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Abstract 

Background: With a constant increase in the number of new chemicals synthesized every year, it becomes impor-
tant to employ the most reliable and fast in silico screening methods to predict their safety and activity profiles. In 
recent years, in silico prediction methods received great attention in an attempt to reduce animal experiments for 
the evaluation of various toxicological endpoints, complementing the theme of replace, reduce and refine. Various 
computational approaches have been proposed for the prediction of compound toxicity ranging from quantitative 
structure activity relationship modeling to molecular similarity-based methods and machine learning. Within the “Tox-
icology in the 21st Century” screening initiative, a crowd-sourcing platform was established for the development and 
validation of computational models to predict the interference of chemical compounds with nuclear receptor and 
stress response pathways based on a training set containing more than 10,000 compounds tested in high-throughput 
screening assays.

Results: Here, we present the results of various molecular similarity-based and machine-learning based methods 
over an independent evaluation set containing 647 compounds as provided by the Tox21 Data Challenge 2014. It was 
observed that the Random Forest approach based on MACCS molecular fingerprints and a subset of 13 molecular 
descriptors selected based on statistical and literature analysis performed best in terms of the area under the receiver 
operating characteristic curve values. Further, we compared the individual and combined performance of different 
methods. In retrospect, we also discuss the reasons behind the superior performance of an ensemble approach, com-
bining a similarity search method with the Random Forest algorithm, compared to individual methods while explain-
ing the intrinsic limitations of the latter.

Conclusions: Our results suggest that, although prediction methods were optimized individually for each modelled 
target, an ensemble of similarity and machine-learning approaches provides promising performance indicating its 
broad applicability in toxicity prediction.
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Background
The number of new chemical entities launched every 
year has been steadily increasing over the last decades 
irrespective of the number of successful drug approvals. 
High attrition rates in late stage of clinical trials are one 
of the most important reasons for the significantly low 
number of new drug approvals. The lack of efficacy and 

unfavourable safety profiles contribute the most to high 
attrition rates. Reviews indicate an increasing number of 
‘me-too’ drugs that hardly provide an advantage over the 
existing therapeutics [1]. In an attempt to evaluate dif-
ferent drug discovery strategies, it was observed that the 
percentage of newly approved small molecule drugs with 
a novel molecular mechanism of action is less than 20 % 
of the total approvals during the study duration consid-
ered [2]. Currently, the majority of drug candidates are 
aimed at cancer treatment and are therefore studied for 
activity at multiple, possibly novel biological targets, pre-
senting a high probability of multiple unique toxicologi-
cal profiles [3]. Therefore, it is essential to employ novel 
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strategies that can predict the fate of the chemicals in 
early stages of development to overcome the failure rates 
and accelerate the development and approval of promis-
ing candidates. Predictive toxicology, more commonly 
known as in silico toxicology, plays a key role in the opti-
mization of hits by parallel investigation of safety and 
activity, thereby permitting a more efficient drug devel-
opment process [4]. Along with in vitro assays, predictive 
toxicology received, in recent times, great attention as a 
method to evaluate various toxicological endpoints and 
reduce animal experiments, complementing the theme 
of replace, reduce and refine (3Rs) [5]. Additional factors 
that motivate the development of toxicological prediction 
methods include considerable progress with legislations 
in both the European Union and North America and the 
need for the reduction of costs involved in experimental 
testing of an increasing number of chemicals, as well as 
advances in the understanding of the biology and chem-
istry of the active chemical compounds.

