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Abstract

Geographically weighted small area methods have been studied in literature for small area es-

timation. Although these approaches are useful for the estimation of small area means efficiently

under strict parametric assumptions, they can be very sensitive to outliers in the data. In this paper,

we propose a robust extension of the geographically weighted empirical best linear unbiased predic-

tor (GWEBLUP). In particular, we introduce robust projective and predictive small area estimators

under spatial non-stationarity. Mean squared error estimation is performed by two different analytic

approaches that account for the spatial structure in the data. The results from the model-based sim-

ulations indicate that the proposed approach may lead to gains in terms of efficiency. Finally, the

methodology is demonstrated in an illustrative application for estimating the average total cash costs

for farms in Australia.

Keywords: Bias correction, geographical weighted regression, mean squared error, model-based simu-

lation, spatial statistics

1 Introduction

The demand for reliable statistics on regionally disaggregated levels has been grown in the last decades.

Sample surveys provide a cost efficient way to obtain estimates for the quantity of interest mainly on

higher geographic levels (countries or regions). In most practical situations, the sample sizes on lower

geographic levels (counties or municipalities) are not large enough to provide reliable direct estimates.

These levels are called small areas. Several model-based approaches for producing small area estimates

have been proposed in literature to tackle this problem. We refer to Rao (2003), Jiang and Lahiri (2006)

and Rao and Molina (2015) for a general introduction and an overview.

The production of reliable small area estimates is based on the availability of accurate auxiliary in-

formation. In many situations, additional spatial information such as coordinates and distances between

small areas is available and can be incorporated in the model. Several authors (Pratesi and Salvati, 2008;

Longford, 2010; Chandra et al., 2012; D’Alo et al., 2012; Porter et al., 2014) have already demonstrated

in literature that borrowing strength over space offers some gains in terms of efficiency in small area

estimation. One approach for incorporating the spatial correlation in the data is to allow for spatially
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correlated random effects by using conditional or simultaneous autoregressive processes, while the re-

gression coefficients are spatially invariant (Rao, 2003; Singh et al., 2005; Pratesi and Salvati, 2008).

An alternative approach is to incorporate the spatial structure in the data into a nonparametric spatial

spline model for small area estimation (Opsomer et al., 2008; Giusti et al., 2012). The spatial correlation

is captured by spatially varying auxiliary information whereas the regression coefficients are spatially

invariant. A third approach assumes that the regression coefficients vary spatially across the small area

of interest. This situation is referred to as spatial non-stationarity (Brunsdon et al., 1996; Fotheringham

et al., 2002). Recently, Chandra et al. (2012) and Salvati et al. (2012) discussed small area estimation

for unit-level models for this situation. In particular, Chandra et al. (2012) proposed a geographical

weighted empirical best linear unbiased predictor (GWEBLUP) for small area estimation under spatial

non-stationarity. Chandra et al. (2015) presented a spatially non-stationary Fay-Herriot model (Fay and

Herriot, 1979). From a Bayesian perspective, Sugasawa et al. (2015) introduced an empirical Bayes

method with spatially non-stationary hyperparameters for area-level data.

Although these approaches for small area estimation under spatial correlation are efficient under

strict parametric assumptions, they can be strongly influenced by departures from the underlying distri-

butions or by outlying values. Outliers are correctly recorded observations which are extremely different

compared to the whole sample (Chambers, 1986). Sinha and Rao (2009) used influence functions for

estimating robust parameters in a linear mixed model and propose a robust empirical best linear unbiased

predictor (REBLUP) for small area estimation. An alternative approach to outlier robust small area esti-

mation based on M-quantile methods is introduced in Chambers and Tzavidis (2006). Both approaches

normally lead to biased small area estimators with smaller variances because they assume that all non-

sampled values follow exactly the assumed robust working model. Chambers et al. (2014) denote such

approaches as robust projective. Dongmo-Jiongo et al. (2013) and Chambers et al. (2014) corrected for

the bias of the robust small area estimators by adding an additional correction term. Such bias-corrected

robust estimators are denoted as robust predictive because they try to predict the contribution of the

outliers in the population (Chambers et al., 2014). Recently, Schmid and Münnich (2014) and Schmid

et al. (2016) discussed the robust projective and predictive estimators under spatially correlated random

effects.

This paper is, to the best of our knowledge, the first attempt to propose a robust approach to small area

estimation for spatial non-stationarity data. In order to account for potential outliers and spatially vary-

ing regression coefficients in the data we control the impact of outliers on the geographically weighted

regression by an influence function; i.e. lower weights are given to the outliers in the fitting process.

The structure of the paper is as follows. In Section 2 we give a short review of GWEBLUP and

present the proposed robust extensions. In particular, we introduce robust projective and predictive small

area estimators under spatial non-stationarity. Section 3 presents two analytic approaches for the mean

squared error (MSE) estimation of the proposed estimators that account for the spatial structure in the

data. The first method is based on a pseudo-linearization introduced by Chambers et al. (2011), whereas

the second approach extends the full-linearization method of Chambers et al. (2014) to spatial non-
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stationarity. In Section 4 the performance of the proposed methodology is empirically assessed by a

model-based simulation study under different scenarios. The introduced methods are applied to the

Agricultural and Grazing Industries Survey from Australia in Section 5. Finally, in Section 6 we discuss

the main results of the paper and provide some avenues for further research.

2 Robust geographically weighted EBLUP

This section provides an overview regarding small area methods under spatial non-stationarity. In par-

ticular, we review the GWEBLUP of Chandra et al. (2012) in Subsection 2.1. Afterwards, we introduce

robust projective and robust predictive extensions of the GWEBLUP in Subsection 2.2 and 2.3 respec-

tively.

2.1 Geographically weighted EBLUP

We assume that the target population U of size N is divided into M disjoint small areas and that unit-

level data is available. The population units are denoted by j and the small areas by i. Each small area

i contains a known number Ni of units. The vector y stands for the target variable in the population U

whereas yij represents the realization of y for unit j (j = 1, . . . , Ni) in small area i (i = 1, . . . ,M). The

matrixX contains p unit-level auxiliary variables where xij denotes the (p× 1) vector of the individual

level covariates for unit j in small area i. Furthermore, the matrixZ indicates area level covariates where

the zij denotes the value of Z for unit j in area i. We assume that the covariates xij and zij are linearly

related to yij and that all small area averages of xij and zij are known. The sample s of size n is drawn

from the population by using a non-informative sampling design given xij and zij . The subscripts s and

r stand for the n sampled and the N − n non-sampled quantities from the population respectively. We

use the index i to denote the restriction to the specific area i.

The aim is to use the sample s and additional covariates xij and zij to predict the small area averages

of the target variable y. Battese et al. (1988) introduced the standard approach to model-based small area

estimation with unit-level data. The Battese, Harter and Fuller model is a linear mixed model (LMM)

with area-specific random effects:

y = Xβ +Zv + e, (1)

where β stands for the (p × 1) vector of regression coefficients, v ∼ N(0,Σv) denotes the (M × 1)

vector of area specific random effects and e ∼ N(0,Σe = σ2
eIN ) is the (N × 1) vector of individual

errors. IN represents the identity matrix of dimensionN . The covariance matrix Σv simplifies under the

assumption of independent random effects to Σv = σ2
vIM . As the random effects v and the individual

errors e are independent, the covariance matrix of y is defined by V = Σe + ZΣvZ
T . The empirical

best linear unbiased predictor (EBLUP) for the small area mean ȳi is then

ŷ
EBLUP
i = N−1

i

{∑
j∈si

yij +
∑
j∈ri

ŷij

}
= N−1

i

{∑
j∈si

yij +
∑
j∈ri

(xTijβ̂ + v̂i)
}
, (2)
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where β̂ = β̂(θ̂) denotes the empirical best linear unbiased estimator and v̂(θ̂) stands for the empirical

best linear unbiased predictor (Henderson, 1975). θ̂ is defined by the maximum likelihood or the re-

stricted maximum likelihood estimator of θ = (σ2
v , σ

2
e) (Harville, 1977). We refer to Rao (2003), Jiang

and Lahiri (2006) and Rao and Molina (2015) for a comprehensive review of small area estimation based

on these models.

The EBLUP (2) is optimal in terms of efficiency under the assumptions of the LMM (1). In particular,

the regression coefficients β are spatially invariant (spatial stationary) in the LMM, i.e. the relationship

between yij and xij is the same in the target area. Recent literature has demonstrated that there are

realistic situations where the linear relationship does not hold (Opsomer et al., 2008; Chandra et al.,

2012; Salvati et al., 2012; Chambers et al., 2016).

