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Abstract

Background: Parkinson’s disease (PD) is characterized by dopaminergic cell loss and inflammation in the substantia
nigra (SN) leading to motor deficits but also to hippocampus-associated non-motor symptoms such as spatial learning
and memory deficits. The cognitive decline is correlated with impaired adult hippocampal neurogenesis resulting from
dopamine deficit and inflammation, represented in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine hydrochloride
(MPTP) mouse model of PD. In the inflammatory tissue, cyclooxygenase (COX) is upregulated leading to an ongoing
inflammatory process such as prostaglandin-mediated increased cytokine levels. Therefore, inhibition of COX by
indomethacin may prevent the inflammatory response and the impairment of adult hippocampal neurogenesis.

Methods: Wildtype C57BI/6 and transgenic Nestin-GFP mice were treated with MPTP followed by short-term or
long-term indomethacin treatment. Then, aspects of inflammation and neurogenesis were evaluated by cell counts using
immunofluorescence and immunohistochemical stainings in the SN and dentate gyrus (DG). Furthermore, hippocampal
mRNA expression of neurogenesis-related genes of the Notch, Wnt, and sonic hedgehog signaling pathways and
neurogenic factors were assessed, and protein levels of serum cytokines were measured.

Results: Indomethacin restored the reduction of the survival rate of new mature neurons and reduced the amount of
amoeboid CD68+ cells in the DG after MPTP treatment. Indomethacin downregulated genes of the Wnt and Notch
signaling pathways and increased neuroD6 expression. In the SN, indomethacin reduced the pro-inflammatory cellular
response without reversing dopaminergic cell loss.

Conclusion: Indomethacin has a pro-neurogenic and thereby restorative effect and an anti-inflammatory effect on the
cellular level in the DG following MPTP treatment. Therefore, COX inhibitors such as indomethacin may represent a
therapeutic option to restore adult neurogenesis in PD.
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Background

The hallmark of Parkinson’s disease (PD) is the dopa-
minergic cell loss in the substantia nigra (SN) leading to
the characteristic motor deficits. Moreover, hippocampal
non-motor functions such as spatial learning and memory
are also impaired [1]. As nigral dopaminergic fibers project
to the hippocampus, dopaminergic cell loss results in a
deficit of the neurotransmitter dopamine in that brain area,
affecting adult neurogenesis in the dentate gyrus (DG) of
the hippocampus [2-5]. Animal models of PD have shown
that this impaired neurogenesis following dopamine
depletion correlates with PD-associated cognitive deficits
[6-11]. These cognitive deficits together with a higher
prevalence and earlier onset of PD are associated with the
male gender [12, 13]. A commonly used animal model of
the disease is the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyr-
idine hydrochloride (MPTP) mouse model. It represents
the characteristic dopaminergic cell loss in the SN, deter-
mining the onset of PD [14, 15]. In this model, an impaired
neurogenic process in the hippocampus and associated
cognitive decline have also been reported [6-11]. In the
SN, dopaminergic neurodegeneration leads to a release
of soluble neuron-injury factors, which activate microglia
[16, 17]. This results in the release of neurotoxic agents
such as cytokines, reactive oxygen species, nitric oxide
radicals, and prostaglandins (PG) and attracts lymphocytic
infiltration of CD4+ and CD8+ T cells [17, 18]. All these
events lead to a perpetuation of inflammation and neuro-
degeneration in the SN [17-21].

In the DG of the hippocampus of MPTP-treated mice,
reactive microglia have also been observed [22, 23].
Microglial activation is known to alter the hippocampal
microenvironment leading to a decreased survival of newly
generated neurons in the DG [24-27]. The differentiation
from newborn neural progenitor cells into functionally
integrated neurons in the DG is a multistep process
[28-30], which is highly vulnerable to pathological
changes of the microenvironment such as inflammation
[25, 27, 31]. Microglia-released pro-inflammatory cyto-
kines such as interleukin (IL)-6 have been shown to be
important factors between activated microglia and decreased
hippocampal neurogenesis [27, 32]. In PD patients,
pro-inflammatory cytokines are also elevated in the
cerebrospinal fluid [33, 34], and microglial activation
has been observed in the hippocampus of post-mortem
brains [35, 36]. Thus, neurogenesis in the adult DG of
PD patients might also be affected by inflammation in
addition to the impaired homeostasis of the neurotrans-
mitter dopamine.

The anti-inflammatory effect of the non-selective
cyclooxygenase (COX) inhibitor indomethacin is based
on a reduced PG production by inhibiting the basally
expressed enzyme COX-1 and the inflammation-induced
COX-2 [37, 38]. COX catalyzes the synthesis of PGH2 in a
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two-step process, which is accompanied by the production
of neurotoxic free radicals [38, 39]. PGH2 is converted
into biologically active PG such as PGE2, which leads
to a rapid expression of COX-2 itself and other pro-
inflammatory agents by activation of the PGE2 receptor
2 [38, 40]. A decreased inflammation by indomethacin
treatment leads to the protection against neural cell loss
in the hippocampus in animal models of cranial irradi-
ation or ischemia [27, 41-45]. However, some studies de-
scribed a decreased proliferation of hippocampal neuronal
cells by COX inhibition in healthy and ischemic brains
[46, 47]. Serrano and colleagues suggested a potential early
neuroprotective role and a delayed neurodegeneration by
COX-2 signaling [48].

Interestingly, COX-2 is upregulated in the SN of PD
patients and in the MPTP mouse model [49] and leads to
higher dopaminergic cell loss than in COX-2-deficient
mice [50]. COX inhibition has been shown to prevent
microglial activation and dopaminergic cell loss in the SN
[51-53], which implies that COX plays a role in dopamin-
ergic neurodegeneration.