The early efforts for prediction of toxicity date back 
to the 1890s, as emphasized by the work of Richet [6], 
Meyer [7] and Overton [8] on the relationship between 
toxicity and solubility followed by their hypothesis that 
narcosis could be related to partitioning between water 
and oil phases. Since then, steady progress has been 
observed in predictive toxicology, highly complemented 
by advances in cheminformatics approaches such as 
quantitative structure–activity relationship (QSAR) 
modeling [9], physicochemical property and molecular 
descriptor based modeling [10, 11] and statistical meth-
ods [12]. Later, a number of commercial and open-source 
expert systems have been developed for the prediction 
of pharmacokinetic parameters including TOPKAT® 
[13], ADMET Predictor™ [14], ADME-Tox Prediction 
[15], DEREK [16] and Toxicity Estimation Software Tools 
[17]. Machine learning methods have been widely used 
in the areas of bioactivity and ADMET (absorption, dis-
tribution, metabolism, excretion and toxicity) properties 
prediction [18–23]. It has been demonstrated that mod-
els built with machine learning methods which take into 
account high-dimensional descriptors are very successful 
and robust for external predictions [24, 25].

The US toxicology initiative, Toxicology in the 21st 
Century (Tox21), started in 2008, aims to develop fast and 
effective methods for large-scale assessment of toxicity 
in order to identify chemicals that could potentially tar-
get various biological pathways within the human body 
and lead to toxicity [26]. The objectives of this initiative, 
after the initial screening, are to prioritize chemicals 
for further investigation of toxic effects and progres-
sively build toxicity models as well as develop assays that 
measure responses of human pathways towards these 
chemicals. As a part of the screening initiative, a library 

comprising more than 10,000 chemicals was screened 
in high-throughput assays against a panel of 12 different 
biological targets involved in two major groups of bio-
chemical pathways: the nuclear receptor pathway and the 
stress response pathway. Further, during the Tox21 Data 
Challenge 2014 [27], the development of computational 
models which can predict the interference of these chem-
icals in the two groups of pathways was crowd-sourced 
to researchers across the globe. Our previous work [28] 
illustrates the usefulness of a combination of chemical 
similarity and machine-learning approaches in predicting 
the activity of the Tox21 dataset with high accuracy for a 
majority of the targets considered in the challenge [29]. In 
this study, we present and discuss various computational 
methods, ranging from molecular similarity to different 
machine-learning approaches and their intrinsic limita-
tions by comparing them with the best prediction models 
from our previous work [28] that ranked top among the 
submissions to the challenge. In order to keep the com-
parison simple, we limit ourselves to a set of three tar-
gets: aryl hydrocarbon receptor (AhR), estrogen nuclear 
receptor alpha ligand-binding domain (ER-LBD) and 
heat shock protein beta-1 (HSE). We also emphasize on 
the factors that can be attributed to a mixed performance 
of these models via illustration of example compounds.

Results
We compared the performance of four different algo-
rithms as well as four different molecular fingerprints for 
the prediction of the AhR, ER-LBD and HSE assays for 
the Tox21 10 K compound library (for more details, see 
Additional file 1: Tables S1, S2). In particular, similarity-
weighted k-nearest neighbors (kNN) approaches as well 
as three types of machine learning algorithms (Fig.  1) 
were investigated, as described in detail in the Methods 
section. In order to evaluate the performance of differ-
ent fingerprints used as a hybrid fingerprint in our previ-
ous work [28], we investigated MACCS [30], ECFP4 [31] 
and ToxPrint [32–34] fingerprints individually. While 
MACCS fingerprints are based on generic substructure 
keys, ToxPrint fingerprints encode generic substructures 
considering genotoxic carcinogen rules and structure-
based thresholds relevant to toxicology. Extended con-
nectivity fingerprints such as ECFP4 are based on the 
circular topology of molecules and have been designed 
for both similarity searching and structure–activity mod-
eling. In addition, we chose to use ESTATE [35] finger-
prints, to examine whether molecular fragments based 
on the electronic, topological and valence state indi-
ces of atom types can help in prediction of toxic activ-
ity. In addition to fingerprints alone, we also tested the 
concatenation of fingerprints with 13 selected molecular 
descriptors characterising the molecule’s topology and 
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physicochemical properties (see “Methods” section and 
Supplementary Information). The performance of all 
models was investigated in cross-validation and external 
validatio. The best classifier for each target was selected 
based on the AUC values of the models generated.

