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Precise determination of graphene functionalization
by in situ Raman spectroscopy
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Andreas Görling5, Konstantin Edelthalhammer1, Herwig Peterlik4, Frank Hauke1 & Andreas Hirsch1

The verification of a successful covalent functionalization of graphene and related carbon

allotropes can easily be carried out by Raman spectroscopy. Nevertheless, the unequivocal

assignment and resolution of individual lattice modes associated with the covalent binding of

addends was elusive up to now. Here we present an in situ Raman study of a controlled

functionalization of potassium intercalated graphite, revealing several new bands appearing in

the D-region of the spectrum. The evolution of these bands with increasing degree of

functionalization from low to moderate levels provides a basis for the deconvolution of the

different components towards quantifying the extent of functionalization. By complementary

DFT calculations we were able to identify the vibrational changes in the close proximity of the

addend bearing lattice carbon atoms and to assign them to specific Raman modes. The

experimental in situ observation of the developing functionalization along with the reoxidation

of the intercalated graphite represents an important step towards an improved understanding

of the chemistry of graphene.
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T
he wet-chemical exfoliation of graphite intercalation
compounds (GICs) and the subsequent treatment with
electrophiles is one of the most potent methods for

covalent graphene functionalization1–5. For this purpose, graphite
is typically activated by saturation doping with potassium to
reach the highest stage I intercalation level with a crystalline K to
C ratio of 1:8 (refs 6,7). In the subsequent covalent binding step, a
single electron transfer to the electrophile (for example, alkyl
halide8 or diazonium compound4) takes place and, after halide�
or N2 elimination, the intermediately formed organic radical
attacks the conjugated p-system of the graphenide upon the
formation of sp3 centres in the carbon lattice9–12. The degree of
functionalization (DOF) depends on the reduction potential of
the electrophile and if this is low enough, almost all negative
charges of the graphenide can be quenched13,14. In our recent
work, we were able to provide a simple and efficient procedure for
the quantitative discharging of reduced graphites using
benzonitrile as trapping reagent that allows for the synthesis of
defect-free graphene from graphenide solutions6.

The verification of the successful covalent functionalization
and the determination of the quality of exfoliated graphene can be
obtained by Raman spectroscopy that serves as the most
important characterization tool for the analysis of graphene-
based materials15–18. It is a nondestructive technique, allowing for
unravelling the interaction between individual graphene sheets

and functional groups. Raman spectroscopy and, in particular,
statistical Raman microscopy9 can also be used to analyse the
doping effects19,20, strain21, oxidation and sample quality22–24,
molecular functionalization25 and number of layers26. For this
purpose, characteristic changes of the most prominent Raman
modes, namely, the D, G and 2D modes are the most significant
indicators15. However, a graphitic framework containing lattice
embedded sp3 carbon atoms—generally termed as sp3 defects—
gives rise to additional Raman modes15. Moreover, recent work
predicted the presence of additional Raman bands for
hydroxylated graphene22 that have already been observed in
graphene oxide (GO) samples27. In addition, first approaches for
the quantification of sp3 defects have been reported28,29. Based on
these considerations we have developed a geometrical model
revealing the DOF y as ratio of the basal sp3/sp2 carbon atoms by
the use of scanning Raman spectroscopy for statistical
analysis9,30. However, the information obtained from Raman
spectroscopy is only valid for interdefect distances of B3 nm
(refs 28,29) and the corresponding yo0.5% (refs 9,30). Therefore,
functionalized graphene derivatives like polyhydrogenated
graphene31,32 or graphene oxide33,34 still cannot be addressed.
In those cases, the D, G and 2D modes appear as very broad and
poorly resolved features18 hiding the individual contributions
from the individual lattice vibrations35,36. The unequivocal
assignment and resolution of individual lattice modes
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Figure 1 | Raman setup and in situ spectroscopic monitoring of the covalent functionalization of KC8. (a) Schematic illustration of the setup for the

controlled reaction of KC8 with liquid and/or gaseous reagents under ultra-high vacuum conditions. The reaction progress is monitored by in situ Raman

spectroscopy. (b) Scheme of the model reaction: defect-free stage I GIC (nKþC8
n� ) was exposed to H2O vapour. After the initiation of the reaction,

hydrogenated graphene is formed. (c) Evolution of the Raman spectra from nKþC8
n� (black, bottom) to hydrogenated nKþC8