Following Brunsdon et al. (1996), one way to deal with this problem is to allow for local linear

(spatial non-stationary) models for the target variable y by geographically weighted regression (GWR).

Chandra et al. (2012) extended these ideas to the context of small area estimation. The local LMM with

respect to an arbitrary spatial location uk is given by

y = Xβ(uk) +Zv(uk) +W
−1/2
k e, (3)

where β(uk) stands for the (p × 1) vector of regression coefficients specific to the location uk and

Wk = diagl∈s(wlk). The element wlk = w(uk, ul) (for all l ∈ s) is a weighting function that decreases

as the distance between the locations uk and ul increases. Chandra et al. (2012) used an Euclidean

weighting function between the locations uk and ul. A comprehensive review of different weighting

functions in GWR is provided in Fotheringham et al. (2002).

The GWEBLUP for the mean yi in area i under the spatial non-stationary model (3) is then

ŷ
GWEBLUP
i = N−1

i

{∑
j∈si

yij +
∑
j∈ri

ŷgwij

}
= N−1

i

{∑
j∈si

yij +
∑
j∈ri

(xTijβ̂
gw
(uij) + v̂i

gw
(uij))

}
, (4)

where the superscript gw indicates that the parameters depend on geographically weighted regression.

The vector β̂gw(uk) denotes the geographically weighted empirical BLUE (GWEBLUE) of βgw(uk) and v̂gw(uk)

stands for geographically weighted EBLUP of the vector of random effects at uk (Chandra et al., 2012).

Details regarding the algorithms for the estimating the model parameters are provided in Chandra et al.

(2012). It is important to notice that for the GWEBLUP (4) all parameters have to be estimated for each

sampled and non-sampled unit in the population what makes the estimation computationally demanding.

2.2 Robust extension of the GWEBLUP

The EBLUP (2) and the GWEBLUP (4) are optimal when the corresponding model assumptions hold. In

particular, both estimators assume normality for the random effects v and for the error terms e. However,

the presence of outliers can violate these assumptions. The influence of contamination on the estimation

can be reduced by substituting β̂ and v̂ by robust estimators. Sinha and Rao (2009) applied an influence

function ψ on the residuals in the maximum likelihood (ML) estimating equations and obtained robust

4



estimates β̂ψ and v̂ψ by an iterative algorithm. Using these robust alternatives Sinha and Rao (2009)

proposed an outlier robust version of the EBLUP (REBLUP) for ȳi in area i by

ŷ
REBLUP
i = N−1

i

{∑
j∈si

yij +
∑
j∈ri

(xTijβ̂
ψ + v̂ψi )

}
. (5)

In the following we propose an outlier robust version of the GWEBLUP (RWGEBLUP). Similar to

Sinha and Rao (2009) we first maximise the density of y with respect to β(uk) and θ by solving the

robust ML estimating equations. Then, the robust estimates are used for the estimation of the random

effects v(uk) (Fellner, 1986).

Given the response vector y, the robustified ML estimating equations with respect to β(uk) and

θ(uk) under the local LMM (3) have the form

α
(
β(uk)

)
= XTV −1

k U
1/2
k ψ(rk) = 0 (6)

Φ
(
θl(uk)

)
= −tr(V −1

k

∂Vk
∂θl

K) +U
1/2
k ψ(rk)V

−1
k

∂Vk
∂θl

V −1
k U

1/2
k ψ(rk)

T = 0, (7)

where rk = U
− 1

2
k (y−Xβ(uk)),Uk = diag(Vk) and Vk = ZΣvZ

T +ΣeW
−1
k . K is a diagonal matrix

with K = E(ψ2
b (a))In where a is standard normally distributed and In denotes the identity matrix

of size n. We use the Huber influence function ψ(a) = amin(1, c/|a|) with a fixed tuning constant

c = 1.345 (Huber, 1964). Note that the robust ML equations (6) and (7) have to be solved for each

individual in the population what makes the estimation computationally demanding. Following Chandra

et al. (2012), we apply a quasi-maximum likelihood approach which restricts the variance components θ

to be constant at every sample location. The robust ML equation for the variance components θ reduces

to

Φ(θl) = −tr(V −1∂V

∂θl
K) +U1/2ψ(r)V −1∂V

∂θl
V −1U1/2ψ(r)T = 0, (8)

where r = U−
1
2 (y−ρs). The projection ρs is given by ρs = (X ◦Bs)1p where 1p is a p-vector of ones

and ◦ denotes the element wise product of matrices, also known as the Hadamard product of matrices.

Bs and Br denote the matrices of the regression coefficients β(uk) for the sampled and non-sampled

units respectively and B = (Bs,Br). Using the robust estimates from (6) and (8), we estimate the

robust random effects by solving the equation proposed by Fellner (1986)

∆(v) = ZTΣ−1/2
e ψ(Σ−1/2

e (y − ρs −Zv))−Σ−1/2
v ψ(Σ−1/2

v v) = 0. (9)

The non-robust estimates β̂gw(uij) and v̂gw in the GWEBLUP (4) will be substituted by their robust versions

β̂ψ,gw(uij) and v̂ψ,gw defined as the solutions of the estimating equations (6) and (9). The RGWEBLUP for

the mean yi in area i is then

ŷ
RGWEBLUP
i = N−1

i

{∑
j∈si

yij +
∑
j∈ri

ŷψ,gwij

}
= N−1

i

{∑
j∈si

yij +
∑
j∈ri

(xTijβ̂
ψ,gw
(uij) + v̂ψ,gwi )

}
. (10)
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However, the robust estimates β̂ψ,gw(uij) and v̂ψ,gw can not be represented in a closed form. We propose an

iterative algorithm to estimate β(uij) and θ jointly from the equations (6) and (8). For the estimation of

β(uij), we first used a Newton-Raphson algorithm similar to Sinha and Rao (2009). We experienced that

the Newton-Raphson algorithm performed unstable in some situations due to the geographical weights.

Therefore, we applied a Fixed-Point algorithm for the estimation of the β(uij) in equation (6) which is

shortly outlined in Appendix A. The equation (8) for the variance components θ is solved following the

ideas of Chatrchi (2012). Afterwards, the robust random effects v̂ψ,gw are obtained from equation (9) by

a Fisher-Scoring algorithm. The steps of the algorithm for the estimation of β(uij), θ and v are outlined

in the Appendix B.

2.3 Bias correction for the robust GWEBLUP

The estimators in Subsection 2.2 assume that the non-sampled individuals in the population follow ex-

actly the model (3). This assumption implies that departures from the model caused by outlier contami-

nation affects exclusively the sample and not the non-sampled units of the population. Chambers (1986)

called this type of contamination as non-representative outliers. In the case of non-representative outlier

contamination the estimators introduced in Subsection 2.2 produce unbiased estimates of the small area

means (Sinha and Rao, 2009). Chambers et al. (2014) refers to these estimators, such as the REBLUP (5)

and the RGWEBLUP (10), as robust projective. However, the concept of non-representative outliers may

be violated in real situations and the robust projective estimators can be severely biased. Outliers which

affect the sampled and non-sampled part of the population are referred to representative outliers (Cham-

bers, 1986). To account for the presence of representative outliers in the population Chambers et al.

(2014) suggested to add a bias correction term to the robust projective estimators. Such bias-corrected

estimators are denoted as robust predictive because they try to predict the contribution of the outliers in

the population to the small area means.

Chambers et al. (2014) introduced a robust predictive extension of the REBLUP (5) for the mean ȳi

in area i by

ˆ̄yREBLUP−bci = ˆ̄yREBLUPi + bci (11)

with

bci =

(
Ni − ni
Ni

)
n−1
i

∑
j∈si

ωψi φ
{

(yij − xijβ̂
ψ − v̂iψ)/ωψi

}
(12)

where ωψi is a robust estimator of the scale of the residuals in area i. The function φ is defined by Huber’s

influence function with a tuning constant h. For details we refer to Chambers et al. (2014).

In order to develop a bias correction for GWEBLUP (10) we followed the ideas of Chambers et al.