Similarity search based predictions
In the first step, we implemented a similarity-weighted 
kNN search with three different ‘k’ parameters (3, 5 and 
7). It was noted that all three kNN approaches based on 
the MACCS fingerprint performed better than those 
based on ECFP4, ESTATE and ToxPrint fingerprints in 
cross-validation and external validation. The AUC val-
ues achieved with the best performing fingerprint for 
each target are presented in Fig. 2 (cross-validation with 
error bars) and Fig. 3 (external validation) and those for 
all other fingerprints are available in the Supplementary 
Information (Additional file 1: Tables S3, S4). With all the 
kNN models for AhR and HSE, ESTATE and ToxPrint 
fingerprints performed similarly to MACCS fingerprints 
followed by ECFP4 with the least performance. All mod-
els for ER-LBD showed the worst performance compared 
to the other two targets.

For AhR and ER-LBD, the 5NN approach performed 
better than the 3NN and 7NN approaches. The 3NN 
method, however, achieved clearly better perfor-
mance for HSE. These observations were true for both 

cross-validation (Additional file 1: Table S5) and external 
validation (Additional file 1: Table S6) results.

Overall, the similarity-weighted kNN approaches 
showed target-dependent results with better perfor-
mance on AhR (mean AUC  =  0.81) and HSE (mean 
AUC = 0.8) compared to ER-LBD (mean AUC = 0.71) in 
both cross-validation and external validation.

Machine learning predictions
Three different models, a Naïve Bayes (NB), random for-
est (RF) and probabilistic neural network (PNN) classi-
fier (see “Methods” section for details) were developed. 
Additionally, we have tested support vector machine 
(SVM) models with both a linear and a polynomial ker-
nel function. However, the performance was not con-
sistent across different targets and descriptors, and was 
therefore not considered further. A small description as 
well as the results of SVM can be found in the Supple-
mentary Information (Additional file  1: Tables S7 and 
S8).

In this study, almost all the classifiers reached predic-
tion accuracies around 80  %. Since the data set used in 
this study is highly imbalanced (Additional file 1: Tables 
S1, S2), accuracy alone cannot reflect the performance of 
the models. We have further evaluated the models based 
on the ROC AUCs that represent more accurately the 
performance of the models.

Fig. 1 Workflow of the methodology involved in the classification process. Schematic representation of the methodology: data points, feature 
selection, model development (machine learning and similarity search methods) and validation, implemented in the study
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Based on our analysis using cross-validation and exter-
nal validation, RF models perform best for all the three 
targets and PNN models show the least performance 
(Additional file 1: Tables S3, S4). A comparison of differ-
ent molecular fingerprints and their combination with 
the molecular property based descriptors for different 
models on cross-validation sets as well as external valida-
tion set have been provided in the Supplementary Infor-
mation (Additional file 1: Tables S7, S8).

The RF based model for AhR showed a good perfor-
mance with MACCS, ECFP4 and ToxPrint with an AUC 
value of above 0.88 on the cross-validation sets as well as 
the external validation set. However, the MACCS finger-
print individually and combined with molecular prop-
erty-based descriptors obtained the highest AUC value 
of 0.90 and 0.91 (cross-validation) and an AUC of 0.90 
and 0.87 (external set) (Figs.  2, 3). The combination of 
descriptors did not improve the external set performance 

Fig. 2 Cross-validation performance results of classifiers. Plot representing the 13-fold cross-validation results, in terms of AUC, for the three targets 
(AhR, ER-LBD and HSE) comparing different best performing models (3NN, 5NN, 7NN, RF, NB, and PNN) [28]

Fig. 3 External validation performance results of classifiers. Plot representing the external validation results, in terms of AUC, for the three targets 
(AhR, ER-LBD and HSE) comparing different best performing models (3NN, 5NN, 7NN, RF, NB, PNN, Ensemble (5NN + RF)) with our previous work 
[28] and Tox21 challenge winners for respective targets
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in this case. Similarly, MACCS fingerprints scored high-
est with AUC values of 0.83 and 0.80 (cross-validation) 
and 0.81 and 0.86 (external set) for ER-LBD and HSE, 
respectively (Figs. 2, 3).

