i)
k (t)

〉 = − i

¯
Ĥ†[ϕ(i)

k , ε(i)
]∣∣χ (i)

k

〉
− i

¯

[∑
l

〈
ϕ

(i)
l

∣∣∇|ϕk〉Ĥ
†[ϕ(i)

k , ε(i)
]∣∣χ (i)

l

〉

−
∑

l

〈
χ

(i)
l

∣∣∇〈ϕk |Ĥ
[
ϕ

(i)
k , ε(i)]∣∣ϕ(i)

l

〉]

+∇〈ϕk |gb||ϕ(i)
k (t)〉 , (9a)

∣∣χ (i)
k (T )

〉 = −∇〈ϕk |JT ||ϕ(i)
k (T )〉 , k = 1, . . . , N . (9b)

The “initial” condition at the final time T is given in terms
of the gradient with respect to the states of the final-time cost,
JT. Note that all gradients in Eqs. (9) are evaluated with the
states ϕ

(i)
k that are forward propagated under the old field, ε(i)

as indicated by the superscript (i). The prescription for the
new field is obtained by evaluating the derivative of the con-
straints with respect to the field,

∂g

∂ε

∣∣∣∣
ε(i+1),|ϕ(i+1)〉

=2Im

[
N∑

k=1

〈
χ

(i)
k (t)

∣∣∂Ĥ
∂ε

∣∣∣∣
ε(i+1),ϕ(i+1)

∣∣ϕ(i+1)
k (t)

〉

+ 1

2
σ (t)

N∑
k=1

〈
�ϕk(t)

∣∣∂Ĥ
∂ε

∣∣
ε(i+1),ϕ(i+1)

∣∣ϕ(i+1)
k (t)

〉]
. (10)

It involves backward propagation of the adjoint states under
the old field, χ

(i)
k (t), and forward propagation of the states,

ϕ
(i+1)
k (t), under the new field,

d

dt

∣∣ϕ(i+1)
k (t)

〉 = − i

¯
Ĥ
[
ϕ

(i+1)
k , ε(i+1)

]∣∣ϕ(i+1)
k (t)

〉
(11a)

∣∣ϕ(i+1)
k (0)

〉 = |k〉 , k = 1, . . . , N . (11b)

Equations (9)–(11) need to be solved simultaneously. The
iteration is started by propagating Eqs. (11) under some guess
field, ε(0)(t), to obtain ϕ

(0)
k (T ) and evaluate Eq. (9b). The equa-

tion for the backward propagation, Eq. (9a), becomes an inho-
mogeneous Schrödinger equation for nonlinear equations of
motion, cf. the terms in square brackets, or if the intermediate-
time cost, gb, depends on the states (∇〈ϕk |gb �= 0). If the time-
dependent cost over the field takes the form of Eq. (4), the
equation for the new field reads as

ε(i+1)(t)

= εref(t) + S(t)

λa

Im

{
N∑

k=1

〈
χ

(i)
k (t)

∣∣∂Ĥ
∂ε

∣∣∣∣
ε(i+1),ϕ(i+1)

∣∣ϕ(i+1)
k (t)

〉

+ 1

2
σ (t)

N∑
k=1

〈
�ϕk(t)

∣∣∂Ĥ
∂ε

∣∣∣∣
ε(i+1),ϕ(i+1)

∣∣ϕ(i+1)
k (t)

〉}
. (12)

Moreover, for dipole transitions the Hamiltonian is given by
Ĥ = Ĥ0 + μ̂ε(t); and hence ∂Ĥ/∂ε = μ̂. We thus recover the
familiar prescription for the change in field obtained for a
first-order construction of the algorithm27 plus an additional
second-order contribution, given in terms of the change in the
states, �ϕ

(i+1)
k (t), with “weight” σ (t).

A choice of σ (t) that guarantees a maximum of L with
respect to the states (i.e., a positive second derivative of R and
negative second derivative of G) is given by29

σ (t) = eB̄(T −t)

(
C̄

B̄
− Ā

)
− C̄

B̄
for B̄ �= 0 , (13a)

σ (t) = C̄(T − t) − Ā for B̄ = 0 . (13b)

The physics of the problem, i.e., the dependency of the
functional on the states, the dependency of the Hamilto-
nian on the control, (non-)linearity of the equation of motion
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governing, and unitary or non-unitary of the time evolution,
determine the parameters Ā, B̄, and C̄,

Ā = max (εA, 2A + εA) , (14a)

B̄ = 2B + εB , (14b)

C̄ = min (−εC, 2C − εC) , (14c)

where the εi are non-negative numbers that can be used to
enforce strict inequality.47 It should be emphasized, that only
in cases where A, B, and C all turn out to be zero, the linear
version of Krotov’s method27 is sufficient to guarantee mono-
tonic convergence.

C. Parameters of the second-order contribution

For quantum control problems the parameters A, B, and C
can either be estimated analytically or approximated numer-
ically by considering �G = G({ϕ(i+1)

k (T )}) − G({ϕ(i)
k (T )})

and �R = R({ϕ(i+1)
k (t)}, ε(i)(t), t) − R({ϕ(i)

k (t)}, ε(i)(t), t)
and guaranteeing their negativity and positivity, respectively.
The analytical estimate is based on a worst case scenario and
strictly guarantees monotonic convergence. The worst case
scenario may, however, not always be required and a more
efficient while less fail-proof approach is given by numerical
approximation of A, B, and C.

The analytical estimate of A is obtained by requiring
�G ≤ 0. This is guaranteed if

A = sup
{�ϕk}

∑N
k=1 [〈χk(T ) | �ϕk(T )〉 + 〈�ϕk(T ) | χk(T )〉] + JT

({
ϕ

(i)
k (T ) + �ϕk(T )

})− JT

({
ϕ

(i)
k (T )

})
∑N

k=1 [〈�ϕk(T ) | �ϕk(T )〉] , (15)

where the supremum needs to be taken over all sets
of possible state change vectors {�ϕk(T)} with norm∑N

k=1 〈�ϕk(T ) | �ϕk(T )〉 between zero and 2N. Konnov and
Krotov29 proved that, under certain conditions which are al-
most trivially fulfilled for quantum systems, quantities like
the one on the right-hand side of Eq. (15) and similar ones
obtained for B and C exist and are well-defined, see also
Appendix A. We discuss in Appendix B how Konnov’s and
Krotov’s proof simplifies for quantum systems such that the
supremum in Eq. (15) can be estimated. Specifically, we show
in Appendix C that the argument of the supremum in Eq. (15)
can be rewritten in terms of a Taylor series of JT that starts at
the second order. The series can be estimated by its Lagrange

remainder,

A ≤ 1

2
sup

{�ϕk};|α|=2
∂αJT ({�ϕk(T )}) , (16)

i.e., A is given by the supremum over the second derivatives of
the final-time functional, JT, with respect to the states, ϕk(T).
The multi-index α and the derivative ∂α are defined in
Eqs. (C2) and (C3), respectively. For functionals JT that are
linear or convex in ϕk(T), i.e., those for which the second
derivatives vanish or are always non-positive, A ≤ 0. For sim-
plicity one can then choose A = 0, εA = 0 such that Ā = 0.

The analytical estimates of B and C are obtained by re-
quiring �R ≥ 0, where

�R ({�ϕ(t)}, t) =
N∑

k=1

[〈�ϕk(t) | �ϕk(t)〉]
[

1

2
σ̇ (t) + σ (t)

∑N
k=1[〈�ϕk(t) | �fk(t)〉 + 〈�fk(t) | �ϕk(t)〉]∑N

k=1 [〈�ϕk(t) | �ϕk(t)〉]

+
∑N

k=1[〈χ̇k(t) | �ϕk(t)〉 + 〈�ϕk(t) | χ̇k(t)〉 + 〈χk(t) | �fk(t)〉 + 〈�fk(t) | χk(t)〉] − �g∑N
k=1 [〈�ϕk(t) | �ϕk(t)〉]

]
. (17)

The second summand in the square brackets determines
B and the third one C. �fk and �g describe the change, due
to changes in the states, in the equations of motion,

|�fk(�ϕk, t)〉 = ∣∣fk

(
ϕ

(i)
k (t) + �ϕk(t), ε(i)(t), t

)〉
−∣∣fk

(
ϕ

(i)
k (t), ε(i)(t), t

)〉
, (18)

and in the constraint,

�g({�ϕk}, t) = g
({

ϕ
(i)
k (t) + �ϕk(t)

}
, ε(i)(t), t

)
− g
({

ϕ
(i)
k (t)

}
, ε(i)(t), t

)
. (19)
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B is given by

B = sup
{�ϕk};t∈[0,T ]

