SERIE B — INFORMATIK

Smallest Enclosing Ellipses — Fast and Exact *

Bernd Géartner!
Sven Schénherr?

B 97-03
May 1997

Abstract

The problem of finding the smallest enclosing ellipsoid of an m-point set P in
d-space is an instance of convex programming and can be solved by general methods
in time O(n) if the dimension is fixed. The problem-specific parts of these meth-
ods are encapsulated in primitive operations that deal with subproblems of constant
size. We derive explicit formulae for the primitive operations of Welzl’s randomized
method [22] in dimension d = 2. Compared to previous ones, these formulae are
simpler and faster to evaluate, and they only contain rational expressions, allowing
for an exact solution.

* supported by the ESPRIT IV LTR Project No. 21957 (CGAL), a preliminary version appeared in
Proc. 13th Annu. ACM Symp. on Computational Geometry (SoCG), 1997 [8]

T Institut fiir Theoretische Informatik, ETH Ziirich, Haldeneggsteig 4, CH-8092 Ziirich, Switzerland,
e-mail: gaertner@inf.ethz.ch

¥ Institut fiir Informatik, Freie Universitit Berlin, Takustr. 9, D-14195 Berlin, Germany,
e-mail: sven@inf.fu-berlin.de

1 Introduction

The unique ellipsoid of smallest volume enclosing a compact set P in d-space (also known
as the Lowner-John ellipsoid of P [10]) has appealing mathematical properties which make
it theoretically interesting and practically useful. In typical applications, a complicated
body needs to be covered by a simple one of similar shape and volume, in order to simplify
certain tests. For convex bodies (e.g. the convex hull of a finite point set), the smallest
enclosing ellipsoid — unlike the isothetic bounding box or the smallest enclosing sphere —
guarantees a volume approximation ratio that is independent of the shape of the covered
body. This follows from the following property of it, first proved by John (who also
established existence and uniqueness) [10]: if the smallest enclosing ellipsoid of a compact
convex body K is scaled about its center with factor 1/d, the resulting ellipsoid lies
completely inside K. Let us mention three concrete applications.

Ray tracing. Given a scene of objects in 3-space and a ray, find the first object hit
by the ray. This problem occurs in computer graphics, when the scene is rendered in
presence of various light sources. Since many rays need to be processed, the query has
to be answered fast. In order to test whether a given object is hit by a ray, we can first
test with a bounding volume (which we have precomputed) — if the ray misses it, it misses
the object as well [7, section 15.10.2]. As bounding volumes, boxes, spheres but also
ellipsoids [3] are useful, depending on the kind of objects.

Motion planning. In a similar spirit, bounding volumes are applied in robotics, when
a collision-free motion of a robot among a set of obstacles is sought. After enclosing the
robot and/or the obstacles by simple shapes, the problem becomes easier, and if a valid
motion is found in the simplified environment, this motion is also valid in the original
setting. It is clear that this heuristic is the more successful, the tighter the bounding
volumes approximate the objects [4].

Statistics. In a different way, the smallest enclosing ellipsoid is applied in statistics.
Given a cloud of measure points in d-space, one wants to identify and peel off ‘outliers’,
often repeatedly. One heuristic peels off the vertices of the convex hull [2]. A finer peeling
is obtained by choosing the boundary points of the smallest enclosing ellipsoid [18], whose
number typically depends only on d.

1.1 Previous Work

Several algorithms for computing the smallest enclosing ellipsoid of an n-point set in
d-space have been proposed. On the one hand, there are iterative methods which em-
ploy standard optimization techniques (such as gradient descent), adapted to the problem
[21, 17]. These algorithms usually work on a dual problem, known as D-optimal design [20].
On the other hand, there are finite methods which find the desired ellipsoid within a
bounded number of steps. For fixed d, the algorithm of Post [15] has complexity O(n?).
An optimal deterministic O(n) algorithm has been given by Dyer [6], randomized O(n)
methods are due to Adler and Shamir [1] and Welzl [22]. Since the problem is LP-type in

SMALLEST ENCLOSING ELLIPSES — FAST AND EXACT 3

the sense of [12], generic algorithms for this class of problems can be applied as well, see [9].
In any case, the runtime dependence on d is exponential. A method for the case d = 2,
without time analysis, has been developed by Silverman and Titterington [18].

All these finite methods have the property that actual work is done only for problem
instances whose size is bounded by a function in d. Assuming that d is constant, such
instances can be solved in constant time. However, as far as explicit formulae for these
primitive operations have been given — which is the case only for d = 2 — they are quite
complicated and rely on solving third-degree polynomials [18, 14, 16]. This makes them
expensive to evaluate and only leads to approximate solutions, unless specialized number
types allowing exact manipulations of expressions involving roots (like LEDA’s number
type real [13]) are used.

