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Brownian scattering of a spinon in a Luttinger liquid
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We consider strongly interacting one-dimensional electron liquids where elementary excitations carry either
spin or charge. At small temperatures a spinon created at the bottom of its band scatters off low-energy spin and
charge excitations and follows the diffusive motion of a Brownian particle in momentum space. We calculate
the mobility characterizing these processes and show that the resulting diffusion coefficient of the spinon is
parametrically enhanced at low temperatures compared to that of a mobile impurity in a spinless Luttinger liquid.
We briefly discuss that this hints at the relevance of spin in the process of equilibration of strongly interacting
one-dimensional electrons, and comment on implications for transport in clean single-channel quantum wires.
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I. INTRODUCTION

The Luttinger liquid model of interacting one-dimensional
(1D) electrons advocates that spin and charge degrees of
freedom of electrons deconfine into elementary excitations
which represent collective waves of spin and charge density
[1–3]. These collective bosonic modes do not interact and
propagate with different velocities so that the charge and spin
of an electron move apart in time [4–6]. This scenario of
spin-charge separation is a remarkable example of the frac-
tionalization of a quantum number occurring when low-energy
quasiparticles of a strongly interacting system do not evince
much resemblance to the underlying electrons. Indeed, the
subsequent refermionization of the bosonized model reveals
that elementary excitations are charged spinless quasiparticles-
holons, and neutral spin-1/2 quasiparticles-spinons. Of course,
this paradigm of spin-charge separation is an idealization
which is violated once effects of band curvature are accounted
for [7,8]. In general, spin-charge coupling leads to a plethora of
pronounced effects, and the properties of nonlinear Luttinger
liquids are currently under intensive investigation [9,10].

At small but finite spin-charge coupling, spinons are the
lowest energy excitations of the strongly interacting one-
dimensional system at any given momentum. While holons
readily decay into a continuum of spin excitations even at zero
temperature [11,12], the spinon remains a stable quasiparticle.
That is, by creating a hole with large momentum (e.g., close
to the spinon’s band bottom) in a strongly interacting one-
dimensional electron liquid, the charge is rapidly screened,
leaving behind the neutral spin-1/2 fermionic degree of
freedom. At finite but small temperatures one may then study
the dynamics of such a large-momentum spinon.

Knowledge of the spinon’s dynamics is of fundamental
interest, as it is the backscattering of large-momentum spinons
which eventually equilibrates one-dimensional electronic liq-
uids. Indeed, the relaxation of strongly interacting electrons
occurs as a result of a multistage process [13,14]. In the
first stage, excitations scatter of each other and relax to a
common equilibrium. The generic equilibrium of the liquid
of excitations is characterized by a temperature, reflecting
energy conservation, and a drift velocity, accounting for a
finite motion of a system with momentum conservation. A

finite coupling between spin and charge modes allows for an
exchange of energy and momentum and both subsystems are
then characterized by a common temperature and drift velocity.
The rate of such prethermalization is relatively fast and follows
power-law temperature dependence ∝T 3 [15].

In the second stage, the total momentum of excitations
relaxes. The relevant processes can be viewed as the umklapp
scattering of large-momentum bosonic excitations in which
momentum is transferred to the zero modes of the Luttinger
liquid [16]. Alternatively, it can be described by backscattering
of fermionic excitations [17], and we use both languages
interchangeably throughout this paper. At strong interactions
the key process for equilibration is the backscattering of
large-momentum spinons. That is, spin excitations first relax
their drift velocity and then drag the fluid of charge excitations
to equilibrium. As a result, the rate of full equilibration is slow
and follows the activated temperature dependence ∝e−�σ /T ,
with �σ being the width of the spinon band.

Given the prominent role of spinons close to the band
bottom in the process of equilibration it is interesting to study
their kinetics. Previous work [18] has studied the dynamics
of a mobile impurity in a spinless Luttinger liquid (which
is also deeply related to the problem of dark soliton decay
in a Bose systems [19,20]). Regarding the spinon at the
bottom of the band as a mobile impurity, we will closely
follow the approach of Ref. [18] and include spin into
the picture. In a similar spirit, the recent study Ref. [21]
considered a spin-1/2 impurity coupled antiferromagnetically
to a one-dimensional gas of electrons and showed the forma-
tion of an unconventional Kondo effect. Here we study the
complementary case of a ferromagnetic coupling where the
spin of impurity remains unscreened. We find that, similar
to the antiferromagnetic case, the mobility of the spinon is
parametrically suppressed at low temperatures as compared to
the impurity diffusion in a spinless Luttinger liquid. However,
unlike the antiferromagnetic case, mobility ceases to be
universal in the low-temperature limit and strongly depends on
the integrability breaking perturbations of the Luttinger liquid
model. Suppression of the mobility hints at the relevance of the
spin degree of freedom for equilibration of strongly interacting
one-dimensional electrons, and we briefly comment on its
implications for the conductance in quantum wires. Similar