(n-m)� -Hm (red, top) in the

first stages of sp3 defect site formation in the crystal. (d) Raman fingerprint of nKþC8
(n-m)� -Hm after addend binding and sp3 defect site formation within

the graphene lattice. The D- and G-line region (1,200–1,700 cm� 1) contains 7 components: graphitic E2g G mode (B1,575 cm� 1) and defect activated D

mode (B1,340 cm� 1), and five additional defect modes discovered for the first time in this study, namely, D1 (B1,325 cm� 1), D2 (B1,442 cm� 1),

D3 (B1,483 cm� 1), D4 (B1,518 cm� 1) and D5 (B1,559 cm� 1), that originate from carbon bond vibrational coupling deviations in the vicinity of the sp3

defect site.
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introduced by covalent binding was elusive and remained a major
challenge in graphene chemistry. Tackling this problem would
require the in situ spectroscopic monitoring of the reaction
progress before the defect-induced broadening of the Raman
modes in highly functionalized samples prevents any line shape
analysis and a detailed understanding of the correlation between
defect-related Raman modes and the atomic structure of the
addend carrying neighbourhood in the covalent adduct.

Here we report a comprehensive study involving in situ Raman
spectroscopy supported by quantum mechanical calculations
where we have successfully solved the challenges pointed out
above. As model reaction we have chosen the hydrogenation of
reduced graphite32 with H2O and compared it with the
corresponding exposure to H2 and O2. Next to the very precise
characterization of the covalently functionalized graphene by an
unambiguous assignment of the lattice vibrations, we are
furthermore able to provide profound mechanistic information
on the underlying covalent addition chemistry. Our results are of
fundamental importance for any laboratory investigating the
chemistry and materials design of graphene, graphene composites
and other functional synthetic carbon allotropes.

Results
In situ monitoring of the chemical functionalization. The setup
of the in situ Raman monitoring of the reaction of defect free KC8

crystals with H2O, H2 and O2 is presented in Fig. 1a. This high-
end system enables an unprecedented precise reaction control
since a focused scenario consisting of the two reaction partners is
provided. In this setup, the partial pressure of the volatile com-
ponent at the solid/gas interphase is the only parameter that is
varied. The in situ Raman setup is equipped with a laser probe
(excitation wavelength 514 nm) that allows for the spectroscopic
monitoring of the reaction and the detection of the stepwise
evolution of functionalization-related Raman modes. The
required stage I GIC was prepared under argon atmosphere6.
The successful and clean formation of KC8 was confirmed by
Raman spectroscopy and by X-ray diffraction (XRD) analysis
(Supplementary Fig. 1). After controlled exposure to H2O vapour
we were able to monitor the early stages of the reaction (low
degree of addition) associated with a mild surface hydrogenation
(Fig. 1b). In Fig. 1c, the evolution of the Raman spectra of a fully
doped GIC (nKþC8

n� ) is presented upon extended exposure to
H2O vapour. The gradual growth of distinct modes becomes
apparent.

After a few minutes of reaction, the pronounced surface
functionalization is reflected by the Raman spectrum displayed in
Fig. 1d. By a detailed line-shape analysis of the spectra, at least
seven main features could be identified. The most prominent can
be assigned to the graphitic E2g G mode (B1,575 cm� 1), while
we attribute the slight deviation in the phonon frequency to strain
present in the GIC21. In addition to the well-known dispersive D
mode (B1,340 cm� 1), five additional modes (D1–D5) were
identified for the first time. These modes are assigned as D1

(B1,325 cm� 1), D2 (B1,442 cm� 1), D3 (B1,483 cm� 1), D4

(B1,518 cm� 1) and D5 (B1,559 cm� 1). Their appearance is
based on the change of hybridization in the graphene lattice in
close proximity to the hydrogenated carbon atoms. As will be
demonstrated below (Fig. 2c,d) by a direct comparison with the
results obtained by quantum mechanical calculations, these
modes can be assigned to specific lattice vibrations. The
pronounced CZ mode (B560 cm� 1), indicating graphitic
intercalation architecture in the bulk crystal, is widely retained
(Fig. 1c). On the other hand, the additional D modes clearly
reflect the functionalization process on the surface.
Mechanistically, a single electron transfer from the GIC to

water protons and a subsequent addition of H-radicals to the
oxidized graphene surface is assumed7,21. Both the presence of a
CZ mode and the absence of any second-order mode in the final
spectrum show that the GIC oxidation of the bulk crystal is not
complete. Obviously, the oxidation potential of H2O and the
limited mobility of Kþ in the inner part of the crystal are not
sufficient enough to allow for a complete bulk reoxidation, but
can be used for a surface or thin film functionalization. The
reaction comes to an end when a limiting stoichiometry of
nKþC8

(n-m)�Hm is reached, as indicated in the spectrum
presented in Fig. 1d. This in situ investigation of the reductive
graphene functionalization process allowed for a clear
identification and correlation of introduced sp3 defect sites and
related new Raman vibrational modes.