(2014) and additionally accounted for the geographical weighting leading to robust-predictive RGWE-

BLUP for the mean ȳi in area i by

ˆ̄yRGWEBLUP−bc
i = ˆ̄yRGWEBLUP

i + bcgwi (13)
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with

bcgwi =

(
Ni − ni
Ni

)
1∑

j∈si w̄ij

∑
j∈si

w̄ijω
ψ,gw
i φ

{
(yij − xijβ̂

ψ,gw
(uij) − v̂i

ψ,gw)/ωψ,gwi

}
(14)

where w̄ij = n−1
i

∑
k∈si w(uij , uk) is the average geographical weight of the sampled observation j in

area i. If only the centroid coordinates for area i are available the geographically weighted bias-correction

(14) reduces to (12) because w̄ij = 1 for all sampled observations in area i.

Note that we also explored other possibilities to incorporate the geographical weights into the bias

correction by (i) using the median instead if the mean geographical weight in equation (14), (ii) using

the mean/median of the out of sample geographical weights from step 10 in the algorithm (Appendix B)

and compute a weighted sum over all individual bias corrections from the out of sample predictions, (iii)

ignoring the geographical weights and directly use the bias correction from equation (12). However, an

empirical study showed that the proposed bias correction from equation (14) appeared to have the best

properties in terms of bias and efficiency. The results from the empirical study are available from the

authors upon request.

We employ in this paper only one possible way of correcting the bias of robust projective estima-

tors. We are aware of alternative ways proposed by Dongmo-Jiongo et al. (2013). They mentioned that

the bias-corrections (11) and (14) may suffer from high variability because the bias-correction depends

only on local information in area i which is usually small. Dongmo-Jiongo et al. (2013) introduced an

alternative robust predictive estimator that use a global bias-correction which is based on information

from other areas. Schmid et al. (2016) compared the robust projective estimators proposed by Dongmo-

Jiongo et al. (2013) and Chambers et al. (2014) under spatially correlated random effects. However, the

extension of the global bias-corrections proposed by Dongmo-Jiongo et al. (2013) to the case of spatial

non-stationarity is currently an open research problem.

3 Mean squared error estimation

In this section we introduce two analytic approaches of MSE estimation for the proposed robust estima-

tors. In particular, we propose in Section 3.1 an MSE estimator for the robust projective RGWEBLUP

(10) based on a pseudo-linearization approach introduced by Chambers et al. (2011). In Section 3.2 we

use first-order approximations for the variance components and propose an MSE estimator for the RG-

WEBLUP (10) based on a full-linearization suggested by Chambers et al. (2014). These analytic MSE

estimators account for the spatial structure in the data. Afterwards, we extend both MSE estimators to

the robust predictive estimator RGWEBLUP-bc (13).

3.1 MSE estimation based on pseudo-linearization

The MSE estimation suggested by Chambers et al. (2011) is based on a pseudo-linearization approach.

In particular, the small area estimator of interest can be written as a weighted sum of the sample values of

the target variable. We apply the pseudo-linearization approach to develop a conditional MSE estimation
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for the RGWEBLUP (10). Conditional in that sense that we treat the random effects to be fixed, but

unknown. We show in the Appendix C that the RGWEBLUP of ȳi can be expressed as

ŷ
RGWEBLUP
i =

∑
j∈s

dRGWEBLUP
ij yj = (dRGWEBLUP

i )Ty (15)

where

(dRGWEBLUP
i )T = N−1

i [δTi + (Ni − ni)(ν̄i + ξ̄i)].

δi is an indicator vector of size n which is 1 for the sampled units in area i and is 0 otherwise. ν̄i and ξ̄i

are 1× n vectors defined by

1. ν̄i = (Ni−ni)−1
∑

j∈ri νij = (Ni−ni)−1
∑

j∈ri x
T
ij(X

T V̂ −1
ij X )−1XT V̂ −1

ij D1 withD1 being

a n × n diagonal matrix of weights d1,ij = y∗ij/yij where the values y∗ij are truncated sampled

observations of yij with

y∗ij = yij min(1,
b
√
σ̂2
v + σ̂2

e

|yij |
+ xTijβ̂

ψ,gw
(uij) ). (16)

2. ξ̄i = (Ni − ni)−1
∑

j∈ri ξij = (Ni − ni)−1
∑

j∈ri z
T
ijQ(In −H) where

Q = Σ̂1/2
v D3Σ̂

1/2
v ZT

(
ZΣ̂1/2

v D3Σ̂
1/2
v ZT + Σ̂1/2

e D2Σ̂
1/2
e

)−1
, (17)

D2 andD3 are n× n and m×m diagonal matrices, respectively, with elements

d2,ij = ψ
{

(σ̂ψ,gwe )−1(yij − xijβ̂
ψ,gw
(uij) − v̂

ψ,gw
i )

}
/
{

(σ̂ψ,gwe )−1(yij − xijβ̂
ψ
(uij) − v̂

ψ,gw
i )

}
,

d3,i = ψ
{

(σ̂ψ,gwu )−1v̂ψ,gwi

}
/
{

(σ̂ψ,gwu )−1v̂ψ,gwi

}
,

andH is an n× n projection matrix with row vectors hij given by

hij = xTij(X
T V̂ −1

ij Û
1/2
ij D4(ij)Û

−1/2
ij X )−1XT V̂ −1

ij Û
1/2
ij D4(ij)Û

−1/2
ij ,

whereD4(ij) is an n× n diagonal matrix with

diag(D4(ij)) = ψ
{
Û
−1/2
ij (y −Xβ̂ψ,gw(uij) )

}
/Û
−1/2
ij (y −Xβ̂ψ,gw(uij) ).

We use expression (15) to develop an approximation for the conditional MSE for the RGWEBLUP (10).

According to the surnames of the authors who contributed to Chambers et al. (2011) we will refer to this

method by adding the subscript CCT. The estimator of the conditional MSE for the RGWEBLUP of ȳi

is then

M̂SECCT (ˆ̄yRGWEBLUP
i ) = V̂ arCCT (ˆ̄yRGWEBLUP

i ) + B̂ias(ˆ̄yRGWEBLUP
i )2 (18)

8



where

V̂ arCCT (ˆ̄yRGWEBLUP
i ) = N−2

i

∑
j∈s

{
a2
ij + (Ni − ni)n−1

}
λ̂−1
j (yj − µ̂j)2 (19)

is an estimate of the conditional prediction variance of (10), with aij = Nid
RGWEBLUP
ij − I(j ∈ i).

I(j ∈ i) is an indicator function which is equal to 1 whenever unit j is in area i. The second term on the

right hand side of (18)

B̂ias(ˆ̄yRGWEBLUP
i ) =

∑
j∈s

dRGWEBLUP
ij µ̂j −N−1

i

∑
j∈Ni

µ̂j (20)

denotes an estimate of the conditional prediction bias of (10). Here µ̂j =
∑

k∈s γkjyk = γTj y is an

unbiased linear estimator of the conditional expected value µj = E(yj |xj ,vψ) where under model (3)

γTj = (νij + ξij) for j ∈ ri and γTj = (hij + ξij) for j ∈ si. For additional details we refer to

Chambers et al. (2011). Further, λ̂j = 1 − 2γjj +
∑

k∈s γ
2
kj is defined as a scaling constant. How-

ever, due to the shrinkage effect which can lead to biased EBLUP estimates, Chambers et al. (2011)

recommended to compute µ̂j as the ’unshrunken’ version. Following that suggestion ξij reduces to

ξuij = zTij(ZZ
T )−1ZT (In − H) for the estimation of µ̂j and, furthermore, λ̂j would be of order

1 +O(n−1). Thus, we set λ̂j ≡ 1 in equation (19).