1098-0121/2014/90(24)/245434(5) 245434-1 ©2014 American Physical Society

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutional Repository of the Freie Universität Berlin

https://core.ac.uk/display/199431218?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1103/PhysRevB.90.245434


M.-T. RIEDER, A. LEVCHENKO, AND T. MICKLITZ PHYSICAL REVIEW B 90, 245434 (2014)

findings have been reported in a recent elegant work where a
particular realization of the Luttinger liquid model—a Wigner
crystal at low electron density—was considered [22].

II. FOKKER-PLANCK EQUATION AND DIFFUSION
CONSTANT

The lowest energy excitation for a system with a concave
spectrum at a given momentum p is a hole. For weak
interactions the hole carries spin and charge quantum numbers
of the removed electron. In a strongly interacting electron fluid,
on the other hand, the charge is screened and a neutral spin-1/2
particle, the spinon, remains with a twofold degeneracy of
the energy levels protected by spin-rotation symmetry. In the
following we assume that a spinon in the vicinity of the band
bottom has a quadratic dispersion

εσ
p = �σ − p2

2m∗ , (1)

with m∗ being the effective mass. At finite temperature T the
typical momentum of a spinon is of the order p ∼ √

m∗T and
should be compared to the momentum exchanged in collisions
with low-energy charge or spin excitations δp ∼ T/vρ(σ ),
where vρ(σ ) are their respective velocities. If temperatures
are sufficiently low, T � m∗vρ(σ ), relative changes are small
δp/p � 1 and the spinon may be viewed as a heavy Brownian
particle propagating in a gas of light particles, viz. the low-
energy excitations. Collisions with the light particles render the
motion of the spinon to be diffusive in momentum space, and
the kinetic equation describing the spinon distribution F (p)
is approximated by the Fokker-Planck form (throughout the
paper we set � = kB = 1):

∂tF (p) = D

2
∂p

(
− p

m∗T
+ ∂p

)
F (p). (2)

Here we employed that by spin rotation symmetry F (p) is
independent of the spin orientation, and for simplicity we
will concentrate on homogeneous liquids. The microscopics
of this Brownian motion in momentum space is governed by
the diffusion constant

D(T ) =
∑

q

q2W (q),

(3)
W (q) =

∑
ll′

∑
ςς ′,kk′

	
ςς ′
ll′ (q; kk′)nl(k)[1 + nl′ (k

′)].

Here W (q) is the probability for a collision in which the spinon
changes its momentum by q, and we already anticipated that at
the low momenta of interest it depends only on the transferred
momentum. Scattering rates 	

ςς ′
ll′ (q; kk′) describe processes

in which a spinon with momentum p and spin-projection
value ς is scattered into a state with p + q,ς ′ by absorbing
a spin (charge) excitation l = σ (ρ) with momentum k and
emitting an l′ excitation with momentum k′ = k − q. The
bosonic occupation numbers for charge (spin) excitations at
momentum k are nρ(σ )(k), and we have set the occupation of a
missing large-momentum spinon 1 − F (p + q) � 1. Finally,
the mobility of the spinon is related to the diffusion constant
by the usual kinetic formula μ(T ) = T/D(T ).

Consequences of the Fokker-Planck equation on 1D elec-
tronic transport are well studied in the literature [23–26].
Here, our main interest is on the scaling W (q) ∝ qα with the
typical momentum exchange q in a collision, as this sets the
scaling of the diffusion constant with temperature according
to D(T ) = ∑

q q2W (q) ∝ T 3+α . For spin-polarized electrons,
scattering from low-energy charge excitations, the Brownian
particle follows the scaling W (q) ∝ q2, which implies for the
diffusion constant in this case D(T ) ∝ T 5 [23,27,28]. The
latter leads to the mobility μ ∝ 1/T 4, in agreement with earlier
results [18,19]. To gain intuition as to how this result may
change upon adding a spin degree of freedom to the problem,
we first discuss the limit of weak interactions.