Reaction of GICs with hydrogen or oxygen and water. In
another series of experiments we addressed the question of how
GICs respond to the exposure of H2, O2 and a combination of O2

and H2O to simulate their behaviour under ambient conditions.
The corresponding results are depicted in Fig. 2. We expected
that KC8 should not give rise to covalent hydrogenation with H2

gas under these conditions37. Indeed, as can be seen in Fig. 2b,
H2 exposure does not yield any covalent binding to the
graphene lattice since the Fano-shaped signature of stage I
GICs is largely preserved (Fig. 2b, blue). The corresponding
evolution of the Raman spectra (Supplementary Fig. 2a) rather
indicates H2 intercalation, leading to (H2)@nKþC8

n� .
The intercalation of H2 in between the graphene sheets is
clearly corroborated by an increasing intensity of the CZ mode. In
addition, the exclusive exposure of oxygen gas to the GIC was also
studied (Supplementary Fig. 2b). The evolution of the Raman
spectra clearly underlines that pure oxygen is not covalently
reacting with KC8 but leads to a partial oxidation with the result
of a lower overall potassium loading. This can be clearly
recognized from the final Raman spectrum in Fig. 2b (red),
where no defect site-related fingerprint was observed. We assume
that exposure of KC8 to O2 leads to the formation of potassium
superoxide1,14. Hence, the reoxidation by oxygen without mass
transport of potassium (in contrast to, for example, the oxidation
in benzonitrile6) leads to disordered graphite that is clearly
revealed in the respective XRD pattern (Supplementary Fig. 3).

To simulate ambient workup conditions with our setup, first
the same hydrogenation reaction as shown in Fig. 1 was initiated,
leading to partially reoxidized and covalently hydrogenated
nKþC8

(n-m)�Hm. Subsequently, the sample was exposed to
oxygen in the presence of water. Under these conditions the
material should be reoxidized and simultaneously a hydroxylation
of the carbon scaffold can be expected14. This formation of -OH
entities in the presence of oxygen and water has recently been
confirmed for graphenide solutions6 and therefore represents a
major field of interest in reductive functionalization of carbon
allotropes. The in situ Raman analysis in Fig. 2b clearly revealed
that in this case further covalent binding is promoted. It can be
assumed that after the initial treatment with H2O vapour, a water
film is still absorbed on the graphitic surface. Subsequent single
electron transfer processes between the GIC and O2 can now be
accompanied by follow-up reactions with H2O. In the Raman
spectra this is reflected by an additional defect site-related
interband appearing at 1,460 cm� 1. This mode can be assigned to
C-O vibrations that relate to the functionalization with covalently
sp3 bound -OH groups. In agreement with literature, this
Raman fingerprint has already been predicted by theory22 and
investigated for graphene oxide27. Importantly, our present study
can unambiguously verify the proposed origin of this band by
theoretical calculations (Fig. 2d) and by temperature-dependent
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Raman spectroscopy (TDRS) in combination with TG-MS
(thermogravimetric analysis coupled to mass spectrometry)
analysis (Supplementary Fig. 4). These findings prove that the
covalent hydroxylation of graphenide requires the presence of
both oxygen and water6 that are omnipresent under ambient
conditions. Hence, the sole treatment with oxygen is not
sufficient, strongly supporting the reported mechanism for the
hydroxyl functionalization14.

Calculation of the vibrational Raman response. To address the
lattice carbon bond vibrational coupling deviation from the
normal E2g G mode related to the C¼C sp2 vibrations in gra-
phene at B1,580 cm� 1 upon introduction of sp3 defect sites and
the corresponding additional C-C modes, the vibrational Raman
response of pristine graphene functionalized by either a hydrogen
or hydroxyl addend was calculated. Therefore, a 4� 4 supercell of
graphene (32 lattice carbon atoms) functionalized with one -H or
-OH moiety (3.125% DOF) was considered (Fig. 2c). The addend
carrying sp3 hybridized lattice carbon atom is labelled CA, while
the direct neighbouring basal C atoms are termed CB and those
next to it CC and CD. The resulting calculated Raman spectra for
hydrogenated G-H and hydroxylated G-OH are presented in
Fig. 2d, respectively. The simulated reference for defect free
graphene G is provided in Supplementary Fig. 5. With respect to
the approximations made in the calculations, the limitations
provided by the experimental setup (resolution of the detector

and calibration ambiguity) and the fact that the covalently
functionalized graphene sample is a mixture of hydroxylated and
hydrogenated species with varying content, the calculated and
experimental values for the evolving bands is in good correlation.

