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Abstract

The transformation of area aggregates between non-hierarchical area systems is a standard problem

of official statistics. We introduce a new method which is based on kernel density estimates. It

is a modification of the SEM algorithm proposed by Gross et al. (2016), which was used for the

transformation of totals on rectangular areas to kernel densities estimates. As a by-product of the

routine one obtains simulated geo-coordinates for each unit. With the help of these geo-coordinates it

is possible to calculate case numbers for a new area system.

The method is applied to student resident figures from Berlin. These are known only at the level

of ZIP codes but they are needed for administrative planning districts. Our method is evaluated on a

similar, simulated data set with known exact geo-coordinates. In the empirical part results for changes

in the student residential areas between 2005 and 2015 are presented. It is demonstrated that the

transformation via kernel density estimates offers additional useful features to display concentration

areas.

Keywords: Choropleths, Grid Maps, Kernel Density Estimation, Geo-Coordinates

1 Introduction

Maps in official statistics are commonly created by areas that are displayed in different colors which

display some value of interest. Usually, these so-called choropleths, use a discretization of the value of

interest. The areas are defined by administrative districts at different levels, say NUTs 1, NUTs 2 or

lower, see the Statistical Atlas of the European Statistical Yearbook (http://ec.europa.eu/eurostat/

statistical-atlas/gis/viewer/#) However, different area systems may be in use that are not ordered

in a hierarchical fashion. Alternatively, areas are defined by a rectangular grid of different size, say 1

km. These maps are often referred as grid maps, see for an example the German Census atlas ( https:
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//atlas.zensus2011.de/ ) With geo-coded data one would be able to create a different type of map that

is independent from area definitions. These maps base on a two dimensional kernel density of the variable

of interest. This style of maps displays each levels of the estimated density by a different color. Often a

continuous color scheme is used ranging from light for low values to dark for high values of the density. An

example is the Service Map of Helsinki (https://servicemap.hel.fi/?municipality=helsinki&_rdr=

Default.aspx), where the user can combine different background maps with kernel density estimates of

demographic subpopulations, like age groups and ethnic minorities.

The kernel density estimate can also help to tackle the problem to transfer count numbers from one

area system to another. As the density function is not linked to areas it is possible to compute from

the density count numbers for any area system. In the example treated here, the number of student

residents in administrative areas of Berlin was of interest while the enrollment registers of the universities

did only deliver student totals at the level of ZIP codes. As these two area-systems are non-hierarchical,

one is confronted with a problem that is hard to solve at an elementary level. Often this task is advanced

by ad-hoc methods which base on a proportional allocation of totals due to which part of the ZIP area

belongs to the respective administrative area. Such an approach is tedious and relies on an unrealistic

assumption, namely, the units are uniformly distributed across the ZIP area.

In our case we do not have the exact geo-coordinates at hand but only totals for areas that are not

related to the areas of interest. In this article we present an approach where we simulate geo-coordinates

from area-specific aggregates. The method is similar to the the approach of Groß et al. (2016), who

describe its use to counteract the rounding of geo-coordinates due to confidentiality reasons. In their

analysis kernel densities were generated to detect concentration areas of migrants and elderly persons in

Berlin.

The algorithm of Groß et al. (2016) works for totals on rectangles which are the outcome of the

rounding process. However, their approach can be easily extended to totals of deliberate areas. The

algorithm bases on two elementary steps: The first step is to draw a sample from a two dimensional

density which gives the simulated geo-coordinates. The sampling is done with respect to the known

number of observations in the reference areas which is achieved by stratified sampling. The second step

is a classical estimation step which generates a kernel density estimate from a sample of geo-coded data.

These two steps resemble a so-called Stochastic EM (SEM) algorithm, see Celeux et al. (1996). The

algorithm starts with all the points concentrated at the center of the area. Starting from this artificial

geo-coordinates a new kernel estimate is generated. Then the sampling and estimation step is repeated

in an iterative process. The algorithm does not only generate a final kernel density but also in each

sampling step a set of simulated geo-coordinates. These geo-coordinates may be used to allocate the

points to differently defined areas. Finally, these area counts will be averaged over the replications like

the final density estimates. This feature circumvents the conputation of the volume under the density

estimate for the new areas.