III. WEAKLY INTERACTING ELECTRONS

We consider weakly interacting electrons described by the
Hamiltonian

H =
∑
pς

εpc†p,ς cp,ς + 1

2L

∑
qς

Vq�q,ς�−q,ς . (4)

Here we assume a quadratic spectrum εp = p2/2m, where
m is the electron effective mass, �q,ς = ∑

p c
†
p+q,ς cp,ς is the

charge density of electrons with spin quantum number ς , Vq

denotes the Fourier component of the interaction potential, and
L is the system size.

For weak interactions the physical mechanism of relaxation
in the one-dimensional system was attributed to three-particle
collisions [17,23]. Kinematic considerations suggest that the
required momentum transfer of 2pF to backscatter from the
left to the right Fermi point cannot be accommodated within
a single three-particle collision. Rather, the momentum 2pF

is transferred within a sequence of three-particle scattering
events accommodating small momentum transfer δp � pF .
In the course of such multistage scattering processes a hole
passes through the bottom of the band between the two Fermi
points at ±pF and multiple particle-hole pairs are created at
the Fermi level.

The kinetic equation for the distribution F (p) of a hole in
the vicinity of the bottom of the band again takes the form of a
Fokker-Planck equation (2). The diffusion constant (3) in this
case is expressed in terms of the probability for scattering of a
hole

W (q) =
∑
Q2Q3

∑
Q′

2Q
′
3

�
ςς ′
pp′ f (p′

2)[1 − f (p2)]f (p′
3)[1 − f (p3)],

(5)
where �

ςς ′
pp′ is the quantum mechanical rate for a three-

electron scattering process from initial states I = {Q1,Q2,Q3}
into final states F = {Q′

1,Q
′
2,Q

′
3}, characterized by quantum

numbers Qi = {pi,ςi} and correspondingly for Q′
i . The sum

runs over all intermediate states involving the scattering of
hole-state Q1 = {p,ς} into Q′

1 = {p + q,ς ′}. Notice that
upon linearizing the dispersion near the Fermi points εp =
±vF p, Fermi distribution functions f (±p) = (e±vF p/T +
1)−1 and one can perform momentum summations exactly,∑

p f (p + k)[1 − f (p)] = L
2π

kn(k) and
∑

p f (−p − k)[1 −
f (p)] = L

2π
k[1 + n(k)], with n(k) = (evF k/T − 1)−1 the Bose

distribution function. Equation (5) then becomes structurally
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identical to Eq. (3), as should be expected since the com-
binations of Fermi distributions f (1 − f ) in (5) describe
particle-hole excitations which correspond to the bosonic
modes that are emitted/absorbed in a scattering process (3).

The central step in determining the diffusion constant is the
calculation of transition rates via Fermi’s golden rule, �

ςς ′
pp′ =

2π |Aςς ′
pp′ |2δ(EI − EF ), where EI/F labels energies of the

initial and final states. Then following previous works [27,29]
and carefully taking into account exchange contributions, we
find from second-order perturbation theory [30],

Aςς ′
pp′ ∝ �

ς ′
1ς

′
2ς

′
3

ς1ς2ς3

VpF
(VpF

− V2pF
)

εF L2

(
pF

q

)
δPI PF

. (6)

Here δPI PF
ensures momentum conservation with PI/F being

momenta of the initial and final states. The spin structure

of the scattering rate is governed by the matrix �
ς ′

1ς
′
2ς

′
3

ς1ς2ς3 =
δς1ς

′
2
δς2ς

′
3
δς3ς

′
1
− δς1ς

′
3
δς2ς

′
1
δς3ς

′
2
. Crucially, we notice that this

particular spin structure forces all spin-polarized contributions
to compensate each other. Amplitudes involving different spin
orientations and spin flips, however, remain singular in the
transferred momentum. That is, for spin-polarized electrons
the leading contribution from the maximally exchanged terms
cancels and the three-particle transition rate is dominated
by subleading contributions in q,

∑
ςς ′ |Aςς ′

pp′ |2 ∝ ln2(pF /|q|)
[27]. On the other hand, taking into account the spin degree of
freedom gives

∑
ςς ′ |Aςς ′

pp′ |2 ∝ 1/q2. This suppression of the
scattering amplitude in the spin-polarized case can be traced
back to Pauli’s exclusion principle in three-particle collisions
[31,32].

Building on the previous discussion, and noting that p

summations in Eq. (5) give two extra powers in q, one
finds D(T ) ∝ T 3, in contrast to D(T ) ∝ T 5 in the spinless
case. Correspondingly, μ(T ) ∝ 1/T 2 and μ(T ) ∝ 1/T 4 in the
two cases, so that the spin degree of freedom parametrically
suppresses the mobility of a hole at the band bottom. A more
detailed calculation gives

D(T ) � V 2
pF

(VpF
− V2pF

)2

v4
F

(
T

εF

)3

p2
F εF (7)

up to a numerical factor of order 1 [30].