Furthermore, the NB based model with MACCS fin-
gerprints in combination with molecular property-based 
descriptors and ToxPrint fingerprints performed com-
paratively good for AhR with an AUC value of 0.84 and 
0.82 respectively. The performance for ER-LBD and HSE 
were relatively poor with an AUC value below 0.75 for 
both cross-validation sets and external set. The PNN 
classifier performed better for AhR, with an AUC value 
above 0.80 for almost all the descriptor combinations 
(Additional file 1: Tables S7, S8). These results could be 
explained by the lack of a balanced dataset which could 
have a negative impact on the performance of PNN and 
NB based models. On the other hand, it is observed that 
the RF algorithm performs well on imbalanced datasets.

To generalize, it is observed that MACCS fingerprints 
based on RF classifier, similarly to the similarity-weighted 
kNN approach, exhibit the best performance (Additional 
file  1: Tables S3, S4). An exception is the AhR assay, 
where in ToxPrint fingerprints performed equally well 
with an AUC value of 0.89 and 0.88 (Additional file  1: 
Tables S7, S8) for the external dataset and cross-vali-
dation sets respectively, when compared to the method 
reported in our previous work [28]. Since the training set 
as well as the number of active molecules available for 
AhR was relatively large when compared to ER-LBD and 
HSE, it reflects that the size of the training set as well as 
the ratio between active and inactive molecules is one of 
the factors contributing to its better performance (Addi-
tional file 1: Tables S1, S2).

Comparison and combination of similarity and machine 
learning methods
In comparison to similarity search approaches, the RF 
based machine-learning models performed better for 
all three targets in external validation (Fig. 3). However, 
both approaches performed equally well in cross-valida-
tion. Assuming that the inferior performance of similar-
ity-based approaches is due to the fact that the actives in 

the external set share little structural similarity with the 
actives in the training set, we combined our best per-
forming similarity approach with the best performing 
RF model in order to improve the prediction. For each of 
the three targets, the scores from the 5NN method and 
the RF model (5NN + RF), both based on MACCS fin-
gerprints, were combined. It was observed that the per-
formance improved for ER-LBD with an AUC value of 
0.83 in external validation (Fig. 3) and 0.85 in cross-val-
idation, using a minimum of the prediction scores from 
both models. However, the RF model remained the best 
performer for the targets AhR and HSE as no additional 
improvement was observed with the 5NN + RF model.

Analysis of chemical space based on RF and NB based 
models
In the next step, we evaluated the patterns associated 
with active chemical structures by analysing the com-
pounds, which were correctly and incorrectly predicted 
by respective models in case of ER-LBD for the external 
set (Tables 1, 2). Since we achieved the best performance 
for ER-LBD using an ensemble method, it is of particu-
lar interest to investigate which chemical characteristics 
were correctly predicted by different methods and finger-
prints (MACCS, ECFP4).

All the active chemical structures predicted by the RF 
model were also correctly predicted by the NB model as 
illustrated in Fig. 4. Additionally, the NB model predicted 
five additional active compounds correctly whereas the 
PNN model failed to predict a single active compound. 
Furthermore, most of the actives in the ER-LBD were 
correctly predicted by both MACCS and ECFP finger-
prints if the functional groups (chloride, bromide, and 
alcohol) were present in the structures and were found in 
‘ortho’ or ‘meta’ position of the ring. On the other hand, 
the number of false positives in NB models was the high-
est with 80 incorrect predictions, followed by RF with 4. 
PNN based models predicted all the inactive structures 
correctly supporting the fact that the model is biased 
towards majority class coverage (Table 1).