The article is organized as follows: In the methodological part we display the proposed algorithm and

its statistical foundation in more detail. In the application part we consider the problem to allocate the

Students of Berlin to small administrative areas for the planning of student homes and other student-

related infrastructure. To get an assessment on the quality of the conversion to different areas, a simulation

study is performed. The proposed method is then applied to the Berlin student residents. Besides the
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estimation of the total number of students in administrative areas the kernel densities offer alternative

methods to display regions with a dense student population and their development over time. The methods

are confronted with the classical approaches via choropleths.

2 Methods

LetX = {X1, . . . , Xn} denote the exact geo-coordinates of the observations, withXi = (Xi1, Xi2), with i =

1, .., n. To estimate the density f(x) at point x, a multivariate kernel density estimator is employed, which

is given by:

f̂H(x) =
1

n|H|
1
2

n∑
i=1

K(H−
1
2 (x−Xi)) (1)

K(·) denotes a multivariate kernel function. A popular choice is the multivariate gaussian kernel.

H denotes a bandwidth matrix. The choice of H is highly important for the performance of the kernel

density estimator. See e.g. Wand and Jones (1994), who discusses the choice of the bandwidth in the

multivariate case by using a plug-in estimator, which is used here.

As we do not have the exact geo-coordinates but only aggregated data for certain areas, a special

treatment is needed. This is because applying a kernel density estimator to e.g. the area centers leads

to strongly biased estimates as shown in Groß et al. (2016) for rectangular shapes. Following Groß et al.

(2016) we can interpret the available data on area level, denoted by W = {W1, . . . ,Wn}, as data contam-

inated with measurement error. As the measurement error process is known we are able to formulate a

measurement error model π(W |X) for W . It can be written as a simple product of Dirac distributions,

π(W |X) =
∏n

i=1 π(Wi|Xi), with

π(Wi|Xi) =

1 for Xi ∈ Area(Wi)

0 else.
(2)

Now we can draw pseudo samples (imputations) of theXi from π(Xi|Wi), whereby the latter expression

can be calculated by using the Bayes theorem:

π(Xi|Wi) ∝ π(Wi|Xi)π(Xi) (3)

Thus, the exact geo-coordinates, X = {X1, . . . , Xn}, are distributed according to the kernel density

estimate restricted to the area where the observation Wi comes from. In an iterative procedure the Xi are

sampled from π(Xi|Wi) followed by estimation of π(Xi), respectively f(x), by employing a multivariate

kernel density estimator on the Xi.

In particular, a Stochastic Expectation Maximization algorithm (SEM, Celeux et al. 1996) was utilized,

as in Groß et al. (2016). The algorithm starts with all the points concentrated at the center of the area.

Starting from this artificial geo-coordinates a new kernel estimate is generated. Two iterative computation

steps are performed afterwards. The first step (the ’S’-step in SEM) is to draw so-called pseudo-samples

of the exact geo-coordinates, the Xi, by sampling from the conditional distribution π(Xi|Wi). This

conditional distribution is equal to the current density estimate restricted to the area where Wi belongs
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to. In the second step (the ’M’-step in SEM), the bivariate kernel density f(x) is estimated by using the

drawn pseudo-samples. After a burn-in phase one may generate a sequence of kernel density estimates.

The final density estimate is computed by averaging the estimate of f(x) over all samples after discarding

the burn-in samples. Details on the kernel density estimation method and the exact implementation of

the algorithm can be found in Groß et al. (2016).

The only detail that needs to be changed is to draw the pseudo-samples from the corresponding shape

instead from a rectangle, that means in the ’S’-step truncating the density to the area where observation

Wi lies in. This is more computational intense, especially for complex formed shapes, because we have to

check whether a potential pseudo-sample is inside the shape. However, this is of little importance with

modern computers as long as the shapes do not have a very high complexity.

The algorithm is implemented in the R-package Kernelheaping (Groß, 2016) as function dshapebivr,

which requires a data matrix with aggregated observation numbers for each area and a *.shp shapefile

including the geometric data as input.

After computing a non-parametric density estimate with this algorithm, the question arises how to

allocate the number of observations to each shape in the new target area system. One possibility would

be to numerically integrate over the non-parametric density and multiply the result by the number of

total observations. However, it is likely that the result would not be compliant with the original data, i.e.

the number of observations belonging a shape of the first area level would be different from the starting

values. To preserve the original data structure, we chose to count the pseudo-samples falling in each

shape of the target area system for each iteration. These area counts will be averaged over all iterations.

The function toOtherShape in the Kernelheaping package performs this operation given the output of the

dshapebivr and an additional shapefile for the new area system.

