
Reasoning Paradigms for SWRL-enabled

Ontologies

Jing Mei
Department of Information Science

Peking University
Beijing 100871, China

email:mayyam@is.pku.edu.cn

Elena Paslaru Bontas
Freie Universität Berlin
Institut für Informatik

AG Netzbasierte Informationssysteme
Takustr.9, D-14195 Berlin, Germany

email:paslaru@inf.fu-berlin.de

i

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutional Repository of the Freie Universität Berlin

https://core.ac.uk/display/199431181?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1 INTRODUCTION 1

1 Introduction

The significance of rules and rule-based representation languages is well accepted
for the dissemination of the emerging Semantic Web. In this context SWRL
(Semantic Web Rule Language) being a W3C proposal due to May 2004 has
drawn considerable attention. With the development of SWRL Editors, such
as the extension to the Protege OWL Plugin1 which provides features for the
interactive editing of SWRL rules, support for rule-based inferences on Semantic
Web knowledge sources is also under development.

According to the abstract syntax of SWRL[HPSB+04], an SWRL file is an
OWL ontology, whose axioms are extended with rule axioms – all rules are
defined as the instances of an OWL built-in class “swrl:Imp”.

Technically, let S be a SWRL knowledge base, where OC is a set of OWL
class names, OP is a set of OWL property names, and ST is a set of OWL
constants and SWRL variables. A SWRL rule has the form: h1 ∧ · · · ∧ hn ←
b1 ∧ · · · ∧ bm , where hi, bj , 1 ≤ i ≤ n, 1 ≤ j ≤ m are atoms of the form C(i)
with C ∈ OC , i ∈ ST , or atoms of the form P (i, j) with P ∈ OP , i, j ∈ ST .

However, from the first version of SWRL, it has been pointed out, that
an OWL knowledge base extended with rules is undecidable, although both
components are decidable [HPS04]. Besides, as mentioned in [HPSvH03], no
practical complete algorithm for reasoning in OWL DL or OWL Full has been
yet proposed, while OWL-Lite is more feasible in this matter.

Consequently, in this report, we firstly present an account of the trade-offs
and design decisions behind SWRL reasoners such as Hoolet2 and KAON23.
Further on we propose and compare two directions and the corresponding pro-
totypical systems coping with the mentioned problems in section 3: one is SWRL
in Jess and the other is SWRL in Sesame. Jess4 is a rule engine for the Java
platform, while Sesame5 is an open source RDF database. But it should be
pointed out that, a full implementation for SWRL reasoning is still being in-
vestigated. Related work is presented in section 4, and section 5 discusses our
proposal w.r.t. its limitations and future work.

2 Open Issues

The first issue to be addressed in this context is the computational complexity
and the decidability. As mentioned in [HPS04], the combination of OWL and
rules is undecidable. However, recently it has been investigated in [HMS04],
that a restricted combination of the both would re-obtain the decidability. The
second open issue is the capability of reasoning. Some approaches combine OWL
and rules reasoning, while dealing with incompleteness deficiencies.

1http://protege.stanford.edu/plugins/owl/swrl/index.html
2http://owl.man.ac.uk/hoolet/
3http://kaon2.semanticweb.org/
4http://herzberg.ca.sandia.gov/jess/
5http://www.openrdf.org/

2 OPEN ISSUES 2

2.1 Computational Complexity

OWL has three increasingly-expressive sublanguages: OWL Lite, OWL DL,
and OWL Full. Compared to the classical Description Logics(DL), OWL Lite
is a syntactic variant of SHIF(D), while OWL DL is of SHOIN (D). Key
inferences can be computed in worst case exponential time(i.e., EXPTIME) in
the former one and in NEXPTIME with the latter[HPSvH03]. Meanwhile, sev-
eral DL reasoners based on tableaux algorithms, such as RACER6 and Pellet7,
already provide effective inferences for OWL Lite, while a practical complete
algorithm for OWL DL is still subject of current research. In particular, Pellet
provides reasoning that is sound and complete for OWL DL without nomi-
nals (SHIN (D) in DL terminology) and OWL DL without inverse properties
(SHON (D) in DL terminology). The algorithm is provably sound, but in-
complete with respect to all OWL DL constructs. On the other hand, OWL
Full, extending RDF and RDF(S) to a full ontology language, is an undecid-
able version of OWL. Even ALC Full, the basic ALC DL extended with the
meta-modeling features of the RDF Semantics, is undecidable[HMS04].

