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Abstract

Background: Bacteria have developed a repertoire of signalling mechanisms that enable adaptive responses to
fluctuating environmental conditions. The formation of biofilm, for example, allows persisting in times of external
stresses, e.g. induced by antibiotics or a lack of nutrients. Adhesive curli fibers, the major extracellular matrix
components in Escherichia coli biofilms, exhibit heterogeneous expression in isogenic cells exposed to identical
external conditions. The dynamical mechanisms underlying this heterogeneity remain poorly understood. In this
work, we elucidate the potential role of post-translational bistability as a source for this heterogeneity.

Results: We introduce a structured modelling workflow combining logical network topology analysis with
time-continuous deterministic and stochastic modelling. The aim is to evaluate the topological structure of the
underlying signalling network and to identify and analyse model parameterisations that satisfy observations from a set
of genetic knockout experiments. Our work supports the hypothesis that the phenotypic heterogeneity of curli
expression in biofilm cells is induced by bistable regulation at the post-translational level. Stochastic modelling
suggests diverse noise-induced switching behaviours between the stable states, depending on the expression levels
of the c-di-GMP-producing (diguanylate cyclases, DGCs) and -degrading (phosphodiesterases, PDEs) enzymes and
reveals the quantitative difference in stable c-di-GMP levels between distinct phenotypes. The most dominant type of
behaviour is characterised by a fast switching from curli-off to curli-on with a slow switching in the reverse direction
and the second most dominant type is a long-term differentiation into curli-on or curli-off cells. This behaviour may
implicate an intrinsic feature of the system allowing for a fast adaptive response (curli-on) versus a slow transition to
the curli-off state, in line with experimental observations.

Conclusion: The combination of logical and continuous modelling enables a thorough analysis of different
determinants of bistable regulation, i.e. network topology and biochemical kinetics, and allows for an incorporation of
experimental data from heterogeneous sources. Our approach yields a mechanistic explanation for the phenotypic
heterogeneity of curli fiber expression. Furthermore, the presented work provides a detailed insight into the
interactions between the multiple DGC- and PDE-type enzymes and the role of c-di-GMP in dynamical regulation of
cellular decisions.
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Background
The ability to adapt to external inputs is a crucial property
of cellular systems [1]. Bacteria, for example, can outlast
antibiotic stress by forming biofilm colonies [2], or they
may produce bacteriocins when sensing nutrient competi-
tion [3]. This form of acute adaptation is often encoded in
the bacterial signal transduction network, which enables
multiple stable states and may thus give rise to phenotypic
heterogeneity [4–6].
In Escherichia coli, the regulatory system of amyloid

curli fibers is a central component of the stress-induced
biofilm formation under the control of the master regula-
tor σ s [7–9]. While heterogeneous all-or-nothing expres-
sion of the curli protein CsgB in isogenic wild type
cells under identical environmental conditions was shown
in [10, 11], subsequent work [7] allowed to infer inter-
actions of the molecular components of the underlying
signalling network. However, the ability of the suggested
network to produce bistable behaviour (curli on/off ) and
the influence of individual molecular components on
single-cell dynamics still remains to be elucidated.
Rigorous mathematical modelling may further our

mechanistic understanding of this system. Two different
methodological views for analysing bistability in sig-
nalling networks have been established in previous stud-
ies. Logical modelling approaches assign discrete states to
different activity levels of network components and rep-
resent reactions by logical functions. The advantage of
this methodology is that it allows to test a large amount
of alternative model topologies using a limited amount of
data, or semi-quantitative data such as promoter activi-
ties in genetic knockout strains or immunoblotting data
[12, 13].
Particularly regarding asymptotic behaviour, logical

analysis has been shown to be a useful tool for uncovering
fundamental characteristics and functionalities of biolog-
ical systems, (see e.g. [14–16]). Consequently, it is a well-
suited approach for investigating bistable systems, where
there is evidence that qualitative properties, in particular
the network topology, are crucial determinants [17, 18].
However, the low detail resolution of such models only
allows for a preliminary understanding, and the biological
interpretation of the results is not always straightforward.
Time-continuous models (ODE-based or stochastic)

entail more biological detail and model parameters are
readily interpretable. In this approach, besides topol-
ogy, the signalling network is defined by well-established
reaction rate kinetics. Among others, the approaches
for analysing bistability in continuous models are based
on a feasibility analysis of unstable states [19] and the
chemical reaction network theory [20], as e.g. applied to
study bistable regulation of split histidine kinases in two-
component signalling networks [21]. In analytically less
tractable models, heuristic parameter search may be used,

such as Monte Carlo [22] or the genetic algorithm [23].
However, an exhaustive analysis of a large space of alter-
native model topologies and parameterisations is often
infeasible, requiring a confinement to certain regions of
the model and parameter space. Thus, a drawback of the
continuous modelling approach lies in the containment
to a network topology and the requirement of sufficient
information about the underlying biochemical reactions.
In addition to the deterministic modelling approach,

time-continuous stochastic modelling [24–26] may
deliver further insights into the system behaviour such as
the probability of the cells to be in either of the two stable
states and the noise-induced switching dynamics between
the stable states [27, 28]. The high computational effort
for analysing stochastic models precludes, with only few
exceptions, e.g. [29], from addressing inverse problems
(model and parameter estimation) at all.
Combining the advantages of the logical and continuous

modelling approaches may allow to overcome their indi-
vidual limitations and thus significantly increase the com-
putational feasibility of the analysis, while keeping a high
level of detail. The different views may generate comple-
mentary insights, contributing to a more holistic under-
standing of the topology and the kinetics of signalling
networks [30, 31]. To exploit these aspects, in this paper
we introduce a hybridmodelling pipeline combining avail-
able genetic knockout data with logical, ODE-based and
stochastic modelling approaches as outlined in Fig. 1a-d.
Starting with a logical, constraint-based description of the
available data, we generate and analyse a pool of feasi-
ble logical models. This first step yields, on the one hand,
results on essential system properties on its own. On the
other hand, it is used to extract a well-supported net-
work topology for the regulatory system of amyloid curli
fibers in E. coli (Fig. 1c), as well as parameter constraints
for building a more detail-resolving ODE model. It has
been shown in the context of biological modelling that
properties related to asymptotic decision processes are
rather robust concerning parameter perturbations up to
being sustained between continuous and logical models
(see e.g. [32]). Notably, steady states are rather well pre-
served between models as demonstrated in a number of
studies [33, 34]. Based on the network topology validated
in the logical modelling step, we incorporate additional
kinetic information of involved reactions in order to set up
a continuous reaction-rate model of the signalling system
(Fig. 1d). Deriving an ODE-basedmodel from the reaction
rates enables us to estimate parameters that induce bista-
bility compliant with experimental constraints. Finally,
we generate sample trajectories from the corresponding
Chemical Master Equation in order to analyse the dynam-
ics of stochastic switching between the stable states of
the system. The latter approach allows to identify alterna-
tive scenarios of the cell population splitting into curli-on



Pouran Yousef et al. BMC Systems Biology  (2015) 9:39 Page 3 of 17

A B

C D

Fig. 1 Logical-continuous modelling pipeline for bistability analysis of curli regulation in E. coli. a Expression of the curli gene csgB in mutants with
single or multiple knockout mutations in YegE/YhjH and YdaM/YciR c-di-GMP control modules (as indicated). Derivatives of E. coli K-12 W3110
carrying a single copy csgB::lacZ reporter fusion were grown in LB at 28 ◦C for 24 hours and β-galactosidase activities were determined. Figure
reproduced from [7] with permission. b Signalling network regulating the expression of curli fibers, as suggested in [7]. c Logical formulation of the
network topology. The two different functional states of YciR are modelled by two types of interactions. Only the inhibitory effects exerted by YciR are
represented by edges in the figure. Full details on the regulatory activity of YciR and the dependence of the two functional states on the activity of
c-di-GMP is formalised in the Additional file 1: Figure S1c. d Continuous model combining kinetic reaction rates with the validated network topology

(biofilm) and curli-off states, while allowing stochastic
back- and forth switching or leading to ultimate differen-
tiation, in line with biological observations [11].