∣∣∣∣∣
∑N

k=1[〈�ϕk(t)|�fk(t)〉 + 〈�fk(t)|�ϕk(t)〉]∑N
k=1 [〈�ϕk(t)|�ϕk(t)〉]

∣∣∣∣∣ ,
(20)

and can be rewritten in terms of a supremum over the
Taylor expansion of the Hamiltonian starting at first order
and a supremum over the Hamiltonian, cf. Appendix C. Es-
timating the Taylor series by its Lagrange remainder, we
obtain

B ≤ 2
√

N sup
�ϕk ;|α|=1
t∈[0,T ]

|∂αĤ(�ϕk(t))| + 2 sup
{�ϕk};t∈[0,T ]

∣∣∣∣∣
∑N

k=1 Im〈�ϕk(t)|Ĥ(�ϕk(t), ε(i), t)|�ϕk(t)〉∑N
k=1 [〈�ϕk(t)|�ϕk(t)〉]

∣∣∣∣∣ , (21)

i.e., B can be estimated by the supremum over the first derivative of the Hamiltonian with respect to the states ϕ(t) and a term
which can be interpreted as twice the maximum absolute value of the imaginary part of the Hamiltonian’s eigenvalues. For
unitary time evolution governed by the standard (linear) Schrödinger equation, B = 0 can easily be proven and in this case σ (t)
is a linear function of time. It is also possible to take B = 0 for non-unitary time evolution with linear equations of motion
provided A and C can taken to be zero. For non-linear equations of motion, the supremum of the first-order derivatives of the
Hamiltonian needs to be evaluated explicitly. C is found to be

C = inf
{�ϕk};t∈[0,T ]

∑N
k=1[〈χ̇k(t) | �ϕk(t)〉 + 〈�ϕk(t) | χ̇k(t)〉 + 〈χk(t) | �fk(t)〉 + 〈�fk(t) | χk(t)〉] − �g∑N

k=1[〈�ϕk(t) | �ϕk(t)〉] . (22)

As shown in Appendix C, it can be rewritten in terms of suprema of the Taylor series of the Hamiltonian and the constraint, g,
starting at first and second order, respectively. Estimating the Taylor series by their Lagrange remainder, we obtain

−C ≥ 2
N∑

k=1

⎡
⎢⎢⎢⎣
√〈

χ
(i)
k (t)

∣∣χ (i)
k (t)

〉
sup

�ϕk ;t∈[0,T ]
|α|=1

[∂αĤ (�ϕk, t)]

⎤
⎥⎥⎥⎦+ sup

{�ϕk};t∈[0,T ]
|α|=2

[∂αg ({�ϕk}, t)], (23)

i.e., C is given by the supremum of the first-order derivatives of the Hamiltonian multiplied by the norm of the costates χ k(t)
and the supremum of the first-order derivatives of the constraint, g. For linear equations of motion and gb zero or linear in ϕk(t),
we find C = 0. The case of a quadratic dependency of g on the states ϕk, cf. Eq. (5), can also easily be handled. The second
term in the right-hand side of Eq. (23) can then be estimated by the eigenvalue of the operator D̂(t) with largest magnitude. For
example, if D̂(t) is the projector onto some subspace, D̂(t) = P̂, then

C ≤ − λb

NT
max

EV
[P̂] = − λb

NT
. (24)

In order to derive a numerical approximation for the parameters A, B, and C, we assume a finite time grid, {tj}, j = 1, . . . , n,
and define, based on Eqs. (15), (20), and (22), parameters A(i+1), B

(i+1)
j , and C

(i+1)
j ,

A(i+1)({�ϕk}) =
∑N

k=1 [〈χk (T ) | �ϕk (T )〉 + 〈�ϕk (T ) | χk (T )〉] + JT

({
ϕ

(i)
k (T ) + �ϕk(T )

})− JT

({
ϕ

(i)
k (T )

})
∑N

k=1 [〈�ϕk (T ) | �ϕk (T )〉] , (25)

and

B
(i+1)
j ({�ϕk}) =

∑N
k=1[〈�ϕk(tj ) | �fk(�ϕk, tj )〉 + 〈�fk(�ϕk, tj ) | �ϕk(tj )〉]∑N

k=1[〈�ϕk(tj ) | �ϕk(tj )〉] ,

C
(i+1)
j ({�ϕk}) = 1∑N

k=1[〈�ϕk(tj ) | �ϕk(tj )〉]

[
N∑

k=1

[〈χ̇k(tj ) | �ϕk(tj )〉 + 〈�ϕk(tj ) | χ̇k(tj )〉

+〈χk(tj ) | �fk(�ϕk, tj )〉 + 〈�fk(�ϕk, tj ) | χk(tj )〉] − �g({�ϕk}, tj )

]
.
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At iteration step (i + 1), a numerical estimate for the second-
order parameter, σ (i+1)(t), is obtained by replacing A, B, and
C in Eqs. (14) by A(i+1), Eq. (25), together with

B(i+1) = sup
j

B
(i+1)
j , (26a)

C(i+1) = inf
j

C
(i+1)
j , (26b)

and inserting the resulting numerical estimates of Ā, B̄, and
C̄ into Eqs. (13). Since the new states ϕ

(i+1)
k (t) = ϕ

(i)
k (t)

+ �ϕ(t) are not known, A(i+1), B
(i+1)
j , and C

(i+1)
j need to be

approximated, for example, by the values of A(i), B
(i)
j , and

C
(i)
j calculated in the previous iteration. In rare cases, this

approximation might lead to loss of monotonic convergence.

The iteration then needs to be repeated with the values of
A(i+1), B

(i+1)
j , and C

(i+1)
j that were obtained during the failed

step. Numerical estimation of the second-order parameters
enforces monotonic convergence with respect to a change in
the states as gently as possible, making use of the optimiza-
tion history to find a compromise between monotonicity and
speed of the convergence.

D. Monotonic convergence for arbitrary dependence
of the Hamiltonian on the control

In any iterative optimization, convergence with respect
to the field can only be expected towards a local extremum.
Here, the local extremum condition on J translates into ∂2R

∂ε2

< 0, or,

∂2ga

∂ε2

∣∣∣∣ϕ(i+1)
k ,ε(i+1) >

N∑
k=1

〈
χ

(i)
k (t)

∣∣ ∂2Ĥ
∂ε2

∣∣∣∣ ε(i+1),ϕ(i+1)

∣∣ϕ(i+1)
k (t)

〉+ N∑
k=1

〈
ϕ

(i+1)
k (t)

∣∣ ∂2Ĥ†

∂ε2

∣∣∣∣ ε(i+1),ϕ(i+1)

∣∣χ (i)
k (t)

〉

+ 1

2
σ (t)

N∑
k=1

[
〈�ϕk(t) | ∂2Ĥ

∂ε2

∣∣∣∣ ε(i+1),ϕ(i+1)

∣∣ϕ(i+1)
k (t)

〉+ 〈ϕ(i+1)
k (t)

∣∣ ∂2Ĥ†

∂ε2

∣∣∣∣ ε(i+1),ϕ(i+1) | �ϕk(t)〉
]

. (27)

For a linear dependence of the Hamiltonian on the con-

trol, ∂2Ĥ
∂ε2 = ∂2Ĥ†

∂ε2 = 0, and a maximum in R requires simply
∂2ga

∂ε2 |ε(i+1) > 0. This translates into the sign of the weight λa

for the typical quadratic dependence of ga on ε, cf. Eq. (4).
Inserting the corresponding derivative of ga, we obtain

ε(i+1)(t)

= ε̃ (t) + S(t)

λa

Im

{
N∑

k=1

〈
χ

(i)
k (t)

∣∣∂Ĥ
∂ε

∣∣∣∣ε(i+1),ϕ(i+1)

∣∣ϕ(i+1)
k (t)

〉

+ 1

2
σ (t)

N∑
k=1

〈�ϕk(t) | ∂Ĥ
∂ε

∣∣∣∣ ε(i+1),ϕ(i+1)

∣∣ϕ(i+1)
k (t)

〉}
.