Along the way, SWRL is a language combining OWL DL and OWL Lite
with the unary/binary Datalog RuleML. Both components of this combination
are decidable. Note that, it is the (function-free) Horn-like top-level rules that
appear in SWRL, i.e., the predicate symbol of an atom in any SWRL rule can
be a DL constructor, beyond the form of general rules.

Intuitively, the following simple example shows the dilemma facing to the
ontology part and the rule part in a single SWRL file.
Person v ∃ hasParent.Person
HomeWorker(x) ← Person(x) ∧ work(x,w) ∧ live(x,w)
The first statement, a DL axiom, states that, for any person, he/she has a parent
who is also a person; the second statement, a rule, states that, if the work place
of a person is the same as his/her living place, then this person is a homeworker.
According to the expressivity restrictions, discussed in [GHVD03], either of the
two expressions fails to being asserted in its counterpart framework. This is
caused by the facts that on one hand the existential quantifier cannot occur in
the head of a rule, and it is impossible for DL to describe classes whose instances
are related to another anonymous individual via different property paths on the
other hand.

Instead of proposing an intermediate language contained within the inter-
section of DL and rules, SWRL insists on a unified platform to express each one
in its intrinsic style. However, it cannot ensure termination of a satisfiability
checking algorithm in some cases, like the above example. Asserting a single
fact like peter is a Person, is enough to generate some undesirable results.

Figure-2.1 borrowed from [HMS04] introduces a DL blocking strategy to
cope with this problem: the Person peter will induce the generation of Persons
x1, x2, · · · , where peter hasParent x1. Being a Person, x1 hasParent x2 etc.
Using DL algorithms, the infinite tree model is reduced to a finite one, i.e., these

6http://www.sts.tu-harburg.de/ r.f.moeller/racer/
7http://www.mindswap.org/2003/pellet/index.shtml

2 OPEN ISSUES 3

Figure 1: An Example of Decidability

infinite nodes in (a) equal to those in (b), where x′1 is the blocked node delegating
all nodes of x1, x2, · · · . Thus, DL always attempts to reach a finite tree model
for evaluating its satisfiability. However, if rules are used, their substitution (i.e.,
the binding of a variable to constants) requires to check all instances, x1, x2, · · ·
(and x′1 is not at large), which is an infinite list. Consequently, an unrestricted
combination of DL and rules easily leads to unending.

To avoid an undecidable combination, DL-safe rules have been proposed in
[MSS04], requiring that each variable in a rule occurs in a non-DL-atom in the
rule body. Techniques have been proposed to make rules DL-safe (see example
below).

Definition: Let KB be a Description Logics (DL) knowledge base, where NC

is a set of DL concept names and NR is a set of DL role names, and let NP be
a set of predicate symbols such that NC ∪ NR ⊆ NP . A set of DL individual
names are constants, which together with a set of variables constitutes the set
of terms T . A DL-atom is an atom of the form A(s), where A ∈ NC , s ∈ T , or
an atom of the form R(s, t), where R ∈ NR, s, t ∈ T . A rule r is called DL-safe
if each variable in r occurs in a non-DL-atom in the rule body.