This suggests that a PG-mediated inflammation represents
a potential target. Thus, treatment with the non-selective
COX inhibitor indomethacin might be a therapeutic option
against dopaminergic cell loss and inflammation in the SN
and the DG. We investigated here if indomethacin shows an
anti-inflammatory effect on the cellular level, thereby redu-
cing the levels of circulating pro-inflammatory and elevating
the levels of anti-inflammatory cytokines, respectively.
Furthermore, we studied the influence of indomethacin
on different stages of adult hippocampal neurogenesis
after MPTP treatment to test whether a therapy with
indomethacin could be a suitable strategy to restore
adult neurogenesis in PD patients.

Methods
Animals and housing
In total, 6- to 12-week-old female wildtype C57Bl/6N mice
(n=131; Charles River, Sulzfeld, Germany) and transgenic
C57BI/6N mice, expressing the green fluorescent protein
(GFP) under the nestin promoter (Nestin-GFP) to label
neural progenitor cells (n =70, Forschungseinrichtungen fiir
Experimentelle Medizin, Berlin, Germany) with a median
weight of 21.1 g, were used. They were group-housed in
standard cages in a temperature- and humidity-controlled
standard colony room with a light-dark cycle of 12 h (start-
ing at 6 am) and free access to food and water. Even though
estradiol has a pro-neurogenic effect, adult hippocampal
neurogenesis is not influenced by the sex itself in C57Bl/6
mice at the age investigated here [54—56].

All experiments were approved by the local animal ethics
committee (Landesamt fiir Gesundheit und Soziales, Berlin,
Germany) and carried out in accordance with the European
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Communities Council Directive of 22 September 2010  Indomethacin treatment
(10/63/EU). Indomethacin (Liometacen, Promedica Chiesi, Parma,
Italy) was dissolved in distilled water and administered i.p.
. . at a concentration of 2.5 mg/kg body weight in the morning
Group design and e)fperlrner.\tal prf>cedure ) hours either over 6 consecutive days (ST) or every other
After 1 week of acclimatization, wildtype and Nestin-GFP day over 17 days (LT), starting after the last day of MPTP

mice were divided into two groups to receive eigher ?" or saline. Animals receiving 0.9% saline injections instead of
methyl-MPTP (further denoted as MPTP) or 0.9% saline ;i qomethacin served as controls for the drug treatment

as control (CTR) intraperitoneally (i.p.). Both groups were (vehicle).

further assigned to short-term treatment (ST) groups and

long-term treatment (LT) groups. Then, they were further  pgifusion and tissue preparation

divided to be treated either with indomethacin or 0.9% 5, imals were deeply anesthetized with ketamine/xyla-

saline as vehicle i.p. over 6 consecutive days (ST) or every .. (10% Ketamine hydrochloride, WDT; 2% Rompun,
other day over 17 days (LT), starting after the last day of = py;yet AQG) i.p. before being transcardially perfused with
MPTP or saline injection. This results in eight groups phosphate-buffered saline (PBS) and 4% paraformal-
with one control group (CTR + vehicle) in both time dehyde (PFA). The brains were removed from the
spans (ST and LT). All assignments into groups were skull, post-fixed in 4% PEA at 4 °C overnight, dehy-
performed pseudorandomly. After treatment cessation,  j..ted with 30% sucrose solution at 4 °C for 48 h,
mice were killed for histology and molecular analyses. .4 fiozen at — 72 °C in 2-methylbutane (Sigma-Aldrich,
A timeline of the experimental procedure is displayed  giinheim, Germany). Afterward, the brains were coronally
in Fig. 1. sliced into 40-pum-thick sections using a Leica CM1850 UV
cryostat and stored in cryoprotectant solution at 4 °C until
histological analysis was performed.

For collecting blood samples and fresh brain tissue
for molecular analysis, the animals were as well deeply
anesthetized with ketamine/xylazine. Then, the abdomen
was opened, and the blood samples were taken from the
inferior vena cava. Aprotinin (Sigma-Aldrich, St. Louis,
USA; 1 pl/1 ml blood sample) was added to the samples
to prevent protein degradation. Samples were spun with
an acceleration of 8000xg at 4 °C for 15 min, and sera
were collected. After taking blood samples, the animals
were transcardially perfused with PBS. Afterward, the
brains were quickly removed from the skull and rapidly
frozen on dry ice. The brains and serum samples were
stored at — 80 °C until further analysis.

MPTP mouse model

MPTP (generous gift from Prof. Dr. Christian Klein,
Medicinal Chemistry, Institute of Pharmacy and Molecular
Biotechnology IPMB, Heidelberg University, Heidelberg,
Germany) was dissolved in 0.9% saline and injected i.p. at a
dose of 20 mg/kg body weight in the morning hours on
three consecutive days. CTR mice received three injections
of saline instead. During MPTP injections, mice were
treated in an extra room of the animal housing facility and
transferred into an isolation cage from the first day of
MPTP treatment until 2 days after due to the excrements
containing MPTP and its metabolites.