(28)

For a nonlinear dependency of the Hamiltonian on the control,
we define the change in the intermediate-time functional due
to changes in the control,

�ε(t) = R
({

ϕ
(i+1)
k (t)

}
, ε(i+1)(t), t

)
−R

({
ϕ

(i+1)
k (t)

}
, ε(i)(t), t

)
. (29)

The strict maximum condition for R becomes �ε(t) > 0 ∀t.
We assume Jt, cf. Eq. (3), to be additive. Rewriting
Ĥ[ϕ(i+1)

k , ε(i+1), t] − Ĥ[ϕ(i+1)
k , ε(i), t] in terms of the Taylor

expansion of the Hamiltonian with respect to the control, we
find the zeroth order term to vanish. The first-order derivative
can be rewritten using Eq. (10). The remaining terms corre-
spond to the Taylor series starting at second order which can

be estimated by its Lagrange remainder,

M̃ε
2 (t) = sup

ϕk ;ε

∣∣∣∣ ∂2

∂ε2
Ĥ(ϕk, ε, t)

∣∣∣∣ . (30)

Employing furthermore
∑N

k=1

√〈�ϕk(t) | �ϕk(t)〉 ≤ 2
√

N ,
we obtain

�ε(t) > ga(ε(i), t)−ga(ε(i+1), t)+(ε(i+1)(t)−ε(i)(t))
∂ga

∂ε

∣∣∣∣
ε(i+1)

+
{√

NM̃ε
2 (t)

N∑
k=1

√〈
χ

(i)
k (t)

∣∣χ (i)
k (t)

〉+|σ (t)|NM̃ε
2 (t)

}

× (ε(i+1)(t) − ε(i)(t))2 ,

The Lagrange remainder can be evaluated by taking the sec-
ond derivative of the Hamiltonian with respect to the field and
estimating the norm of the resulting operator by its spectral
radius or its eigenvalue with largest square modulus. Since it
is difficult to proceed without a specific dependence of ga on
ε, we assume a quadratic dependence, cf. Eq. (4), and find

�ε(t) >

[
λa

S(t)
−
{

1

2

√
N

N∑
k=1

[√〈
χ

(i)
k (t)

∣∣χ (i)
k (t)

〉]
M̃ε

2 (t)

+N |σ (t)|M̃ε
2 (t)

}]
(ε(i+1)(t) − ε(i)(t))2. (31)
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Monotonic convergence is ensured by adjusting the shape
function S(t) and the parameter λa such that

λa

S(t)
>

{
1

2

√
N

N∑
k=1

[√〈
χ

(i)
k (t)

∣∣χ (i)
k (t)

〉]
M̃ε

2 (t)

+N |σ (t)|M̃ε
2 (t)

}
. (32)

Unlike the algorithm of Ref. 21, the numerical effort in our ap-
proach to ensure monotonic convergence is independent of the
order of the non-linearity of the Hamiltonian’s dependence on
the control.

To summarize Sec. II, a second-order construction of the
optimization algorithm yields an additional contribution to the
equation for the new field. Compared to the linear variant
of Krotov’s method,27 it simply requires additional storage
of the states from the previous iteration to determine �ϕk(t)
and calculation of the function σ (t). The parameters A, B,
and C determining σ (t) turn out to be zero, i.e., the second-
order contribution vanishes, for the “standard” quantum con-
trol problem with bilinear final-time cost, intermediate-time
costs that are independent of the states and linear equations
of motion. A second-order contribution can nevertheless be
invoked to study its influence on convergence. This is inves-
tigated below in Sec. IV B. A second-order contribution is
required to guarantee monotonic convergence for final-time
costs that are a polynomial of higher than second order in
the states,28 demonstrated below in Sec. III, and for general
intermediate-time costs that depend on the states, studied be-
low in Sec. IV C. A second-order construction is also required
for non-unitary time evolution and for non-linear equations of
motion.16, 34

III. APPLICATION I: HIGHER ORDER
POLYNOMIAL COSTS

A functional that is an eighth order polynomial in the
states arises in quantum information when optimizing for a
local equivalence class of two-qubit gates, [Ô], rather than a
specific two-qubit gate, Ô.28 The functional is based on the lo-
cal invariants of two-qubit gates36 which uniquely character-
ize a local equivalence class. The explicit, somewhat lengthy
expression of JLI

T is given in Ref. 28.
We employ JLI

T to optimize for the local equivalence
class of the B-gate,37 given in the logical basis by

ÔB = e
i
2 [ π

2 σ̂ x⊗σ̂ x+ π
4 σ̂ y⊗σ̂ y]

=

⎛
⎜⎜⎜⎝

cos(π/8) 0 0 i sin(π/8)

0 sin(π/8) i cos(π/8) 0

0 i cos(π/8) sin(π/8) 0

i sin(π/8) 0 0 cos(π/8)

⎞
⎟⎟⎟⎠ ,

for an effective spin-spin system,

Ĥeff = ¯(t)2

8

3∑
i,j=0

σ̂ iaij (x0)σ̂ j . (33)

The effective Hamiltonian is derived, within second-order
perturbation theory, for trapped polar molecules with 2�1/2

electronic ground states, subject to near-resonant microwave
driving that induces strong dipole-dipole coupling.38 (t) de-
notes the Rabi frequency that will be optimized, σ̂ i are the
2 × 2 Pauli spin matrices, i = 1, 2, 3 ≡ x, y, z with σ0

= 12. The tensor aij depends on the distance x0 between the
molecules and on the polarization and detuning of the mi-
crowave field. We consider here CaCl molecules in an optical
lattice with a lattice spacing of 300 nm, microwave radiation
of about 9.13 GHz, polarizations α± = 1/

√
2, α0 = 0, and a

detuning from the rotational transition of 1.2 kHz.
The higher than quadratic dependence of JLI

T on the
states leads to a non-zero analytical estimate of A, cf.
Eq. (16). Specifically, one has to calculate all second deriva-
tives of the eighth order polynomial and evaluate the supre-
mum by considering an arbitrary change in the states up to
‖�ϕ‖ = ‖∑k �ϕk‖ ≤ 2

√
N , cf. Appendix B (Fig. 6). For

our example, N = 4 and from the second derivatives, we ob-
tain Ā = 45 although in practice a value of Ā = 5 was suf-
ficient to preserve monotonic convergence. Figure 1 demon-
strates that this choice of Ā (blue dashed line) indeed ensures
monotonic convergence independent of other parameters of
the algorithm such as the weight λa, cf. Eq. (4). Note that in
this example, convergence of the final-time functional JT and
the complete functional J are equivalent due to our specific
choice of ga (Ref. 27) and gb = 0. The latter yields C̄ = 0.
Furthermore, B̄ = 0 since our equation of motion is linear in
the states. The first-order algorithm (solid red line) fails com-
pletely for small λa and violates monotonic convergence for
many iteration steps albeit finding an optimum eventually for
intermediate λa. The weight λa determines the step size
for changes in the field, cf. Eq. (12): small λa leads to large
values of the field and thus a possibly more “erratic” op-
timization, while for large λa, optimization proceeds more
cautiously, explaining that even the first-order construction
is found to converge monotonically. This is, however, due
to the simplicity of our control problem which is essentially
one-dimensional since success is determined by the integrated
field amplitude. For more complex Hamiltonians, optimiza-
tion employing a first-order construction was found to always
fail,28 underlying the significance of the second-order con-
struction. The analytical estimate of the second-order param-
eter takes all worst case scenarios into account. Therefore,
values smaller than the analytical estimate might already be
sufficient for monotonicity which is confirmed as shown in
Fig. 1 by the blue dashed line representing Ā = 5 and the
black dotted line representing Ā = 1 even though the analyti-
cal estimate is given by Ā = 45. Such a less conservative es-
timate yields, moreover, significantly faster convergence for
small λa, a fact that was also confirmed for more complex
Hamiltonians.28

IV. APPLICATION II: BILINEAR COSTS

For bilinear costs, the supremum estimation of C yields
zero. We consider the dynamics of our examples to be de-
scribed by the standard Schrödinger equation such that B = 0
and B̄ can also be chosen zero. A second-order construc-
tion of the optimization algorithm becomes necessary if bi-
linear intermediate-time costs are employed, gb �= 0, which
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FIG. 1. Convergence of the local invariants functional that optimizes for a
local equivalence class rather than a specific operator and is an eighth order
polynomial in the states. The optimum corresponds to JLI

T = 0.

lead to non-zero C, cf. Eq. (23). If gb = 0, a second-order
construction is not required to ensure monotonicity but can
be utilized to speed up convergence.