Methods
Regulatory network of curli expression
The second messenger molecule bis-(3’-5’)-cyclic dimeric
guanosine monophosphate (c-di-GMP) is the central

component within the regulatory signalling network of
curli fimbriae during the stationary phase of the bacte-
rial population growth cycle and upon induction of var-
ious stress conditions. C-di-GMP positively contributes
to the expression of CsgD, the key biofilm regulator,
activating the expression of the curli regulon (csgBAC),
with CsgB and CsgA proteins constituting the curli fiber
[9, 35]. As shown in Fig. 1b, the synthesis and degradation
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of c-di-GMP within this network is maintained by
two diguanylate cyclase (DGC)/phosphodiesterase (PDE)
pairs: YegE/YhjH (module I) and YdaM/YciR (module II).
While DGC-type enzymes synthesise c-di-GMP from

two GTP substrates, PDE-type enzymes are respon-
sible for the degradation of c-di-GMP. As shown in
Fig. 1b, besides the degradation function of c-di-GMP,
YciR exhibits a second activity: the inhibition of YdaM
and MlrA. Importantly, YdaM is the key activator of the
transcription factor MlrA, which directly activates tran-
scription at the csgD promoter region. A sufficiently high
amount of c-di-GMP prevents YciR from inhibiting YdaM,
since YciR binds c-di-GMP and starts to degrade it, acting
as a trigger enzyme [7]. In turn, unbound (active) YdaM
activates MlrA and induces the signalling cascade leading
to the expression of the curli operon csgBAC.
Previously, the activity of the csgB promoter was mea-

sured in all possible single, double, triple and quadruple
knockout strains of the set of genes yegE, yhjH, ydaM
and yciR [7]. As depicted in Fig. 1a, despite 15 dif-
ferent genetic backgrounds, only four main expression
levels of the csgB gene were observed. E. coli strains
containing a ydaM-knockout exhibit a completely absent
expression of the curli gene csgB (hyperrepressed) or a
very low (basal) level expression, as compared to wild
type (Fig. 1a). Furthermore, strains containing a yciR-
knockout reveal an increased (hyperactivated) expression
of csgB if ydaM is present. This knockout background is
“blind” with respect to knockouts of module I genes (yegE
and yhjH). Genetic and biochemical analyses allowed
Lindenberg et al. [7] to derive a model of the regulatory
network, which is depicted in Fig. 1b. In this model differ-
ent functional states are assigned to YciR (I/II) and YdaM
(active/inactive).
In order to find evidence for the bistability of the curli

signalling system we assigned each of the four differ-
ent expression levels observed in the genetic knockout
experiments at population level (Fig. 1a) a certain single-
cell phenotype. To this end, we used the complementary
single-cell measurements of the wild type expression of
the CsgB protein in Serra et al. [11]. These single-cell data
suggest that the intermediate expression level of the csgB
gene at population level corresponds to a heterogeneous
mix of curli-on and curli-off cells in the bacterial popula-
tion. This indicates that the basal and the hyperrepressed
level of csgB reflects a mixture of cellular phenotypes
where the fraction of curli-on cells is significantly lower as
compared to the wild type, or it becomes undetectable. In
contrast, the hyperactivated phenotype may be due to two
different types of single-cell expression levels. Either all
cells in the population are in the curli-on mode, or there is
a subset of cells in the curli-off mode but their frequency
is significantly lower than the frequency of curli-off cells
in the wild type population.

Derivation of the logical model
In order to set up the logical model of the curli reg-
ulation system, we described the involved components
in terms of logical variables whose values were inter-
preted as functional states of the components, e.g. active
vs. inactive states. For deriving the model we applied a
time-scale separation. Thus we assumed that the total
levels of involved proteins do not significantly change in
contrast to their activity states. We based our assump-
tion on results indicating that protein transcription and
translation are significantly slower than post-translational
interaction dynamics [36].
Having described the components by means of logi-

cal states, logical rules were added to characterise the
principles of mutual regulation by the components. In
particular, all activating or inhibitory effects indicated
by experimental data were incorporated, resulting in the
logical model depicted in Fig. 1c. Most of the compo-
nents were assigned two states (on or off ) correspond-
ing to the situation where the component has either an
effect on the system or not. An exception was made for
the protein YciR, which was assigned a knockout state
(off -state) and two different observable activities that
are mutually exclusive (PDE activity and YdaM/MlrA-
inhibition activity) [7]. Note that YdaM has also two
different activity levels. However, since one of them does
not have any observable effect, we identified it with the
off -state.
In addition to the logical variables, we described the

semantics of the model via the intertwined regulatory
effects. Thus, a regulation is effective if the respective reg-
ulator is on. In the case of YciR we distinguished between
alternative regulations depending on their corresponding
effect. A regulation is effective only when YciR occurs in
the respective state, including the positive and negative
effects (Fig. 1c). Most of the included regulations corre-
spond to the experimentally derived network topology in
Fig. 1b, with a few exceptions. The first difference is given
by the negative feedback induced by the allosteric product
inhibition of c-di-GMP on the catalytic activity of YegE.
When molecular numbers are considered, product inhibi-
tion (PI) gives rise to an upper limit on the synthesis rate
and thus contributes to setting up a homeostatic steady-
state level of c-di-GMP [37]. However the semantics of
this negative feedback loop do not transfer to the discrete
logical model i.e. it is not possible for c-di-GMP to com-
pletely inhibit YegE. Since in the logical model, only one
discrete value is used as an abstraction for the concen-
trations of c-di-GMP that are considered as the on-state,
this negative feedback inhibition has no observable logical
effect. Therefore we eliminated the corresponding edge
from the logical interaction graph (see Fig. 1c).
Furthermore, the DGC/PDE-pair YhjH and YegE con-

stitute the inputs of the network, which means that they
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maintain the values that they were initially set to. Finally,
we used the system property that the expression of csgB
is induced if its transcription factor CsgD is expressed.
This is the case if MlrA is on, since it is in turn the
functional activator of csgD transcription (Fig. 1b). There-
fore, in order to reduce the model, we removed csgD
and used the boolean component MlrA as the output
component of the network. Thus, the on-state of MlrA
represents the induction of curli expression in the logical
model.
At this point we incorporated a sufficient amount of

information into the model for deriving all regulatory
functions except the functions of c-di-GMP and MlrA.
These two components are influenced by multiple reg-
ulators, giving rise to a set of alternative logical func-
tions describing their effect on c-di-GMP or MlrA (see
Additional file 1 for details). After resolving the con-
straints derived from the interaction effects, we identified
114 possible regulatory functions for c-di-GMP and 2 for
MlrA. Finally, by generating all possible combinations of
the functions of the two components, we obtained 228
alternative models for the whole network.