BrdU injections

5-Bromo-2'-deoxyuridine (BrdU, Sigma-Aldrich, Steinheim,  Immunohistochemistry and cell quantification

Germany) was used for labeling proliferating cells. It was ~ For CD68 staining, antigen retrieval was performed on
dissolved in 0.9% saline. All animals received BrdU ip. ata  the brain sections using NaBHj. To continue with the
dose of 50 mg/kg body weight in the morning hours on  immunohistochemical staining, a well-established protocol
three consecutive days, starting at the last day of MPTP or  was followed [9]. One-in-six free-floating brain section
saline, respectively. series were treated with 0.6% H,O,. Hereafter, the sections

N
Short-term treatment

! !
Treatment day 21012 3 456 7 9 11 13 15 17 18

| | \ \
Long-term treatment -i H B h Il B B i -

B CTRor MPTP _ | BrdU M vehicle or indomethacin =¥ Perfusion

Fig. 1 Timeline of the experimental procedure. MPTP: 1-methyl-4-(2-methylphenyl)-1,2,3,6-tetrahydropyridine hydrochloride,
BrdU: 5-bromo-2"-deoxyuridine
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for BrdU staining were also treated with 2 M HCIl. After
blocking with donkey serum-enriched PBS (PBS+), the
sections were incubated overnight with the first antibody:
anti-BrdU (rat, 1:500, AbD Serotec), anti-Iba-1 (rabbit, 1:
1000, Wako), anti-CD68 (rat, 1:400, AbD Serotec), or anti-
tyrosine hydroxylase (TH, mouse, 1:10,000, Sigma-Aldrich).
The next day, the sections were incubated with the
biotinylated secondary antibody (anti-rat, anti-rabbit, or
anti-mouse, 1:250, dianova) at room temperature for 2 h.
Afterward, an ABC solution to form a streptavidin-
peroxidase complex (Vectastain ABC Elite Kit, Vector
Laboratories) was applied, and the reaction was visualized
by 3,3'-diaminobenzidine (DAB, Sigma-Aldrich)-nickel
staining. Finally, the stained sections were mounted on
microscope slides and coverslipped.

In total, the eight brain slices of the hippocampus
(240 pum apart) of each mouse in the histological group
were analyzed by manually counting BrdU-positive
(BrdU+) cells in the subgranular zone and granular cell
layer of the DG using the x 40 objective. Total numbers
of Iba-1-positive (Iba+) cells and CD68-positive (CD68+)
cells were counted manually in the eight brain slices of
the wildtype mice in the hilus and granular and molecular
layer of the DG using the x 40 objective. CD68+ cells were
further subdivided into cells displaying an amoeboid or
ramified shape. Amoeboid CD68+ cells are defined as cells
with higher lysosomal activity, e.g., in microglia, macro-
phages, and to a lesser extent in dendritic cells, indicating
a phagocytotic state [57]. Here, CD68+ cells were identi-
fied as amoeboid, if cell somas appear more round-shaped
and more color-intense with no or only a few branches
[58, 59]. In contrast, ramified CD68+ cells are character-
ized by a small cell body with thin processes [58, 59].
Numbers of amoeboid CD68+ cells were assessed by
manual counting using the x 40 objective. Numbers of
ramified CD68+ cells were estimated by taking the differ-
ence between all CD68+ cells and amoeboid CD68+ cells.
For manual cell counting in the SN, including pars
compacta and pars reticulata, four stained brain slices
(240 pm apart) in total were analyzed for amoeboid
CD68+ cells in the SN of wildtype mice and TH-
positive (TH+) cells of Nestin-GFP mice using the x 40
objective. All manually assessed cell counts were done
using an Axioskop HB50/AC light microscope (Zeiss,
Germany) and multiplied by six to estimate the absolute
cell numbers. A Stereo Investigator (MBF Bioscience) and a
Leica DMRE microscope were used for quantification of
the total numbers of Iba-1+ cells and CD68+ cells in the
SN of wildtype mice. The region of interest was tracked
with a x 5 and x 4 objective, respectively. Actual counting
was done with a x 40 oil and x 20 objective, respectively,
on four sections with a sampling grid size of 150 x 120 pm
and a counting frame of 60 x 60 pm without guard dis-
sector height. Cells were counted when cells bodies
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became sharp in their widest extent. The total amount of
Iba-1+ and CD68+ cells was automatically estimated
using the counted cell number, sampling grid size,
counting frame size, slice interval, and slice thickness.
The coefficient of error (Gundersen, m =1) was <0.9.
The numbers of ramified CD68+ cells in the SN were
estimated by taking the difference between all CD68+
cells and amoeboid CD68+ cells. All data were collected
blinded to the treatment groups.

Immunofluorescence and cell quantification

For the characterization of newly generated BrdU+ cells
in the DG following the stages of neuronal development
in the adult DG [29] (Additional file 1: Figure S1), the
brain slices were triple-stained for BrdU, Nestin, visualized
by co-expressed GFP (Nestin-GFP), and doublecortin
(DCX) in Nestin-GFP mice or BrdU, DCX, and neuronal
nuclei (NeuN) in wildtype mice, following a well-established
protocol [9]. Briefly, one-in-twelve free-floating brain
sections (480 um apart) were pre-treated with 2 M HCl
and blocked with PBS+. Sections were then incubated
with anti-BrdU (rat, 1:500, AbD Serotec), anti-GFP
(rabbit, 1:200, Abcam), anti-DCX (goat, 1:100, Santa
Cruz Biotechnology), and anti-NeuN (mouse, 1:1000,
Abcam) at 4 °C overnight. The next day, the sections
were incubated with fluorescent secondary antibodies
RhodamineX (anti-rat, 1:250, dianova), Alexa488 (anti-
rabbit or anti-mouse, 1:1000, invitrogen), and Alexa647
(anti-goat, 1:300, dianova) at room temperature for 4 h,
mounted on microscope slides and coverslipped.