A. Model

A simplified model for the vibrations in a Rb2 molecule
that linearly interacts with a laser field takes three electronic
states, X1�+

g (5s + 5s), 1�+
u (5s + 5p), and 1�g(5s + 4d),

into account,33, 39

Ĥ =
3∑

i=1

Ĥi ⊗ |ei〉〈ei | + μ̂ ε(t) · (|e1〉〈e2|

+ |e2〉〈e1| + |e2〉〈e3| + |e3〉〈e2|) . (34)

Here, Ĥi denotes the vibrational Hamiltonians, Ĥi = T̂
+ Vi(R̂), with kinetic and potential operators T̂ and Vi(R̂),
respectively, μ̂ is the transition dipole operator, assumed to
be independent of R̂, and ε(t) the electric field. The poten-
tials are found in Ref. 40. The vibrational Hamiltonians are
represented on a Fourier grid41 with NR grid points yield-
ing a total Hilbert space dimension of M = 3NR. The equa-
tions of motion are solved by the Chebychev propagator
for homogeneous and inhomogeneous Schrödinger equations,
respectively.39, 41 An initial field of the form

ε(0)(t) = ε0s(t) cos(t) (35)

is employed with ε0 the maximum amplitude and  the cen-
tral frequency of the field. The shape function s(t) is taken to
be s(t) = sin 2(π t/T), where T corresponds to the optimization
time. The weight of the final-time objective, λ0, is taken to be
one such that the optimum corresponds to −JT = 1.

B. State-independent intermediate-time cost (gb = 0)

We investigate optimization of a state-to-state transfer
(N = 1), taking for simplicity only the electronic states
X1�+

g (5s + 5s) and 1�+
u (5s + 5p) into account. The initial

and target states are taken to be the vibrational eigenstates
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A = 0.001

A = 0.01

A = 0.1

A = 0.2 

A =  2 A(Δϕ)

50 100 150 200 250

0.99

1.00

0 1 2 3 4
0.00

0.10

FIG. 2. Convergence of the first-order and second-order constructions of the
optimization algorithm as measured by the final-time objective, JT, for state-
to-state transfer from vibrational level v = 10 to v = 0.

v = 10 and v = 0 of the X1�+
g (5s + 5s) electronic ground

state. With a vibrational period of the initial state of 614 fs, the
optimization time is set to T = 1 ps. The central frequency and
the maximum field amplitude are taken to be  = ωv=10→v′=0

and ε0 = 1 × 10−2 a.u.
Convergence of the final-time objective JT is shown in

Fig. 2, comparing first-order (black circles) and second-order
constructions of the algorithm. The second-order construc-
tion is determined by the choice of Ā which can be taken
to be equal to some non-negative number, εA, cf. Eq. (14)
(dotted and dashed lines in Fig. 2) or Ā = 0 (first-order op-
timization, black circles in Fig. 2). The numerical estimate of
A, cf. Eq. (25), is represented by the solid red line in Fig. 2.
The latter choice might speed up convergence, but is more
risky: Since Ā = 2A(i+1)(�ϕ) can become negative, the con-
dition for monotonic convergence may be violated. This is
clearly seen in Fig. 2. In the lower inset, monotonic conver-
gence is lost for one step after the first iteration step. We find
in this case, that the state change is almost maximal, ‖�ϕ‖
= 1.95 ≤ 2, i.e., the worst possible case that the optimiza-
tion algorithm must deal with is reached. While the first-order
construction converges faster initially, the upper inset shows
that all second-order constructions supersede the first order
one as the optimum is approached. This is readily understood
by inspection of Eq. (12): the first-order contribution to the
change in the field is closely related to the gradient of the
functional.48 Since the gradient vanishes close to the opti-
mum, convergence of the first-order construction slows down
as the optimum is approached. Variation of the non-negative
number, εA, shows that an optimal choice of εA exists. How-
ever, this optimal choice cannot be determined a priori. In
terms of convergence speed close to the optimum, it is there-
fore recommendable to employ the numerical estimate of Ā

(red solid line in Fig. 2). Very similar behavior is found for
optimization of a unitary transformation, a Hadamard gate
(N = 2) on the lowest two vibrational eigenstates of the elec-
tronic ground state (data not shown).

C. State-dependent intermediate-time cost (gb �= 0)

State-to-state transfer from v = 0 to v = 1 and the
Hadamard gate on the lowest two vibrational eigenstates of
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the electronic ground state,

Ô = 1√
2

(
1 1
1 −1

)
,

are optimized, taking into account an additional state-
dependent cost, gb(ϕ, t). If both a state-dependent cost and a
final-time target are present, the algorithm seeks to optimize a
compromise between the two goals. The parameters λ0 and λb

determine the relative weight of each target. Monotonic con-
vergence always refers to the value that the total functional,
J of Eq. (1), takes; and each separate contribution to J does
not need to converge monotonically. Below we will discuss
convergence of both J and JT. In order to render the optimal
value of J independent of the choice of the weights λ0, λb, we
define a normalized functional,

Jnorm = J

λb − λ0
, λb ≤ 0 , (36a)

Jnorm = 1 − J − λ0

λb − λ0
, λb ≥ 0 , (36b)

that converges toward one.
The cost gb is employed to avoid any population transfer

to a forbidden subspace, taken to be the 1�g(5s + 4d) state,
at all times t ∈ [0, T].33 This can be expressed by taking the
operator D̂ in Eq. (5) to be one of the two choices,

D̂ = P̂allow = |e1〉〈e1| + |e2〉〈e2|, λb ≤ 0 (37a)

D̂ = P̂forbid = |e3〉〈e3|, λb ≥ 0 , (37b)

where P̂allow and P̂forbid denote the projectors onto the allowed
and forbidden subspaces, respectively. The allowed subspace
is formed by the X1�+

g (5s + 5s) and 1�+
u (5s + 5p) states.

The different signs of the weight λb indicate maximization of
P̂allow and minimization of P̂forbid which is physically equiv-
alent. Mathematically, the equivalence does not hold since gb

is a constraint and, therefore, must have its sign opposite to
that of JT. This is possible only for the choice of Eq. (37a).
Note that the “wrong” sign of Eq. (37b) exemplifies the more
general class of indefinite operators D̂(t) for which it is not
possible to construct a monotonically convergent algorithm
using the previously available tools by a simple change of
sign.

With the choice of gb according to Eqs. (37), the analyt-
ical estimate of the parameter C of the second-order contri-
bution is given by Eq. (24). Writing explicitly the change in
the intermediate-time contribution to the functional due to the
change in the states for a first order algorithm,

�ϕ(t) = R
({

ϕ
(i+1)
k

}
, ε(i), t

)− R
({

ϕ
(i)
k

}
, ε(i), t

)
= −λb

1

NT

N∑
k=1

〈�ϕk(t)|D̂|�ϕk(t)〉 .

We find the necessary condition for monotonic convergence,
�ϕ(t) ≥ 0, to be always fulfilled for D̂ = P̂allow. A second-
order construction is therefore not required,33 corresponding

to C = 0 in accordance with Eq. (24). In this case, C̄ can
be set to −εC, cf. Eq. (14), where εC is a non-negative num-
ber to check for improved convergence with a second-order
algorithm. However, if the projector onto the forbidden sub-
space is employed in gb, �ϕ(t) ≥ 0 is not necessarily fulfilled
and a second-order construction is required to ensure mono-
tonic convergence. Equation (24) now yields a large negative
number for C since λb is negative, and C̄ is determined by
C. Our approach goes beyond the results of Ref. 33 where
a convergent (first order) algorithm was obtained only for
negative semi-definite operators λbD̂(t) in the additional con-
straint gb. The second-order construction of Eq. (28) allows
for a larger class of operators D̂(t) in the state-dependent
constraint gb.

The final time is set to T = 2 ps, the central frequency of
the guess field is chosen to be  = ωv=0→v′=10 and ε0 = 2
× 10−4 a.u. Ā is taken to be zero since our emphasis is on the
choice of the parameter C̄.

We first study the case D̂ = P̂allow where the second-
order construction is not required but may improve conver-
gence, in analogy to Sec. IV B. Figure 3 compares the con-
vergence of first- and second-order constructions. Taking C̄ to
be equal to −εC, cf. Eq. (14) (dotted and dashed lines in
Fig. 3), does not affect monotonicity. However, it also does
not yield faster convergence than the first-order algorithm
(black circles). The numerical estimate, C̄ = 2C(i+1)(�ϕ)
(solid red line in Fig. 3), cf. Eq. (26b), neglecting εC in
Eq. (14) is somewhat risky since C(i + 1)(�ϕ) can become
positive such that this choice of C̄ does not guarantee mono-
tonic convergence. Indeed, small violations of monotonicity,
for example, between steps 1180 and 1300, are observed in
Fig. 3. However, this is more than compensated for by the im-
proved speed of convergence as compared to the first order
and the conservative choices C̄ = −εC . Very similar behavior
is found for optimization of a state-to-state transition (data not
shown).