Formalisation of the experimental data
After specifying all 228 possible alternative logical mod-
els (see Additional file 1), we assessed for each model
whether it fulfils all constraints given by the observa-
tions of the 15 genetic knockout experiments (depicted
in Fig. 1a). We evaluated the dynamics of the logical
models by employing the so-called asynchronous update
that allows for non-deterministic behaviour. It has been
previously shown to generate biologically realistic trajec-
tories and has a clear relation to continuous modelling
approaches [38]. Wemodelled a genetic knockout by forc-
ing the respective component to remain in the off -state for
the whole course of the simulation. Our main focus was
on stabilising behaviour, thus we assessed the reachability
of stable states with a particular model configuration. A
system state is considered as stable if it is not possible to
leave it during simulation. As shown in Fig. 1a, there are
four distinctive phenotypes, each of which we addressed
individually:

• The intermediate (bistable) phenotype was related to
the ability to reach a stable state with MlrA on and a
stable state with MlrA off in the logical modelling
framework.

• In the hyperrepressed phenotype no curli is being
expressed, therefore we required that the stable state
with MlrA off is reachable, while the on-state is not.

• The hyperactivated phenotype exhibits strong
expression of curli and therefore we stated that the
stable state with MlrA on must be reachable.
However, unlike the hyperrepressed phenotype, we

did not prohibit the inactive stable state, since we
could not rule out that this phenotype is generated by
a mix of curli-on and curli-off cells.

• Lastly, the basal phenotype exhibits only little, but
still measurable expression of curli. However, very
weak expression of curli was also observed in the
hyperrepressed phenotype (see Fig. 1a). It would
therefore be possible to identify the basal with the
hyperrepressed phenotype, but this constraint could
be spurious. We have therefore decided to not
include the basal phenotype in the main analysis.

However, we also tested the validity of the resulting con-
straint in a second, less conservative analysis step. Here,
we assumed that the basal phenotype is equivalent to
the hyperrepressed phenotype, see Additional file 1 for
details. Since the measurements were conducted in the
early stationary phase of the growth cycle (see Fig. 1a),
we expected the input components YegE and YhjH to
be on unless knocked out. Using the stability constraints
resulting from experimental data (the knockout data), we
formulated 15 properties (bold indices in Table S1 in
Additional file 1) that a valid model should fulfil (using
the conservative analysis step) and 32 properties using
the less conservative analysis step (all rows in Table S1
in Additional file 1). We used these properties to test
the entire set of alternative logical models. Subsequently,
we identified a valid reduced model topology, as well as
parameter constraints that were passed on to the continu-
ous modelling step, as exemplified in Additional file 1 and
shown in the “Results” section.

Derivation of the continuous reaction-rate model
Based on the results from the logical modelling step (see
Additional file 1), we included three system components
as dynamical variables into the continuous model: the
amount of c-di-GMP (x1), the amount of YciR molecules
in its role as a YdaM inhibitor (x2) (i.e. YciR II in Fig. 1b)
and the amount of active YdaM molecules (x3). Due
to the time-scale separation assumption, transcription
and translation were assumed to be negligible and thus
the total amount of YciR and YdaM was assumed to
be constant (parameters YciRtot and YdaMtot, respec-
tively). Two further system components, YegE and YhjH,
were included as parts of the maximum catalytic veloc-
ity parameters (Vmax 1 and Vmax 2, respectively). We did
not include MlrA into the model since its activity reflects
the activity of YdaM. This was supported by the results of
the logical modelling step indicating that MlrA does not
influence the interactions between module I and module
II proteins (we assumed that YdaM andMlrA do not com-
pete for YciR, as discussed later). Details of the derivation
of reaction rates of the time-continuous model are given
in the Additional file 2.
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According to the network wiring validated in the logical
model checking step (see “Results”), the final continu-
ous model was composed of interactions given either
by the production or degradation reactions of c-di-GMP.
Based on the elementary catalytic reactions, we derived
Michaelis-Menten rates by applying the quasi-steady-
state assumption (see Additional file 2 for details and
derivations).
C-di-GMP synthesis by YegE and YdaM respectively

occurs with rates V1 and V2, while c-di-GMP degradation
by YhjH and YciR are modelled by ratesV2 andV3, respec-
tively. The remaining four rates (V5, V6, V7 and V8) relate
to the reversible transitions between different functional
states of YciR and YdaM, as outlined in Additional file 2
and summarised in Table 1.
Based on the reaction rates, we derived an ODE model

describing the interaction dynamics of module I andmod-
ule II proteins and the signal transduction via the regu-
lation of c-di-GMP levels in the cell (Eq. 1). This results
in the following system of ordinary differential equations
(ODEs):

d
dt

x1 = V1 + V4 − (V2 + V3) ,

d
dt

x2 = −V5 + V6, (1)

d
dt

x3 = −V7 + V8,

where the system variables x1, x2, and x3 denote the
molecular concentrations of c-di-GMP, YciR in the YdaM-
inhibition state and active YdaM, respectively. The reac-
tion rate functions are stated in Table 1.

Table 1 Biochemical rates of molecular interactions involved in
the curli regulation network. Reaction rates were derived
according to catalytic properties of c-di-GMP regulation and
protein-protein interactions identified in [7]. Since the focus was
on post-translational dynamics, the protein expression levels of
all DGCs and PDEs were held constant using the parameters
Vmax 1 (YegE), Vmax 2 (YhjH), YdaMtot (YdaM) and YciRtot (YciR)

Rate function Description of the reaction

V1 = Vmax 1

1+x1/K
YegE
i

Synthesis of c-di-GMP by YegE

V2 = Vmax 2x1
x1+KYhjHm

Degradation of c-di-GMP by YhjH

V3 = (YciRtot − x2)
kYciRactx1
x1+KYciRm

Degradation of c-di-GMP by YciR

V4 = kYdaMactxn3(
KYdaMdpolymer

)n

+xn3

Synthesis of c-di-GMP by YdaM (no PI)

V5 = kYciRdex2
x1

x1+KYciRd
Transition from YciR II (YdaM inhibiting)

to YciR I (PDE activity) due to c-di-GMP
binding

V6 = c6(YciRtot − x2) Transition YciR I → YciR II

V7 = kYdaMdex3
x2

x2+KYdaMd
Inhibition of YdaM due to binding of YciR II

V8 = c8(YdaMtot − x3) Re-activation of YdaM

Setting the second equation of the ODE system (1)
to zero, we obtained the steady state equation for
the amount of YciR molecules in both activity states
(YdaM/MlrA-inhibition activity state x2 and PDE activity
state YciRtot − x2):

xss2 = c6YciRtot
c6 + kYciRde x1

x1+KYciR
d

= KYciRact
d YciRtot

KYciRact
d + x1

x1+KYciR
d

, (2)

where we introduced the equilibrium binding constant
given by

KYciRact
d = c6

kYciRde
.

Furthermore, by setting the third equation of the ODE
system (1) to zero and substituting x2 with xss2 , we obtained
the equation for the amount of active (x3) and inactive
(YdaMtot − x3) YdaM molecules at steady state:

xss3 = c8YdaMtot

c8 + kYdaMde
xss2

xss2 +KYdaM
d

= KYdaMact
d YdaMtot

KYdaMact
d + xss2

xss2 +KYdaM
d

, (3)

where

KYdaMact
d = c8

kYdaMde
.

Substituting x2 and x3 with xss2 and xss3 in the first
equation of the ODE system (1) yields a one-dimensional
ODE. Its roots indicate the levels of c-di-GMP xss1 , which,
in conjunction with the steady state Eqs. 2 and (3), give
rise to the fixed points xss = {

xss1 , xss2 , xss3
}
of the entire

ODE system. A fixed point xss is a stable steady state if all
eigenvalues of the Jacobian matrix of the ODE system (1)
at xss are real and negative.