The MSE estimator for the robust predictive RGWEBLUP-bc (13) can be developed using the

pseudo-linearization approach introduced above. The weights dRGWEBLUP
ij from (15) need to be ad-

justed for the bias correction. Since RGWEBLUP-bc (13) is approximately unbiased the MSE estimator

reduces to

M̂SECCT (ˆ̄yRGWEBLUP−bc
i ) = V̂ arCCT (ˆ̄yRGWEBLUP−bc

i ), (21)

with

ŷ
RGWEBLUP−bc
i =

∑
j∈s

dRGWEBLUP−bc
ij yj = (dRGWEBLUP−bc

i )Ty. (22)

Let q be an n× 1 vector with components

qij =
w̄ijω

ψ,gw
i φ

{
(yij − xijβ̂

ψ,gw
(uij) − v̂i

ψ,gw)/ωψ,gwi

}
(yij − xijβ̂

ψ,gw
(uij) − v̂i

ψ,gw)

and 1n be a n× 1 vector of ones. Then expression (14) can be rewritten as

bcgwi =

(
Ni − ni
Ni

)
1∑

j∈si w̄ij

∑
j∈si

qij(yij − xijβ̂
ψ,gw
(uij) − v̂i

ψ,gw),

9



leading after some rearrangements to (additional details are provided in the Appendix D)

(dRGWEBLUP−bc
i )T = N−1

1


(

1n +
Ni − ni∑
j∈si w̄ij

q

)T
◦ δTi

+ (Ni − ni)

ν̄i − 1∑
j∈si w̄ij

∑
j∈si

qijhij


+ (Ni − ni)

ξ̄i − 1∑
j∈si w̄ij

∑
j∈si

qijξij

 . (23)

The MSE estimator (21) for the RGWEBLUP-bc (13) can be calculated by plugging the weights (23)

into the estimator (19) for the variance component. Note that the MSE estimators for the RGWEBLUP

(18) and for the RGWEBLUP-bc (21) ignore the additional uncertainty introduced by the estimation of

the variance components and therefore may be seen as a first-order approximation of the MSE.

3.2 Linearization based MSE estimation for small area predictors

Following Chambers et al. (2014) we propose a linearization based approach for the MSE estimation of

the RGWEBLUP (10) and the RGWEBLUP-bc (13). The basic idea is to decompose the MSE into a

squared bias term, a prediction variance and an additional term that accounts for the variability caused

by the estimation of the variance components. As in Subsection 3.1, we develop the MSE estimation

conditional on the realization of the random effects. We assume the same regularity conditions as Cham-

bers et al. (2014). Note that the derivations for the MSE estimation in this subsection extend the work

of Chambers et al. (2014) and account for the additional spatial structure in the data. To start with we

assume that the variance parameters from model (3) are known. The variance of the prediction error of

the RGWBLUP ŷ
RGWBLUP
i can be expressed as

V ar(ŷ
RGWBLUP
i − ȳ) = V ar

N−1
i

∑
j∈ri

(xTijβ̃
ψ,gw
(uij) + ṽi

ψ,gw)−N−1
i

∑
j∈ri

yij


=

1

N2
i

V ar

∑
j∈ri

xTijβ̃
ψ,gw
(uij)

+

(
Ni − ni
Ni

)2

V ar(ṽi
ψ,gw)

+

(
Ni − ni
Ni

)2

V ar(ēri) (24)

where β̃ψ,gw(uij) and ṽiψ,gw are assumed to be independent and ēri = (Ni−ni)−1
∑

j∈ri(yij −x
T
ijβ̃

ψ,gw
(uij) −

ṽi
ψ,gw). Note that β̃ψ,gw(uij) and ṽiψ,gw are solutions to the equations (6) and (9) when the variance compo-

10



nents are known. The first variance component in (24) can be rewritten as

1

N2
i

V ar

∑
j∈ri

xTijβ̃
ψ,gw
(uij)

 =
1

N2
i

∑
j∈ri

∑
k∈ri

xTikCov
(
β̃ψ,gw(uik) , β̃

ψ,gw
(uij)

)
xij

=
1

N2
i

∑
j∈ri

∑
k∈ri

xTikV ar
(
β̃ψ,gw(uij)

)
xij

=

(
Ni − ni
N2
i

)
x̄Tri
∑
j∈ri

V ar
(
β̃ψ,gw(uij)

)
xij

under the condition that Cov
(
β̃ψ,gw(uij) , β̃

ψ,gw
(uik)

)
= 0 for j 6= k. x̄ri is the p-vector of area specific means

from the non-sampled observations. It follows that the MSE estimation of the RWGBLUP depends on

V ar
(
β̃ψ,gw(uij)

)
, V ar(ṽiψ,gw) and V ar(ēri).

Following the estimation algorithm outlined in the Appendix A the elements of coefficient matrix

Br have the explicit form β̃ψ,gw(uij) = (XT V̂ −1
ij X)−1XT V̂ −1

ij y
∗ and the variance directly follows as

V̂ arr

(
β̃ψ,gw(uij)

)
= (XTV −1

ij X)−1XTV −1
ij V ar(y∗)V −1

ij X(XTV −1
ij X)−1 (25)

where V ar(y∗) = V . To find asymptotic solutions for V ar(ṽiψ,gw) and the variance of the in-sample

coefficientsBs we use of the estimating equation (6) and (9) which lead to sandwich-type estimators

V̂ ar(ṽi
ψ,gw) = Ξ−1

(
ν(t)ZT Σ̂−1

e Z
) [

Ξ−1
]T (26)

V̂ ars

(
β̃ψ,gw(uij)

)
= Π−1

(
ν(rij)XV̂

−1
ij ÛijV̂

−1
ij X

) [
Π−1

]T
, (27)

where

Ξ = −ZT Σ̂−1/2
e T Σ̂−1/2

e Z − Σ̂−1/2
v LΣ̂−1/2

v

Π = −XV̂ −1
ij Û

1/2
ij RijÛ

1/2
ij X

t = Σ̂−1/2
e (y − ρs −Zv).

rij and ρs are defined as in equations (6) and (8) respectively. In addition, T = diagn [I(−c < t < c)],

L = diagm

[
I(−c < Σ̂

−1/2
v ṽψ,gw < c)

]
and Rij = diagn [I(−c < rij < c)]. c denotes the tuning

constant in Huber’s influence function. The function ν(a) =
(
η
∑n

j=1 ψ
2(ai)

)
/(n− p), is an estimator

for the variance V ar(ψ(a)) with η =
(
1 + pV ar(ψ′(a))/nE[ψ′(a)]2

)
as a bias correction term which

was suggested by Huber (1964). Note that the variance of the in-sample coefficients in expression (27)

is needed later when we account for the bias correction.

Based on the derivations in the equations (25) and (26), we define the following estimator for the

variance of the prediction error (24)

V̂
(
ˆ̄yRGWBLUP
i − ȳi

)
= h1i

(
B̃ψ,gw
ri , ṽψ,gwi

)
+ h2i

(
B̃ψ,gw
s , ṽψ,gw

)
, (28)

11



where

1. The first component h1i is due to the estimation of the regression coefficients and the area specific

random effects and is defined by:

h1i

(
B̃ψ,gw
ri , ṽi

ψ,gw
)

=

(
Ni − ni
N2
i

)
x̄Tri
∑
j∈ri

V̂ ar
(
β̃ψ,gw(uij)

)
xij +

(
Ni − ni
Ni

)2

V̂ ar(ṽi
ψ,gw).

2. The second component h2i can be either estimated using only the area specific sample residuals or

by using the residuals from the entire sample. Chambers et al. (2014) recommend to use the latter

estimator since it can yield MSE estimates which are more stable when the area specific sample

sizes are very small. We will follow that suggestion and define

h2i

(
B̃ψ,gw
s , ṽψ,gw

)
=

(
Ni − ni
Ni

)2

V̂ ar(ˆ̄eri) =

(
Ni − ni

(n− 1) ·N2
i

) m∑
i=1

∑
j∈si

(yij−xTijβ̃
ψ,gw
(uij)−z

T
i ṽ

ψ,gw)2.

Using equation (28) the conditional MSE of the RGWBLUP can be estimated by

M̂SECCST (ˆ̄yRGWBLUP
i ) = h1i

(
B̃ψ,gw
ri , ṽψ,gwi

)
+h2i

(
B̃ψ,gw
s , ṽψ,gw

)
+B̂ias

(
ˆ̄yRGWBLUP
i

)2
. (29)

Note that according to the surnames of the authors who contributed to Chambers et al. (2014) we refer

to this MSE estimator by adding the subscript CCST. Following the ideas of Chambers et al. (2014) we

add an extra term to equation (29) in order to account for the extra variability caused by the estimation

of the variance components θ. The proposed estimator of the conditional MSE for the RGWEBLUP of

ȳi has the form

M̂SECCST (ˆ̄yRGWEBLUP
i ) = h1i

(
B̂ψ,gw
ri , v̂ψ,gwi

)
+ h2i

(
B̂ψ,gw
s , v̂ψ,gw

)
(30)

+ h3i

(
B̂ψ,gw
s , v̂ψ,gw

)
+ B̂ias

(
ˆ̄yRGWEBLUP
i

)2
where B̂ias(ˆ̄yRGWEBLUP

i )2 is given by equation (20). The component h3i is the variability added due

to the estimation of the variance components θ and is defined by

h3i

(
B̂ψ,gw
s , v̂ψ,gw

)
=

N−1
i

∑
j∈ri

zTij

Υ V ar(θ̂)

N−1
i

∑
j∈ri

zTij

T

with

Υ =
2∑

k=1

2∑
g=1

(∂Q∣∣θk)
 m∑
j=1

m∑
l=1

(zTij v̂
ψ,gw)(zTil v̂

ψ,gw) + σ2
eI(j = l)

(∂Q∣∣
θg

)T
where Q is defined as in equation (17). For an estimate of the variance-covariance matrix V ar(θ̂)

we apply the delta method to the robust estimation equations proposed by Sinha and Rao (2009).
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The linearization approach can also be applied to develop an MSE estimate for the robust predictive

extension RGWEBLUP-bc. Again, we will start the derivation by assuming that the variance parameter

θ from model (3) is known. The prediction error for RGWBLUP-bc of ȳi can be written as

ˆ̄yRGWBLUP−bc
i − ȳi = N−1

i

∑
j∈ri

(xTijβ̃
ψ,gw
(uij) + ṽψ,gwi ) + bcgwi − ȳi.