1.2 Our Contribution

The goal of this paper is to show that in case of Welzl’s algorithm for d = 2, the primitive
operations can be implemented in rational arithmetic. This means, they can be performed
exactly, if multiple precision integers (like LEDA’s number type integer [13] or the GNU
Multiple Precision Arithmetic Library!) are used. Even if the computations are done
in floating point arithmetic, the simple rational expressions we get guarantee that the
primitives are easier to code and more efficient to evaluate than in previous methods.

In the two-dimensional case we treat here, the constant-size problems involve smallest
ellipses defined by up to 5 points, where the difficult case arises when the ellipse is defined
by 4 points. As we show below, even if the points have rational coordinates, the ellipse
will typically have not, so in order to stay with rational expressions, an explicit evaluation
of the ellipse has to be avoided.

The main problem now is to perform the crucial primitive of Welzl’s method, namely
to test whether a point lies inside a given ellipse, where this ellipse may have irrational
coordinates and is therefore not explicitly given.

Below we reduce this in-ellipse test to a sign evaluation of a certain derivative, and this
leads to an elegant and efficient method whose computational primitives are in-ellipse
tests over rational ellipses and evaluations of derivatives at rational values. Plugged into
Welzl’s algorithm, this solves the whole problem of computing smallest enclosing ellipses
in rational arithmetic.

2 Smallest Enclosing Ellipsoids

Let us briefly review Welzl’s randomized algorithm for computing the smallest enclosing
ellipsoid of an n-point set in d-space [22]. The algorithm is very simple and achieves an
optimal expected runtime of O(n) if d is constant.

Given a point ¢ € R? and a symmetric, positive definite? matrix A € R¥?, the set of

lavailable by anonymous ftp from from prep.ai.mit.edu. The file name is /pub/gnu/gmp-M.N.tar.gz
Yie. zTAz > 0 for z # 0

points p € R? satisfying
(p—c)A(p—c) =1 (1)

defines an ellipsoid with center ¢. The function f(p) = (p — ¢)TA(p — ¢) is called the
ellipsoid function, the set E = {p € R? | f(p) < 1} is the ellipsoid body. Given a point
set P = {p1,...,pn} C R? we are interested in the ellipsoid body of smallest volume
containing P. Identifying the body with its generating ellipsoid, we call this the smallest
enclosing ellipsoid of P, SMELL(P). (If the affine hull of P is not equal to R?, SMELL(P)
is a lower-dimensional ellipsoid ‘living’ in the affine hull).

The idea of Welzl’s algorithm for computing SMELL(P) is as follows: if P is empty,
SMELL(P) is the empty set by definition. If not, choose a point ¢ € P and recursively de-
termine E := SMELL(P\{q}). If ¢ € E, then E = SMELL(P) and we are done. Otherwise,
¢ must lie on the boundary of SMELL(P), and we get SMELL(P) = SMELL(P \ {¢},{¢}),
the smallest enclosing ellipsoid of P\ {¢} with ¢ on the boundary (Figure 1). Computing
the latter (in the same way) is now an easier task because one degree of freedom has
been eliminated. The generic call of the algorithm computes SMELL(Q, R), the smallest
ellipsoid enclosing) that has R on the boundary. Before we give a detailed description,
let us state a few important facts (proofs of which may be found in [16, 11]).

Figure 1: The inductive step in Welzl’s algorithm

Proposition 2.1

(i) If there is any ellipsoid with R on its boundary that encloses @), then SMELL(Q, R)
exists and 18 unique.

(11) If E = SMELL(Q, R) exists and ¢ ¢ SMELL(Q\{¢}, P), then SMELL(Q\ {¢}, RU{q})
exists and equals SMELL(Q, R).

(111) If SMELL(Q, R) exists, then there is S C Q with |S| < max(0,d(d +3)/2 — |R|) and
SMELL(Q, R) = SMELL(S, R) = SMELL(, S U R).

By (iii), a smallest enclosing ellipsoid is always determined by at most 0 := d(d + 3)/2
support points. Incidentally, 0 is the number of free variables in the ellipsoid parameters
A and c.

If the point ¢ to be removed for the recursive call is chosen uniformly at random among
the points in), we arrive at the following randomized procedure.