To evaluate the number of newly generated cells
following the stages of neurogenesis (Additional file 1:
Figure S1), 50 BrdU+ cells within the subgranular zone and
the granule cell layer were detected using a confocal micro-
scope (TCS SP2, Leica, Wetzlar, Germany) under a x 63
objective and were analyzed for co-labeling with Nestin-
GEFP-positive (BrdU+/Nestin-GFP+) type 1 cells, triangular
shaped cells with an apical process, and type 2a cells with
short, tangentially orientated processes, Nestin-GFP-
positive/DCX-positive (BrdU+/Nestin-GFP+/DCX+) type
2b cells, DCX-positive type 3 cells (BrdU+/DCX+) includ-
ing immature neurons or NeuN-positive (BrdU+/NeuN+)
mature neurons. Hereof, the absolute numbers were
estimated by the ratio of co-labeled BrdU+ cells to all
BrdU+ cells. All data were collected blinded to the
treatment groups.

Measurement of cytokine concentration

To assess peripheral inflammatory processes following
MPTP treatment, the protein levels of six representative
cytokines were measured in the serum: interleukin (IL)-1f3,
IL-6, IL-10, IL-17a, interferon (IFN)-y, and tumor necrosis
factor (TNF)-a. For the detection, a Bio-Plex Pro™ Mouse
Cytokine Th17 Panel A 6-Plex Group 1 kit (Bio-Rad
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Laboratories, Inc.) and a Bio-Plex 200 System (Bio-Rad
Laboratories, Inc.) plate reader were used. Serum samples
were applied undiluted. The assay was processed following
the manufacturer’s protocol (Bio-Plex Pro TM Cytokine,
Chemokine, and Growth Factor Assays Instruction Manual,
Bio-Rad Laboratories, Inc.).

mRNA isolation and gene expression analysis

To investigate possible altered signaling pathways in neuro-
genesis, the expression of glil, hes5, lefl, effector genes of
the sonic hedgehog, Notch and Wnt signaling pathways,
respectively, and of the pro-neurogenic factors neuroD6 and
ngnl in the hippocampus was assessed. Therefore, the sam-
ples (1 mm in diameter) were taken from the brain slices of
the anterior hippocampus (Bregma -1.82 to -2.3 mm).
Hippocampal total RNA was isolated with the Nucleospin
RNA/Protein isolation kit (Macherey-Nagel, Diiren,
Germany) and reverse transcribed using the High Capacity
RNA-to-cDNA kit (Applied Biosystems, CA, USA). cDNA
corresponding to 1 ng of total RNA was used for gene
expression analysis carried out with the StepOne real-time
PCR instrument and software (Applied Biosystems, CA,
USA). The amplification was performed with TagMan
assays (gapdh: Mm99999915_gl1, glil: MmO00494654_m1,
hes5: Mm00439311_gl, lefl: Mm00550265_m1, neuroD6:
MmO01326464_ml, ngnl: MmO00440466_s1) according to
the TagMan Fast Advanced Master Mix protocol (Applied
Biosystems, CA, USA). Relative gene expression was
calculated with the comparative C; method (AAC,) and
gapdh as the reference gene. Data are displayed as fold
change compared to CTR + vehicle.

Statistical analysis

Data of the ST and LT groups were analyzed separately by
using IBM SPSS Statistics 25 for Windows and GraphPad
Prism 7. A 2 x 2 factorial design with the between-subject
factors neurotoxin (CTR vs. MPTP) and drug (vehicle vs.
indomethacin) was used. The two-way between-subjects
ANOVA was performed for histological, Multiplex ELISA,
and real-time PCR data to test the main effects of the factors
neurotoxin and drug and their interaction. Pairwise com-
parison using the Bonferroni test was done in case of a
significant interaction. P values < 0.05 were considered sta-
tistically significant. All histological data and real-time PCR
data are displayed in box plots with a center line as median
and whiskers indicating the minimum and maximum value.
Multiplex ELISA data are given tabularly as mean + SEM.
Graphs were created using GraphPad Prism 7.

Results

Indomethacin prevents the MPTP-induced decrease in the
number of new mature neurons in the DG

In the total cell count of BrdU+/NeuN+ mature granule
cells in the LT group, a significant interaction (F(1,26) =
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5.413) and a significant main effect of the factor drug
(F(1,26) =7.658) were observed. Pairwise comparison
showed that MPTP treatment reduced the number of
new mature neurons compared to CTR (CTR + vehicle
vs. MPTP + vehicle, p <0.05). Indomethacin treatment
prevented this reduction (MPTP + vehicle vs. MPTP +
indomethacin, p < 0.01) (Fig. 2a, Additional file 1: Figure S1).
In CTR mice, the number of newly generated neurons
was not altered by indomethacin (CTR + vehicle vs.
CTR + indomethacin, p > 0.05).

Total number of proliferating cells is not affected by
MPTP or indomethacin

At both time points, no significant alterations by the factors
neurotoxin (ST: F(1,28) =0.086; LT: F(1,26) = 1.422), drug
(ST: F(1,28) =0.382; LT: F(1,26) =0.511), and their inter-
action (ST: F(1,28) = 0.222; LT: F(1,26) = 0.005) in the total
number of BrdU+ cells were observed (Fig. 2b).

Neurotoxin treatment decreases the number of
proliferating type 2a cells in the DG

A significant interaction of the factors neurotoxin and drug
was detected in the number of BrdU+/Nestin-GFP+/DCX+
type 2b cells in the ST group (F(1,26) = 4.325) (Fig. 2c), but
no relevant significant difference in the post hoc Bonferroni
test. A significant main effect of the factor neurotoxin in
the total number of newly generated BrdU+/Nestin-GFP+
type 2a cells was revealed in the LT group (F(1,28) = 4.893)
(Fig. 2d). There were no effects of the factors neurotoxin
and drug alone or in their interaction on the absolute
numbers of BrdU+/Nestin-GFP+ type 1 cells, BrdU+/
Nestin-GFP+ type 2a cells in the ST group and BrdU+/
Nestin-GFP+/DCX+ type 2b cells in the LT group as well as
BrdU+/DCX+ type 3 cells including immature neurons at
both time points (Fig. 2¢c, d). Representative images of the
different cells types are shown in Fig. 3a—e.