After applying a first order Taylor series approximation to the latter expression an estimator of the con-

ditional the MSE for the RGWBLUP-bc can be approximated analogously to equation (29) by

M̂SECCST (ˆ̄yRGWBLUP−bc
i ) = hbc1i

(
B̃ψ,gw
ri , ṽψ,gwi

)
+h2i

(
B̃ψ,gw
s , ṽψ,gw

)
+hbc4i

(
B̃ψ,gw
si , ṽψ,gwi

)
(31)

where the first term on the right hand side can be expressed as

hbc1i

(
β̃ψ,gw(uij)

)
= (1− niN−1

i )2(Λ̄ri − Λ̄si)(x̄ri − x̄∗si)

with Λ̄ri = (Ni − ni)−1
∑

j∈ri xij V̂ ar(β̃
ψ,gw
(uij) ) and Λ̄si = n−1

i

∑
j∈si x

∗
ij V̂ ar(β̃

ψ,gw
(uij) ). The star in the

upper expression refers to the transformation f(a) =
nw̄ij∑
j∈si

w̄ij
a and V̂ ar(β̃ψ,gw(uij) ) is defined by equation

(27). The second term of (31) is equivalent to h2i defined in equation (29) and the third term is given by

hbc4i

(
B̃ψ,gw
si , ṽψ,gwi

)
=

(1− niN−1
i )2

(g1i(g1i − g2i/g1i))

∑
j∈si

w̄ij

(
ωψ,gwi φ

{
(yij − xTijβ̃

ψ,gw
(uij) − ṽi

ψ,gw)/ωψ,gwi

})2

with g1i =
∑

j∈si w̄ij and g2i =
∑

j∈si w̄
2
ij . The conditional MSE estimator of the RGWEBLUP-bc

which takes into account the extra variability coming from the estimation of the variance parameters can

be obtained by adding an additional term hbc3i to equation (31), leading to

M̂SECCST (ˆ̄yRGWEBLUP−bc
i ) = hbc1i

(
B̂ψ,gw
ri , v̂ψ,gwi

)
+ h2i

(
B̂ψ,gw
s , v̂ψ,gw

)
+ hbc3i

(
B̂ψ,gw
s , v̂ψ,gw

)
+ hbc4i

(
B̂ψ,gw
si , v̂ψ,gwi

)
(32)

where hbc3i ≈
(
1− niN−1

i

)
ζTi Υ V ar(θ̂)ζTi accounts for the variance added due to the estimation of θ

and ζTi = z̄ri− 1∑
j∈si

w̄ij

∑
j∈si w̄ijφ

′
{

(yij−xTijβ̂
ψ,gw
(uij) − v̂i

ψ,gw)/ωψ,gwi

}
zij . Note that ζi = 0 when φ

is the identity function and the underlying model (3) simplifies to the random intercept model. Since the

RGWEBLUP-bc is asymptotically unbiased, the bias term is not needed for the MSE estimator. The MSE

estimation of the non-robust GWEBLUP estimator of ȳi can be obtained by setting the tuning constant

b to a very high value, i.e. b = 100, for both, the CCT and the CCST approach. The proposed MSE

estimators for robust GWEBLUP approaches (RGWEBLUP and RGWEBLUP-bc) are a generalization

of Chambers et al. (2014). By setting the spatial weights in model (3) to be constant for all population

units we obtain the results of Chambers et al. (2014).
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4 Model based simulation

In this section, we provide results from a model-based simulation study assessing the performance of the

robust estimators that were described in Section 2. The scenarios in the model-based simulations are a

combination of settings under spatial stationarity and non-stationarity with different outlier contamina-

tion mechanisms. We further investigate the performance of the proposed MSE estimators introduced in

Section 3.

Following Chambers et al. (2014), we generated population data for m = 40 small areas. The

samples were selected from the population by simple random sampling without replacement within each

area. The population and sample sizes were held fixed for all areas at Ni = 100 and ni = 5 respectively.

The covariates xij were drawn from a log-normal distribution with mean 1 and a standard deviation of

0.5. We generated the dependent variable yij as follows:

yij = β0(ij) + β1(ij)xij + vi + eij (33)

with

β0(ij) = 100 + a0(longitudeij + latitudeij) (34)

β1(ij) = 5 + a1(longitudeij + latitudeij). (35)

Following Chandra et al. (2012), the parameters a0 and a1 are set to 0 for spatial stationarity scenarios

and to a0 = 0.1 and a1 = 0.2 for scenarios under spatial non-stationarity. The coordinates for the

population units where generated as a uniform grid with range (0,
√
N/2) for the longitude and the

latitude. The random effects vi and the individual error eij were independently generated under different

outlier contamination mechanisms:

1. (0, 0) - no outliers, e ∼ N(0, 6) and vi ∼ N(0, 3);
2. (v, e)s - symmetric outliers in area-level and individual error, vi ∼ N(0, 3) for the areas 1-36

and vi ∼ N(0, 20) for the areas 37-40; e ∼ δN(0, 6) + (1 − δ)N(0, 150) where δ is Bernoulli

distributed with P (δ = 1) = 0.95;
3. (v, e)ns - non-symmetric outliers in area-level and individual error, vi ∼ N(0, 3) for the areas 1-36

and vi ∼ N(9, 20) for the areas 37-40; e ∼ δN(0, 6) + (1 − δ)N(20, 150) where δ is Bernoulli

distributed with P (δ = 1) = 0.95.

In particular, the scenario (0, 0) serves as a reference when the assumptions of the model (1) are valid.

Following Sinha and Rao (2009), we concentrate in the second scenario (v, e)s on symmetric outlier

contamination in the area and unit level term. We expect that the outlier robust projective estimators

(REBLUP and RGWEBLUP) are superior under these settings. However, the assumption of perfect

symmetric outlier contamination may be violated in many real applications. Thus, following Chambers

et al. (2014), we investigate non-symmetric outlier contamination in the third scenario (v, e)ns. We

expect that outlier robust projective estimators (REBLUP-bc and RGWEBLUP-bc) suffer here from a
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potential bias. The outlier robust predictive estimators should be able to reduce the bias under this

scenario. The choice of the simulation setup (number of area, sample and population sizes) and the outlier

contamination mechanism is for two reasons: First, we aimed to investigate the proposed methods for

small area estimation under extreme situations. Second, we wanted to have comparable results to Sinha

and Rao (2009) and Chambers et al. (2014).

We independently repeated each scenario T = 500 times. For each Monte-Carlo replication we

generated the population according to the underlying setting, drew a sample and used the sampled data

to calculate estimates for the area means.

We evaluated six estimators of the small area population averages in the simulations. These are

the EBLUP (2), the robust projective REBLUP (5) and the robust predictive REBLUP-bc (11). These

estimators are suitable under spatial stationarity because they assume a global model (1). In the fol-

lowing we will refer to them as global estimators. Furthermore, we evaluated their extensions to spatial

non-stationarity, the GWEBLUP (4), the robust projective RGWEBLUP (10) and the robust predictive

RGWEBLUP-bc (13). Following Dongmo-Jiongo et al. (2013) and Chambers et al. (2014), we set the

tuning constant for the bias correction to 3. The estimators are implemented by computationally efficient

algorithms using C++ and R. The codes are available from the authors upon request.