SMALLEST ENCLOSING ELLIPSES — FAST AND EXACT)

Algorithm 2.2 (computes SMELL(Q, R), if it exists)

SMELL(Q, R):
IF Q=0 OR |R| = ¢ THEN
RETURN SMELL((), R)
ELSE
choose ¢ € () uniformly at random
E :=SMELL(Q \ {¢}, R)
IF ¢ € E THEN
RETURN E
ELSE
RETURN SMELL(Q \ {¢}, RU {q})
END
END

To compute SMELL(P), we call the algorithm with the pair (P,)). Termination of the
procedure is immediate because the recursive calls decrease the size of (). Correctness
follows from the proposition and the observation that the algorithm — when called with
(P,) — maintains the invariant ‘SMELL(Q, R) exists’. To justify the termination criterion
‘|R| = 0’, we need the following lemma proving that in this case only one ellipsoid E
with R on the boundary exists, so that we must have E = SMELL((), R) = SMELL(Q, R).
This is remarkable, because in general, an ellipsoid is not uniquely determined by any §
points on the boundary (for example, consider 6 — 1 points on the boundary of a (d — 1)-
dimensional ellipsoid E' and some additional point ¢; then there are many d-dimensional
ellipsoids through E and q).

Lemma 2.3 Whenever R attains cardinality § during a call to SMELL(P, (), ezactly one
ellipsoid E with R on its boundary exists.

Proof. By expanding (1), we see that an ellipsoid is a special second order surface of the
form

{pERd |pTMp+2me+w = 0},

defined by 6 + 1 parameters M € R¥¢ (symmetric), m € R, w € R.

For a point set R C R? let S(R) denote the set of (§ + 1)-tuples of parameters that define
second order surfaces through all points in R. It is clear that S(R) is a vector space, and
we define the degree of freedom w.r.t. R to be dim(S(R)) — 1. Obviously, the degree of
freedom is at least § — |R], since any point in R introduces one linear relation between the
parameters.

We now claim that during Algorithm 2.2, the degree of freedom w.r.t. R is always exactly
d — |R|. This is clear for R = (). Moreover, if ¢ is added to R in the second recursive call
of the algorithm, the degree of freedom goes down, which proves the claim. To see this,
assume on the contrary that dim(S(R)) = dim(S(R U {q})), hence S(R) = S(R U {q}).
Then it follows that ¢ already lies on any second order surface through R, in particular
on SMELL(Q \ {¢}, R). But then the second recursive call would not have been made, a
contradiction.

Now the claim of the lemma follows: if |R| = 4, the degree of freedom is 0, i.e. S(R) has
dimension 1. Since a second order surface is invariant under scaling its parameters, this
means that there is a unique second order surface, in this case an ellipsoid, through R. O

To measure the expected performance of the algorithm, we count the number of primitive
operations. These are the ellipsoid computations (‘SMELL((), R)’) and the in-ellipsoid tests
(‘g € E’). In the subsequent sections we concentrate on these primitive operations in the
case d = 2. For the sake of this section, let us adopt the asymptotic point of view: if d is
constant, the primitive operations can be implemented in constant time as well, so their
overall number determines the actual runtime of Algorithm 2.2 up to a constant multiple.

Let ¢j(m) (resp. tj(m)) denote the expected number of ellipsoid computations (resp.
in-ellipsoid tests) in a call to SMELL(Q, R) with |Q| = m and |R| = § — j. We get
¢j(0) = co(m) = 1,t;(0) = to(m) = 0, and for m,j > 0

¢j(m) < c(m = 1) + ;i (m 1),
ti(m) <tj(m—1)+1+ %tj,l(m —1),

where j/m is an upper bound for the probability of making the second recursive call.
Why? Choose S according to Proposition 2.1 (iii). We have |S| < j, and the second
recursive call becomes necessary only if ¢ € S. By induction one can show that

¢j(m) < (14 Hp) < (2+Inm),

Hp, =1+1/2+---+1/m the m-th harmonic number, and

J
t;(m) < (z %) jim < (e —1)jtm,

k=1

e the Euler constant. Thus, the expected number of primitive operations necessary to
compute SMELL(P) is bounded by

cs(n) +t5(n) < (2 +1nn)’ + (e — 1)d'n,

which is O(n) for constant d.

The move-to-front heuristic. There are point sets on which the algorithm does not
perform substantially better than expected; on such point sets, the exponential behavior
in 6 = ©(d?) leads to slow implementations already for small d. Although for d = 2 the
actual runtime is still tolerable for moderately large n, a dramatic improvement (leading
to a practically efficient solution for large n as well) is obtained under the so-called move-
to-front heuristic. This variant keeps the points in an ordered list (initially random). In
the first recursive call, ¢ is chosen to be the last point in the list (restricted to the current
subset of the points). If the subsequent in-ellipsoid test reveals ¢ ¢ SMELL(Q\{q}, R), p is
moved to the front of the list, after the second recursive call to SMELL(Q \ {¢q}, RU {q})
has been completed. See [22] for further details and computing times.

SMALLEST ENCLOSING ELLIPSES — FAST AND EXACT 7

3 Conics

In the sequel we elaborate on the primitive operations of Welzl’s algorithm in the case
d = 2. To prepare the ground, we look at ellipses from the more general perspective of
arbitrary conics.