In the case of G-H the hybridization change is accompanied
by lifting the hydrogenated C-atom by Dz¼ 0.46 Ǻ out of plane
in z-direction (Fig. 2c). Along with this shift, the CB–CA–CB

dihedral angle changes from g¼ 120� (pure sp2 in pristine
graphene) to g¼ 114.5� for G-H (Supplementary Fig. 7a) and to
g¼ 113.7� for G-OH (Supplementary Fig. 6a). The complete list
of calculated angles, shifts and phonon frequencies is provided in
Supplementary Table 1.

The theoretical analysis provides the phonon energy for
excitations of lattice carbon atoms surrounding a sp3 defect is
affected by the newly formed C-H bond. The geometry around the
C-H/sp3 centre (g(CBCACB)¼ 114.5�) is strained, since it deviates
from the regular tetrahedral angle of 109.5�. The appearance of the
additional D1–D5 modes between 1,300 and 1,600 cm� 1 is a
consequence of these new geometrical constraints. When the DOF
is increased, structures of curved nanodiamond clusters are
eventually emerging strongly reassembling the Raman spectra of
nKþC8

(n-x)� -Hx and nKþC8
(n-x-y)� (H)x(OH)y in Fig. 2b (ref. 38).

These findings are fundamental for the general interpretation of
the Raman spectra of any covalent graphene derivative, since the
broadening of the modes can now be precisely attributed to distinct
vibrations. These results are in line with previous reports on the
clustering of defect centres upon increasing the DOF39–44. The
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Figure 2 | Identification and assignment of new Raman bands in G-H. (a) Systematic study of KC8 exposed to (i) hydrogen, (ii) oxygen and (iii) water

that was subsequently exposed to (iv) oxygen. The corresponding in situ Raman spectra are shown in b. Starting from saturation doped KC8, (i) H2 leads to

intercalation, (ii) O2 to reoxidation to amorphous graphite and (iii) H2O to sp3 defect site formation by hydrogenation. If (iv) O2 is added in combination

with H2O, also hydroxylation takes placed. (c) 4�4 supercell of 32 lattice carbon atoms with a sp3 C-H moiety attached to carbon atom CA and the directly

neighbouring labelled lattice carbon atoms CB and CC. Reference supercells for defect-free graphene G: see Supplementary Fig. 5; supercells for

hydroxylated G-OH: see Supplementary Fig. 6. (d) The calculated Raman spectra between 1,000 and 2,000 cm� 1 with one hydrogenated/hydroxylated sp3

carbon atom in a cell of 32 graphene lattice carbon atoms, respectively. For the detailed information on vibrational frequencies and a visualization of the

modes see Supplementary Tables 1 and 2.
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newly observed D1–D5 modes start appearing in the spectra only
beyond a certain DOF (yoB0.5%). At even higher degrees of
functionalization (y43%), these modes broaden, causing a much
less structured Raman spectrum, typically observed for highly
functionalized graphene such as graphene oxide34,45. As a
consequence, the resolution and assignment of the additional
modes D1–D5 reaches an optimum in a range of functionalization
(B0.5%oyoB2%) corresponding to the in situ situation
depicted in Fig. 4b.

Raman assignment in highly functionalized graphene. To fur-
ther demonstrate the importance of this powerful characterization,
we applied our Raman fingerprint assignment to crosscheck and
analyse highly functionalized reaction products after workup. As a
bulk functionalization approach we have chose the reaction of KC8

dispersed in tetrahydrofuran (THF), resulting in the exfoliation
of the graphenide sheets [G(THF)]ic (Fig. 3a)2,3. Before the
functionalization step, we observed no indication that KC8 would
undergo any reoxidation or chemisorption within the dry solvent
THF. For the covalent functionalization the intermediate
[G(THF)]ic was subsequently exposed to oxygen and water. The
resulting Raman spectrum of bulk functionalized powder sample
after workup (Fig. 3b) resembles the typical Raman signature of
GO where three broad overlapping modes are observed in the
Raman shift regime between 1,200 and 1,650 cm� 1 (ref. 22). In the
double resonance area between 2,500 and 3,400 cm� 1, the three
main components 2D, DþG and 2D* can be identified. So far,