Indomethacin and MPTP transiently downregulate Wnt
signaling, whereas drug treatment alone upregulates
neuroD6 expression in the hippocampus

In the ST group, there was a significant interaction
(F(1,16) =7.067) and a main effect of the factor drug
(F(1,16) =5.275) in the mRNA expression of lefl, an
effector of the Wnt signaling pathway. Here, the pair-
wise comparison showed a reduced lefl expression by
MPTP and indomethacin treatment compared to CTR
mice (CTR + vehicle vs. MPTP + vehicle, p <0.05; CTR +
vehicle vs. CTR + indomethacin, p <0.01) (Fig. 4a). These
effects were no longer present in the LT group. The factor
drug increased mRNA expression of the pro-neurogenic
basic helix-loop-helix (bHLH) gene neuroD6 in the ST
group (F(1,16) =9.530) and in the LT group (F(1,16) =
13.548). Significant main effects of the factor neuro-
toxin (F(1,16) = 5.469) and factor drug (F(1,16) = 5.482)
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Fig. 2 Results of histological cell counts of proliferating cells in the dentate gyrus. Absolute numbers of newborn mature neurons (a) and all
newborn cells (b), and subtypes of newborn progenitor cells in short-term- (c) and long-term-treated (d) mice in the dentate gyrus revealed by
immunohistological and immunofluorescent analysis. N = 6-8/group. A two-way ANOVA with factors neurotoxin, drug, and their interaction was
performed. A significant interaction was followed by a Bonferroni post hoc test with *p < 0.05, **p < 0.01. CTR: control; MPTP:
1-methyl-4-2"-methylphenyl)-1,2,3,6-tetrahydropyridine hydrochloride

on mRNA expression of the anti-neurogenic bHLH
repressor gene hesS5, an effector of the Notch signaling
pathway, were revealed in the ST group. These effects
were no longer present in the LT group. No mRNA
expression of the neurogenic factor ngnl could be
measured in the ST group. No significant effects of the
factors neurotoxin, drug, and their interaction were
revealed on the mRNA expression of ngn! in the LT group
and of glil, an effector gene of the sonic hedgehog
signaling pathway, at both time points. Data of mRNA
levels are presented in Fig. 4 and in the supplementary
material (Additional file 2: Table S1).

Reduced numbers of amoeboid CD68+ cells in the DG of

MPTP mice following indomethacin treatment

There was a significant interaction of neurotoxin and
drug in the total count of Iba-1+ microglia in the ST
group (F(1,28) =4.497). Post hoc analysis showed no
significant differences (Fig. 5a). No significant main effects
of the factors neurotoxin and drug or significant inter-
action on the total numbers of CD68+ cells were found
(Fig. 5b). At both time points, the interaction of neuro-
toxin and drug led to significantly different amounts of
amoeboid CD68+ cells (ST: F(1,28) = 7.923; LT: F(1,26) =
5.860). The pairwise comparison revealed a significantly
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Fig. 3 Representative confocal images of the subtypes. Proliferating subtypes of neurogenesis in the dentate gyrus: progenitor cell type 1 (a), progenitor
cell type 2a (b), progenitor cell type 2b (c), progenitor cell type 3 (d), and mature neuron (e). Scale bars indicate 10 um. BrdU: 5-bromo-2"-deoxyuridine;

higher cell count of amoeboid CD68+ cells in MPTP-
treated mice compared to CTR mice at both time
points (CTR + vehicle vs. MPTP + vehicle: ST p <0.001;
LT p <0.05). Indomethacin prevented this in the ST group
(MPTP + vehicle vs. MPTP + indomethacin, p <0.01)
(Fig. 5¢). There were also significant main effects of the
factor neurotoxin (F(1,28) =5.767) and drug (F(1,28) =
4.298) on the amount of amoeboid CD68+ cells in the
ST group. No significant main effects or interaction on
the numbers of ramified CD68+ cells could be detected
at both time points (Fig. 5d). Representative images of
CD68+ cells are shown in Fig. 5e, f.

Long-term indomethacin treatment prevents MPTP-induced
increase of IL-10 and IL-17a levels in serum

A significant interactive effect of the factors neurotoxin
and drug was detected in the serum levels of IL-10
(F(1,31) = 4.432) and IL-17a (F(1,29) = 7.825) in the LT
group. The pairwise comparison revealed a significantly
higher serum concentration of the anti-inflammatory

cytokine IL-10 and the pro-inflammatory cytokine IL-17a in
MPTP-treated mice compared to CTR mice (CTR + vehicle
vs. MPTP + vehicle, p<0.05 and p<0.01, respectively).
Treatment with indomethacin following MPTP prevented
this increase (MPTP + vehicle vs. MPTP + indomethacin,
p<0.01). In the ST group, no significant effect of either the
factors neurotoxin, drug, or their interaction was found. No
significant change was revealed for the serum concentra-
tions of the pro-inflammatory cytokines IL-1p, IL-6, IFN-y,
and TNF-a at either time point (Table 1).

Indomethacin prevents MPTP-induced increase of lba-1+
cell numbers, and drug treatment alone decreases the
amount of CD68+ amoeboid cells in the SN

A two-way ANOVA revealed a significant main effect of
the factor neurotoxin on the number of TH+ neurons at
both time points (ST: F(1,26) = 8.609; LT: F(1,33) = 11.303),
but no effect of drug (ST: F(1,26) = 2.573; LT: F(1;33) =
3.189) or interaction (ST: F(1,26) = 3.821; LT: F(1,33) =
2.082) (Fig. 6a). As dopaminergic cell loss by neurotoxic
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treatment was achieved, the here selected time points
in this model represent the onset of PD. Representative
images, displaying the reduction of TH+ cells after
neurotoxic treatment, are represented in Fig. 6b, c.