A general rule of the form: A0 ← A1, ..., Am (*)
where Ai ∈ NP , can be made DL-safe by adding special non-DL-atoms O(x)
to the body of a rule r for any variable x occurring in r, and by adding a fact
O(a) to the KB for each explicitly named individual a in KB. That is,
A0 ← A1, ..., Am,O(x1), ...,O(xn) (**)
where xi (1 ≤ i ≤ n) is any variable appearing in (*), in addition to the
enumeration of all KB individuals as O(a).

Moreover, an algorithm for query answering in SHIQ(D) extended with
DL-safe rules, employing the reduction to disjunctive datalog, has also been
proposed. That is, OWL Lite plus DL-safe rules has been implemented in
KAON2, whose computational complexity remains EXPTIME. The case OWL
DL plus rules is still ongoing work, since no decision procedure has yet been
implemented for SHOIN (D).

3 OUR PROPOSAL 4

2.2 Capability of Reasoning

Unfortunately, the DL-safe rules assure decidability at the price of inferencing
power. In the following example, a rule states that, two persons who have the
same parent are sibling. To make it DL-safe (i.e., to translate from * to **),
the variables x, y, z are restricted by the external predicate symbol O.
beSibling(x,y) ← Person(x) ∧ hasParent(x,z) ∧ Person(y) ∧ hasParent(y,z) (*)
beSibling’(x,y) ← Person(x) ∧ hasParent(x,z) ∧ Person(y) ∧ hasParent(y,z)

∧O(x) ∧ O(y) ∧ O(z) (**)
Given the facts Person(aaa), Person(bbb), hasParent(aaa,ccc), hasParent(bbb,ccc),
Person(sss), Person(ttt), ∃hasParent.∃hasParent−.{sss}{ttt}, it is obvious that
beSibling(aaa,bbb). However the DL-safe version (**) of beSibling does not
derive beSibling(sss,ttt), because the parent of sss and ttt is not known, and
the atom O(z) from the DL-safe rule cannot be matched to an explicitly named
individual.

Hybrid approaches combining different reasoning paradigms have been pro-
posed as a counterpart to DL-safe rules and similar solutions. However though
hybrid approaches might seem attractive they risk that a rule engine and a DL
reasoner run concurrently, exchanging their conclusions by means of an inter-
face translator. For example, SWRLJessTab[Gol04] combines the Protege OWL
Plugin, Racer and Jess, where Racer processes OWL DL and Jess executes pro-
duction rules. However, as mentioned in [MSS04], suppose a SWRL file consists,
for example, of two rules A(x) ← B(x), A(x) ← C(x), and an OWL assertion
B tC(a). As to OWL, a is in B or C. A(a) is true through the rules. But this
would no longer be derived after separating OWL and rules, since neither B(a)
nor C(a) is a consequence of OWL.

A first-order prover translating both the OWL ontology and rules into col-
lection of axioms could be another alternative, and one representative is Hoolet
using Vampire[TRBH04]. However, first order logic is undecidable and such a
naive approach is highly unlikely to scale.

3 Our Proposal

Here, we proposed two options, one is SWRL in Jess, and the other is SWRL
in Sesame. Although each has its benefits they do have some limitations and
support for full SWRL reasoning is currently investigated.

3.1 SWRL in Jess

SWRL2Jess extends OWLTrans8, which provides OWL2RuleML and OWL2Jess,
in order to transform user-defined rules in an SWRL file to Jess rules. After the
entailment rules for the OWL and RDF semantics have been predefined in a Jess
rule base, the resulting SWRL2Jess rules will be appended to this file. A Jess

8http://www.inf.fu-berlin.de/inst/ag-nbi/research/owltrans/

3 OUR PROPOSAL 5

rule engine is used to handle this rule base as a whole, without distinguishing
the entailment rules or the SWRL rules.