Parameter identification
We estimated the parameters of the ODE model (1) by
using a rejection sampling scheme. In the first step we
sampled random parameter values using a uniform pro-
posal distribution with bounds previously described in the
literature or using physiologically meaningful ranges, as
shown in Table 2 and indicated by grey background shad-
ing in Additional file 4: Figure S2. Note that for the ODE
system (1) the identified parameters with units molecules
were scaled by the system volume � that was set to � =
1μm3 [39].
In order to reduce the parameter search space, we

applied a set of constraints. Firstly, we required that the
proposal values of the parameters YciRtot and YdaMtot
are equal, as suggested by protein assays performed by
Lindenberg et al. [7]. Furthermore, we included a con-
straint resulting from the logical modelling step requir-
ing that the catalytic activity of YciR is weaker than the
catalytic activity of YdaM, i.e. kYciRact ≤ kYdaMact (see
Additional file 1 for derivation).
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Table 2 Ranges of the uniform proposal distribution used for parameter sampling. Kinetic rate parameters were sampled using a
uniform proposal distribution with ranges as depicted in the table. Physiologically meaningful boundaries were chosen if no specific
information was available from previous studies (last three rows). In the case where the parameter distribution was post-hoc trimmed,
the effective range is shown and the original sampling range is given in brackets

Parameter names Unit Lower bound Upper bound References

KYhjHm molecules 100 3000 [35, 49]

KYciRm molecules 100 1000 (3000) [50] p. 103, [35]

KYciRd molecules 100 3000 [50] p. 103, [35]

KYegEi molecules 0 2000 [37]

Vmax 1, Vmax 2, kYdaMact, kYciRact molecules/s 0 2000 [49, 51]

KYdaMd molecules 100 3000 physiol. range

YciRtot, YdaMtot, KYdaMdpolymer
molecules 0 2000 physiol. range

kYciRde, kYdaMde molecules/s 0 2000 physiol. range

A parameter proposal was accepted if the following set
of qualitative requirements was fulfilled:

• the wild type model and the double knockout
yegE/yhjH exhibit two stable states,

• the single-gene knockout mutant lacking yhjH either
exhibits one or two stable states,

• the single-gene knockout mutant lacking yegE
exhibits one stable state.

Note, that the remaining knockout data in Fig. 1a were
not included for kinetic parameter sampling since they
contain genetic knockouts of ydaM or yciR. Setting the
amount of each of these two components to zero disrupts
the structure of the ODE (1) since these two compo-
nents are described by system variables (as opposed to the
activities of YegE and YhjH, described by model param-
eters). The parameters were estimated using a fixed Hill
constant n = 4. This is supported by the tendency of
YdaM to build tetramers in-vitro [7], in line with previous
work suggesting multimerisation as a possible source for
ultrasensitivity [40].
In the second step we conducted a rejection sampling

with a multivariate Gaussian proposal distribution by
accepting the sampled parameter sets if all stability con-
straints from the first step were fulfilled. The mean μ

of the proposal distribution was given by the parameter
sets identified in the first (uniform) sampling step and
the standard deviation σ was chosen sufficiently large to
cover a large sampling space but minimise the probabil-
ity of negative sampling proposals (coefficient of variation
σ/μ = 0.25). In the case of the parameter KYciR

m all sam-
pled parameter sets, where the range of 1000 molecules
was exceeded, were post-hoc rejected due to experimen-
tal results suggesting this upper bound [41]. Additionally,
we post-hoc selected only those parameter sets which
fulfilled the validity criterion for the Michaelis-Menten
approximation in deterministic and stochasticmodels (see
Additional file 2, Eq. (S12)).

Chemical Master Equation of the curli regulation system
The stochastic model of curli regulation and the valid-
ity of the translation of continuous rates into stochastic
propensities are discussed in Additional file 2. In order to
solve the corresponding ChemicalMaster Equation and to
compute switching probabilities between the stable states,
we generated a sufficiently large amount of sample tra-
jectories using the Stochastic Simulation Algorithm [42].
For computing the probability of stable states (stationary
distribution) we used sufficiently large simulation times
ensuring the equilibration of the system. For instance, a
simulation time of 100s for the parameter set used for gen-
erating Fig. 4 was sufficient, as shown in Additional file 5:
Figure S3.
We then computed switching probabilities and switch-

ing times. A switch was detected if an SSA trajectory that
was started in a stable state reached the neighbourhood
of the opposite stable state within a maximal simulation
time T = 100s. For instance, if a system trajectory X was
started in the stable state Xss1, then a switch to the stable
state Xss2 was detected if

N∑
i=1

Xi − Xss2
i ≤

N∑
i=1

ε
(∣∣Xss1

i − Xss2
i

∣∣) (4)

where ε is a neighbourhood parameter that we set to
0.1 and N denotes the number of system components (3
components in the case of our model). The stable states
Xss1 and Xss2 were computed as the steady states of the
deterministic reaction-rate model (1) and confirmed by
identifying the modes of the solution of the CME after a
sufficiently long stochastic simulation time.

Results
We applied logical model checking in order to assess the
potential of the experimentally derived wild type interac-
tion network (Fig. 1b) to exhibit bistable dynamics and at
the same time to fulfil the stability constraints from the
various genetic knockout strains (Fig. 1a).
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Following the logical model checking step, we then
incorporated currently available information on biochem-
ical reactions in order to derive a more detailed reaction-
rate model of curli regulation.

Logical analysis: topology and parameters
As a first analysis step, we tested the consistency of the
candidate models, constructed in the “Methods” section,
with the 15 constraints (Table S1 in Additional file 1,
rows indicated with a bold index) derived from the exper-
imental observations (Fig. 1a). As a result, we found that
10 out of 228 possible models were in agreement with
all constraints (see Table S2 in Additional file 1). Using
a comparative analysis of this set of 10 feasible mod-
els we obtained a number of results yielding meaningful
insights into signalling mechanisms of curli regulation
and supporting subsequent continuous modelling. In the
following, we first describe the essential features of the
system resulting from common properties of the feasible
models and afterwards we present the consequences for
the continuous modelling step.
In Fig. 2 we illustrate the dynamical behaviour that is

shared by all 10 models. As ensured by the constraints,
all models support bistability given that both inputs
(YegE and YhjH) are active. This means that the model
behaviour is non-deterministic and can asymptotically
end in either one of the two stable states distinguished by
the presence of MlrA. Interestingly, for all models these
stable states do not only coincide in that they represent
expression or no expression of curli, but also in the activity
of all other model components. That is, we can completely
characterise the two possible equilibrium states when the
input components are on. Furthermore, an inspection of
the regulatory functions of the 10 remaining models indi-
cates that there are five possible regulation mechanisms
for c-di-GMP, which exhibit noteworthy commonalities.
The most prominent pattern is that c-di-GMP is in most
cases adopting the value of YdaM, whereas the value
of YciR is almost uncorrelated with the update of c-di-
GMP. This observation allowed us to identify YdaM as
the most influential regulator of c-di-GMP. For a more
detailed discussion and an explicit listing of the regulatory
functions see Additional file 1.