A conic C (second order curve, quadratic form) in linear form is the set of points
p = (z,y)T € R? satisfying the quadratic equation

C(p) := ra? + sy? + 2tzy + 2uz + 20y + w = 0, (2)

r,s,t,u,v,w being real parameters. Note that C is invariant under scaling the vector
(r,s,t,u,v,w) by any nonzero factor. After setting

e (7 1) (1)

the conic assumes the form

C={p"Mp+2p"m+w=0}. (3)

If a point ¢ € R? exists such that Mc = —m, C is symmetric about ¢ and can be written
in center form as

C={p—¢)"Mp—c)—z=0} (4)

where z = ¢! Mc—w. If det(M) # 0, a center exists and is unique. Conics with det(M) > 0
are ellipses, for det(M) < 0 we get hyperbolas. If det(M) = 0, C defines a parabola which
has a center (and then infinitely many) only in the case where C degenerates to a pair of
parallel lines.

If C is an ellipse, i.e. det(M) > 0, we can without loss of generality assume that M is
positive definite (which in the 2d-case just means det(M) > 0 and r, s > 0). For this, note
that det(M) > 0 implies that r, s have the same sign, so (2) can be scaled in such a way
that r, s both become positive. In this case, a point ¢ = (x,%)” lies inside resp. outside the
ellipse if C(q) < 0 resp. C(g) > 0. Also, if C is in center form (4), then we either have z = 0
in which case C is the trivial ellipse C = {c}, or z > 0 holds. In the latter case, we may
as well assume z = 1, after scaling M and z accordingly. This takes us back to the form
of (1), with A := M/z.

Of particular importance is the linear combination of conics. If C1,Co are two conics, the
linear combination C := ACy + uCs is given by C(p) = AC1(p) + uCa(p), A\, € R. Obviously,
if a point g belongs to both C; and Cs, ¢ also belongs to C.

Conics through four points. A unique conic goes through any five points p1,... ,ps
(see e.g. [19]), while any four points pi,...,ps determine a one-dimensional bundle of
conics, which is given as the linear span of two particular conics C;,Ce. We may choose C;
as the pair of lines pyps and p3pg, and Co as the pair of lines pops and papr, see Figure 2.

These are indeed conics (namely degenerate hyperbolas) which can be seen as follows.

b2

Figure 2: Two special conics through four points

For three points ¢1 = (z1,91),92 = (22, y2),q3 = (z3,y3), define

Ir1 — T3 T2 — I3
1= det .
010205] (Y1 —Ys Y2—Y3)

It is well-known (and easy to verify) that [gi1g2g3] records the orientation of the point
triple. Let £ be the oriented line through ¢; and ¢o. It holds that

to the left of >0
g3 lies on ! = [q1q293]F =0
to the right of <0

Consequently,

Ci(p) = [p1p2pllpspap], C2(p) = [p2pspllpapipl,

and these turn out to be quadratic expressions as required in the conic equation (2).

Given another point ¢, the unique conic through pi,ps,ps,p4,q is easily computed as
AC1 + uCo, with

A=0Caq), n=—Ci(g). (5)

4 Primitive Operations

In the planar case, the primitive operations of Welzl’s algorithm are

e computation of the smallest ellipse with & points on the boundary, k£ < 5, and

e in-ellipse tests involving ellipses of the former kind and arbitrary points.

Recall that for £ < 2 the ellipse is degenerate, i.e. it is the empty set, a point or a segment,
in which case the tests are easy. Subsequently we assume 3 < k < 5.

SMALLEST ENCLOSING ELLIPSES — FAST AND EXACT 9

How can we tell the area of an ellipse E? If E is given in center form (1), we have

™

Vol(E) = m,

(6)

which can easily be seen by choosing the coordinate system according to the principal axes
of E, such that A becomes diagonal, see e.g. [16]. This means, in order to minimize the
area, we have to maximize det(A).

We pursue different approaches, depending on the value of k. First recall that Welzl’s
algorithm guarantees that some ellipse through the given set of boundary points exists. In
particular, the points are in convex position. For k£ = 3, the smallest ellipse has a rational
representation and turns out to be easy to compute in center form, see below. If k = 5,
the smallest ellipse is just the unique conic C through these points, and we have shown in
Section 3 how to find the linear form of C, see (5). In both cases we get explicit rational
coordinates, so in-ellipse tests are straightforward.

The difficult case is k = 4. The smallest ellipse might have irrational coordinates, making
exact in-ellipse tests nontrivial. One could try to work with a symbolic representation of
the ellipse in terms of explicit algebraic numbers (such a representation always exists);
however, the computation of this representation as well as the subsequent in-ellipse tests
over it are difficult, computationally expensive, and — as we will see — unnecessary. Rather,
we present a method to decide the in-ellipse test without knowing the ellipse; all we need
to know are the four support points, implicitly representing the ellipse.