IV. SPINON IN A LUTTINGER LIQUID

We proceed to study the fate of the above result beyond
the weak interaction limit by including situations in which
electrons fractionalize into spin and charge modes. To this
end, we start out from a free model for the relevant excitations
described by the Hamiltonian H0 = Hd

0 + Hσ
0 + H

ρ

0 , where
Hd

0 = ∑
ς εσ

pd
†
p,ςdp,ς is the mobile free spinon in the vicinity

of the band bottom Eq. (1). H
ρ(σ )
0 are the standard Luttinger

liquid Hamiltonians for bosonic charge and spin excitations
described by the displacement fields φρ(σ ). The latter are
conveniently expressed in terms of bosonic creation and
annihilation operators

φl(x) = i
∑

q

√
πKl

2|q| e
iqx−η|q|(bl†

−q + bl
q

)
, (8)

which diagonalize the respective Hamiltonians Hl
0 =∑

q ωl
qb

l†
q bl

q, l = ρ,σ . In general, the dispersion of bosonic
excitations is nonlinear and has an acoustic form ωl

q = vlq

only at low momenta q → 0. For repulsive interactions vρ >

vσ , and LL parameters obey Kl = vF /vl .
To account for interactions between excitations, we intro-

duce couplings in the density-density and spin-spin channels,
H1 = Hσ

1 + H
ρ

1 , whose structures are dictated by locality and
spin-rotational symmetry

H
ρ

1 =λρ

∫
dx �(x)�d (x), Hσ

1 =λσ

∫
dx S(x)s(x). (9)

Here s = ∑
ςς ′ σ ςς ′d†

ςdς ′ and �d = ∑
ς d†

ςdς are the spinon’s
spin and particle density, while λρ(σ ) are respective coupling
constants. The corresponding densities for bosonic excitations
are conveniently expressed in terms of the fields φl :

�(x) = −
√

2

π
∂xφρ(x), Sz(x) = −

√
2

π
∂xφσ (x), (10)

Sx(x) = 1

πa
cos[φσ (x)], Sy(x) = 1

πa
sin[φσ (x)], (11)

where a ∼ k−1
F is the short distance cutoff. The above

Hamiltonian is introduced based on the recently developed
phenomenology [11,12]. Coupling constants λl can in prin-
ciple be fixed microscopically employing Galilean invariance
and SU(2) symmetry, but are treated as mere parameters of the
model in the following.

A. Transition rates

We have prepared the stage for a calculation of the spinon
diffusion coefficient (3) beyond the weak interaction limit.
Generalizing the preceding analysis, we study the rates 	

ςς ′
ll′

of transition from an initial into a final spinon state accom-
panied by absorption and emission of bosonic spin or charge
excitations, i.e., |I 〉 = d

†
p,ςb

l†
k |0〉 and 〈F | = 〈0|dp+q,ς ′bl′

k′ , with
l,l′ = σ,ρ (see Fig. 1).

As in the weakly interacting limit, kinematic constraints
enforce vanishing of scattering rates calculated in first-order
perturbation theory. Leading-order contributions thus arise
from the next, second order–Raman scattering processes. To
separate then contributions where spinons scatter off spin

(a) (b)

FIG. 1. Schematics of two of the most relevant scattering pro-
cesses contributing to the spinon’s mobility. Panel (a) A high-energy
spinon is backscattered absorbing and emitting a spin excitation of
the LL. Panel (b) A mixed backscattering process with the absorption
of a spin and emission of a charge excitation.
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and/or charge excitations, it is convenient to write 	
ςς ′
ll′ =

2π |Mςς ′
ll′ |2δ(EF − EI ), where

M
ςς ′
ll′ = 〈F |H

ll′
2 + Hl′l

2

1 + δll′
|I 〉, H ll′

2 = Hl′
1

1

EI − H0
Hl

1

(12)

and to discuss individual contributions separately. To this end,
we bring the effective Hamiltonian into the form

Hl′l
2 =

∑
ςς ′,jj ′

∑
pkk′

d
†
p+k+k′,ςX

l′j ′
k′

h
ςς ′
l′j ′;′lj

EI − H0 − εσ
p+k

X
lj

k dp,ς ′ ,

(13)

where Xσj = Sj , with j = x,y,z the components in the spin
channel and Xρ = � the charge channel. We next discuss the
main results for the different scattering channels.