The performance of the estimators was evaluated by the median values of the area specific relative

bias (RB) and relative root mean squared errors (RRMSE) given by

RB(m̂i) =
1

T

T∑
t=1

m̂ti −mti

mti

RRMSE(m̂i) =

√√√√ 1

T

T∑
t=1

(
m̂ti −mti

mti

)2

,

where m̂i is a generic notation to denote a small area estimator of the average in area i and mi denotes

the true population mean in area i.

Table 1 presents the median values of the RB and the RRMSE for the spatial stationary and non-

stationary scenarios. Starting with the (stationary and non-stationary) scenarios without outliers (0, 0),

we note that all estimators are almost unbiased. Furthermore, the geographically weighted approaches

(GWEBLUP, RGWEBLUP and RGWEBLUP-bc) are more efficient compared to the global approaches

(EBLUP, REBLUP and REBLUP-bc) under spatial non-stationarity.

The results for the scenarios with symmetric outlier contamination (v, e)s confirm our expectations

regarding the behaviour of the robust estimators. First, the robust projective estimators (REBLUP and

RGWEBLUP) lead on average to more efficient results compared to the robust predictive estimators

(REBLUP-bc and RGWEBLUP-bc) and compared to the non-robust estimators (EBLUP and GWE-

BLUP) in the corresponding stationary and non-stationary scenarios (areas 1-40). Second, the bias is

almost negligible under symmetric outlier contamination, especially in the areas 1-36. Third, the geo-

graphically weighted methods offer some gains in RRMSE when compared to the global methods in the

spatial non-stationarity scenarios.
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Table 1: Performance of estimated small area means in the model-based simulation
Predictor Results (%) for the following scenarios and areas

(0, 0) (v, e)s (v, e)s (v, e)s (v, e)ns (v, e)ns (v, e)ns
1-40 1-40 1-36 37-40 1-40 1-36 37-40

Spatial non-stationarity
Median values of RB
GWEBLUP 0.00 0.02 0.05 -0.30 0.14 0.16 -1.68
RGWEBLUP -0.00 0.02 0.04 -0.27 -0.41 -0.38 -1.66
RGWEBLUP-bc 0.01 0.00 0.02 -0.16 -0.45 -0.43 -1.16
EBLUP 0.02 0.01 0.05 -0.63 0.04 0.13 -1.03
REBLUP 0.02 -0.01 0.04 -0.90 -0.40 -0.35 -1.23
REBLUP-bc 0.01 0.03 0.03 -0.47 -0.40 -0.35 -0.73
Median values of RRMSE
GWEBLUP 0.81 1.06 1.05 1.53 1.40 1.34 2.41
RGWEBLUP 0.86 0.93 0.91 1.34 1.09 1.08 2.12
RGWEBLUP-bc 0.80 0.93 0.92 1.04 1.16 1.15 1.67
EBLUP 1.29 1.53 1.46 2.27 2.02 1.99 2.52
REBLUP 1.25 1.32 1.27 2.24 1.53 1.47 2.42
REBLUP-bc 1.25 1.36 1.30 2.13 1.55 1.52 2.22

Spatial stationarity
Median values of RB
GWEBLUP 0.01 0.01 0.01 0.07 0.08 0.11 -1.78
RGWEBLUP 0.00 0.02 0.01 0.07 -0.55 -0.54 -1.59
RGWEBLUP-bc -0.01 0.03 0.02 0.04 -0.59 -0.58 -1.03
EBLUP 0.00 0.02 0.02 0.05 0.26 0.27 -2.08
REBLUP -0.00 0.02 0.02 0.04 -0.50 -0.50 -1.32
REBLUP-bc -0.01 0.02 0.02 0.03 -0.57 -0.57 -0.62
Median values of RRMSE
GWEBLUP 0.84 1.10 1.10 1.80 1.49 1.48 2.82
RGWEBLUP 0.86 0.93 0.92 1.35 1.20 1.19 2.10
RGWEBLUP-bc 0.90 1.04 1.04 1.13 1.31 1.31 1.58
EBLUP 0.80 1.07 1.06 1.67 1.56 1.55 2.80
REBLUP 0.81 0.90 0.90 1.24 1.12 1.11 1.69
REBLUP-bc 0.90 1.04 1.04 1.08 1.28 1.28 1.24

In the case of asymmetric outlier contamination (v, e)ns the robust projective estimators (REBLUP

and RGWEBLUP) suffer from bias in the stationary and non-stationary scenarios as a consequence of

their assumption that the outliers have zero expectations (Chambers et al., 2014). In contrast, the robust

predictive approaches (REBLUP-bc and RGWEBLUP-bc) correct for the bias especially in the areas 37-

40. Turning to the RRMSE results, we observe that the robust geographically weighted methods (RG-

WEBLUP and RGWEBLUP-bc) offer better performance compared with the non-robust GWEBLUP.

These results indicate the benefit of combining geographically weighted regression methods with robust

protection, offered by robust predictive or projective estimators, can lead to the gains in efficiency.

We now assess the performance of the proposed MSE estimators. Our main interest is in the perfor-

mance of the MSE estimators for the geographically weighted regression methods (GWEBLUP, RGWE-

BLUP and RGWEBLUP-bc). In particular, we investigate the scenarios (0, 0), (v, e)s and (v, e)ns under
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Table 2: Simulation results of RMSE estimators for spatial non-stationary population model

Predictor MSE Results (%) for the following scenarios and areas
estimator

(0, 0) (v, e)s (v, e)s (v, e)s (v, e)ns (v, e)ns (v, e)ns
1-40 1-40 1-36 37-40 1-40 1-36 37-40

Median value of RB
GWEBLUP CCST 3.73 5.00 6.29 -16.93 13.60 14.54 -19.75

CCT -23.05 -17.64 -17.30 -29.21 -7.22 -7.10 -27.58
RGWEBLUP CCST -5.81 4.34 4.70 -22.18 9.16 10.64 -37.37

CCT -25.57 -11.06 -10.38 -30.35 1.50 4.40 -38.40
RGWEBLUP-bc CCST -4.06 -5.06 -4.10 -17.84 -11.01 -10.33 -43.03

CCT 1.65 5.63 6.43 -9.53 6.30 7.51 -31.32
Median value of RRMSE
GWEBLUP CCST 30.24 37.46 36.04 38.78 46.96 47.63 44.30

CCT 39.71 49.68 49.41 49.98 58.62 59.58 53.30
RGWEBLUP CCST 32.80 42.20 42.68 39.82 56.43 56.79 50.88

CCT 44.89 55.21 56.21 51.55 72.76 73.39 57.42
RGWEBLUP-bc CCST 31.97 34.84 34.89 33.31 36.63 36.53 47.24

CCT 39.34 51.63 52.37 45.01 64.87 66.00 49.75

spatial non-stationarity in detail. However, we also present the results of the MSE estimators when used

for estimating the MSE of the global estimators (EBLUP, REBLUP and REBLUP-bc) for these scenarios

as well as the results for the spatial stationary scenarios in the supporting information.

MSE estimation for the RGWEBLUP is implemented by the pseudo-linearization MSE estimator

(18) and by the linearization-based MSE estimator (30). Following Chambers et al. (2014), we refer to

the pseudo-linearization and to the linearization-based MSE estimators as CCT and CCST MSE estima-

tors respectively. For RGWEBLUP-bc the CCT (21) and the CCST (32) MSE estimators are used. The

MSE estimator for the global estimators (EBLUP, REBLUP and REBLUP-bc) and for the GWEBLUP

are also implemented by the CCT and CCST.

Table 2 reports the performance of the MSE estimators for the spatial non-stationary scenarios and

presents the median values of the area-specific RB and RRMSE. The empirical MSE (over Monte-Carlo

replications) is treated as the true MSE. As a general comment, we observe that the CCST offers better

stability (in terms of lower RRMSE) compared to the CCT for the geographically weighted methods

(GWEBLUP, RGWEBLUP and RGWEBLUP-bc) for all scenarios. In particular, first we notice that the

CCST MSE estimator performs consistently better (in terms of bias and stability) compared to the CCT

MSE estimator for all scenarios for the non-robust GWEBLUP. The CCT MSE estimator for the GWE-

BLUP underestimates the true MSE in all scenarios because the variability caused by the estimation of

the variance components is not captured. Second, we focus on the performance of the MSE estimators

for the robust projective RGWEBLUP. As already mentioned, the CCST MSE estimator is superior in

terms of stability compared to the CCT MSE estimator. In terms of bias the picture is not as clear. In

particular, the CCST MSE estimator shows a smaller bias for (0, 0) and for symmetric outlier contami-

nation (v, e)s, but the CCT performs better for asymmetric outlier contamination (v, e)ns especially in
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areas 1-36. However, the bias for both MSE estimators is of the same order of magnitude for scenarios

with asymmetric outlier contamination especially in areas 37-40. Third, we concentrate on the MSE

estimators for the robust predictive RGWEBLUP-bc. Similar to the RGWEBLUP, the CCST MSE esti-

mator for the RGWEBLUP-bc offers more stability compared to the CCT, whereas the bias for both MSE

estimators is of the same order of magnitude. These results indicate that using the CCST MSE estimator

for the geographically weighted methods (GWEBLUP, RGWEBLUP and RGWEBLUP-bc) appears to

have appealing properties regarding bias and stability in these scenarios.