Before we start with this, let us do an example involving four concrete points. On the one
hand, this illustrates the notions introduced so far, on the other hand it shows that the
smallest ellipse may indeed have irrational coordinates.

Consider the points p; = (0,0)”, p2 = (1,0)”, p3 = (1/2,1)", and p4 = (0,1)7, see Figure 3
(we always assume that the four points are given in counterclockwise order, as already

anticipated by Figure 2). The two conics Cy(p) = [p1p2p][pspap] and Ca(p) = [p2psp|[pap1p]
assume the form

Ci(p) = /2 +y/2,
Co(p) = 2% + zy/2 — x,

and the linear combination C = AC; + uCs is obtained as

A 7 A
Cp) = pz® = Sy* + Say —pz + Sy,

Thus, in the form of (3), C is defined by

e (o) e () e

If C is an ellipse, M is regular, and the center c is obtained as

1 3A
=M 'm=——r .
‘ " 8>\+M(4>\+2M>

10

This leads to the center form (4), with

Alp = A)

T
z=c Mc ST 1

The area of the ellipse is minimized if

1 p(8A +p)?

DO p) = det(A) = det(M/2) = =350

is maximized. Thus, the smallest ellipse is determined by values A, ;4 such that the gradi-
ent VD vanishes. This happens if 8\ = —u (where we get D = 0) and if 4\ = (—34+V/13)p.
In case of ‘47, D =~ —40.93 is obtained (and C is a hyperbola), in case of ‘=’ we get
D = 5.93, showing that any pair of nonzero coefficients (\,x) with 4\ = —(3 + V13)u
determines the smallest ellipse with pq,... ,ps on the boundary. Note that no matter how
A, i are scaled, the linear form of this ellipse contains irrational coefficients. The same is
true for the center form. In particular, the center evaluates to ¢ = (z.,y.) with

9+3vVI3 1+V13

Yo = — V"~ 377,

T = —— ~ .406,
“ 204813 5+ 213
see Figure 3.
bs P3
c
°
b1 D2

Figure 3: Irrational smallest ellipse through four points

4.1 Three Support Points

The smallest ellipse with three points on the boundary is represented in center form (4).
We conceptually apply an affine transformation 7' on S = {pi1,p2,p3}, such that the
triangle A with vertices T'(p1), T (p2), T (ps3) is equilateral. Since the affine transformation T
scales any area by det(T"), the smallest ellipse through S is transformed into the smallest
ellipse through 7'(S). This ellipse exists and is therefore unique (Proposition 2.1 (i)),
hence it is the circumcircle of A. Applying the inverse transformation to the circumcircle
yields

3

3

1 B 1

CZgE Di, Ml:gE (pi—c)(pi —c)f, z=2. (7)
i—1 i—1

SMALLEST ENCLOSING ELLIPSES — FAST AND EXACT 11

For details see [16]. The same formulae follow from design theory by consideration of the
dual problem [20].

The in-ellipse test with point ¢ is done by evaluating the sign of C(q) = (¢g—¢)" M (q—c)—z.
If and only if C(q) < 0 then ¢ € E. For this, note that (7) always yields a positive definite
matrix M.

4.2 Four Support Points

Ellipse computation. The smallest ellipse with four points on the boundary is not
represented explicitly (remember that the coefficients of either representation may be
irrational). Instead we represent the bundle of conics C through the four points
pi = (zi,y:)T,i = 1,2,3,4 using C; and Cy with

Ci(p) := [p1p2p][pspap], Ca(p) := [p2pspl[pap1p].

In the linear form (3), C; and Cy have matrices

1 81 to SS9

with

r1 = (y1 — y2)(y3 — va),

S1 = (:El — (L‘Q)(xg — :E4),

t1 = —((w1 — 22)(y3 — ya) + (Y1 — y2) (23 — 74))/2
and

r2 = (y2 — y3)(ya — 1),

S9 = (:EQ — :E3)(£E4 — (II1),

ty = —((z2 — 23)(ys — y1) + (y2 — y3) (74 — 21)) /2.
Defining

o1 = ((z1 — 22)(y3 — ya) — (y1 — y2) (23 — 24))/2, (8)

o9 1= ((v2 — x3)(ys — y1) — (y2 — y3) (24 — 21))/2
results in

det(M;) = ris; —t? = —02 <0, i=1,2.
This shows, that the conics C; and Cs are indeed hyperbolas (or pairs of parallel lines, i.e.
degenerate parabolas).
As mentioned in Section 3, the type of C = AC; + uCs is determined by the sign of det (M),
M =AM + pM,, and we get
det(M) = det(AM; + uMs)

= (r151 — N2 + (rosy — t3)p? + (11859 + ros1 — 2t1t9) A\

= X’ + yu® + BAu, (9)
with o := det(My), v := det(Ms) and (3 :=ri18y + rosy — 2t1to.