A significant interaction of both factors in the amount
of Iba-1+ cells was observed in the ST group (F(1,28) =
7.715) and LT group (F(1,26) = 5.800). At both time points,
the pairwise comparison showed significantly higher
numbers of Iba-1+ microglia in MPTP-treated mice
than in CTR mice (CTR + vehicle vs. MPTP + vehicle:
ST, p<0.01; LT, p <0.05). This was decreased following
indomethacin treatment (MPTP + vehicle vs. MPTP +
indomethacin: ST, p<0.001; LT, p<0.05) (Fig. 7a). A
significant main effect of the factor drug was revealed in the
amount of Iba-1+ cells in the ST group (F(1,28) = 8.293). On
the numbers of all CD68+ cells, no significant effect of
either the factors neurotoxin, drug, or their interaction was
found (Fig. 7b). In the ST group, a significant main effect of
the factor drug could be observed on the amount of
amoeboid CD68+ cells (F(1,28) =14.753) (Fig. 7c). No

significant main effects or interaction of both factors on the
number of ramified CD68+ cells was observed at both time
points (Fig. 7d). Representative images of Iba-1+ cells are
presented in Fig. 7e, f.

Discussion
We here demonstrate that indomethacin is effective in
preventing the impaired neurogenic process in the adult
hippocampus following MPTP-induced dopamine deple-
tion and has an anti-inflammatory effect by reducing the
number of amoeboid CD68+ cells as one factor of
inflammation. Both MPTP treatment and inflammation
are known to decrease the survival of newly generated
neurons in the DG [7, 9, 27, 60]. As MPTP treatment
itself is also accompanied by inflammatory reactions on
the cellular level in the hippocampus [22, 23], we suggest
a pro-neurogenic effect by indomethacin treatment based
on an anti-inflammatory effect on the cellular level.
According to previous studies, we observed a decreased
number of new mature neurons, characterized by NeuN
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Fig. 5 Results of histological cell counts of cellular inflammation in the dentate gyrus. Absolute numbers of Iba-1-positive cells (a), CD68-positive
cells (b), amoeboid CD68-positive cells (c), and ramified CD68-positive cells (d) and representative images of CD68-positive cells in CTR mice (e)
and MPTP-treated mice (f). Black arrows indicate amoeboid CD68-positive cells, and blue arrows indicate ramified CD68-positive cells. In the
short-term treatment group, indomethacin reduces the increased number of amoeboid CD68-positive cells after dopamine depletion. Scale bars
indicate 100 and 10 pm in the higher magnification. N = 6-8/group. A two-way ANOVA with main factors neurotoxin, drug, and their interaction

1-methyl-4-2-methylphenyl)-1,2,3,6-tetrahydropyridine hydrochloride

was performed. A significant interaction was followed by Bonferroni post hoc test with *p < 0.05, **p < 0.01, ***p < 0.001. CTR: control; MPTP:

expression, in the DG after MPTP treatment [9, 60, 61].
We show that long-term indomethacin treatment in turn
increased the survival of new mature neurons after MPTP
treatment. Selective COX-2-inhibition is known to
decrease the proliferation of hippocampal neuronal cells
[46, 47], whereas the unselective COX-inhibition by indo-
methacin has been shown to restore the amount of new
mature neurons after ischemia and irradiation associated
with reduced microglial activation in the DG [27, 62]. We

additionally demonstrate the neurogenic potential of
indomethacin on hippocampal neurogenesis in a principal
model for neurodegeneration. In animal models of dopa-
mine depletion as well as inflammation alone, impaired
neurogenesis correlates with a decline of hippocampus-
associated cognitive performances [6—11, 63, 64]. There
is also a cellular pro-inflammatory reaction in the DG
following dopamine depletion [22, 23], observed as a
higher number of amoeboid CD68+ cells in this study.
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Table 1 Serum protein levels of cytokines
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Cytokine
IL-18 IL-6 TNF-a IL-17a IFN-y IL-10
Short-term treatment CTR + vehicle 1237 £ 65.7 99+18 481.2 £ 930 220+ 48 264 £ 4.7 614+ 112
MPTP + vehicle 180.8 + 36.5 1.7 £22 500.8 £ 104.2 390+ 177 273 %53 686+ 133
CTR + indomethacin 2552 + 302 116 £ 20 5372+ 914 271 £ 44 299 + 51 764 £ 121
MPTP + indomethacin 1575+ 765 91+£13 4428 £ 915 228 £ 2.1 262 +£18 704 £ 43
Long-term treatment CTR + vehicle 940 + 36.0 86+ 1.1 406.3 £ 53.7 155+£22 239+ 30 547 +7.1
MPTP + vehicle 1514 + 296 115+19 5695 + 823 38.2 £ 64 300 £ 39 886 + 9.7%
CTR + indomethacin 92.0 £ 35.1 10.7 £ 1.7 466.8 + 89.9 246 £ 49 270 £43 60.1 = 10.2
MPTP + indomethacin 1269 + 267 94413 3548 + 736 193 + 36" 248 + 42 525+ 99"

Multiplex ELISA was performed to evaluate the levels of pro-inflammatory IL-18, IL-6, TNF-q, IL-17a, and IFN-y and anti-inflammatory IL-10 in serum of short-term
and long-term groups. Values are expressed as mean + SEM in pg/ml, n=7-11/group. A two-way ANOVA with factors neurotoxin, drug, and their interaction

was performed

CTR control, MPTP 1-methyl-4-(2"-methylphenyl)-1,2,3,6-tetrahydropyridine hydrochloride
A significant interaction was followed by Bonferroni post hoc test: *p <0.05, **p <0.01 compared to CTR + vehicle; **p <0.01 compared to MPTP + vehicle

Here, indomethacin shows an anti-inflammatory effect
by reducing the number of amoeboid CD68+ cells. This
is in line with previous studies, in which indomethacin
treatment after irradiation or ischemia resulted in normal-
ized numbers of activated microglia [27, 41, 44, 65, 66].
Thus, indomethacin treatment reduces the cellular inflam-
matory response in a model of PD thereby leading to a
pro-neurogenic effect. Whether the anti-inflammatory

and neurogenesis-modulating effects of indomethacin may
also improve cognitive performances, needs to be tested
in future studies.