However, due to the limitations of OWLTrans, the OWL reasoning is still
not fully supported, resulting in an incomplete SWRL inference service. As
mentioned in the Introduction, a SWRL rule has the form:
h1 ∧ · · · ∧ hn ← b1 ∧ · · · ∧ bm

where hi, bj , 1 ≤ i ≤ n, 1 ≤ j ≤ m are atoms of the form C(s) or P (s, t), C is an
OWL class name, P is an OWL property name, and s, t are OWL constants or
SWRL variables. According to the meaning of “Implies”, if all bj are satisfied,
then all hi should also be satisfied. Consequently, the satisfaction of every
atom, occurred either in the head or in the body, depends on the matching of
its instantiation, where the characteristics of its predicate symbol (i.e., unary C
or binary P) has been implemented by OWL2Jess (as shown in Table 1).

atom C(x) OWL2Jess(C)
¬D(x) error-Msg←D(x)

AuB(x) assert(A(x)∧B(x))←
AtB(x) assert(A(x))←not A(x) ∧ not B(x)

{m1,...,mk}(x) assert(m1=x)←not (m1=x) ∧ · · · ∧ not (mk=x)
∀P.D(x) assert(D(y))←P(x,y)
∃P.D(x) assert(D(c))←P(x,y), not D(y)
3P.{m}(x) assert(m=y)←P(x,y), not (m=y)
∃P.D(x) caution-Msg←not P(x,y)
3P.{m}(x) caution-Msg←not P(x,y)
≥n P(x) caution-Msg ← count{y|P(x,y)}<n
≤n P(x) caution-Msg ← count{y|P(x,y)}>n
= n P(x) caution-Msg ← count{y|P(x,y)}6= n

atom P(x,y) OWLTrans(P)
InverseOf(Q) assert(Q(y,x))←P(x,y)
Functional(P) assert(y1=y2)←P(x,y1) ∧ P(x,y2)

InverseFunctional(P) assert(x1=x2)←P(x1,y) ∧ P(x2,y)
Symmetric(P) assert(P(y,x))←P(x,y)
Transitive(P) assert(P(x,z))←P(x,y) ∧ P(y,z)

Table 1: SWRL Atoms

However, we do not provide the method for building a new node: suppose
∃P.D(x), for example, there is no matching of P(x,y), then such an existential
semantic condition requires a new implicit node y, and P(x,y) ∧ D(y). Re-
calling to Figure-2.1, Person(peter) infers ∃hasParent.Person(peter), which will
induce the infinite Person x1, x2, · · · . Our incomplete inference service, being a
workaround for the undecidability problem, will remind some missing informa-
tion by throwing out caution-Msg, and check some inconsistent information by
throwing out error-Msg.

We go back to a previous examples consisting of an OWL subclass axiom
and a SWRL rule:

3 OUR PROPOSAL 6

Person v ∃ hasParent.Person
HomeWorker(x) ← Person(x) ∧ work(x,w) ∧ live(x,w)
and extend it with three assertions: Person(peter), work(bob, dorm) and live(bob,
dorm). Running the Jess engine would produce the caution message “no asser-
tion of hasParent to Person peter”. Following up this suggestion, we add the
statement hasParent(peter, bob). Given the new statement the engine is able
to infer that “bob is a Person” and “bob is a HomeWorker”.

Note that, our application will enforce the assertion when it faces uncer-
tainty. Recalling to the SWRL example consisting of A(x) ← B(x), A(x) ←
C(x), and BtC(a), the application can not guarantee an objective result, since
in this case it returns the following outputs: “now, a is a B” and “now, a is a
A”, despite of B(a), which was decided by the engine.

3.2 SWRL in Sesame

Scalability in still an open issue for the emerging Semantic Web technologies. No
solution has been proposed yet, which is able to deal with complex ontologies,
especially when these ontologies contain a large set of individuals. On the other
hand, in other computer science disciplines, databases have been accepted as a
highly effective solution to deal with huge amounts of data. Taken this idea into
account we propose an engine for SWRL rules in RDF graphs9 on the basis of
Sesame. Sesame acts as a RDF database for the initial ground triples as well as
for the derived consequences.