these features have neither been assigned to vibrations of specific
addends nor have they been used to quantify the defects in GO. We
show now that the deconvolution of such spectra (Fig. 3b, top) can
be accomplished and a detailed analysis of the structural
composition can be provided. For this purpose the defect site-
related Raman fingerprint with the characteristic modes termed as
D000, D00 and D0 were fitted to the spectrum in Fig. 3b. These modes
are located at the same Raman shift positions as the previously
determined interbands (D1–D5) of the mildly functionalized
charged graphite, generated in situ before workup, and can
therefore also be precisely identified. As indicated in Fig. 4 the D1,
D2/D3 and D4/D5 modes can be correlated with the D000, D00 and D0

interbands. Consequently, these bands can be assigned to the
calculated vibrational modes CA–CB (D1, D000), CB–CC (D2/D3, D00)
and CC–CD (D4/D5, D0), respectively (Fig. 3b). After complete
reoxidation, the intravalley D* mode could be identified that
cannot be observed in an intermediate charged state7,21. The
interbands D1–D5 of partial reacted graphene also vary in position
and intensity in comparison with D000, D00 and D0 of the completely
reoxidized counterparts. For a better understanding of the
correlation between the different labelling formats (in situ,
calculated, after workup) the respective information is
summarized in Supplementary Table 1.

TDRS and thermogravimetric analysis. For an independent
chemical analysis of the nature of the grafted addends, TDRS was
carried out and compared with the corresponding TG-MS results
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(Supplementary Fig. 4). This correlation allowed for the unam-
biguous assignment of each component in the Raman spectra.
Upon thermal defunctionalization, the defect-related Raman
signatures vanish at the same temperature where the -H and -OH
addends are cleaved6.

The development of the individual peak intensities as a
function of temperature is displayed in Supplementary Fig. 4b. In
accordance with GO27 (Fig. 2d), we observe a decrease of the
oxygen-related D00 mode (assigned by calculations) over the
whole temperature range, while the remaining functionalities—
mainly hydrogen—are cleaved at higher temperatures31,32.
Remarkably, the evolution of this defect state-related Raman
mode directly correlates with the thermal cleavage of the -OH
addends (m/z 17) determined by TG-MS (Supplementary Fig. 4d).
Moreover, the dehydrogenation is clearly reflected by the m/z 2
trace between 350 and 600 �C. This thermal dehydrogenation is
accompanied by a simultaneous decrease of the D00, D0 and the D
modes above 400 �C as depicted in Supplementary Fig. 4b.

Multifrequency Raman analysis of the sample. Finally, to fur-
ther confirm the experimental assignment of the Raman modes, a
multifrequency Raman study was conducted (Fig. 3c). Since our
initial laser wavelength of 532 nm (2.33 eV) resulted in an exact
superimposition of the nondispersive D000 mode excited at the G
point of the Brillouin zone (B1,325 cm� 1) and the dispersive D
mode from the K point (B1,340 cm� 1). To prove this assump-
tion, we varied the excitation wavelength from 405 to 633 nm for
highly functionalized samples as shown in Fig. 3c (ref. 15). Our
results confirm the dispersion of the D mode in highly
functionalized graphene and the nondispersivity of the D000

mode at B1,325 cm� 1. To double check the experimental
assignments of each component, we carried out a cross-
correlation employing the calculated Raman spectra of G-OH
and G-H. Remarkably, this simulation fully matches the
experimental Raman fingerprint as demonstrated in Fig. 3b. It
has to be noted that for the calculation of the Raman modes, a
4� 4 supercell was used. This scenario, however, does not reflect

the Raman processes at the K point of the graphene Brillouin
zone, preventing the simulation of the D and D* modes. Never-
theless, all other defect site-related Raman modes can be clearly
assigned. The D-mode region is composed of two main compo-
nents, as the nondispersive D000 mode and the dispersive D mode
are superimposed for lexc¼ 532 nm. Moreover, the individual
components of the Raman signal can be correlated with the TG-
MS analysis (Supplementary Fig. 4). Hence, this spectroscopic
fingerprint is the first direct verification of the chemical nature of
sp3 defects (here: -OH and -H) present in the sample. The var-
iation of the laser excitation energy proved that none of these
modes are dispersive but the Raman D mode, entirely agreeing
with our experimental and theoretical model of locally modified
lattice carbon vibrations and molecular environments.