Apart from yielding insights into the modelled system,
the logical approach could also be used to validate cru-
cial assumptions underlying the continuous reaction-rate
model: Firstly and most importantly, we validated the net-
work structure underlying the continuous reaction-rate
model. To this end, as described above, we identified a
non-empty set of logical models fulfilling the experimen-
tal constraints and exhibiting bistability. Furthermore, by
inspecting the set of 10 feasible models, we observed
that despite of two different choices for the regulation of
MlrA, the realisation of the core circuit YdaM—YciR—c-
di-GMP is independent of the choice of the regulatory
function of MlrA. Furthermore, MlrA is an output com-
ponent and thus does not influence any other components
in the network, allowing for model reduction by com-
pletely removing MlrA in the continuous modelling step.
This gave rise to a core model that generates bistability,
containing only c-di-GMP, YdaM and YciR as dynamic
variables.
In a second step, we asked if, besides the already incor-

porated (conservative) constraints, the network topology
also fulfils the constraints related to the less conserva-
tive interpretation of the basal expression phenotype, as
e.g. observed in the mutant strain with a yegE-knockout
(Fig. 1a, see “Methods” for a description of model con-
straints). To this end, we made the assumption that the
basal phenotype is equivalent with the hyperrepressed
phenotype. This assumption is partly supported by the
knockout data, which suggest that these two phenotypes
are indeed equivalent w.r.t. to the core network (YdaM,
YciR and c-di-GMP) and only differ by the basal YdaM-
independent activity of MlrA inhibited by the activity of
YciR (e.g. compare csgB expression in the mutant strain
lacking ydaM and the double-knockout mutant strain
lacking ydaM and yciR). Overall we generated two con-
straints from each knockout experiment in Fig. 1a, giv-
ing rise to 32 constraints (Additional file 1: Table S1).
As a result, we identified one valid model fulfilling all
constraints (including the less conservative constraints
obtained by identifying the basal- and hyperrepressed
phenotype, see first row in Table S2, Additional file 1).
Finally, we were able to translate our findings on the reg-

ulation of c-di-GMP into a parameter constraint for the

Fig. 2 Simulation trace of the system where both inputs YegE and YhjH are set to active states. Values of the remaining four nodes create 24 = 16
different combinations, 12 of which form the strongly connected component (SCC) and the bottom two are the stable states, indicated by the
self-loops. The depicted simulation trace is shared among all final models
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ODE model. Our result stating that the activating effect
of YdaM overcomes the inhibitory influence of YciR under
certain conditions yields the kinetic parameter inequal-
ity kYciRact < kYdaMact in the continuous setting (see
Additional file 1 for details).
In summary, we were able to transfer four results

into the continuous modelling step. Firstly, the net-
work structure postulated in Fig. 1c, is a valid basis
for a continuous reaction-rate model of curli regulation
and supports the experimentally derived network topol-
ogy. Secondly, the core model giving rise to bistable
behaviour is based on the interaction between YdaM,
YciR and c-di-GMP (with YegE and YhjH as model
inputs). Thirdly, we have shown that the network topology
also fulfils the constraints resulting from the equivalence
assumption of the basal and hyperrepressed pheno-
types. Thus, this assumption can be used as a con-
straint in the continuous modelling step. Finally, we
obtained a parameter constraint for the catalytic activity
of YciR in comparison with the activity of DGC enzyme
YdaM.

Reaction-rate model of interaction between the DGC/PDE
modules
In the subsequent step, we analysed the dynamics of the
system after translating the logical network into a contin-
uous reaction rate model. We then determined the stable
states of the system (see “Methods”). Since in the log-
ical modelling step the activity of MlrA was shown to
almost completely reflect the activity of YdaM, we only
focused on interactions of the module I and module II
proteins, upstream of MlrA, as the regulatory core of the
network (Fig. 1d and “Methods”). Note, that this model
reduction is valid under the assumption that MlrA and
YdaM can simultaneously bind YciR i.e. there is no com-
petition (see “Discussion”). We used the bistability of the
wild type strain and the stability properties of the single-
gene knockout strains lacking either yegE or yhjH (Fig. 1a)
as acceptance criteria for parameter inference (see
“Methods”).
Using 2 · 106 parameter proposals, our sampling pro-

cedure yielded 608 feasible parameter sets depicted in
Fig. 3 (log-scale) along with experimentally determined

Fig. 3 Distribution of sampled parameters along with reference parameter values from the literature. Parameter distributions were obtained using
rejection sampling where, if possible, the bounds of the proposal distribution were obtained from the literature (see Table 2) and are outlined by
blue boxes. In addition, the empirical means of each parameter are shown (red crosses). The first eight parameters on the x-axis have units
molecules, the following six parameters have units molecules/s. The individual values of each parameter set are provided in the Additional file 3. For
a comparison, experimentally measured values of similar parameters are depicted, if available (triangles). Following parameter pairs are indicated for
comparison (model parameter/parameter from literature): 1. YdaMtot/Amount of DgcA in E. coli ≈ 490 molecules, obtained from [37] and
normalised by the dry weight of the cell obtained from the Bionumbers database, BNID 100009 [52]. 2. KYegEi /Ki of DgcA ≈ 1000 molecules,

obtained from [37] and normalised by the volume of E. coli cells. 3. KYhjHm /Km of the PDE-enzyme CC3396 from Caulobacter crescentus ≈ 420
molecules, obtained from [49] 4. KYciRm /estimated maximal Km of YciR ≈ 1000 molecules, obtained from [50], page. 103 and normalised by the
volume of E. coli cells. 5. Vmax 1 of YegE/ Vmax of DgcA ≈ 22 s−1 obtained from [37] and normalised by the amount of DgcA proteins and by the dry
weight of the cell. 6. Vmax 2 of YhjH/Vmax of the PDE-enzyme CC3396 from Caulobacter crescentus ≈ 937 s−1 obtained from [49] and normalised by
the dry weight of the cell. Note that the Hill parameter was fixed at n = 4 (see text for explanation) and the parameters c6 and c8 were fixed at the
value 10 s−1 due to structural non-identifiability w.r.t parameters kYciRde and kYdaMde, respectively
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parameters in related systems. The individual parameter
values are listed in the Additional file 3. Note also
Additional file 4: Figure S2 showing the parameter dis-
tribution on a linear scale along with the proposal
distribution.

Bifurcation analysis and comparison to genetic knockout
experiments
Previously, it was shown that protein-protein interactions
between the module II proteins YciR and YdaM induce
a switching point in this system requiring a sufficient
amount of c-di-GMP in order to relieve the inhibition
of YdaM by YciR and enable downstream signal trans-
duction [7]. In the following, we analysed the potential
role of the regulatory parameters of c-di-GMP in gener-
ating bistability. Since experimental results suggest that
YdaM is the main component transmitting the signal fur-
ther downstream to MlrA, we used the amount of active
YdaM molecules as the read-out parameter of our anal-
ysis. Note that the stable states with a high amount of
YdaM molecules are characterised by a high level of c-
di-GMP and a low level of YciR II and vice versa, in
line with the stable states of the logical model (Fig. 2).
By construction of the rejection sampling, all identified
parameter sets shared equivalent stability properties of
the wild type and genetic knockout strains. Therefore, in
order to analyse the dependence of the stable states on
model parameters we selected a representative param-
eter set from the sampled distribution (see Additional
file 3, parameter set 1 listed in the first data row of
the table).