B. Scattering off charge excitations

The scattering of a spinon by absorption and emission of
a low-energy charge excitation is described by hςς ′

ρρ ∝ λ2
ρδςς ′

in Eq. (13). The corresponding transmission amplitude Mςς ′
ρρ

can then be calculated straightforwardly. We leave aside cal-
culational details (see Ref. [30]) and note here only that upon
inserting typical momenta dictated by kinematic constraints,
one finds that Mςς ′

ρρ ∝ (λ2
ρq/m∗v2

ρ)δςς ′ . This, of course, just
leads to the result D(T ) ∝ T 5, such as for scattering of an
impurity in a spinless Luttinger liquid [18,19,21].

C. Scattering off spin and charge excitations

Scattering of a spinon accompanied by absorption and emis-
sion of spin excitations is described by h

ςς ′
σj,σj ′ ∝ λ2

σ (δjj ′δςς ′ +
iεijj ′σ i

ςς ′ ) in Eq. (13), where εijk is the Levi-Civita tensor.

The first contribution in h
ςς ′
σj,σj ′ preserves the projection

value of spin and is structurally identically to hςς ′
ρρ . The

second contribution in h
ςς ′
σj,σj ′ is structurally different from

the previous ones. As the products of operators Sx , Sy and Sx ,
Sz involve odd numbers of creation/annihilation operators,
these combinations do not contribute to the scattering rate of
interest. This leaves us with scattering processes involving
the product Sy , Sz, describing spin-flip events. By further
making use of normal ordering of the spin operators we may
linearize Sy = φσ/(πa). This allows us to directly calculate
the corresponding transition amplitude [30], which turns
out to be the leading amplitude of all allowed scattering
channels. Invoking kinematic constraints we find Mςς ′

σσ ∝
(λ2

σ kF /m∗v2
σ )σ y

ςς ′ , which implies that the weak interaction
result D(T ) ∝ T 3 holds at arbitrary interaction strength.
Technically, the difference between contributions hςς ′

ρρ and
hςς ′

σσ results from the noncommutativity of spin operators,
which prevents a cancellation of the leading terms in the
amplitude.

Similarly, mixed processes involving spinon scattering off
charge and spin excitations give to leading order Mςς ′

ρσ ∝
(λρλσ kF /m∗vρvσ )σ y

ςς ′ . Notice that these again involve spin-
flip processes, while those processes conserving the spin-

projection value Mςς
ρσ are subleading in q/kF � 1. A careful

calculation of all the relevant contributions [30] results in
the diffusion coefficient (again up to a numerical factor of
order 1)

D(T ) �
(

λσ

√
Kσ

vσ

)4 (
T

εσ

)3
(

1 + λ2
ρv

3
σ

8λ2
σ v3

ρ

)
εσp2

F , (14)

describing the scattering of a Brownian spinon from spin
and charge excitations of a Luttinger liquid, where εσ =
m∗v2

σ /2. Equations (7) and (14) are the main results of this
paper.

As mentioned above, in the case of antiferromagnetic
coupling the diffusion coefficient also scales with T 3, how-
ever, the physics reason for this behavior is different and
can be traced back to the two-channel Kondo problem
[21]. For the strongly repulsive interactions of the Wigner
crystal limit, D also scales with T 3 [22]. We conclude
that independent of the interaction strength spin degrees of
freedom suppress the mobility of large-momentum excita-
tions in one-dimensional quantum liquids in a parameter ∼
(T/εF )2 � 1. This includes situations where spin and charge
decouple.

V. DISCUSSION AND SUMMARY

We have studied the diffusion coefficient of a spinon in
a Luttinger liquid and shown that the resulting mobility of
the spinon is parametrically suppressed at low temperatures
compared to that of a mobile excitation in the spinless case. The
motion of an impurity in a quantum liquid is one of the central
concepts of LL theory, with applications, e.g., to hole dynamics
in semiconducting nanowires or impurities in ultracold quan-
tum gases. The diffusion coefficient discussed in this work sets
the equilibration rate in generic Luttinger liquids as τ−1 ∝
D(T )e−�σ /T . Relatedly, it also defines transport properties
of clean quantum wires. Specifically, the interaction-induced
backscattering process results in corrections to the quantized
conductance G = (e2/π )(1 − δg), displaying activation be-
havior δg ∝ (LD/

√
m∗T 3)e−�σ /T [33]. An activated behavior

of δg has also been observed in the recent experiments
Refs. [34–36]. Verification of the pre-exponential temperature
dependence δg ∝ T 3/2e−�σ /T predicted here would provide
an important test for our understanding of equilibration effects
in clean quantum wires.
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