Discussion
In Fig. 4, the Raman spectra of three samples exhibiting a
different DOF are presented to demonstrate the evolution of the
Raman signatures with increasing sp3 carbon atom content. As an
example of a graphene derivative with a very low DOF (yo0.5%),
a typical Raman spectrum of a hexyl functionalized derivative, on
which we reported previously10, is presented in Fig. 4a. This
reductively functionalized sample has an isotropic distribution of
defects with a distance of LD42 nm, resulting predominantly in
the activation of the D and D* mode in the Raman spectrum. In
this simple case, the ID/IG ratio can be used for the determination
of y (ref. 9). In this case, the narrow width of the D mode
(22 cm� 1) relates to y¼ 0.23%. At such low densities of defects,
no additional Raman modes can be deduced and the
deconvolution into D, G and D* modes can be easily carried
out. This is in very good agreement with the observed maximum
in the D/G ratio in defective graphene and graphite at LD of
B3 nm (ref. 28) and 4 nm (ref. 29), respectively. The
deconvolution of these modes becomes more challenging if the
DOF is further increased, as the D/G ratio is reduced concomitant
to a line broadening28,29. Our results allow to clearly attribute the
origin of this broadening to the additional evolving Raman
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Figure 4 | Evolution of Raman fingerprint with increasing DOF. (a) Hexyl functionalized graphene10 with isotropic distribution of functional groups with
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interband modes. For clarity, the Raman spectrum of functionalized
graphene with y¼ 1.6% is shown in Supplementary Fig. 8a. With
ongoing functionalization, monitored by the laser probe, similar
Raman interbands termed D1–D5 are revealed in the in situ reaction
of KC8 with H2O (compare Fig. 4b). The DOF of this in situ
resolved state can be attributed to a range of y¼ 0.5%oyo2%. In
the corresponding covalent adducts the addends are already
clustered within sp3 defect site regions, although 498% of the
basal carbon atoms are still intact. The cartoons in Fig. 4 are
presented to visualize the relationship between the observed Raman
interbands and the respective structure on the graphene sheet.

Upon approaching the maximum DOF after full reaction of
KC8 under ambient conditions (Fig. 4c), GO with y¼ 6.0% serves
as ideal reference22,27, since the Raman modes do not change
their shape but their overall intensity30 (Supplementary Fig. 8b).
Thus, the analysis of all assigned Raman interbands, both in GO
and in G(THF)(OH)(H) (Fig. 3a), allows for the characterization
of adducts with y42%. In this range, all additional components
(D000–D0) in the Raman spectrum are clearly identifiable. The
observed fingerprint fully matches the simulated spectra for G-H
and G-OH (Fig. 3d) that were also calculated for yE3%. This is
in full agreement with recent surface-enhanced Raman scattering
studies on functionalized chemical vapour deposition graphene,
where a slight fingerprint for chemically modified graphene with
a DOF of B0.5% leads to comparably weak Raman interbands in
the D- and G-mode area46. Thus, we can conclude that the
approach towards the maximal possible DOF of 12.5% (based on
the ratio of K/C¼ 1:8) is accompanied by clustering of addends
and by the formation nonaltered sp2 nano domains39–41.

In summary, we report a comprehensive study involving in situ
Raman spectroscopy supported by quantum mechanical calcula-
tions to exactly monitor the covalent binding to graphene with
unprecedented precision. This approach is very general and also
allows for the fast screening and evaluation of suitable reaction
conditions for covalent graphene functionalization. As model
reaction we have chosen the hydrogenation of reduced graphite
(KC8) with H2O and compared it with the corresponding
exposure to H2 and O2. The early stages of graphene hydrogena-
tion are accompanied by the evolution of a series of so far
undiscovered D-modes (D1–D5). Using quantum mechanical
calculations we were able to unambiguously assign these bands to
distinct lattice vibrations in the neighbourhood of the covalently
bound addend. Interestingly, the exposure of KC8 to H2 and O2