Instead of employing the customizable inference engine provided by Sesame,
which processes rules defined – in their own syntax – via an external file, our
engine parses SWRL rules from a SWRL/RDF file, sharing a common universe
of individuals with its OWL counterpart in the same file. A bottom-up Datalog
evaluation strategy is adopted for computing the least Herbrand model of SWRL
rules. As a result, the relational database that Sesame currently deploys is
extended towards a deductive database.

A rule like “hasUncle(x,z)←hasParent(x,y),hasBrother(y,z)” is easily ex-
pressed in a general rule-based language such as Jess. However, for such rules
it is straightforward but verbose to provide an RDF concrete syntax, as shown
in Table 3.2 for the example.

Consequently, our initial Java implementation imports a SWRL file to Sesame,
where all elements are decomposed into RDF triples of the form <swrl:Imp
rdf:type rdfs:Class>. Furthermore, a table of all ‘Imp’ rules is extracted from
the RDF database that represents a SWRL knowledge base, and for each rule,
its type is swrl:Imp, while its body and head are both anonymous nodes. By
grounding, subsequently, each ‘Imp’ rule will satisfy the well-known “if-then”
semantic conditions, and recursive rules will also reach to the fixpoint after
several loops.

Compared to the hybrid approaches mentioned in section 2.2, our approach
9http://www.inf.fu-berlin.de/inst/ag-nbi/research/swrlengine/

3 OUR PROPOSAL 7

subject predicate object
:r swrl:body :b .
:r swrl:head :h .
:b rdf:first :ap .
:b rdf:rest :ab .
:ap swrl:propertyPredicate foo:hasParent .
:ap swrl:argument1 foo:x .
:ap swrl:argument2 foo:y .
:ab swrl:propertyPredicate foo:hasBrother .
:ab swrl:argument1 foo:y .
:ab swrl:argument2 foo:z .
:h rdf:first :au .
:h rdf:rest rdf:nil .
:au swrl:propertyPredicate foo:hasUncle .
:au swrl:argument1 foo:x .
:au swrl:argument2 foo:z .

Table 2: RDF Syntax for Simple Jess Rules

interprets SWRL rules in the framework of RDF graphs, which has a common
universe and model for both the ontology part and the rule part. The hybrid
approaches separate the two components and interpret each one independently,
provided an interface for interchanging the resulting consequences. In return our
prototype system is able to deal with the model of RDF Schema taxonomies
as well as with user-defined SWRL rules (where RDF Schema inferencing and
querying have been provided by Sesame itself). Besides it is extensible to OWL
support, and more flexible w.r.t. further refinements such as data filtering and
updating, due usage of the database.

3.3 A Use Case

Let us consider a SWRL family ontology. The OWL classes – Person, Man,
Woman etc. – are defined as usual, and kinds of properties – hasParent, hasChild
etc. – are also given in the OWL format. 15 rules, instances of the OWL built-in
class “swrl:Imp”, are used to declare the relationships between the above user-
defined elements. Besides, 20 individuals are asserted (10 Man and 10 Woman)
in this SWRL file, to represent a concrete example.

Figure-3.3 illustrate these rules, including 12 rules borrowed from a Protege
ontology library10, as well as our newly-built recursive rules “Def-hasDescendent-
base”, “Def-hasDescendent-iter” and an additional rule “Def-hasChild”. Also,
according to the Figure-3.3(cf. [Gol04]), those 20 individuals are depicted
clearly.