12

In-ellipse test. To test a query point ¢, we first compute the unique conic

Co = XoC1 + 10oCo

through the five points p1,po,ps,p4,q according to (5) and determine its type via
det(Mp) = det(AgM; + poMs). We distinguish two cases, concerning the type of Cp.

Case 1: Hyperbola/Parabola. This case is easy, as the following lemma shows.

Lemma 4.1 If Cy is not an ellipse, then exactly one of the following holds.
(i) q lies inside all ellipses through p1,p2, p3, P4.
(ii) q lies outside all ellipses through p1,ps, ps,p4.

Let us give some intuition, before we formally prove the lemma. Since no three of the
four support points are collinear, there exist two (possibly degenerate) parabolas through
these points (see Figure 4). These parabolas cut the plane into regions which determine
the type of Cy. Only if ¢ lies strictly inside one parabola and strictly outside the other,
Co is an ellipse. Otherwise, ¢ either lies inside both parabolas in which case ¢ also lies
inside all ellipses through p1, ps, p3, ps4, or ¢ lies outside both parabolas, also being outside
all the ellipses.

Figure 4: The two parabolas through four points

Proof. Assume there exist two ellipses F;, and E,,; through the four points, E;;,, contain-
ing q, Eyy not containing ¢, equivalently Ejy,(q) <0, Egyi(g) > 0. Then choose A € [0,1)
such that

E(q) = (1 - A)Ezn(Q) + AEout(q) = 0.

Since the convex combination of two positive definite matrices is also positive definite,
E is an ellipse through pi,p2, ps3, ps4, q; thus E = Cp holds, which is a contradiction to Cy
being not an ellipse. a

SMALLEST ENCLOSING ELLIPSES — FAST AND EXACT 13

Consequently, p either lies inside all ellipses or outside all ellipses through the four support
points. Thus, all we need to do is test ¢ against an arbitrary ellipse through the four
support points. To get such an ellipse, we choose the linear combination AC; 4+ uCo with
coefficients

Ai=2y—08, p:=2a-p0,
which by (9) gives
det(M) = (4ay — B%)(a +v — B)

We will show that both factors have negative sign, thus proving that the choice of A and
i indeed yields an ellipse E. To see this, we first check that

dary — 3% = —[p1p2p3][p2p3pal[papapi][papipa)-

Since pi1,p2,ps3,ps are in counterclockwise order, each bracketed term has positive sign,
i.e. 4ay — 3% < 0 holds. On the other hand, we have

o+ — B = [papap1][p2paps] — (o1 + 02)?,

with 01,09 as defined in (8). The first term is negative because p; and p3 lie on different
sides of the diagonal popg. It follows that o +v — 8 < 0 and finally det(M) > 0.

If M is not yet positive definite, we scale E' by —1. Then q lies inside E (and hence inside
the smallest ellipse through p1, po, p3,p4) if and only if E(q) < 0.

Case 2: Ellipse. C(j is an ellipse E, and we need to check the position of ¢ relative to
E*, the smallest ellipse through p1, po, ps, ps, given as

E* = Xkcl +N*627

with unknown parameters A*, u*. In the form of (2), F is given by (rg, so, to, 4o, Vo, Wo),
where

r0 = AoT1 + poT2,

r1 and ro the respective parameters of C; and C. By scaling the representation of E*
accordingly, we can also assume that

ro = A'ry + p'ry

holds. In other words, E* is obtained from E by varying its parameters Ag, po along the

line {Ary + pry = ro},
W Ho T1

E™ = ()\0 — T’I"Q)Cl + (/1,0 + T’I"l)CQ.

Define

14

Then E° = E,E™ = E*. The function g(7) = E"(q) is linear, hence we get

0 .
—E"(q) =pTh,

E*(q) =1 57 »

p = Co(q)r1 — C1(q)r2. Assuming that F is scaled such that ro > 0, this means that ¢ lies
inside E* iff pr* < 0.

It remains to determine the sign of 7%, in other words: starting from F, ‘in which direction’
lies E*? The following lemma has been proved in [5], see also [16].

Lemma 4.2 Consider two ellipses E1, Eo, and let
E* = (1= \)E) + \E,
be their convex combination, X € [0,1]. Then E* is an ellipse satisfying
Vol(E*) < max(Vol(Ey), Vol(Es)),

for all X € (0,1).

Since E7 is a convex combination of E and E* for 7 ranging between 0 and 7*, the volume
of E™ decreases as 7 goes from 0 to 7%, hence
T0>

If A7 is the matrix of E7 in center form (1), the volume formula (6) gives

> = —sgn (g det(AT)) ,
7=0 ot 7=0

and det(AT) is easily expressed as a function of 7. For this, recall that if M, m,w are the
parameters of E7 in the form of (3), ¢ = M ~'m the center, we get

sgn(7*) = —sgn (%VOI(ET)

sgn <£V01(ET)
or

A"=M/z, z=m'M 'm—w,

where M, m,w are functions of 7 (which we omit in the sequel for the sake of readability).