did not cause covalent binding but intercalation of molecular
H2 or partial oxidation, respectively. A combination of H2O and
O2 treatment led to the formation of additional hydroxyl (-OH)
functionalities that were clearly identified by Raman spectroscopy
and TG-MS. The latter reaction represents a very suitable model
for the decomposition of graphenides under ambient conditions
(hydrogenation and hydroxylation). This important process has
so far never been analysed in detail. We have further demon-
strated that our fundamental mechanistic investigation brings us
into the position to simulate and assign the spectroscopic
signatures of both bulk functionalized G(THF)(OH)(H) and
GO34. Finally, we have also applied our concept to simulate
and characterize additional covalently functionalized graphene
derivatives prepared as bulk materials with different composition
(for example, DOF and nature of covalent addend) demonstrating
the generality of the method. So far, covalent graphene
functionalization remained a very difficult field of synthetic
chemistry. This is not only because suitable methods enabling
graphite/graphene activation and dispersion had to be identified
to allow an efficient adduct formation. A major challenge was also
the satisfactory characterization of reaction products since the
typical powerful tools applied in synthetic chemistry such as
nuclear magnetic resonance spectroscopy and mass spectrometry

cannot be applied to this polydisperse 2D material. In this
regard, the work presented here is a major breakthrough as it
allows for graphene-derivative characterization with unprece-
dented precision.

Methods
Raman spectroscopy. In situ Raman spectroscopic detection was carried out
inside a quartz tube through a flat (0.7 mm thick) optical window of borosilicate
glass (PGO GmbH) in ultra-high vacuum chamber at B4� 10� 8 mbar where the
intercalated GIC was placed in a sample boat. The Raman measurements were
performed at room temperature using a HORIBA LabRam spectrometer with a
514 nm excitation wavelength at 0.5 mW between 300 and 3,000 cm� 1. To avoid
laser-induced deintercalation and photochemistry, the laser power was kept below
0.5 mW.

The Raman spectroscopic characterization of samples exposed to ambient
conditions and workup was carried out on a Horiba Jobin Yvon LabRAM evolution
confocal Raman microscope (excitation wavelengths: 405, 457, 473, 532 and
633 nm) with a laser spot size of B1 mm (Olympus LMPlanFl 50� , NA 0.50).
Raman measurements were carried out using a micro-Raman setup in
backscattering geometry. A charge-coupled device is used to detect the signal after
analysing the signal via a monochromator. The spectrometer was calibrated in
frequency using a HOPG crystal.

Thermogravimetric analysis and mass spectrometry. For G-H and G-OH, the
TG-MS analyses was carried out on a Netzsch STA409 CD instrument equipped
with a Skimmer QMS 422 mass spectrometer (MS/EI) with the following
programmed time-dependent temperature profile: 30–700 �C with 20 K min� 1

gradient and cooling to 30 �C. The initial sample weights were adjusted at 5.0
(±0.1) mg and the whole experiment was executed under inert gas atmosphere
with a He gas flow of 80 ml min� 1. The obtained data were processed with the
Netzsch Proteus Analysis software.

X-ray diffraction. XRD was performed by placing the material in a glove box into
glass capillaries with 1.5 to 2 mm diameter and 10 mm wall thickness (Hilgenberg,
Germany) and subsequent sealing. X-ray patterns were measured using a micro-
focus X-ray source with a copper target (l¼ 1.542 Å) equipped with a pinhole
camera (Nanostar, Bruker AXS) and an image plate system (Fujifilm FLA 7,000).
All two-dimensional WAXS patterns were radially averaged and background
corrected to obtain the scattering intensities in dependence on the scattering
angle 2y.

Glovebox. Sample preparation, solvent processing and bulk functionalization were
carried out in an argon-filled Labmaster SP glovebox (MBraun), equipped with a
gas filter to remove solvents and an argon cooling systems, with an oxygen content
o0.1 p.p.m. and a water content o0.1 p.p.m.

Graphite. As starting material a spherical graphite SGN18 (Future Carbon,
Germany), a synthetic graphite (99.99% C, o0.01% ash) with a comparatively
small mean grain size of 18mm (Supplementary Fig. 9), a high specific surface area
of 6.2 m2 g� 1 and a resistivity of 0.001O cm was chosen. An average Raman ID/IG

intensity ratio of 0.3 is present in the starting material (Supplementary Fig. 10).

Potassium chunks. Potassium was bought from Sigma-Aldrich Co. and used as
received (99.99% purity).

Oxygen 4.5 (O2) and hydrogen 5.0 (H2). The gases used for the functionali-
zation were received as lecture gas bottles (Minican) from Linde and directly
connected to the in situ Raman measurement setup.