Additionally, it was observed that the NB based model 
with both ECFP4 and MACCS fingerprints predicted the 

Table 1 Classification of actives and inactives in external set by different models for ER-LBD

ER-LBD True positives/actives (out of 20) True negatives/inactives (out of 580) Cross-validation AUC External set AUC

NB with ECFP4 9 500 0.76 0.71

NB with MACCS 8 468 0.73 0.69

RF with ECFP4 2 574 0.82 0.78

RF with MACCS 4 576 0.83 0.81

PNN with ECFP4 0 580 0.77 0.69

PNN with MACCS 0 580 0.78 0.69
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active compounds with higher prediction scores compared 
to RF models (Table 2). It could be because RF fails to pre-
dict the active class when the molecules become more 
complex irrespective of the fingerprints considered (Fig. 4).

Comparison with Tox21 challenge winners
Finally, we compared the prediction values of the best 
performing models for all the three targets with those 
from our previous work [28] and the winning teams 
from the Tox21 data challenge [29]. Our best performing 
model, based on RF using MACCS fingerprints, showed 
slightly better performance than our previous work [28] 
and performed equally well compared to the challenge 
winner team for each of the three targets. Furthermore, 
our combined relatively simple model based on 5NN and 
RF using MACCS fingerprints showed, to a small degree, 
better performance than the Tox21 challenge winner for 
ER-LBD (Fig. 3).

Discussion
In the current study, we present a comprehensive com-
parison of different similarity-based and machine learn-
ing methods in predicting the interference of chemical 
compounds in two major groups of biological pathways, 
the nuclear receptor pathway and stress response path-
way, using the Tox21 screening data. The data, being gen-
erated in an uniform experimental setup, provided a gold 
standard for evaluating performance of different predic-
tion methods.

We noticed that the similarity-weighted kNN methods 
did not perform equally well compared to other machine-
learning models for all three targets investigated in 
this study. A major limitation of the kNN approach 

implemented in this study, although being simple, is that 
the prediction score for every external set compound 
heavily depends on the number and diversity of structur-
ally similar active and inactive molecules in the training 
set, which indirectly determines the number of active and 
inactive molecules within the k neighbours considered. 
The degree of similarity also plays a key role in deciding 
which compounds rank among the top k neighbours. The 
average similarity values (Tables 3, 4) of the training set 
molecules towards individual subsets of actives and inac-
tives of the training set, using three different fingerprints, 
suggest that the evaluation set compounds are more 
similar to inactives rather than actives within the training 
set, explaining the inferior performance of these methods 
when used individually. It is also widely acknowledged 
that the “similar-property principle” has exceptions (e.g. 
activity cliffs) [36, 37]. However, examining the chemi-
cal structures of the ER-LBD training set revealed that 
several compounds consistently have similar molecular 
frameworks, suggesting that similarity-based approaches 
play a key role in improving prediction rates, however fail 
to identify a rare event. The two-dimensional structures 
of some active molecules containing similar core struc-
tures and inactive molecules that are structurally distinct 
from the former are shown in Fig.  5. This also explains 
the improvement in performance associated with the 
ensemble model.

Moreover, we observed that the RF model is the most 
accurate classifier producing the most precise results for 
all three targets. The superior performance of RF models 
can be attributed to the tuning parameters chosen for indi-
vidual targets as well as its ability to predict rare events. On 
the other hand, the inferior performance of PNN models 

Table 2 ER-LBD Active compounds correctly predicted in External set using RF and NB models using MACCS and ECFP4 fingerprints

Prediction scores for activity (models 

+ fingerprints) 

NB with 

MACCS 

RF with 

MACCS 

NB with 

ECFP4 

RF with ECFP4 

NCGC00261424-01 0.99 0.58 1 0.57 

NCGC00261052-01 0.57 

NCGC00357055-01 0.95 

0.07 0.02 0.12 

0.01 0.01 0.06 

NCGC00357018-01 0.99 0.94 1 0.94 

NCGC00357052-01 0.99 0.04 0.99 0.16 

NCGC00357021-01 0.99 0.68 0.99 0.31 

NCGC00356994-01 0.99 0.52 0.99 0.36 

NCGC00357111-01 0.99 0.06 1 0.15 

NCGC00261828-01 0.13 0.05 1 0.20 

NCGC00261342-01 0.01 0.02 0.99 0.08 

NCGC00357230-01 0.04 0.05 0.98 0.02 

The values correspond to the prediction scores for a compound to be active

Colour denotes different molecules illustrated in the Fig. 4
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can be explained by its strong inclination towards the 
majority class (inactive) of the training dataset. Analysing 
the prediction results revealed that PNN models were able 
to correctly predict all the negatives in the external valida-
tion with a prediction score higher than 0.9 but failed to 