5 Application: Small area estimation of average total cash costs for farms

in Australia

We investigated in Section 4 the performance of the proposed methodology under known outlier contam-

ination mechanism. However, in the context of real data the contamination mechanism is unknown. In

this section we apply the proposed small area methods for estimating average total cash costs for regions

in Australia.

The data of interest for this application comes from the Australian Agricultural and Gazing Industries

Survey (AAGIS) conducted annually for over 30 years by the Australian Bureau of Agricultural and

Resource Economics and Sciences (ABARES). The survey design is a single stage stratified random

sampling with strata defined by ABARES regions, industry domains and size of the farms. The survey

is designed from a population list from the Australian Business Register and provides a wide range of

information on the economic performance of farm business units in Australia. For further information

we refer to ABARES (2011). The small areas of interest are the ABARES regions which divide the

Country by three dimensions - State, Zones (pastoral zone, wheat-sheep zone, high rainfall zone) and

dairy regions. In total there are 32 ABARES regions in Australia. The sample we had access to is from

1991, where 951 farms from 12 out of the 32 regions are sampled. In addition to the survey, small

area estimation is supported by additional auxiliary information from the Australian Business Register.

However, the Australian Business Register contains highly sensitive information of farms and is governed

by strict confidentiality rules. According to Chandra et al. (2012) we generated in the application a

synthetic register for 12 out of the 32 regions by resampling with replacement from the AAGIS survey

using selection probabilities inversely proportional to the sample weights.

In this application we want to provide reliable small area estimates of the average total cash costs for

farms for the ABARES regions in Australia. The variable of interest is total cash costs in thousand Dollar

which involves all payments made by the farm business for materials, services and labor. In addition we

have access to the following potential covariates: (1) land area which includes all land operated by

the farm business, (2) stock-beef which consists of the total number of closing stock-beef by the farm

business, (3) stock-sheep, (4) harvested wheat which consists of the total quantity of harvested wheat

by the farm business. Table 3 shows the distribution of these variables. The unconditional distribution

of total cash costs indicates clear asymmetry. Therefore we analyse the conditional distribution of total
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cash costs given the available covariates.

Table 3: Summary statistics for the continuous variables in the model
Min. 1st Qu. Median Mean 3rd Qu. Max.

Total cash costs 5.30 76.90 146.50 283.80 257.90 31910.00
Land area 14.10 647.00 1392.00 3287.00 2944.00 122000.00
Stock-beef 0.00 0.00 29.50 319.40 254.50 23390.00
Stock-sheep 0.00 141.80 1453.00 3033.00 3754.00 222000.00
Harvested wheat 0.00 0.00 155.00 537.70 612.50 11500.00

We use a 2-level random intercepts model (level 1 = farm; level 2 = region) for the variable of

interest with random effects specified at the level of regions. The covariates in the model are land area,

stock-beef, stock-sheep, harvested wheat and four indicator variables to control for different industries

(specialist crop farms, mixed livestock and crop farms, sheep specialists, beef specialists, mixed sheep

and beef farms). This model serves as a first starting point.

Evidence of spatial non-stationarity of the regression coefficients in the data is also present. We

conducted a likelihood ratio (LR) test suggested by Fotheringham et al. (2002) where the likelihood

of the global (stationary) model (1) is compared to the likelihood of the local (non-stationary) model

(3). According to the p-value of the LR-Test (< 1.4e−213) the assumption of stationarity of the regres-

sion coefficients was rejected. It seems that an approach based on geographical weighted regression is

appropriate in this application.

The non-stationary model (3) is based on distributional assumptions. To assess departures from these

assumptions, Figure 5 shows normal probability plots of level 1 and level 2 residuals. In both levels we

can observe severe departures from the Gaussian assumptions, which may be caused by outliers in the

sample. Applying a robust estimation method to control for the influence of the extreme observations

may be recommendable in this application.
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Figure 1: Normal probability plots of level 1 (left) and level 2 (right) residuals.

Based on the diagnostics we decided to produce estimates of average total cash costs for each region
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by the GWEBLUP (4), the robust projective estimator RGWEBLUP (10) and the robust predictive esti-

mator RGWEBLUP-bc (13). For comparison reasons we also incorporated the direct estimator (Horvitz

and Thompson, 1952). Note that direct estimation is not an option for the AAGIS survey because around

60% of the regions are out-of-sample.

Table 4: Average total cash costs of regions (in thousand Dollars)

Region Sample Results for the following estimators
size

GWEBLUP RGWEBLUP RGWEBLUP-bc Direct
121 95 138.39 173.68 178.95 192.01
122 103 18.38 107.58 103.03 107.21
123 108 69.40 135.39 137.57 130.88
221 56 118.40 108.29 114.74 102.17
222 60 80.73 88.95 91.85 86.06
223 72 56.90 71.85 76.31 74.67
321 79 61.54 85.15 90.59 92.68
322 117 121.67 163.84 160.33 162.78
421 51 146.66 123.29 117.14 118.02
422 80 135.20 103.22 105.23 97.34
521 83 179.90 180.79 186.08 180.36
522 47 220.18 203.61 197.53 212.40

Table 4 presents the estimated average total cash costs for regions in Australia. We first observe

that there are differences between the non-robust (GWEBLUP) and the robust estimates (RGWEBLUP

and RGWEBLUP-bc) for some regions (i.e. region 122, 123, 223, 322 and 422). In order to judge

the quality of the model-based estimators, we assess the following criteria (Chambers et al., 2016): high

proximity to the direct estimates. Following Brown et al. (2001), we investigate the criteria by computing

a goodness-of-fit test. The idea of the test is that model-based estimators should not differ significantly

from unbiased direct estimators. The test is computed as the value of the Wald statistic

W
(

ˆ̄ymodeli

)
=

m∑
i=1

(ˆ̄ydirecti − ˆ̄ymodeli )2

V̂ ar(ˆ̄ydirecti ) + M̂SE(ˆ̄ymodeli )
,

where ˆ̄ymodeli is a generic notation used to designate a model-based estimator of the small area average

introduced in Section 2. The MSE of ˆ̄ymodeli is calculated by using the proposed CCT (Section 3.1)

and CCST (Section 3.2) approaches. Under the null hypothesis the test statistic W is χ2-distributed

with m degrees of freedom where m denotes the number of sampled areas. The results of the test are

reported in Table 5. We note that the robust estimates (RGWEBLUP and RGWEBLUP-bc) are not

statistically different from the direct estimators. In contrast, the small area estimates of the non-robust

GWEBLUP differ significantly from the direct estimates. In addition, we note that the RGWEBLUP and

RGWEBLUP-bc seem to be consistent with the direct estimates, with a correlation of 0.989 and 0.988

respectively, whereas the correlation between the GWEBLUP and the direct estimates is 0.739. These

results provide additional evidence that using a robust estimator (RGWEBLUP or RGWEBLUP-bc) is
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Table 5: Results for Goodness-of-fit test

MSE estimator CCST CCT

Estimator W DF p-value W DF p-value
GWEBLUP 369.51 12 0.00 442.09 12 0.00
RGWEBLUP 12.14 12 0.43 11.66 12 0.47
RGWEBLUP-bc 18.79 12 0.09 17.60 12 0.13

appropriate in this application.