The parameters Vmax 1 and Vmax 2 are composed of
the product of catalytic activity and the amount of the
DGC-type enzyme YegE and the PDE-type enzyme YhjH,
respectively. We varied these two parameters in order
to analyse the impact of the amount and activity of this
DGC/PDE pair on signal transduction. For each of the
two parameters we identified three different types of
qualitative dynamics. At values of Vmax 1 slightly below
238molecules/s the system exhibits monostable dynamics
(Fig. 4a). A further decrease of this parameter reduces the
amount of active YdaM proteins at steady state eventually
hitting the minimal level of active YdaM proteins when
YegE activity is absent (Vmax 1 = 0). This is supported
by experimental measurements of csgB expression in yegE
knockout mutants exhibiting basal YdaM-independent
level of csgB expression (Fig. 1a) [7, 8]. With an increasing
Vmax 1, the amount of active YdaM molecules increases as
well, until the system becomes bistable with two possible
stable levels of active YdaMmolecules in a region between
238 and 272molecules/s. This type of qualitative dynamics
agrees with the phenotypic heterogeneity of csgB expres-
sion observed in the wild type strain [10, 11]. The stochas-
tic simulations of the model indicate that within this
parameter region the cells divide into two subpopulations
with different levels of active YdaM molecules (Fig. 4a,
inlay plot). Finally, a further increase of Vmax 1 makes
the system monostable again with a high level of active
YdaM molecules (corresponding to the curli-on state). A
similar analysis of the YhjH-activity parameter Vmax 2 in
the second experiment exhibited the contrary bifurcation
behaviour, where the system becomes monostable with a

A B C

Fig. 4 Bifurcation analysis of key system parameters Vmax 1, Vmax 2 and the complex parameter c6/kYciRde. The stable states are shown by continuous
lines while unstable fixed points are indicated by dashed lines. Note that each stable level of active YdaM is characterised by a distinct stable amount
of c-di-GMP and YciR II (not shown). The parameter regions inducing bistability are marked by grey areas. Inlay plots show stochastic simulations of
the system within the bistable region, indicating the probability (relative amount of cells) to contain a high or low amount of active YdaMmolecules.
The initial condition for the stochastic simulations was set to x1 = 100, x2 = 0, x3 = 768 and 103 simulations were conducted for each parameter
combination of the bifurcation analysis. A sufficiently large simulation time of 100 seconds was chosen in order to ensure equilibration. In each
experiment A-C all the other parameters were kept fixed corresponding to the parameter set 1 in Additional file 3 (first data row of the table)
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high level of active YdaM molecules as Vmax 2 decreases
(Fig. 4b). This corresponds to the hyperactivated expres-
sion of csgB, experimentally measured in yhjH-knockout
mutants (Fig. 1a).
In the third experiment we varied the complex param-

eter c6/kYciRde. This parameter is inversely proportional
to the binding affinity of c-di-GMP to YciR and it has
an opposite bifurcation behaviour as compared to Vmax 1.
Values of c6/kYciRde below 7.92 · 10−3, i.e. a high affinity of
c-di-GMP to YciR, give rise to a single steady state with a
high level of active YdaM molecules. Between 7.92 · 10−3

and 8.39 · 10−3 the system becomes bistable with two dif-
ferent levels of active YdaMmolecules, which corresponds
to the wild type dynamics. The corresponding stochastic
simulations indicate that within this parameter region the
probability of the system is divided between the two stable
states, which is in agreement with the bistable dynamics of
csgB expression. Finally, at values higher than 8.39 · 10−3,
i.e. a further decrease of the binding affinity of c-di-GMP
to YciR, the system becomes monostable again, exhibit-
ing low level of active YdaM molecules (curli-off ). This is
supported by experimental data indicating a basal expres-
sion of csgB in mutant strains where the EAL domain was
mutated to an AAL domain, thus diminishing the bind-
ing affinity of c-di-GMP to YciR [7]. The model suggests
that the observed basal expression of curli might be a
result of a single steady state with a low level of active
YdaM proteins. Note that despite individual differences in
the exact parameter values Vmax 1, Vmax 2 and c6/kYciRde
between distinct feasible parameter sets at bifurcation
points, the qualitative dynamics described above can
be generalised to all identified parameter sets shown
in Fig. 3.

Dynamics of stochastic switching between different
activity levels of YdaM
Although the identified parameter sets are qualitatively
equivalent with respect to their stability properties (i.e.
number of stable states in the wild type, yegE- and yhjH-
knockout mutant strains and bifurcation behaviour), the
equilibrium probabilities of each stable state and the
dynamics of switching between the stable states might dif-
fer significantly. Potential spontaneous switching between
the stable states is an important property of stochastic
multistable systems. By generating sample trajectories of
the stochastic model one can show that on very short
time scales the probability of each stable state is fully
determined by the initial level of the key components in
the system, while after sufficiently long simulation times
(∼ 100s) the switching dynamics between the stable states
marginalises the effect of initial molecular levels by induc-
ing equilibration (see Additional file 5: Figure S3).
In the following, we analysed the switching behaviour

between the two stable states (low vs. high level of

active YdaM molecules) using all identified parameter
sets. For each parameter set, we computed the probability
of switching within a simulation time of 100 seconds. The
result for each of the 608 identified parameter sets with
regard to switching between the low and high YdaM activ-
ity is shown in Fig. 5a (each parameter set is represented
by a circle with the two switching probabilities as its coor-
dinates). A separation of the parameter space into four
regions according to the switching probabilities between
the two stable states indicates a certain asymmetry of the
switching dynamics between the two states. For most of
the identified parameter sets (72%) we observed a high
probability of switching (P ≥ 0.5) from the low YdaM
activity state to the high activity state while exhibiting a
low inverse switching probability (P < 0.5). These param-
eters induce an alert-type behaviour, where the system
is very likely to switch to the curli expression state and
most probably will remain in this state for some time.
The number of these parameter sets exceeded the num-
ber of parameter sets exhibiting the opposite behaviour
by an order of magnitude i.e. only 7% of parameters indi-
cated a small probability of switching from low YdaM
activity level (curli-off ) to a high YdaM activity level (curli-
on), but a high probability of switching in the opposite
direction. Finally, a significant amount of feasible parame-
ters sets exhibited very low switching probability in either
direction (12%), representing a possible robust differen-
tiation of the bacterial population into two phenotypes,
while (9%) indicated high switching probabilities in both
directions.
In addition, we computed the time to switch between

the two stable states. A summary plot for all simulations
(all parameter sets) is shown in Fig. 5b, indicating that the
time required to switch from the low to the high level of
active YdaM (switch from curli-off to curli-on) was sig-
nificantly shorter than for the reverse direction. When
starting from the curli-off (low YdaM activity) state, a
switch was observed in 93% of all model parameterisa-
tions within 100 seconds. However, only slightly over 41%
exhibited a switch from the high YdaM activity state to the
low YdaM activity state after this period (Fig. 5b). This dif-
ference in the times for switching in different directions is
in line with the overrepresentation of parameter sets with
a high probability of switching from the low to the high
YdaM activity state and low probability of switching in the
reverse direction, as discussed above (Fig. 5a).
In order to identify the factors that give rise to the

differences in switching behaviours, we compared the cor-
responding parameter sets. We identified significant dif-
ferences between the distributions of several parameters
inducing frequent switching in both directions (P ≥ 0.9,
21 parameter sets) and those inducing very rare switch-
ing in both directions (P ≤ 0.1, 38 parameter sets) i.e. the
parameter sets marked by the two red boxes in Fig. 5a. As
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A B

Fig. 5 Classification of identified parameter sets according to their mean switching times and switching probabilities between the two stable states.
a. Each of the feasible parameter sets is plotted according to the switching probability between the two stable states, given a maximal simulation
time of 100 seconds. The parameter sets are classified into 4 regions which are divided by lines indicating a probabilityP = 0.5 of a switch in either
direction. The colours represent the probabilities of switching in both directions, ranging from blue to yellow (low and high probability of switching
in either direction, respectively). The red boxes in the lower left and upper right corners indicate parameter regions inducing a low probability
(P ≤ 0.1) and high probability (P ≥ 0.9) of switching in either direction, respectively. b. Cumulative distribution of the switching times over all
feasible parameter sets. For each of the 608 identified parameter sets 103 SSA simulations were performed by starting the system in the stable state
either corresponding to the curli-off or curli-on state i.e. low/high amount of c-di-GMP, high/low amount of YciR in the YdaM/MlrA-inhibition state
and low/high amount of active YdaM molecules, respectively. Each simulation was stopped if a switch to the opposite stable state was observed or
if the maximal simulation time of 100 seconds was reached (see Eq. (4) for the definition of a switch). The mean switching time was computed over
those trajectories that exhibited a switch for a given parameter set

shown in Fig. 6, there are significant differences (Wilcoxon
ranksum test, p < 0.001) between the two parameter sets
in terms of the total levels and/or activities of the PDE-
type enzyme YciR (YciRtot, kyciRact) and the DGC-type
enzyme YdaM

(
YciRtot,KYdaM

d and KYdaM
dpolymer

)
.