As the generation of mature neurons in the DG is a
multistep process, we investigated if a specific stage of
neuronal development in hippocampal neurogenesis is
influenced by indomethacin. The total number of newly
generated cells in the DG was not changed by MPTP or

~N
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Fig. 6 Results of histological cell counts and representative images of dopaminergic neurons in the substantia nigra. Absolute numbers of
TH-positive cells (@) and representative images, displaying the dopaminergic cell loss after neurotoxic treatment in the substantia nigra in
mice of the CTR + vehicle (b) and MPTP + vehicle (c) group, representatively. Scale bars indicate 200 um. N =6-11/group. CTR: control; MPTP:

1-methyl-4-2"-methylphenyl)-1,2,3,6-tetrahydropyridine hydrochloride
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indomethacin treatment in our study. This is in line with
previous studies, in which neither neurotoxin nor indo-
methacin treatment alone alters the general amount of
proliferating cells [6, 7, 9, 23, 60, 67, 68]. We observed a
decreased absolute number of newly generated type 2a
cells by neurotoxin treatment regardless of drug treat-
ment but found no change in the absolute numbers of
proliferating type 1 progenitor cells by MPTP or indo-
methacin. We assume from our previous studies that,
probably due to the here selected time points of analyses,
the decreased number of newly generated type 2a cells
results from a preceding reduction of type 1 cells after
dopamine depletion [6]. As type 2a cells are glial progeni-
tor cells, lineage determining to the later development
of new neurons in the DG [29], their reduction may

contribute to an impaired neurogenesis following
neurotoxin treatment despite drug treatment at later
time points. Indomethacin itself seems to not influence
the number of newly generated progenitor cells at these
early stages of the neurogenic process. Thus, indomethacin
has a pro-neurogenic effect, represented by normal neuronal
differentiation and an increased amount of newly generated
mature neurons after MPTP treatment.

To elucidate the underlying molecular mechanisms of
an altered neurogenic process by MPTP and its restoration
by indomethacin treatment, we investigated potentially
involved downstream signaling pathways. We have pre-
viously shown in the experimental autoimmune enceph-
alomyelitis murine model of the autoimmune disease
multiple sclerosis as an inflammatory animal model with
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subsequent neurodegeneration that the reduced differenti-
ation into mature neurons in the DG is correlated with a
reduced expression of pro-neurogenic genes [69]. Based
on these findings, we investigated the expression of the
target genes of the Notch, Wnt, and sonic hedgehog
signaling pathways as well as of neurogenic factors in the
hippocampus. The results indicate that the Wnt and
Notch signaling pathways, and the neurogenic bHLH
transcription factor neuroD6 are indeed involved. The
expression of lefl, a Wnt/p-catenin effector gene, was
decreased after MPTP treatment. This is in line with in
vitro findings of decreased [-catenin in neuronal progeni-
tor cells of the subventricular zone co-cultured with
MPTP and microglia [70]. As a suppression of the Wnt
signaling pathway results in a decreased number of newly
generated type 3 cells and immature neurons [71], we
suggest that downregulated Wnt signaling contributes to
a reduced survival of newly generated mature neurons
following MPTP treatment in the long term. Indomethacin
had no significant influence on the expression of lefI after
MPTP treatment. However, lefl was decreased in healthy
mice by short-term indomethacin treatment. This was
probably caused by a non-steroidal anti-inflammatory
drugs’ (NSAID) agonizing effect of the peroxisome pro-
liferator-activated receptor-gamma [72-74]. Previous
studies observed a downregulated Wnt signaling by indo-
methacin in cancer cells resulting in induced apoptosis
and suppressed proliferation to prevent uncontrolled
tumor growth [75, 76]. Here, the downregulated lefl
expression in indomethacin-treated healthy mice did
not affect adult neurogenesis. The expression of the
neurogenic gene neuroD6, a member of the bHLH gene
family and relevant in terminal neuronal differentiation
[77], promotes neuronal survival as well as the cells’
tolerance to oxidative stress by increasing mitochondrial
biomass [78, 79]. Thus, indomethacin treatment regardless
of neurotoxin treatment may promote the survival of
newly generated neurons. In contrast to the ST group,
neuroD6 expression was downregulated by long-term
indomethacin treatment regardless of neurotoxin treat-
ment. This did not affect neuronal development within
the time span observed here. Hes5 is a primary Notch
signaling pathway effector leading to impaired neurogen-
esis [80—82]. It is mainly expressed in putative progenitor
cells type 1, 2a, and 2b, and increased Notch signaling as
well as expression of the effector gene /es5 inhibits the
differentiation of these progenitor cells into mature neu-
rons [83—86]. In the present study, the expression of hesS
was transiently increased in neurotoxic-treated mice re-
gardless of indomethacin treatment in the ST group.
There could be consequential inhibition of further pro-
genitor cell differentiation eventually leading to a re-
duced amount of mature neurons in the MPTP-treated
mice in the LT group. Short-term drug administration
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itself reduced hesS expression, which may have contrib-
uted to a differentiation into mature neurons in the
indomethacin-treated mice of the LT group.