Table 6: Results for MSE estimates

MSE estimator CCST CCT

Region RGWEBLUP RGWEBLUP-bc RGWEBLUP RGWEBLUP-bc
121 29.74 18.28 34.02 27.46
122 29.89 13.69 30.12 15.37
123 24.66 13.06 24.60 14.07
221 26.72 21.24 27.17 22.07
222 30.55 18.63 30.43 19.14
223 71.84 20.61 79.00 46.39
321 26.70 19.73 28.60 22.55
322 29.53 15.46 33.12 22.80
421 27.44 23.49 26.97 23.90
422 16.09 14.77 16.32 16.02
521 19.97 15.12 19.79 18.38
522 23.02 23.17 22.41 24.81

Mean 29.68 18.11 31.05 22.75
Median 27.08 18.46 27.89 22.31

MSE estimates for the robust estimators, using the two analytic approaches (CCT and CCST) de-

scribed in Section 3.1 and 3.2, are presented in Table 6. We note that the estimated MSE of the

RGWEBLUP-bc are generally lower than those of the RGWEBLUP. This indicates potentially better

accuracy obtained by applying a bias-corrected small area estimator. Based on the point and MSE esti-

mates, we can conclude that the RGWEBLUP-bc appears to be a good choice for producing small area

estimates of average total cash costs for ABARES regions in Australia.

6 Concluding remarks

We propose outlier robust projective (RGWEBLUP) and predictive (RGWEBLUP-bc) extensions to the

currently available geographically weighted EBLUP. The advantages of the introduced methods are

twofold: first, the robust nature of the estimators reduce the influence of outliers and protect against

departures of the underlying model assumption; second, the proposed methods accounts for the presence

of spatial non-stationarity in the data. MSE estimation is conducted by two analytic MSE estimators

(CCT and CCST) that account for the spatial dependence. The results from our model-based simulation

indicate the potential benefit of combining geographically weighted regression with robust estimation. In
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addition, the proposed CCST MSE estimator for the RGWEBLUP and RGWEBLUP-bc appears to have

appealing properties in terms of bias and stability in our scenarios. We demonstrate in the application

that the robust geographically weighted EBLUPs are of relevance and appear to be a good choice for

producing regionally disaggregated estimates of total cash costs of farms in Australia.

There are some outstanding research issues. First, the choice of the tuning constant is a challenging

problem in robust estimation. We rely in this paper on a a-priori choice of the tuning constant. The use

of data-driven tuning constants for prediction may be an avenue for further research. One idea is to use

the ideas of Y. Wang (2007) who chooses the tuning constant by minimizing the asymptotic variance

of the regression coefficients. However, this approach is not necessarily optimal in terms of prediction.

Second, another avenue for further research is to investigate alternative ways for correcting the bias

of the robust projective estimator (RGWEBLUP) under spatial non-stationarity. Dongmo-Jiongo et al.

(2013) introduced a global-bias correction which is based on information from other areas. It would be

interesting to extend this approach to account for spatial non-stationarity in the data. Third, developing

bootstrap MSE estimators under spatial non-stationarity similar to Chambers and Chandra (2013) offers

another avenue for further research.
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Appendix A

In order to develop a Fixed-Point algorithm for the approximation of β(uk) we need to find an expres-

sion of the form β(uk) = f(β(uk)) where f is an arbitrary continuous function. Therefor we rewrite

expression (6) as

α(β(uk)) = XTV −1
k U

1/2
k Dk(β(uk))U

−1/2
k (y −Xβ(uk)) = 0

withDk(β(uk)) = ψ
{
U
−1/2
k (y −Xβ(uk)

}
/U
−1/2
k (y −Xβ(uk)). It follows directly that

β(uk) = (XTV −1
k U

1/2
k Dk(β(uk))U

−1/2
k X )−1XTV −1

k U
1/2
k Dk(β(uk))U

−1/2
k y

and therefor β(uk) can be approximated by repeatedly evaluating expression

βm(uk) = (XTV −1
k U

1/2
k Dk(β

m−1
(uk) )U

−1/2
k X )−1XTV −1

k U
1/2
k Dk(β

m−1
(uk) )U

−1/2
k y

until convergence is reached.
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Appendix B

The steps of the algorithm for the estimation of β(uij), θ and v are as follows:

1. Compute all in-sample distances to obtain the matrix Wk for each sample location k ∈ s.

2. Estimate the optimal bandwidth b by using cross validation (see Chandra et al. (2012) for details).

3. Choose initial valuesB(0)
s and θ(0).

4. UpdateB(m+1)
s according to the Fix-Point algorithm.

5. Estimate the residuals r = y − (X ◦B(m+1)
s )1p and update θ(m+1) according to the Fix-Point

algorithm.

6. Return to step 4 and continue until convergence is achieved.

7. Define the estimates at convergence to be the robust ML-estimators B̂ψ,gw
s and θ̂ψ,gw.

8. Plug B̂ψ,gw
s and θ̂ψ,gw into (9) and estimate v by using the Fisher scoring algorithm.

9. Define the estimates at convergence to be the robust ML-estimator v̂ψ,gw.

10. Compute all out-of-sample distances to obtain the matrixWk for each non-sampled location k ∈ r.

11. Compute V̂ij = ZΣ̂vZ
T + Σ̂eW

−1
ij for each non-sampled unit.

12. Estimate β(uij) for the non-sampled units by β̂ψ,gw(uij) = (XT V̂ −1
ij X)−1XT V̂ −1

ij y
∗.

Note that we have a closed form solution for β(uij) for the non-sampled units because we interpret that y∗

as pseudo-observations without outlier contamination and we assume that model (3) holds. The values

y∗ from step 12 are defined by equation (16).

Appendix C

We can rewrite the ML estimating equation (9) as

∆(v) = ZTΣ−1/2
e D2Σ

−1/2
e (y − ρs −Zv)−Σ−1/2

v D3Σ
−1/2
v v = 0

withD2 andD3 being defined as in expression (15). It follows that

v = (ZTΣ−1/2
e D2Σ

−1/2
e Z + Σ−1/2

v D3Σ
−1/2
v )−1ZTΣ−1/2

e D2Σ
−1/2
e︸ ︷︷ ︸

=Q

(y − ρs)

= Q(In −H)y (36)

with H being defined as in expression (15). Further, for the non-sampled units we can rewrite the

regression coefficients β(uk) as

β(uk) = (XTV −1
k X )−1XTV −1

k D1y (37)
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withD1 being defined as in (15). Plugging expressions (36) and (37) into (10) yields

ŷ
RGWEBLUP
i = N−1

i


∑
j∈si

yij +
∑
j∈ri

xTij(XT V̂ −1
ij X )−1XT V̂ −1

ij D1︸ ︷︷ ︸
=νij

y + zTi Q(In −H)︸ ︷︷ ︸
=ξij

y




= N−1
i [δTi + (Ni − ni)(ν̄i + ξ̄i)]︸ ︷︷ ︸

=(dRGWEBLUP
i )T

y.

Appendix D

We can rewrite the ML estimating equation (6) as

α(β(uk)) = XTV −1
k U

1/2
k D4(k)U

−1/2
k (y −Xβ(uk)) = 0

with D4(k) being defined as in (15). It follows that for the sampled units we can rewrite the regression

coefficients β(uk) as

β(uk) = (XTV −1
k U

1/2
k D4(k)U

−1/2
k X )−1XTV −1

k U
1/2
k D4(k)U

−1/2
k y. (38)

Using the upper expression and the results from Appendix C we can rewrite the bias correction in ex-

pression (13) as

bcgwi =

(
Ni − ni
Ni

)
1∑

j∈si w̄ij

∑
j∈si

qij(yij − xijβ̂
ψ,gw
(uij) − v̂i

ψ,gw)

=

(
Ni − ni
Ni

)
1∑

j∈si w̄ij

∑
j∈si

qij (yij − hijy − ξijy)

with qij being defined as in expression (23) and hij as in expression (15). Plugging the upper expression

into (13) and using the results from Appendix C it follows that
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ˆ̄yRGWEBLUP−bc
i = ˆ̄yRGWEBLUP

i + bcgwi

= N−1
i [δTi + (Ni − ni)(ν̄i + ξ̄i)]y +

(
Ni − ni
Ni

)
1∑

j∈si w̄ij

∑
j∈si

qij (yij − hijy − ξijy)

= N−1
1


(

1n +
Ni − ni∑
j∈si w̄ij

q

)T
◦ δTi

+ (Ni − ni)

ν̄i − 1∑
j∈si w̄ij

∑
j∈si

qijhij


+ (Ni − ni)

ξ̄i − 1∑
j∈si w̄ij

∑
j∈si

qijξij

y
= (dRGWEBLUP−bc

i )Ty,

with q being defined as in expression (23).
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