Noting that

we get

2

(u?s — 2uvt + v’r) — w.

°= det(M)
Let us introduce the following abbreviations.

d:=det(M), Z:=u’s— 2uvt+ v’r.

SMALLEST ENCLOSING ELLIPSES — FAST AND EXACT 15

With primes (d’, Z' etc.) we denote derivatives w.r.t. 7. Now we can write the derivative
in question as

dz —2d7

23

9 det(ary = 2 det(M/2) = (d)22) =

or or (11)

Since d(0),z(0) > 0 (recall that these values refer to the ellipse E° = E), this is equal in
sign to

§:=d(d'z — 2d2"),

at least when evaluated for 7 = 0, which is the value we are interested in. Furthermore,
we have

1 d
dz = d(=Z—-w)=—=7Z—dw,

d d
_ Z'd—-7d

— 2 w') 7 dw'.

d2 = d(
Hence

6 = dZ—ddw—-22"d—Zd — d*vw")
= 3d'Z +d(2dw' — d'w —27").

Rewriting Z as u(us — vt) + v(vr — ut) = uZ; + vZs, we get

d = rs—t2 Zy = us+us’ —v't—ot,
d = rls+rs=2tt', Z), = vr+or —ut—ut,
and finally
Z'=u'Z) +uZ + ' Zy + vZ).
For 7 = 0, all these values can be computed directly from 7(0),... ,w(0) (the defining
values of E) and their corresponding primed values 7/(0), ... w'(0). For the latter we get
r'(0) = 0,5 (0) = 1189 — 1281, ... ,w' (0) = rqwy — rowy (r4,...,w; the defining values of

Ci,i = 1,2). Summarizing, we obtain that ¢ lies inside E* iff sgn (p 6(0)) < 0.

4.3 Five Support Points

It is not difficult to check that in Welzl’s algorithm 2.2, R attains cardinality five only if
immediately before, a test ‘p € E’ has been performed (with a negative result), where E
is determined by four support points. In the process of doing this test, the unique conic
(which we know is an ellipse F) through the five points has already been computed, see
previous section. Thus, given another point ¢, we can just ‘recycle’ E for the in-ellipse
test with q.

16

5 Implementation

We have implemented the in-ellipse tests as subroutines of Welzl’s method with move-
to-front heuristic [22], without any tuning so far.®> On a Sun SPARC-station 20, using
rational arithmetic over LEDA’s arbitrary length integers, the algorithm takes 220 seconds
to compute SMELL(P), P a set of 10,000 points with random 32-bit integer coordinates.
Under floating-point arithmetic, the computing time drops to 2 seconds, but the result
might be incorrect. This gap (suggesting successful usage of floating-point filters and
other techniques to combine fast arithmetic with exact computation) is explained by the
fact that numbers get large under rational arithmetic. If the input coordinates are b-bit
integers, an exact evaluation of §(0) as in the previous section requires 30b + O(1) bits of
precision in the worst case.

The algorithm’s output is a support set S, 3 < |S| < 5, such that SMELL(P) = SMELL(S).
In addition, for | S| # 4, our method determines SMELL(S) explicitly. For |S| = 4, the value
of 7* defining SMELL(S) via (10) appears among the roots of (11); a careful analysis [14, 16]
reduces this to a cubic polynomial in 7, thus an exact symbolic representation or a floating-
point approximation of 7* and SMELL(S) can be computed in a postprocessing step.

6 Discussion

We have described an exact O(n) algorithm for computing the smallest enclosing ellipse of
a planar point set, obtained by implementing the primitives of Welzl’s method in rational
arithmetic.

From a practical point of view, the three-dimensional version of the problem is probably
most interesting, and one might ask how our techniques apply to this case. While Welzl’s
algorithm as described in Section 2 works in any dimension, the primitive operations are
already not sufficiently understood for d = 3. First of all, the number of basic cases is
larger; we need to do in-ellipsoid tests over ellipsoids defined by 4 < k < 9 boundary
points. While the extreme cases k = 4,9 are easy (they behave similar to the extreme
cases k = 3,5 for d = 2), no exact method for any other case is known. Our ideas readily
generalize to the case kK = 8: here we can (as in the planar case) use the fact that eight
points — if they appear as a set R during Algorithm 2.2 — determine an ellipsoid up to
one degree of freedom, see the proof of Lemma 2.3. Beyond that, it is not clear whether
the method generalizes. In our fastest existing implementation for the case d = 3, we use
the formerly mentioned gradient descent method of [21] to compute the required ellipsoids
according to some prespecified accuracy, for k =5,... ,8, see [16].