For D̂ = P̂forbid, monotonic convergence needs to be
ensured by a second-order construction with C given by
Eq. (24). This choice corresponds to the green dashed line
in Fig. 4 which studies convergence of the final-time objec-
tive, JT, and the complete functional, Jnorm, for a state-to-state
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FIG. 3. Convergence of the first-order and second-order constructions for a
Hadamard gate with a state-dependent cost (D̂ = P̂allow, i.e., the second-order
construction is not required).
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FIG. 4. Convergence of the first-order and second-order constructions for
state-to-state transfer with state-dependent cost. The operator D̂ is taken to be
the projector onto a forbidden subspace, i.e., the second-order construction is
required.

optimization. Taking C somewhat smaller than the estimate of
Eq. (24) may yield non-monotonic behavior, cf. the blue dot-
ted line in Fig. 4. If one neglects the second-order contribution
and the weight λb is large, the algorithm completely fails (or-
ange diamonds in Fig. 4). For a small weight λb, the algorithm
converges to an optimum but non-monotonic behavior is ob-
served at intermediate iterations (black circles). Note that for
small λb, the constraint gb is almost not enforced due to insuf-
ficient weight. The best compromise between monotonic con-
vergence and high fidelity is obtained for C̄ = 2C(i+1)(�ϕ)
(red solid line in Fig. 4). For the parameters for which the
complete functional, Jnorm, converges monotonically (green
dashed and solid red lines in Fig. 4), monotonic behavior is
observed also for the final-time objective, JT. In general, this
need not be the case. We attribute it in the current example
to our choice of the guess field which is relatively weak such
that the forbidden subspace is not strongly populated. The al-
gorithm, therefore, starts out in the “right” direction for opti-
mizing both targets, JT and gb, and it does not need to optimize
one target at the expense of the other.

Figure 5 presents convergence of the final-time objective,
JT, and the complete functional, Jnorm, for optimization of the
Hadamard gate. Similarly to Fig. 4, convergence is almost
identical for the analytical estimate of C based on Eq. (24)
(green dashed line in Fig. 4) and the numerical estimate ac-
cording to Eq. (26b) (red solid line). A small violation of the
analytical estimate (blue dotted line in Fig. 5) leads to non-
monotonic behavior but may yield larger fidelities after many
iterations.

To summarize our numerical investigations, a second-
order contribution can be employed to enforce monotonic
convergence for functionals that are higher order polyno-
mials in the states or correspond to expectation values of
non-semidefinite operators. The numerical estimate of the
second-order parameters might slightly violate monotonicity
but yields the highest fidelities, especially as the optimum is
approached. If a second-order contribution is not required by
the functional, it may nevertheless be used to improve conver-
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FIG. 5. Convergence of second-order constructions for a Hadamard gate
with a state-dependent cost. The operator D̂ is taken to be the projector onto
a forbidden subspace, i.e., the second-order construction is required.

gence. Also in this case the numerical estimate of the second-
order parameters Ā and C̄ turns out to be most efficient.

V. SUMMARY AND CONCLUSIONS

Applying Krotov’s method29 to quantum control, we
have shown that monotonically convergent optimization al-
gorithms are obtained for any quantum control problem pro-
vided that a second-order construction is employed. The equa-
tion for the optimized field then contains an additional term.
Compared to a first-order algorithm,27 only storage of the
quantum states of the previous iteration and calculation of
the second-order weight are additionally required. We have
shown that the parameters for the second-order contribution
can be estimated analytically based on the final-time target
and intermediate-time “costs,” the equations of motion and
the dependence of the Hamiltonian on the control field or cal-
culated numerically from the optimization history. This is due
to the normalization of quantum state vectors and finiteness
of physical control fields, implying that optimization is per-
formed over compact sets of candidate states and controls,
which has allowed us to significantly relax the conditions for
Krotov’s constructive proof.29

We have illustrated the power of our approach by ap-
plying it to two control problems for which no monoton-
ically convergent algorithm existed – to target functionals
that are higher order polynomials in the states and to state-
dependent constraints expressed as expectation value of a
non-semidefinite operator. Target functionals that are higher
order polynomials in the states arise for optimization towards
an equivalence class of operators rather than a specific opera-
tor. This is particularly relevant in quantum information where
one is interested in the optimal evolution of a primary system
alone, irrespective of its environment,42 or in the entangling
content of two-qubit gates.28

Our numerical examples illustrate that an analytical es-
timate of the algorithm parameters ensures monotonic con-
vergence by taking all worst case scenarios for optimization
into account. However, if the worst case scenarios are not
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encountered, the analytical estimate imposes limits which are
too severe, slowing down convergence. Estimating the algo-
rithm parameters numerically based on the optimization his-
tory turns out to be a more efficient choice. The numerical es-
timate of the second-order parameters can also be employed
to speed up convergence, in particular close to the optimum
where the first-order contribution vanishes, for optimization
problems where a second-order construction is not strictly
required.

Note that the overall performance of the algorithm still
depends on the the weights of the each term in the optimiza-
tion functional and the optimization time T. The latter has
little influence on the convergence once it is larger than the
quantum speed limit.43 The role of the weights is more sub-
tle, in particular for multi-optimization problems.44 A spe-
cial role is taken by the weight, λa, of the term minimizing
the field intensity: It determines the magnitude of the first-
order contribution to the new field analogously to the step
size in gradient-type algorithms.23 Since its modulus, |λa|,
is a free parameter of the algorithm, its choice may be used
to further improve the convergence speed. An efficient opti-
mization method is obtained by choosing |λa| based on in-
formation from the second-order derivative of the functional
with respect to the field, estimated with the Broyden-Fletcher-
Goldfarb-Shanno algorithm.45 Note that in terms of conver-
gence speed this goes beyond our approach which only makes
use of information from the second-order derivatives with re-
spect to the states.

The work presented here opens up a whole range of
new applications for quantum optimal control. It provides a
general set of tools to study optimization of final-time func-
tionals that are higher order polynomials in the states,28 or
optimization of time-dependent expectation values that were
suggested for the control of high-harmonic emission,32 or
optimization for nonlinear equations of motion such as
the Gross-Pitaevski equation, time-dependent Hartree-Fock
equations or time-dependent density functional theory.15, 19, 34

This set of tools allows for designing novel optimization func-
tionals that capture the relevant physics without restriction to
bilinear functionals.
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APPENDIX A: PROOF OF OPTIMALITY
OF THE SECOND ORDER ANSATZ

Konnov and Krotov base their proof upon the following
condition set A:29

1. The right-hand side of the equation of motion,
f ( �ϕ, ε, t), is bounded, i.e., ∃ K,L < ∞ : ∀ ( �ϕ, ε, t)
∈ R2NM × E × [0, T ], and ‖x‖ ≥ M ⇒ f ( �ϕ, ε, t)
≤ L‖x‖.

2. The Jacobian of the equation of motion is bounded, i.e.,
∃ A < ∞ : ∀ ( �ϕ, ε, t)R2NM × E× ∈ [0, T ] : ‖J‖ ≤ A.

3. The functionals JT ( �ϕ) and g ( �ϕ, ε, t) are twice differ-
entiable and bounded, i.e., ∃ K,L < ∞ : ∀�ϕ ∈ R2NM,

‖�ϕ‖ ≥ L ⇒ JT ( �ϕ) ≤ K‖�ϕ‖2, and |g ( �ϕ, ε, t)| ≤
K‖�ϕ‖2 ∀ (t, ε) ∈ [0, T ] × E.

Here, the real state vector �ϕ(t) is a piecewise differen-
tiable function for all t ∈ [0, T] and the control ε is an el-
ement of the Banach space of continuous real valued func-
tions on the interval [0, T] with supremum norm ‖f (x) ‖∞
= supx∈[0,T ] |f (x)|, i.e., ε ∈ (C[0, T], ‖ · ‖∞) with ‖ε‖∞
≤ E < ∞. In quantum control, the components of �ϕ(t) are the
real and imaginary parts of the projections of N Hilbert space
vectors on a suitable orthonormal basis of the M-dimensional
Hilbert space. The norm of the Jacobian is then the matrix
norm of the 2NM × 2NM matrix, either column or row norm.

Based on A, Konnov and Krotov proved the following
theorem:29

Theorem 1: If the conditions A hold, then for each pro-
cess w(i)( �ϕ(i)(t), ε(i)(t)), there exists a solution for � to the
extremization problem,

R( �ϕ(i)(t), ε(i)(t), t ; �) = min
�ϕ

R( �ϕ(t), ε(i)(t), t)

∀ t ∈ [0, T ], (A1)

G( �ϕ(i)(T ); �) = max
�ϕ

G( �ϕ(T )), (A2)

of the form

�( �ϕ, �χ, t) = �χ (t) · �ϕ (t) + 1

2
� �ϕ(t) · σ̂ (t) · � �ϕ(t) ,

and the matrix function σ̂ (t) can be represented as

σ̂ (t) = (α(eγ (T −t) − 1) + β) · 1 ≡ σ (t) · 1,
where α, β < 0, and γ > 0 are constants.