correctly predict any of the true positives for any target. 
NB models predicted the highest number of true positives, 
with prediction scores higher than 0.99, compared to other 
two methods but the true negative rate was low. However, 
RF models incorrectly predicted only 4 negatives. This 

Fig. 4 Analysis of chemical space used by descriptors for classification of actives in external sets for ER-LBD target. The above figure shows the dif-
ferent actives present in the external set of ER-LBD. The compounds highlighted in pink (MACCS), green (ECFP4) are predicted by RF model and blue 
(ECFP4), red (MACCS) are predicted by NB models. The respective prediction scores for each classifier are shown in Table 2

Table 3 Average similarity values of  external set mol-
ecules towards  active and  inactive subsets of  training set 
for ER-LBD

Fingerprint Average T against  
actives

Average T 
against inactives

MACCS 0.59 0.82

ECFP4 0.29 0.56

ESTATE 0.7 0.91

Table 4 Average similarity values of  external set mol-
ecules (only actives) towards  active and  inactive subsets 
of training set for ER-LBD

Fingerprint Average T against  
actives

Average T 
against inactives

MACCS 0.71 0.79

ECFP4 0.41 0.5

ESTATE 0.78 0.94
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shows that RF models are able to identify the patterns 
important for the preferred class even when there is a large 
imbalance in the class distribution within training dataset. 
It should be noted that the external validation set is also 
highly imbalanced (Additional file 1: Table S2).

Additionally, it is observed that ToxPrint and Estate 
fingerprints do not show superior performance com-
pared to standards MACCS and ECFP4 when used 
with different methods. This could be due to the fact 
that compounds specific to the targets and assays as 
such do not have any associated toxicity related alert. 
However, the presence of substructure patterns in 
compounds specific to their individual target is more 
important to predict their activity. Therefore, MACCS 
fingerprint performed better and consistent with both 
machine learning and similarity-based approaches. 
This further adds to the fact that toxicity prediction 
cannot always be encountered with global approaches 
such as identification of certain toxic alerts in a 
chemical compound. Target specificity and local pat-
terns limited to the chemical space used in the study 
play an important role to predict the activity of new 
compounds. At the same time, selection of optimal 
descriptors, which could represent these patterns and 
an unbiased classifier that can learn the patterns is the 
essence of a predictive science.

Overall, we emphasize that a simple RF based classifier 
consistently demonstrated robust prediction for all three 
targets considered in this study. The prediction accuracies 
achieved with our best performing machine-learning mod-
els were better for all the targets when compared to results 
based on the RF/ADTree classifier in a recent study per-
formed on the same Tox21 dataset [38]. Furthermore, an 
ensemble approach that integrates a similarity-weighted 
kNN method with an RF based classifier boosted the 

performance in case of ER-LBD with an AUC value of 0.83, 
slightly better than the winning team of the Tox21 Data 
Challenge [27]. In general, an ensemble model can be effec-
tive when an incorrect prediction by one of the individual 
methods can be compensated by taking into account the 
prediction of other models [39, 40]. It was also observed in 
our previous study [28] that predictions obtained using an 
ensemble model that combines predictions from multiple 
methods improved the overall prediction.

Finally, the computational costs associated with the 
training of our best models were very low compared 
to the Tox21 challenge winning models based on deep 
learning techniques [41]. This further adds to the usabil-
ity of our simple yet optimised methods.