Fig. 6 Comparison of distributions of parameter sets inducing
frequent switching to parameter sets with rare switching. Stochastic
simulations were performed as described in Fig. 5. The distributions of
two parameter sets were compared: those with a high probability of
switchingP ≥ 0.9 in both directions (blue, 21 parameter sets) and
those with a low probability of switchingP ≤ 0.1 (red, 77 parameter
sets), as indicated by red boxes in Fig. 5a. A Wilcoxon ranksum test
was applied for detecting significant differences at a significance level
p ≤ 0.001. The parameters exhibiting no significant differences
between the two sets are not shown

This suggests that changes of expression and activity
levels of the DGC and PDE enzymes due to e.g.
transcriptional regulationmight modulate the responsive-
ness of the system.
We compared the steady state levels of c-di-GMP,

YciR II and active YdaM between parameter sets inducing
frequent vs. rare switching dynamics between the curli-
on and curli-off states in both directions (Fig. 7a). This
graphic highlights the barrier that the system is required
to overcome in order to switch to the opposite steady
state. As shown in Fig. 7b the steady state levels in the
curli-on and curli-off states are significantly more distant
for parameters inducing rare switching than those induc-
ing frequent switching (in both directions), possibly con-
stituting amechanism for controlling switching dynamics.
Furthermore, we compared parameter sets inducing a
high switching probability in only one direction but a low
probability in the reverse direction (i.e. a comparison of
parameters in the upper left corner to the parameters in
the lower right corner in Fig. 5a). Significant differences
between these data sets with respect to parameter values
or steady state levels could not be found.
Overall, besides the potential of the curli regulation sys-

tem to induce bistable dynamics, our stochastic modelling
results indicate alternative feasible scenarios of switch-
ing between the stable states. At the one extreme, the
cells may be able to rapidly switch their phenotype and
at the other extreme they may differentiate into two sta-
ble phenotypes. A difference between these two scenarios
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A

B

Fig. 7 Comparison of steady state levels of key system components within curli-off and curli-on phenotypes depending on switching behaviour.
Panel a (upper figure row): steady state levels of system components are shown as indicated above each subfigure for parameter sets inducing
bistability with frequent switching (P ≥ 0.9, blue) and rare switching (P ≤ 0.1, red) between curli-off and curli-on states. Within each of these two
groups the steady state levels of curli-on and curli-off states are shown (filled, downwards pointing triangles and empty, upwards pointing triangles,
respectively). The steady state levels were computed using the ODE system (1) and, for consistency, compared with the modes of the solution of the
Chemical Master Equation obtained by SSA sampling (Additional file 5: Figure S3). Panel b (lower figure row): the absolute difference between the
molecular levels of system components between the curli-on and curli-off states is shown. The difference of molecular levels is computed for
parameter sets inducing high and low probability of switching (blue and red hexagrams, respectively) between the curli-on and curli-off states. The
p-values indicate the significance of the separation between the two distributions (Wilcoxon ranksum test)

may be given by distinct expression levels of the involved
proteins which regulate the energetic barrier separating
the two stable states. It should be noted that certain
reactions of the continuous model do not allow to distin-
guish between the impact of individual parameters as, for
instance, the catalytic velocity of c-di-GMP degradation
is determined by the product of two parameters: YciRtot
and kYciRact. Therefore, additional kinetic data may help
in future to further dissect the impact of reaction rate
parameters on bistability and switching dynamics of curli
expression.

Discussion
Multistability is a recurring mechanism in biological sys-
tems, enabling cellular heterogeneity and differentiation
at the phenotypic level [6]. In order to understand the
principles of its regulation, a thorough combination of
wet-lab experimentation and mathematical modelling is
required. Many computational studies of bistable sys-
tems focused either on the network topology [17, 18] or

on reaction kinetics [19, 21]. Here, we combined these
two approaches. This enabled us to deal with heteroge-
neous data sources, such as expression levels in various
knockout strains and kinetic rate parameters from in-vitro
studies.
While multistability in signalling networks may be

attributed to transcriptional and translational regula-
tion as well as post-translational dynamics, in this
study, we focused on molecular interactions at the post-
translational level.
In our modelling pipeline we utilised three modelling

frameworks in sequence to fully exploit the available data
and investigate different aspects of the system on appro-
priate levels of abstraction. Insights from each modelling-
and analysis step were passed on in the pipeline and
constituted, together with additional biological informa-
tion accessible within the next higher detail-resolving
formalism, the foundation for more elaborate models.
In a first step we used a constraint-based logical

modelling approach enabling us to extract essential



Pouran Yousef et al. BMC Systems Biology  (2015) 9:39 Page 14 of 17

model characteristics needed to reproduce all available
experimental observations. More precisely, we identified
a set of logical models consistent with the suggested net-
work topology that generates bistability in the wild type
strain and fulfils all constraints given by the genetic data.
Furthermore, the logical modelling step revealed that the
bistable distribution of the molecular pool of active YdaM
molecules (not bound by YciR) is the key determinant of
phenotypic heterogeneity of curli expression observed in
single-cell experiments. This insight allowed for a model
reduction (compare Fig 1b and d). The implicit assump-
tion made here was that MlrA and YdaM do not compete
for binding to YciR, making MlrA a downstream compo-
nent of the core regulatory network. Structurally, this is
justified by the possibility of independent and simultane-
ous binding of YdaM and MlrA to YciR due to its large
interaction domain (EAL-domain) [43] and different bind-
ing modes of YdaM andMlrA on that domain. In addition,
genetic data from Lindenberg et al. [7] yielded functional
arguments against competition between YdaM and MlrA.
Within our pipeline, the main result from the logical anal-
ysis passed on to the higher resolution modelling is the
validation of the underlying network structure. We veri-
fied that the reduced topology shown in Fig 1d can carry
a dynamical model in agreement with all available data.
Beyond purely topological insights, a closer look at the

regulatory mechanisms encoded by the logical functions
can also be exploited to derive parameter constraints for
the continuous reaction-rate model. Analysing the impact
of different regulators on a target in different system states
may yield information on relations between production
and decay rates. Theoretical results in this direction have
been shown for specific classes of ODEs, see e.g. [38],
but they are not yet widely applicable. We suggested
how to exploit this idea in a well-supported case for the
curli regulation network and identified its potential for
the sampling of kinetic parameters. Still, for a systematic
application of this strategy the theoretical groundwork
needs to be further extended.
An even closer intertwining of the formalisms would

also have been possible. Automatic conversion procedures
could have been used to lift a more abstract model into
a more resolved formalism, e.g., to derive a generic ODE
system from a given logical model as suggested in [44].
However, this approach yields models that cannot incor-
porate additional mechanistic knowledge (e.g. reaction
parameters) in contrast to our approach, where we aimed
at constructing a biologically realistic model by utilising
all available kinetic information. As a consequence, the
continuous model in our approach does not necessarily
mimic the dynamics of the coarser models in all system
states. It rather provides a complementary view based
on the much higher detail resolution that allows to re-
evaluate and broaden the results of the logical analysis.