With this theorem, the crucial part of constructing the algo-
rithm, i.e., determination of σ (t) and thus �, is reduced to the
determination of the constants α, β, and γ . Since the proof
of Theorem 1 shows how to estimate the values of α, β, and
γ , we will sketch it here. It is based on the following lemma
which indicates why the conditions A need to be imposed.

Lemma 1: Let the function h ( �ϕ) : Rn → R satisfy the
following conditions: h ∈ C (Rn) with C (Rn) denoting the
space of continuous functions over Rn, h is twice differen-
tiable at �0 with h(�0) = 0 and ∇�ϕh( �ϕ)| �ϕ=�0 = �0 and ∃ K,L <

∞ : ‖�ϕ‖ ≥ L ⇒ h ( �ϕ) ≤ K‖�ϕ‖2. Then,

sup
�ϕ∈Rn

h ( �ϕ)

‖�ϕ‖2
< ∞.

When using Lemma 1, two problems may arise in ensur-
ing that the supremum is finite. (i) Small values of ‖�ϕ‖
create a small denominator which may lead to large values
of h( �ϕ)

‖�ϕ‖2 near �ϕ = �0. This is eliminated by the conditions of

Lemma 1, h(�0) = 0 and ∇�ϕh ( �ϕ) | �ϕ=�0 = �0. We show in
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Appendices A 1 and A 2 that all quantities taking the role
of h( �ϕ) satisfy these conditions so that we can employ
Lemma 1. (ii) Large values of ‖�ϕ‖ may cause large values
of h ( �ϕ) which in turn can lead to large values of h( �ϕ)

‖�ϕ‖2 as
‖�ϕ‖ → ∞. The second problem is handled by imposing that
h ( �ϕ) grows at most quadratically with ‖�ϕ‖ which is guaran-
teed by the conditions A. Continuity of h( �ϕ) then ensures
finiteness of the supremum’s argument for all intermediate
values of ‖�ϕ‖, 0 < ‖�ϕ‖ < ∞.

1. Final-time contribution to the second-order
ansatz: Proof of existence of finite A

Without any assumption on the normalization, i.e., with-
out any reference to quantum control, we verify that A of
Eq. (15) is well-defined with A < ∞ based on the conditions
A and using Lemma 1. Let �ψ denote the change in the state
vector. Specifically, we have to check that, for

h( �ψ) = �ψ · � �f
with �f defined in Eq. (18), (i) h is twice differentiable
at �0 with h(�0) = 0, (ii) ∇ �ψh( �ψ)| �ψ=�0 = �0, and (iii) h( �ψ)
is bounded, i.e., finite constants K and L exist such that
∃ K,L < ∞ : ‖ �ψ‖ ≥ L ⇒ h( �ψ) ≤ K‖ �ψ‖2. Obviously h is
twice differentiable since �f is twice differentiable and �χ (T )
is a constant with respect to �ψ . Since JT ( �ϕ(i) + �ψ)| �ψ=0

− JT ( �ϕ(i)) = JT ( �ϕ(i)) − JT ( �ϕ(i)) = 0, we find h(�0) = 0. We
check whether ∇ �ψh( �ψ)| �ψ=�0 = �0,

∇ �ψh( �ψ)| �ψ=�0 =
( �ψ

‖ �ψ‖

)
· �χ

+∂JT ( �ϕ(i) + �ψ)

∂ �ψ

∣∣∣∣∣ �ψ=�0
·
( �ψ

‖ �ψ‖

)

= �χ · ê �ψ + ∂JT

∂ �ϕ ( �ϕ(i)) · ê �ψ.

Since we have to check these conditions at t = T and remem-
bering that �χ (T ) = − ∂JT

∂ �ϕ ( �ϕ(i)(T )), we obtain the desired re-
sult,

∇ �ψh( �ψ)| �ψ=�0,t=T = �χ · ê �ψ(T ) + ∂JT

∂ �ϕ ( �ϕ(i)(T )) · ê �ψ(T )

= �χ · ê �ψ(T ) − �χ · ê �ψ(T ) = �0.

Finally, the condition set A tells us that JT ( �ϕ)
‖ �ψ‖→∞=

O(‖ �ψ‖2), hence

h( �ψ) = ( �χ · �ψ) + JT ( �ϕ(i) + �ψ) − JT ( �ϕ(i))

‖ �ψ‖→∞= O(‖ �ψ‖) + O(‖ �ψ‖2) + O(1) = O(‖ �ψ‖2)

and condition (iii) is fulfilled. We may thus use Lemma 1
which guarantees the existence of A.

2. Intermediate-time contribution to the second-order
ansatz: Proof of existence of finite B, C

Analogously to Appendix A 1, we now verify that B and
C are well-defined with 0 < B < ∞ and C > −∞ without any
assumption on the normalization of the state vector. The con-
stant B defined in Eq. (20) is easily checked using Lemma 1.
Similarly to proving the existence of finite A, we have to check
whether the conditions for Lemma 1 are fulfilled for

h( �ψ(t)) = �ψ(t) · � �f .

In analogy to Appendix A 1, it is obvious that h is twice
differentiable at �0 with h(�0) = 0. In order to check that
∇ �ψ(t)h( �ψ(t))| �ψ(t)=�0 = 0, we use the product rule,

∇ �ψ(t)h( �ψ(t))| �ψ(t)=�0 =
( �ψ(t)

‖ �ψ(t)‖

)
· � �f ( �ψ(t))| �ψ(t)=0︸ ︷︷ ︸

=�0

+ �ψ(t) · ∇ �ψ(t)(� �f )| �ψ(t)=0︸ ︷︷ ︸
=�0

= �0.

Finally, the condition set A tells us that ‖ �f ( �ϕ)‖ ‖ �ψ‖→∞=
O(‖ �ψ‖), hence

h( �ψ) = �ψ · � �f ‖ �ψ‖→∞= O(‖ �ψ‖2) ,

i.e., h is indeed quadratically bounded. We may thus use
Lemma 1 which guarantees the existence of B < ∞. More-
over, B > 0 due to taking the square modulus inside the supre-
mum.

To prove the existence of finite C defined by Eq. (22), we
distinguish the two cases for large and small ‖ �ψ‖. For large
‖ �ψ(t)‖, the argument of the infimum is finite. This follows
from �̇χ (t) and �χ(t) being constant with respect to �ψ(t) and
the fact that for large ‖�ϕ‖, we have ‖ �f ‖ ≤ K1‖�ϕ‖ and |g|
≤ K2‖�ϕ‖2. Hence

�̇χ (t) · �ψ(t) + �χ(t) · � �f − �g
‖ �ψ(t)‖→∞≤ O(‖ �ψ(t)‖2) .

For small ‖ �ψ(t)‖, we have to check that the zeroth and first-
order terms in the denominator disappear. Inserting the ex-
pression for �̇χ into the definition of C yields

C = inf
�ψ(t)∈R2NM ;t∈[0,T ]

(−∇�ϕ(t) �f T · �χ (t)) · �ψ(t) + �χ (t) · � �f + ∇�ϕg · �ψ(t) − �g

( �ψ(t) · �ψ(t))
, (A3)
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For sufficiently small ε and ‖ �ψ(t)‖ < ε, we may approximate �f and �g to the first order,

� �f � ∇�ϕ(t) �f · �ψ(t) + O(‖ �ψ‖2) ,

�g � ∇�ϕ(t)g · �ψ(t) + O(‖ �ψ‖2) .

This yields

(−∇�ϕ(t) �f T · �χ (t)) · �ψ(t) + ∇�ϕ(t)g · �ψ(t) + �χ(t) · � �f − �g

( �ψ(t) · �ψ(t))

‖ �ψ(t)‖→0−→ (−∇�ϕ(t) �f T · �χ(t)) · �ψ(t) + ∇�ϕ(t)g · �ψ(t) + �χ (t) · (∇�ϕ(t) �f · �ψ(t)) − ∇�ϕ(t)g · �ψ(t) + O(‖ �ψ(t)‖2)

( �ψ(t) · �ψ(t))

‖ �ψ(t)‖→0−→ O(‖ �ψ(t)‖2)

( �ψ(t) · �ψ(t))
= O(1) ,

i.e., C remains finite also for small ‖ �ψ(t)‖.