Subsequently, we assessed the serum concentration of
the pro-inflammatory cytokines IL-1pB, IL-6, IL-17a, and
TNEF-a, which mainly disturb neurogenesis, as well as
IFN-y and the anti-inflammatory cytokine IL-10, which
are both rather beneficial to the neurogenic process
[32, 87-93]. These cytokines have been reported to be
elevated in the cerebrospinal fluid as well as serum of
PD patients [33, 34, 94-96]. As microglial response and
T cell infiltration occur within a few days after MPTP
injection [53, 96], we expected elevated cytokine levels
in serum in the ST group. Instead, the serum levels of
IL-17a and IL-10 were elevated in the LT group. As the
majority of the pro-inflammatory and anti-neurogenic
cytokines were unchanged but the anti-inflammatory
and pro-neurogenic cytokine IL-10 was elevated in turn,
we suggest an incipient recovery after MPTP treatment.
Together with the observation by other research groups of
increased cytokine concentration in the cerebrospinal
fluid but not in serum after MPTP treatment [94, 97], it
should be considered that there are higher cytokine
concentrations altering the surrounding brain tissue after
MPTP, reflected in highly expressed mRNA levels in the
midbrain and striatum tissue [98—100], which is probably
not detectable in C57Bl/6 mice peripherally. Here, the
increased cytokine levels of IL-10 and IL-17a in the LT
group may have resulted from an inflammatory response
to MPTP in peripheral organs, such as the gut tissue,
where macrophage infiltration and high levels of cytokines
have been found for several days [101, 102].

As previously shown in the SN [103, 104], we also
observed a reduction of dopaminergic neurons after
neurotoxin treatment. Contrary to the DG, indomethacin
treatment itself has no neuroprotective effect on dopa-
minergic neurons. This is in line with the investigation by
Kurkowska-Jastrzebska and colleagues, where also no neu-
roprotective effect of indomethacin after MPTP treatment
was observed [53]. In contrast, other studies have shown a
prevention of dopaminergic cell loss by indomethacin or
COX-2 inhibitors, when given before the MPTP treatment
started [49, 51-53]. We also observed a transient pro-
inflammatory reaction following MPTP, reflected by an in-
creased total amount of microglia. Although indomethacin
treatment with its anti-inflammatory effect normalized the
cellular inflammatory response, it had no effect on dopamin-
ergic cell numbers. This suggests that the neurodegeneration
was caused by direct neurotoxicity of MPTP on dopamin-
ergic cells [21]. In human studies, NSAIDs may reduce the
risk of developing PD, whereas there is currently no
evidence for a secondary prevention of PD [105]. Our
results in the mouse model of dopamine depletion support
this in part, as indomethacin given in higher total dosage or
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adapted intervals may also prevent secondary inflammation-
mediated dopaminergic cell loss. Nevertheless, hippocampal
neurogenesis was restored correlating with reduced cellular
inflammation, reflected by a decreased number of amoeboid
CD68+ cells, despite dopaminergic cell loss. Thus,
hippocampus-related deficits after dopamine depletion
may result from inflammation-mediated reduced neurogen-
esis rather than from altered neurotransmitter homeostasis.

Conclusions

In summary, we demonstrated a pro-neurogenic and
thereby restorative effect of indomethacin resulting in
normal progenitor cell differentiation towards mature
neurons despite a MPTP-induced neurotoxic and pro-in-
flammatory process. We suggest that the reduced level of
pro-inflammation-associated cell types, the downregulated
Notch signaling pathway, and the increased expression of
neuroD6 altogether contribute to the pro-neurogenic po-
tential of indomethacin in the DG of MPTP-treated mice.
Despite indomethacin treatment and its anti-inflammatory
effect in the SN, there was a neurotoxin-induced dopamin-
ergic cell loss. Regardless of that, indomethacin promoted
the survival of new mature neurons in the DG. In con-
clusion, indomethacin might represent a therapeutic
option to restore adult neurogenesis in the DG to improve
hippocampus-associated deficits in neurodegenerative
diseases such as PD.

Additional files

Additional file 1: Figure S1. Effects of dopamine depletion and
indomethacin treatment on the stages of adult hippocampal neurogenesis.
Neuronal development originates from a Nestin-positive, triangular-shaped
stem cell (type 1). Then, neurogenesis progresses over the stages of the
putative progenitor cells (type 2a, type 2b, and type 3) and ends in the
NeuN-positive mature granule cell. Neurotoxic treatment leads to a
decreased number of newly generated (type 2a cells) and mature neurons,
whereas indomethacin treatment afterwards promotes the development
towards mature neurons. MPTP: 1-methyl-4-(2-methylphenyl)-1,2,3 6-tetrahy-
dropyridine hydrochloride; NeuN: neuronal nuclei. (TIF 624 kb)

Additional file 2: Table S1. Hippocampal gene expression analysis.
Quantitative real-time PCR was performed for the effector genes glil,
hes5, and lefT of the sonic hedgehog, Notch, and Wnt signaling pathway,
respectively, and for the neurogenic factors neuroD6 and ngni. Gene ex-
pression is displayed as fold change of mRNA levels in relation to CTR + ve-
hicle, n = 5/group. A two-way ANOVA with main factors neurotoxin, drug,
and their interaction was performed. A significant interaction was followed
by Bonferroni post hoc test: *p < 0.05, **p < 001 compared to CTR + vehicle.
CTR: control; 1-methyl-4-(2-methylphenyl)-1,2,3,6-tetrahydropyridine
hydrochloride. (DOCX 13 kb)
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