Conclusions
In this study, we emphasize the importance of in silico 
toxicology as a fast and reliable alternative to reduce the 
number of animal studies required for evaluation of toxic 
effects of the ever-increasing new chemical structures. 
We evaluated different chemical similarity and machine-
learning methods using four different types of struc-
tural fingerprints as well as molecular descriptors for 
their performance in predicting the activity of chemicals 
made available via the Tox21 Data Challenge 2014. The 
challenge provided a platform for researchers from both 
academia and industry to evaluate and establish their 
toxicity/activity prediction models.

Our results suggest that a hybrid strategy that com-
bines similarity-based and machine-learning based pre-
diction models can improve the accuracies of prediction 
for one of the investigated targets. However, in general, 
the machine-learning model based on the Random Forest 
classifier showed the most robust performance. Further-
more, our prediction models were highly consistent with 

Fig. 5 Two-dimensional structures of actives and inactives in the training set for ER-LBD target. A set of training set compounds which are active (1) 
and inactive (0) against ER-LBD
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the best-ranked methods from the data challenge and 
performed better than all the top ten models for ER-LBD.

The findings of our study complement the theme of 
3Rs, providing promising and time-saving alternatives 
to animal trials in evaluating different toxicological end-
points for newly synthesized chemical structures.

Methods
Compound datasets, fingerprints and molecular 
descriptors
The Tox21 10K library is a collection of environmental 
chemicals and approved drugs with potential to disrupt 
biological pathways resulting in toxic effects. The chemi-
cal structures were directly downloaded from the Tox21 
challenge website in structural data format (SDF). The 
data has now been made freely available on PubChem 
by the challenge organizers. The complete training sets 
consist of approximately 10,000 compounds (the total 
number of molecules varies for different targets) and 
an external validation set contains 647 chemical struc-
tures. Both datasets were standardized using a pipeline 
explained in our previous work [28]. The steps involved 
in standardization are removal of water and salts, aroma-
tization, neutralization of charges and addition of explicit 
hydrogens. Four different types of fingerprints, namely 
166-bit MACCS [30], ECFP4 [31], ESTATE [35] and Tox-
Print [32–34], and 13 molecular property-based descrip-
tors using RDKit descriptors calculation node in KNIME 
(Additional file  1: Table S9) were used in our methods. 
While MACCS, ECFP4 and ESTATE fingerprints and 
descriptors were calculated using RDKit [42] nodes in 
KNIME v.2.12.0 [43, 44], ToxPrint fingerprints were gen-
erated using the ChemoTyper software version 1.0 [45].

Similarity search
Three different similarity-weighted kNN searches were 
performed [46] i.e., 3NN, 5NN and 7NN, employ-
ing all four types of fingerprints. The Tanimoto coeffi-
cient (T) [47] was calculated as the similarity measure. 
In kNN calculations, each evaluation set compound is 
compared to all training set compounds and the top k 
compounds with highest T values were selected as the 
nearest neighbours (NNs). The final score was calcu-
lated based on the types of the NNs (active or inactive), 
to arrive at the prediction score for each evaluation set 
compound.

In particular, if all NNs are either active or inactive, the 
score was calculated as score1 or score2, respectively.

where k is the total number of NNs.
Otherwise, the final score is calculated as follows:

score1 =

∑

k

n=1 Tn

k
, score2 = 1− score1

where ka is the number of active molecules (n) and kin is 
the number of inactive molecules (m) among the NNs. 
All the kNN-based predictions, including the cross-vali-
dations, were implemented using existing KNIME nodes 
(Additional file 1: Figures S1, S2) and an additional Java 
program.

Machine learning
There are multiple algorithms, which have been used 
in the field of predictive modeling. Nevertheless we 
attempted three most popular classification algorithms 
used in machine learning approaches; NB [48], RF [49] 
and PNN [50] as shown in Fig.  1. All three classifiers 
have been previously determined as efficient in terms of 
classification accuracies as well as computational time 
[51–53].