10referring to http://protege.stanford.edu/plugins/owl/owl-library/family.swrl.owl

4 RELATED WORK 8

Consider that the 12 statements of “hasChild” are regarded as the only prim-
itive assertions. In the original SWRL file, the subject of “hasChild” statements
is always Man, so the following rule of “Def-hasChild” is appended, to reinforce
characteristics for both Man and Woman. That is: if one Person has a child,
then his/her consort also has the same child, where Person=MantWoman.
hasChild(z,x)←hasChild(y,x) ∧ hasConsort(y,z)

On the other hand, the recursive “hasDescendent” procedure should also
be considered. As below, the former is “Def-hasDescendent-base”, for finding
the direct descendent through the parent relationship; while the latter is “Def-
hasDescendent-iter”, for finding the indirect descendent with a recursive call to
the current procedure.
hasDescendent(x,y)←hasParent(y,x)
hasDescendent(y,z)←hasParent(x,y) ∧ hasDescendent(x,z)

As a result, without more conditions other than 12 statements of “hasChild”,
our proposals both have drawn out the following consequences. Jess runs more
quickly than our primitive reasoning engine, while Sesame provides querying
visually and straightforward.

24-hasChild 14-hasSon 10-hasDaughter 08-hasNephew 06-hasNiece
24-hasParent 12-hasFather 12-hasMother 04-hasUncle 10-hasAunt
14-hasSibling 07-hasBrother 07-hasSister 54-hasDescendent

Figure 2: Individuals in a Family

4 Related Work

Related work on support for SWRL reasoning can be roughly divided into ap-
proaches reducing both components to a proper logic language, and hybrid
approaches combining reasoning paradigms with interfaces for exchanging in-
formation.

4 RELATED WORK 9

Figure 3: Rules for a Family

The first approach has different flavors: (1) first order logic is always avail-
able to be the target language for ontologies and rules – thus, as in Hoolet, a
SWRL file is fed into a underlying first order prover as a collection of first
order formulae. (2) algorithms discussed in [HMS04] enable to reduce cer-
tain DL knowledge base to a disjunctive program. The corresponding reason-
ing for SHIQ(D) plus DL-safe rules has been implemented in KAON2. (3)
DLP(Description Logic Programs)[GHVD03], an intermediate KR contained
within the intersection of DL and LP, can be regarded as a subset of SWRL.
KAON111 provides support for DLP and can eventually be applied to SWRL.

The second direction has also some advantages, since each component has
its own developed engines. One such hybrid approach is the development of
SWRLJessTab, a Protege plugin, which enables to compute inferences with the
Racer classifier and the Jess inference engine, so as to reason with rules and
ontologies, both represented in OWL[Gol04]. However, its drawback is the loss
of information, due to fact that the interface of the two components is unable
to ensure its model completeness.

Our both approaches are scoped in the first category. For a SWRL file, a Jess
rule base – consisting of: facts transformed from the SWRL ontology part, and

11http://kaon.semanticweb.org/alphaworld/dlp

5 CONCLUSION 10

user-defined rules transformed from the SWRL rule part, as well as predefined
entailment rules serving for translating the OWL semantics – represents the
knowledge base of SWRL in Jess; in the second approach an RDF database –
consisting of RDF triples parsed by Sesame and inferred by our SWRL engine
– represents the knowledge base of SWRL in Sesame.

5 Conclusion

SWRL in Jess reduces the OWL part to Jess facts, and appends these facts into
a predefined Jess rule base, where all OWL primitive constructors are featured
as entailment rules so as to implement OWL semantics. SWRL rules are trans-
formed by a XSLT to Jess rules. SWRL reasoning is provided by running the
Jess engine on the resulting Jess rule base.

SWRL in Sesame simulates a bottom-up datalog engine. With the help of
Sesame, which parses a SWRL/RDF file into RDF triples stored in a relational
database, this engine computes the Herbrand model of the SWRL knowledge
base.

As a conclusion we are aware of the limitations of the two proposals. Com-
paring them we believe that SWRL in Sesame is more flexible, provided OWL
reasoning in Sesame, but the optimization of our engine is planned as future
work; SWRL in Jess addresses the implementation of OWL semantics directly.
Ongoing work for this issue intend to eliminate the proposed workarounds by
providing algorithms which try to solve the problem of undecidability in specific
contexts.