Thus, a crucial advantage of our approach is the abil-
ity to incorporate experimental data from heterogeneous
sources, carrying qualitative, semi-quantitative or fully
quantitative information. A further possibility would have
been to take smaller steps on the modelling scale and add
hybrid formalisms to the pipeline, e.g. discrete-continuous
systems modelled as hybrid automata or Petri nets based
on the boolean models that we derived in the first pipeline
step [41, 45]. However, we found that in our context this
does not provide any clear advantages, since the compu-
tational cost of parameter- and dynamic analysis that go
beyond qualitative aspects is already close to that of an
ODE model while still incorporating many abstractions of
the underlying mechanisms [46, 47].
The ODE model, derived in the second step of the

pipeline, allowed us to identify regions in the multi-
dimensional kinetic parameter space inducing bistable
behaviour. Using a Monte Carlo sampling procedure, we
identified a sufficiently large amount of parameter sets
inducing bistability in the wild type strain and monos-
table behaviour in particular knockout strains and strains
with point mutations (see “Methods”). Note that sampling
procedures are frequently used for identifying parameter
regions inducing bistability [23, 48]. We post-hoc com-
pared the identified parameter distributions with experi-
mentally measured parameters in related systems. Thus,
we could show that the network topology validated in the
logical modelling step is capable of generating bistable
dynamics within a biologically meaningful range of kinetic
parameters, as shown in Fig. 3.
By conducting a bifurcation of key model parameters

we exemplarily analysed the ranges where these parame-
ters induce bistable regimes. This is of particular relevance
since it was previously shown that during entry into the
stationary phase of the growth cycle the σ S-controlled
DGC enzyme YegE is induced, while the expression of
the PDE enzyme YhjH (controlled by the flagellar master
regulators FlhDC and FliA) is turned down. The remain-
ing levels of the YhjH protein are diluted and degraded
within the following cell divisions [8]. Our results sug-
gest that by fine-tuning the levels of YegE and YhjH the
cells maintain parametric configurations, which generate
bistable behaviour. Stochastic simulations indicate that a
further increase of the protein levels of YegE during the
stationary phase might reduce the probability of the curli-
off state and increase the probability of the curli-on state
(see Fig. 4a, inlay plots). This is in line with experimental
measurements of the distribution of curli cells in bacte-
rial colonies. Serra et al. [11] showed a spatial variation
of this distribution, where the relative amount of curli-
on cells increases with an increasing vertical distance to
the nutritional source at the bottom of the colony. In
addition, Grantcharova et al. [10] observed a variation of
this distribution within different stages of the stationary
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phase of the bacterial growth cycle. Furthermore, the
bifurcation results suggested a narrow parameter region
where the system is bistable. Changing these parame-
ters in a way that eliminates the catalytic activity of
the c-di-GMP-regulating enzymes YegE and YhjH, or
decreases the binding affinity of c-di-GMP to YciR yielded
monostable systems which could explain experimental
results of corresponding single-gene knockout strains
lacking yegE and yhjH or carrying a yciRAAL point
mutation (see Fig. 4).
Finally, we addressed a possible mechanism inducing

spontaneous switching between different stable states.
Stochastic simulations of the system indicated that
depending on kinetic parameters, qualitatively differ-
ent types of noise-induced switching dynamics may be
observed, where most of the identified parameter sets
indicated a higher probability of switching from the curli-
off state to the curli-on state than vice versa (72%). In line
with these results, small chains of curli cells were observed
within macrocolonies of E. coli, suggesting that once the
cells switch to curli expression, they maintain this state
and inherit it to successive cell generations [11]. We iden-
tified a significant subset of parameters (12%) exhibiting
a low switching probability in either direction (lower left
corner in Fig. 5a). This suggests that certain parameter
configurations might enable a long-term differentiation of
the cells into curli producers and non-producers, retain-
ing the status-quo until system parameters change again
e.g. due to a variation of environmental conditions. A
possible regulatory mechanism for controlling the switch-
ing behaviour might be given by the level of separation
of steady states within distinct phenotypes. In support
of this, we observed that the deviation of stable c-di-
GMP levels between curli-off and curli-on phenotypes
was much more pronounced in parameter sets that favour
a differentiation (rare switchers) than those parameter
sets that allow frequent switching between the two phe-
notypes. A greater separation of these levels may induce a
larger (energetic) barrier and robustness against stochas-
tic fluctuations, which could be a potential mechanism
controlling the phenotypic plasticity of E. coli. A compar-
ison of the steady state levels in Fig. 7 with experimentally
measured numbers of system components, in particular
c-di-GMP, in curli-on and curli-off cells may shed further
light on this topic.
Note that in this study we only focused on the

noise resulting from post-translational interactions. The
implicit time-scale separation assumption can be justi-
fied by the longer time scales of fluctuations in protein
copy numbers as compared to the longest simulations in
this study (≤ 100 s). In our simulations, we observed
that switching from curli-off to curli-on states was gen-
erally fast (≤ 100 s, see Fig. 5b) and may thus not
be affected by slower noise processes, that are related

to protein copy number variations. However, switching
in the opposite direction (curli-on to curli-off ) may
occur at a slower time-scale (≥ 100s, see Fig. 5b) in
some parameter sets and may thus be influenced by
the noise resulting from transcriptional and translational
events. Further kinetic data may enable a refinement
of this model by explicitly including gene expression
noise.

Conclusion
In this study we have presented a framework for the anal-
ysis of multistable signalling networks with an application
to the stationary phase-induced curli regulation system
of E. coli. Using a hybrid sequential logical-continuous
approach we first verified the potential of the curli reg-
ulation system for inducing bistability by incorporating
genetic knockout experiments as discrete model con-
straints. Based on the validated network topology, we
derived a reaction-rate model of the system and identi-
fied several parameter sets that are capable of inducing
bistable dynamics. Notably, most identified parameter
sets are located in a biologically meaningful region. In
addition, we analysed the dependence of the probabil-
ity of the stable curli-on and curli-off states on system
parameters. We showed that certain parameter variations,
e.g. the amount and activities of the DGCs and PDEs,
give rise to different switching dynamics between curli-
on and curli-off states (i.e. frequent switching or stable
differentiation).
The present study introduces the first mathematical

model of bistable regulation of curli fibers in E. coli based
on post-translational interactions of multiple DGC and
PDE proteins with the signalling molecule c-di-GMP as
the central player. Our results deliver new potential tar-
gets for further experimental investigations, which may
help to test the modelling hypotheses and to succes-
sively deepen the understanding of biofilm control in
bacteria.
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Additional file 5: Figure S3. Solutions of the Chemical Master Equation
(Additional file 2: Eq. (S11)) based on Monte Carlo sampling [42]. Three
different initial levels of c-di-GMP were used: x1 = 130, 215 and 420
molecules (panel rows 1 to 3, respectively). The initial levels of the other two
system variables were equally set to x2 = 0 (YciR in YdaM/MlrA inhibition
state) and x3 = 768 (active YdaM). Three different simulation times T were
used in order to identify the equilibration time of the system: T = 20, 100
and 200 seconds (panel columns 2 to 4). 103 stochastic sample trajectories
were generated for computing each solution. The final empirical sampling
distributions in the figures were subject to a kernel smoothing.
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