APPENDIX B: APPLYING KROTOV’s PROOF
TO QUANTUM CONTROL PROBLEMS

We adapt Konnov and Krotov’s results29 to the case
that �ϕ is composed of the M real and imaginary expan-
sion coefficients of N normalized quantum state vectors. In
quantum control applications, some of the conditions A, cf.
Appendix A, are trivially fulfilled. Specifically, the state vec-
tor �ϕ is inherently bounded for any field ε if �ϕ is obtained
from the equation of motion for a given ε due to normaliza-
tion. In particular, ‖�ϕ‖ cannot become larger than

√
N and

we may reduce the candidate space R2NM for �ϕ to a com-
pact subset of R2NM , namely, X = {�ϕ ∈ R2NM |‖ �ϕ‖ ≤ √

N}
⊂ R2NM . The conditions concerning the behavior for large
‖�ϕ‖ are then trivially fulfilled because the complete space
of interest [0, T ] × X × E, that is the set of all {(t, �ϕ, ε)}, is
compact. The boundedness of the right-hand side of the equa-
tions of motion, the Jacobian, and the functionals is then guar-
anteed by simply asking f (t, �ϕ, ε), J, JT ( �ϕ), and g(ε, �ϕ, t) to
be regular.

Due to the restriction of the states to the compact subset
X ⊂ R2NM , the proof simplifies for quantum control applica-
tions which we use to obtain straightforward estimates of the
constants α, β, and γ . The changes in R and G due to varia-
tion of the state from the extremal point, �ϕ(i), to all possible
states, �ϕ(i) + �ψ , is measured by

�G( �ψ) = G( �ϕ(i)(T ) + �ψ) − G( �ϕ(i)(T )) , (B1)

�R( �ψ(t), t) = R( �ϕ(i)(t) + �ψ(t), ε(i)(t), t)

−R( �ϕ(i)(t), ε(i)(t), t) . (B2)

Then the global extremum conditions, Eqs. (A1) and (A2),
correspond to �G( �ψ) ≤ 0 and �R( �ψ(t), t) ≥ 0. In quantum
control applications, any state �ϕ(i) + �ψ , that is, candidate for
�ϕ(i+1) must also be normalized. Geometrically, all states �ϕ(i)

and �ϕ(i) + �ψ lie therefore on a sphere of radius X. The norm
of the vectors �ψ varies between zero and 2X since for any
two vectors �ϕ(i), �ϕ(i+1) in X the minimum distance is zero

while the maximum distance is 2X. This is illustrated in Fig.
6. The space for the state change vectors �ψ is then given by Y
= { �ψ ∈ R2NM |∃ �ϕ(i) ∈ X : �ϕ(i) + �ψ ∈ X} ⊂ R2NM . In quan-
tum control applications, it is thus sufficient to vary the vector
�ϕ(i+1) over the sphere of radius X around the origin instead of
the full R2NM .

With the definitions of A, B, and C, cf. Eqs. (15), (20)
and (22), a strict maximum condition for G and minimum
condition for R is transformed into

σ (T ) < −2A , (B3)

1

2
σ̇ (t) − |σ (t)| B + C > 0 . (B4)

A solution σ (t) fulfilling these inequalities exists and it is
straightforward to check that the Konnov and Krotov’s ansatz
equation (13) satisfies (B3) and (B4). More generally, the
ansatz29

σ (t) = α(eγ (T −t) − 1) + β

with α, β < 0, and γ > 0 lead to the inequalities

β + 2A < 0 , (B5a)

FIG. 6. All admissible states, �ϕ(i) and �ϕ(i+1) = �ϕ(i) + �ψ lie on a sphere of
radius X = √

N around the origin. Therefore, the norm of the change in thes-
tates, ‖ �ψ‖, varies between 0 and 2X.

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

130.133.152.56 On: Tue, 03 Nov 2015 13:32:30



104103-14 Reich, Ndong, and Koch J. Chem. Phys. 136, 104103 (2012)

−αγ

2
− Bβ + C > 0 , (B5b)

which have at least one specific solution, namely, Eq. (13),
with

α = C̄

B̄
− Ā β = −Ā γ = B̄ .

Note that if a set {α0, β0, γ 0} fulfills the inequalities (B5),
then any other set {α, β, γ } with α ≤ α0 < 0, β ≤ β0 < 0,
and γ ≥ γ 0 > 0 does so, too. This flexibility can be utilized
to estimate the constants A, B, and C. Therefore, the suprema
in Eqs. (15) and (20) and the infimum in Eq. (22) can be esti-
mated analytically.

APPENDIX C: ANALYTICAL ESTIMATE
OF THE PARAMETERS OF THE SECOND-ORDER
CONTRIBUTION

The arguments of the suprema, respectively of the infi-
mum, in A, B, and C can be expressed in terms of the Taylor
series starting at the first, respectively second, order. Evalu-
ating the remainder term of these Taylor series, we obtain
estimates for A, B, and C. Let W ( �ϕ) be a scalar, vector, or
matrix depending on �ϕ. Wn ( �ϕ) denotes the Taylor expansion
of W around �ϕ(i) starting at the n-th order or, in other words,
Wn ( �ϕ) equals W ( �ϕ) minus the first (n − 1) terms of its Tay-
lor expansion around �ϕ(i). For example, we obtain for a scalar
field,

W0( �ϕ) = W ( �ϕ(i)) ,

W1( �ϕ) = W ( �ϕ) − W ( �ϕ(i)) ,

W2( �ϕ) = W ( �ϕ) − W ( �ϕ(i)) − ∇ϕW ( �ϕ(i)) · ( �ϕ − �ϕ(i)) ,

and so forth. The Taylor series starting at the n-th order can be
approximated by evaluating the remainder term. For a scalar
field W ( �ϕ), this is given by

Wn( �ϕ) = RW
�ϕ(i),n

( �ψ) =
∑
|α|=n

1

α!
∂αW ( �ϕ(i) + c �ψ) �ψα

(C1)

for a c ∈ (0, 1) and with �ψ = �ϕ − �ϕ(i). Here α is a multi-
index representing the 2NM-tuple of natural numbers includ-
ing zero,

|α| =
2NM∑
i=1

αi,
1

α!
= 1∏2NM

i=1 αi!
, �ψα =

2NM∏
i=1

ψ
αi

i ,

(C2)

and

(∂αW )( �ϕ(i)) =
2NM∏
i=1

∂αi W ( �ϕ)

∂ϕ
αi

i

∣∣∣∣
�ϕ=�ϕ(i)

. (C3)

The remainder can be estimated by

RW
�ϕ(i),n

( �ψ) ≤ 1

α!
MW

n ( �ϕ(i)) �ψα, |α| = n , (C4)

with

MW
n ( �ϕ(i)) = sup

�ψ∈Y ;|α|=n

∂αW ( �ϕ(i) + �ψ) .

An estimate, that is, independent of the state �ϕ(i) is obtained
by taking the supremum over all possible �ϕ(i), i.e., we define

MW
n ≡ sup

�ϕ(i)∈X
Mn( �ϕ(i))

= sup
�ϕ(i)∈X; �ψ∈Y ;|α|=n

∂αW ( �ϕ(i) + �ψ)

= sup
��∈X;|α|=n

∂αW ( ��) . (C5)

This method to estimate the Lagrange remainder term lends
itself to an intuitive geometrical interpretation, cf. Fig. 6. For
given �ϕ(i), the Taylor expansion of W around �ϕ(i) starting at
the n-th order, Wn, can be estimated by the supremum of the
nth derivatives taken over the sphere around this state with
radius ‖ �ψ‖ = y0. To give an estimate of Wn that holds for any
�ϕ(i), we have to calculate the supremum around all possible
state vectors. Since all �ϕ(i) are located on a sphere around the
origin with radius

√
N , we simply need to take the supremum

of the nth derivatives over all vectors within a ball around
the origin with radius 2

√
N . Since the Lagrange form of the

remainder is based on the mean value theorem, the difference
between two values of a function W ( �ϕ(i) + �ψ) − W ( �ϕ(i)) is
estimated by the first derivative of the function at some point
between ( �ϕ(i) + �ψ) and �ϕ(i). Since both �ϕ(i) and ( �ϕ(i) + �ψ)
are located on the sphere of radius

√
N around the origin, any

difference of a function between these two points can only
concern values of derivatives inside this sphere. Therefore,
we can restrict the supremum to be taken over all states in X
in the last line of Eq. (C5).