Water (H2O). Water was received from Sigma-Aldrich purified, deionized and
bidistilled. Pump-freeze technique was carried out 3 times to completely remove
gases from the water.

Tetrahydrofuran. THF was received anhydrous from Sigma-Aldrich Co. and dried
over molecular sieves (3 Å). Subsequently, it was distilled over Na/K alloy to
remove inhibitor and achieve absolute quality (o1 p.p.m. H2O, o1 p.p.m. O2).
Finally, pump-freeze technique was used to completely degas the solvents before
the reaction.

Preparation of K8C graphite intercalation compound. For the synthesis of solid-
state GIC mother batch, 480 mg (40 mmol carbon) spherical graphite SGN18 and
195 mg (5 mmol) potassium were heated to 200 �C in a glass vial in the glovebox.
The formation of the final-stage I intercalation compound was verified by in situ
Raman spectroscopy (Fig. 1c) and XRD analysis (Supplementary Fig. 1) under inert
conditions, respectively. After the complete formation of the stage I K GIC, the
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powder was allowed to cool to ambient temperature and evacuated to ultra-high
vacuum conditions before the reoxidation experiments carried out in the in situ
spectroscopy setup.

Controlled functionalization of the graphite intercalation compounds. The
vapour pressure controlled exposure of the GIC towards H2O, O2 and H2 was
carried out in the specialized setup in Fig. 1a. To achieve an efficient monitoring of
the reaction between KC8 and the respective reagent, the reservoir valve was
opened until the pressure in the chamber was raised from 10� 8 to 10� 5 mbar. To
further increase the concentration of reagent we stepwise allowed an increase to
normal pressure for a complete floating of the sample by the reagent.

Functionalized bulk sample preparation and workup. Workup of the samples at
ambient conditions (Fig. 3) for the synthesis of G(THF)(OH)(H): for the Raman
analysis after workup, 5 mg of KC8 was dispersed in purified THF and subsequently
exposed to oxygen and water under ambient conditions. After 1 h of reaction time,
the black powder was washed with 10 ml of cyclohexane, ethanol and water to
remove salts and solvent residues, respectively. For the final Raman analysis, the
sample was dried at 70 �C overnight.

The functionalized graphene derivatives funct-G (Fig. 4 and Supplementary
Fig. 8a) as well as GO were produced, characterized and fitted according to
literature30.

Experimental details for the synthesis of the functionalized graphene deri-
vatives. aryl-G: Bis-(4-tert-butylphenyl) iodonium hexafluorophosphate was
deposited from solution (CH2Cl2) on monolayer graphene (Supplementary Fig. 8).
The reaction of 4-tert-butylphenyl (tBP) cations was subsequently activated by a
laser pulse (532 nm, 5 s, 10 mW) within the Raman spectrometer. GO with DOF
y¼ 6.0% was synthesized with graphite sulfate as starting material47.

Computational details. Density-functional calculations were carried out with the
Vienna ab initio Simulation Package (VASP)48 that employs a plane-wave basis set.
We have used ‘hard’ pseudopotentials with a smaller core region to allow for more
flexibility in the description of the valence electrons. The exchange–correlation
functional due to Perdew–Burke–Ernzerhof was employed49. An energy cutoff of
600 eV was used. Electronic structures and geometries were converged below
1� 10� 8 eV and 0.001 eV Å� 1 with respect to total energies and forces acting on
ions, respectively. We have applied a slab approach with vacuum layers of 15 Å to
decouple periodic images from each other along the z direction. The Brillouin zone
was sampled by 5� 5� 1 Monkhorst–Pack K-point grids50 for hexagonal (4� 4)
unit cells with 32 carbon atoms.

Vibrational frequency calculations were performed using the finite difference
method. Raman intensities are calculated from the change in polarizability upon
following the Eigen mode of the phonon51. This is calculated using the finite
difference method with backward and forward calculations of each Eigen mode
displacement. The dielectric tensor is reduced to a scalar in the far-from-response
Raman approximation. The G point-centred phonon modes weighted by the
computed spectral intensity convolved with a Gaussian function with a full width at
half maxima of 5 cm� 1 applied to all frequencies (for comparison with
experimental results), as shown in Supplementary Figs 5–7. Visualization of the
calculated frequencies was performed using QVibeplot52.

Data availability. The authors declare that the data supporting the findings of this
study are available within the article and its Supplementary Information Files. All
other relevant data supporting the findings of this study are available from the
corresponding author on request.
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