References

[BG94] Chitta Baral and Michael Gelfond. Logic programming and knowl-
edge representation. Journal of Logic Programming, 1994.

[BTW01] Harold Boley, Said Tabet, and Gerd Wagner. Design Rationale of
RuleML: A Markup Language for Semantic Web Rules. In Proc.
Semantic Web Working Symposium (SWWS’01), pages 381–401.
Stanford University, July/August 2001.

[GHVD03] Benjamin N. Grosof, Ian Horrocks, Raphael Volz, and Stefan
Decker. Description logic programs: Combining logic programs
with description logic. In Proc. of the Twelfth International World
Wide Web Conference (WWW 2003), pages 48–57. ACM, 2003.

[Gol04] Christine Golbreich. Combining rule and ontology reasoners for the
semantic web. pages 155–169, 2004.

[GPH04] Yuanbo Guo, Zhengxiang Pan, and Jeff Heflin. An evaluation of
knowledge base systems for large owl datasets. In Third Interna-

REFERENCES 11

tional Semantic Web Conference, Hiroshima, Japan, LNCS 3298,
pages 274–288. Springer, 2004.

[Hin02] Yurek K. Hinz. Datalog bottom-up is the trend. Technical Report
SPRING 2002, INSS 690, University of Maryland, 2002.

[HLTB04] Ian Horrocks, Lei Li, Daniele Turi, and Sean Bechhofer. The in-
stance store: Description logic reasoning with large numbers of in-
dividuals. In Proc. of the 2004 Description Logic Workshop (DL
2004), pages 31–40, 2004.

[HM04] Patrick Hayes and Brian McBride. Rdf semantics. Available at
http://www.w3.org/TR/rdf-mt/, 2004.

[HMS04] Ullrich Hustadt, Boris Motik, and Ulrike Sattler. Reasoning for
description logics around shiq in a resolution framework. Technical
Report 3-8-04/04, FZI, Karlsruhe University, Germany, 2004.

[HPS04] Ian Horrocks and Peter F. Patel-Schneider. A proposal for an OWL
rules language. In Proc. of the Thirteenth International World Wide
Web Conference (WWW 2004), pages 723–731. ACM, 2004.

[HPSB+04] Ian Horrocks, Peter F. Patel-Schneider, Harold Boley, Said
Tabet, Benjamin Grosof, and Mike Dean. Swrl: A semantic
web rule language combining owl and ruleml. Available at
http://www.w3.org/Submission/2004/SUBM-SWRL-20040521/,
2004.

[HPSvH03] Ian Horrocks, Peter F. Patel-Schneider, and Frank van Harmelen.
From shiq and rdf to owl: The making of a web ontology language.
J. of Web Semantics, 1(1):7–26, 2003.

[LPvH04] Thorsten Liebig, Holger Pfeifer, and Friedrich W. von Henke. Rea-
soning services for an owl authoring tool: An experience report. In
Description Logics, 2004.

[MSS04] Boris Motik, Ulrike Sattler, and Rudi Studer. Query answering for
owl-dl with rules. In Proc. of the 3rd International Semantic Web
Conference (ISWC 2004), pages 549–563. LNCS 3298, 2004.

[OWL04] OWL. Web ontology language(owl). Available at
http://www.w3.org/2004/OWL/, 2004.

[PSHH04] Peter F. Patel-Schneider, Patrick Hayes, and Ian Horrocks. Owl
web ontology language semantics and abstract syntax. Available at
http://www.w3.org/TR/owl-absyn/, 2004.

[TRBH04] Dmitry Tsarkov, Alexandre Riazanov, Sean Bechhofer, and Ian
Horrocks. Using Vampire to reason with OWL. In Proc. of the
2004 International Semantic Web Conference (ISWC 2004), pages
471–485. Springer, LNCS 3298, 2004.