In any dimension larger than two, an open problem is to prove the existence of a rational
expression whose sign tells whether a point ¢ € R? lies inside the smallest ellipsoid deter-
mined by d + 1 < k < d(d + 3)/2 boundary points. If such an expression exists, how can
it be computed, and what is its complexity?

3 A tuned version will become part of the CGAL library, see http://www.cs.ruu.nl/CGAL/

SMALLEST ENCLOSING ELLIPSES — FAST AND EXACT 17

Acknowledgments

We thank the SoCG ’97 referees for pointing out
two errors in a previous version and for general comments that helped to
improve the presentation. The figures were drawn using the interactive inci-
dence geometry tool Cinderella’s Café (http://www.cinderella.de/)
by Jiirgen Richter-Gebert and Ulrich Kortenkamp.

References

[1]

[10]

[11]

I. Adler and R. Shamir. A randomization scheme for speeding up algorithms for linear
and convex quadratic programming problems with a high constraints-to-variables
ratio. Math. Programming, 61:39-52, 1993.

V. Barnett. The ordering of multivariate data. J. Roy. Statist. Soc., 139:318-354,
1976.

C. Bouville. Bounding ellipsoids for ray-fractal intersection. In SIGGRAPH, pages
45-52, 1985.

B. Chagelle. Approximation and decomposition of shapes. In J. T. Schwartz and
C.-K. Yap, editors, Advances in Robotics 1: Algorithmic and Geometric Aspects of
Robotics, pages 145-185. Lawrence Erlbaum Associates, Hillsdale, NJ, 1987.

L. Danzer, D. Laugwitz, and H. Lenz. Uber das Lownersche Ellipsoid und sein
Analogon unter den einem Eikorper eingeschriebenen Ellipsoiden. Arch. Math., 8:214—
219, 1957.

M. E. Dyer. A class of convex programs with applications to computational geometry.
In Proc. 8th Annu. ACM Symp. on Computational Geometry, pages 9-15, 1992.

J. D. Foley, A. van Dam, S. K. Feiner, and J. F. Hughes. Computer Graphics:
Principles and Practice. Addison-Wesley, Reading, MA, 1990.

B. Gartner and Sven Schonherr. Exact primitives for smallest enclosing ellipses. In
Proc. 13th Annu. ACM Symp. on Computational Geometry, pages 430-432, 1997.

B. Gartner and E. Welzl. Linear programming — randomization and abstract
frameworks. In Proc. 13th Annu. Symp. on Theoretical Aspects of Computer Sci-
ence (STACS), volume 1046 of Lecture Notes in Computer Science, pages 669-687.
Springer-Verlag, 1996.

F. John. Extremum problems with inequalities as subsidiary conditions. In Studies
and Essays presented to R. Courant on his 60th Birthday, pages 187-204. Interscience
Publishers, NY, 1948.

K. Leichtwei. Uber die affine Exzentrizitit konvexer Korper. Arch. Math., 10:187—
199, 1959.

18

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]
[20]

[21]

22]

J. Matousek, M. Sharir, and E. Welzl. A subexponential bound for linear program-
ming. In Proc. 8th Annu. ACM Sympos. Comput. Geom., pages 1-8, 1992.

K. Mehlhorn and S. Naher. LEDA: a platform for combinatorial and geometric com-
puting. Communications of the ACM, 38:96-102, 1995.

M. J. Post. Computing minimum spanning ellipses. Technical Report CS-82-16,
Department of Computer Science, Brown University, 1982.

M. J. Post. Minimum spanning ellipsoids. In Proc. 16th Annu. ACM Sympos. Theory
Comput., pages 108-116, 1984.

S. Schonherr. Berechnung kleinster Ellipsoide um Punktemengen. Diploma thesis,
Free University Berlin, 1994.

N. Z. Shor and O. A. Berezovski. New algorithms for constructing optimal circum-
scribed and inscribed ellipsoids. Opt. Methods and Software, 1:283-299, 1992.

B. W. Silverman and D. M. Titterington. Minimum covering ellipses. SIAM J. Sci.
Statist. Comput., 1:401-409, 1980.

B. Spain. Analytical Conics. Pergamon Press, 1957.

D. M. Titterington. Optimal design: some geometrical aspects of D-optimality.
Biometrika, 62(2):313-320, 1975.

D. M. Titterington. Estimation of correlation coefficients by ellipsoidal trimming.
Appl. Statist., 27(3):227-234, 1978.

E. Welzl. Smallest enclosing disks (balls and ellipsoids). In H. Maurer, editor, New
Results and New Trends in Computer Science, volume 555 of Lecture Notes in Com-
puter Science, pages 359-370. Springer-Verlag, 1991.