Naïve Bayes
The NB classifier is based on assumption of the Bayes-
ian theorem of conditional probability, that is for a given 
target value, the description of each predictor is inde-
pendent of the other predictions. This method takes 
into account all descriptor-based properties for the final 
prediction [48]. This classifier was implemented using 
the existing NB Learner and Predictor nodes in KNIME 
(Additional file  1: Figure S3). The maximum number of 
unique nominal values per attribute was set as 20. The 
predictor node takes the NB model, test data as input, 
and as output classifies the test data with an individual 
prediction score and predicted class.

Random Forest
The Random Forest classification is based on decision 
trees, where each tree is independently constructed and 
each node is split using the best among the subset of 
predictors (i.e. individual trees) randomly chosen at the 
node. RF based model was implemented using the Tree 
Ensemble Learner and Predictor nodes in KNIME (Addi-
tional file 1: Figure S4), which is similar to the RF classi-
fier [49]. The split criterion Gini is used, which has been 
proven to be a good choice as explained previously [49] 
and gave the maximum predictive performance for AhR. 
On the other hand, for ER-LBD and HSE information 
gain ratio was the optimal split criterion. The number 
of models (trees) was limited to 1000 and a data sample 
of 0.8 for AhR and 0.7 for both ER-LBD and HSE was 
chosen with replacement for each tree; this is similar to 
bootstrapping. Additionally, a square root function was 
used for attribute sampling and different sets of attributes 

score3 =

∑ka
n=1

Tn

ka
+

(

1−

∑kin
m=1

Tm

kin

)
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were chosen for all the trees. The Predictor node predicts 
the activity of the test data based on a majority vote in a 
tree ensemble model with an overall prediction score and 
individual prediction scores for each class.

Probabilistic neural network
A PNN is based on a statistical algorithm known as ker-
nel discriminant analysis [54]. PNN operates via a multi-
layered feed forward network with four layers. The input 
layer or the first layer consists of sets of measurements. 
The pattern layer or the second layer consists of the 
Gaussian function which uses the given set of data points 
as centres. The summation layer or the third layer per-
forms an average operation of the outputs from the sec-
ond layer for each class. The output layer or the fourth 
layer predicts the class based on votes from largest value 
[50, 54–56]. PNN based model was implemented with the 
PNN learner and predictor nodes in KNIME (Additional 
file 1: Figure S5). All the parameters were kept as default 
except the maximum number of Epochs was set to 42 to 
reduce the computational time complexity. The learner 
node takes numerical data as input and via predictor node 
the test data is predicted with a score and class.

Construction of models
A 13-fold cross-validation was performed on the training 
dataset as described earlier [28] to generate test sets with 
size similar to the external validation set provided by the 
Tox21 challenge organizers. This independent set con-
tained 647 chemical structures was used as a second vali-
dation set over which the performance (external AUC) of 
the trained models was evaluated. Four kinds of molecu-
lar fingerprints and 13 selected physicochemical descrip-
tors (see Additional file 1: Table S9) were used to represent 
chemical structures. It was observed that the Tox21 data-
set is highly imbalanced with respect to active (minority) 
and inactive (majority) classes. Detailed statistics on the 
number of active and inactive molecules for each target 
are provided in Additional file 1: Tables S1 and S2. Since 
it was not feasible to enrich the minority class with more 
compounds for any target, we employed stratified sam-
pling technique during data partitioning to handle this 
imbalance. Therefore, it was ensured that in each cross-
validation run, the ratio of number of active molecules to 
number of inactive molecules in the test set is similar to 
that in the training set. Cross-validation [57] was imple-
mented using a meta-node in KNIME that divides training 
dataset via stratified sampling. A schematic representation 
of the study methodology is presented in Fig. 1.

Performance evaluation
A receiver operating characteristic (ROC) curve [58–60], 
that plots the true positive rate against the false positive 

rate, was generated to evaluate every model on both 
cross-validation and external validation test sets. The 
AUC value was used as a measure to compare the per-
formance of a model with that of other models. The AUC 
values were calculated using ROC Curve node in KNIME.
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