We now apply the estimate of the Lagrange remainder
to derive the constants A, B, and C and use, instead of the
vector notation above, the bracket notation in the following.
Considering in Eq. (15), the Taylor expansion of JT ({ϕ(i)

k (T )
+ �ϕk}) in �ϕk around ϕ

(i)
k (T ), the first order term cancels

with 〈χ k(T)|�ϕk(T)〉 + c.c. since |χ k(T)〉 is given in terms
of the gradient of JT, cf. Eq. (9b). The zeroth order term is
nullified by −JT ({ϕ(i)

k (T )}),

A = sup
{�ϕk}

JT

({
ϕ

(i)
k (T ) + �ϕk(T )

})− JT

({
ϕ

(i)
k (T )

})+∑N
k=1 [〈χk(T )|�ϕk(T )〉 + 〈�ϕk(T )|χk(T )〉]∑N

k=1 〈�ϕk(T ) | �ϕk(T )〉

= sup
{�ϕk}

JT,2({�ϕk(T )})∑N
k=1 〈�ϕk(T ) | �ϕk(T )〉 .
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The argument of the supremum in the definition of A,
Eq. (15), can therefore be viewed as the Taylor expansion of
JT ({ϕ(i)

k (T ) + �ϕk}) around the ϕ
(i)
k (T ) starting at the second

order, divided by
∑N

k=1 〈�ϕk(T ) | �ϕk(T )〉. It is now possi-
ble to estimate JT, 2 by its Lagrange remainder according to
Eq. (C4),

A = sup
{�ϕk}

RJT

{ϕ(i)
k (T )},2({�ϕk(T )})∑N

k=1 〈�ϕk(T ) | �ϕk(T )〉

≤ sup
{�ϕk}

1
2M

JT

2

({
ϕ

(i)
k (T )

})∑N
k=1 〈�ϕk(T ) | �ϕk(T )〉∑N

k=1 〈�ϕk(T ) | �ϕk(T )〉

= 1

2
M

JT

2

({
ϕ

(i)
k (T )

}) = 1

2
sup

{�ϕk};|α|=2
∂αJT ({�ϕk(T )}) ,

yielding Eq. (16). Note that for functionals JT that are
quadratic in the states, the global convergence condition (B3)
coincides with the local one, ∇2

ϕG < 0, that was used in
Ref. 16. This can be seen by inserting the ansatz for �,
Eq. (8), into ∇2

ϕG < 0,

∥∥∇2
ϕJT

(
ϕ(i)(T )

)∥∥+ σ (T ) < 0 .

To find an expression for the constant B defined by Eq. (20),
we rewrite the change �fk in the equations of motion due to
changes in the states, cf. Eq. (18), in terms of the Taylor ex-
pansion of the Hamiltonian in �ϕk(t) around the ϕ

(i)
k (t) start-

ing at the first order, Ĥ1, and obtain

B ≤ sup
{�ϕk};t∈[0,T ]

∣∣∣∣∣
∑N

k=1

[〈�ϕk(t) | Ĥ1(ϕk + �ϕk, ε
(i))
∣∣ϕ(i)

k (t)
〉+ 〈ϕk(t) | Ĥ†

1(ϕk + �ϕk, ε
(i))
∣∣�ϕ

(i)
k (t)

〉]
∑N

k=1 〈�ϕk(t) | �ϕk(t)〉

∣∣∣∣∣
+ 2 sup

{�ϕk};t∈[0,T ]

∣∣∣∣∣
∑N

k=1 Im
〈
�ϕk(t)

∣∣ Ĥ(ϕ(i)
k (t) + �ϕk(t), ε(i), t

) | �ϕk(t)〉∑N
k=1 [〈�ϕk(t) | �ϕk(t)〉]

∣∣∣∣∣ .
Using the Cauchy Schwarz inequality for the scalar products in the argument of the first supremum and Eq. (C5) for the second
supremum yields

B ≤ sup
{�ϕk};t∈[0,T ]

(
2∑N

k=1 〈�ϕk(t) | �ϕk(t)〉
N∑

k=1

[√〈�ϕk(t) | �ϕk(t)〉 · ‖Ĥ1(ϕk + �ϕk, ε
(i))‖ ·

√〈
ϕ

(i)
k (t)

∣∣ϕ(i)
k (t)

〉])

+ 2 sup
{�ϕk};t∈[0,T ]

∣∣∣∣∣
∑N

k=1 Im〈�ϕk(t) | Ĥ(�ϕk(t), ε(i), t) | �ϕk(t)〉∑N
k=1 〈�ϕk(t) | �ϕk(t)〉

∣∣∣∣∣ .

To evaluate the first supremum, we estimate the Taylor expansion of the Hamiltonian starting at the first order, Ĥ1, by its
Lagrange remainder,

‖Ĥ1 (�ϕk) ‖ ≤
N∑

k=1

M
|Ĥ|,k
1 ·

√
〈�ϕk | �ϕk〉 =

N∑
k=1

sup
�ϕk ;|α|=1

|∂αĤ (�ϕk) | ·
√

〈�ϕk | �ϕk〉. (C6)

Note that the absolute value of the derivatives is required in the estimation of the Lagrange remainder since we need to estimate

the norm of Ĥ1. With
∑N

k=1

√
〈ϕ(i)

k (t)|ϕ(i)
k (t)〉 = √

N , we obtain Eq. (21) for B. In particular, for Hamiltonians that do not depend

on the state, Ĥ(ϕ(i)
k (t) + �ϕk(t), ε(i)) − Ĥ(ϕ(i)

k (t), ε(i)) = 0, and the first supremum can taken to be zero. Then B is given by the
second supremum alone which is twice the maximum absolute value of the imaginary part the Hamiltonian’s eigenvalues. That
is, the second supremum is non-zero only for non-unitary time evolution. In summary, for linear equations of motion and unitary
time evolution, B = 0. The differential inequality system for σ (t) then reduces to

1

2
σ (T ) + A < 0 ,

1

2
σ̇ (t) + C > 0 ,

such that we obtain a linear solution for σ (t),

σ (t) = C̄(T − t) − Ā . (C7)

To estimate the constant C defined by Eq. (22), we rewrite it, using Eq. (A3),

C = inf
{�ϕk};t∈[0,T ]

∑N
k=1

[〈
χ

(i)
k (t)

∣∣ fk,2
(
ϕ

(i)
k + �ϕk, ε

(i)
)〉+ 〈fk,2

(
ϕ

(i)
k + �ϕk, ε

(i)
) ∣∣χ (i)

k (t)
〉]− g2

({
ϕ

(i)
k + �ϕk

}
, t
)

∑N
k=1〈�ϕk(t) | �ϕk(t)〉 , (C8)

where |fk, 2〉 and g2 are the Taylor expansions of |fk〉 and g in �ϕk(t) around ϕ
(i)
k (t) starting at the second order. Expressing |fk, 2〉
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in terms of the Taylor expansion of the Hamiltonian starting at first order, |fk,2〉 = Ĥ1(ϕ(i)
k + �ϕk, ε

(i))|�ϕk(t)〉, and introducing
the approximation,

−C ≥ sup
{�ϕk};t∈[0,T ]

−
∑N

k=1

[〈
χ

(i)
k (t)

∣∣ Ĥ1
(
ϕ

(i)
k + �ϕk, ε

(i)
)| �ϕk(t)〉 + 〈�ϕk(t)| Ĥ+

1

(
ϕ

(i)
k + �ϕk, ε

(i)
)∣∣χ (i)

k (t)
〉]

∑N
k=1〈�ϕk(t)| �ϕk(t)〉

+ sup
{�ϕk};t∈[0,T ]

g2
({

ϕ
(i)
k + �ϕk

}
, t
)

∑N
k=1〈�ϕk(t)| �ϕk(t)〉 ,

we may reuse our results for Ĥ1, cf. Eq. (C6), together with

M
−Ĥ,k
1 = −M

Ĥ,k
1 to estimate the first term. The estimation

of the second term involving g2 proceeds analogously to that
of JT, 2, with M

g

2 given by

M
g

2 = sup
{�ϕk}; t ∈ [0, T ]

|α|=2

∂αg ({�ϕk}, t) .

We thus obtain Eq. (23) for C. For Hamiltonians that depend
on the state, the first term in the right-hand side of Eq. (23)
is non-zero. Note that the norm of all adjoint vectors χ

(i)
k

is equal to
√

N only for state-independent constraint g. For
state-dependent constraint g, χ (i)

k is the solution of an inhomo-
geneous Schrödinger equation and its norm may be smaller or
larger than

√
N . However, the norm of all adjoint vectors χ

(i)
k

is always known since the χ
(i)
k are calculated in the previous

iteration step, i. So in order to estimate the first term of the
right-hand side of Eq. (23), we only need to determine ‖∂Ĥ‖
which is also needed for estimating B. In this case, −C is then
given by the sum of the spectral radius of the operator ‖∂Ĥ‖
and the eigenvalue of D̂(t) with largest magnitude.
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