3 Application for the allocation of students in Berlin

3.1 The setting of the study

The city of Berlin is a growing town. In the past five years Berlin has gained around 220,000 people in

total. A large proportion of this is due to the population gains in the age group of 20 to 30 years old,

which contains many students. With the increasing number of students questions for urban development

planning arouse. Where do students live and how do they get to their universities? Which type of

housing do students need? Which infrastructures such as daycare centers, railway stations, bicycle parking

facilities, bike paths, green spaces and cultural facilities are demanded and used? Students have, as

well as other social groups, special requirements and behavioral patterns on facing the aforementioned

infrastructures.

To answer the above questions, it is helpful to have accurate and reliable information of the residential

locations of students in Berlin. Starting from the residential areas can improve the planning and implement

student projects for their benefit more targeted1. So far, there are no data of student locations at small-

1The project ’Determination of the distribution of student accommodation’ of the Senate Department for Urban Devel-
opment and Environment in collaboration with the Freie Universität Berlin analysed where students who are enrolled at
Berlin universities are located in the metropolitan region of Berlin-Brandenburg and how they relate to the counts of LORs
and Brandenburg municipalities, see the final report under http://www.stadtentwicklung.berlin.de/planen/basisdaten_
stadtentwicklung/studentisches_wohnen/index.shtml.
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scale residential areas. Here the so-called LORs2 are the smallest urban planning units in Berlin. One

possible data source on student residences are the enrollment offices of the Berlin universities. For privacy

concerns these figures are available only the level of ZIP coordinates.

Figure 1 shows the 193 ZIP-code areas as well as the 447 LORs of Berlin. A careful inspection of

the areas displays many cross-cuttings of the area borders, see Figure 2. So LORs are by no means a

lower-level area system of ZIP-areas.

Figure 1: ZIP-code areas of Berlin (left) and administrative planning areas (LORs, right).

3.2 A simulation study with artificial data

In order to check the precision of the proposed routine, we generated hypothetical populations in a

simulation. For each of the 447 LOR areas we generated nLOR = 250 artificial geo-coordinates from an

uncorrelated bivariate normal distribution with mean equal to the centroid of the LOR area and standard

deviations of 1000 meters. As not all co-ordinates fall into the Berlin area there will be minor losses in

observation counts. Totally, a sample of about 105000 observations is generated within each simulation,

which is roughly comparable to the total number of students in our application example. Figure 3 displays

one artificial allocation of geo-coordinates together with the LOR borders as well as the kernel density

estimation based on these coordinates.

Now the number of observations falling in each coordinate is counted on LOR-area level and on the

ZIP-code area level. The ZIP-code area level counts shall then be used to estimate the ”true” counts on

the LOR level afterwards. As explained in the methods section this is done by counting the number of

the generated pseudo-samples falling in each LOR. There is no extra computational effort: during the

generation of a new density it can be checked in which of the LORs the new coordinates fall. Hence every

round of the SEM algorithm produces an estimate of the expected number of points falling into an LOR.

Thus it is only necessary to average there figures over the simulation runs. As a benchmark estimate we use

the ad hoc approach of the introduction, which assumes that the observations are distributed uniformly

inside the ZIP-code areas. This approach can be approximated by the SEM algorithm by replacing π(Xi)

2The acronym is derived from the German ”Lebensweltlich orientierte Räume”, which can be translated as life secular
areas.
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Figure 2: Cross-cutting of ZIP-code area (blue, straight lines) and LOR area (red, dashed lines) borders
in Berlin.

Figure 3: Simulated geo-coordinates (left) and Kernel density estimate based on simulated coordinates
(right)
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with the uniform distribution in equation (3). The whole procedure was repeated nsim = 100 times with

independent random draws for the geo-coordinates.

The overall structure of the LOR counts is well reflected by the SEM approach. Averaged over the

nsim = 100 simulations the mean absolute relative error over the 447 LORs is 9.8 percent for the SEM

method and 14.4 percent for the ad hoc approach, while the RMSE of the departures of reference and the

SEM totals amounts only to 33.5 persons compared to the RMSE of the ad-hoc method is 60.6 persons.

Thus, in the considered simulation scenario, the presented SEM approach gives a considerable advantage

over a simple approach assuming uniform distributions of observations within the shapes. Tables 1 and 2

present further details on the performance of both considered methods.

Table 1: Results of the simulation study: mean of RMSE measures over the nsim = 100 simulation runs.

Method Average RMSE 95% Quantile RMSE 99% Quantile RMSE Max RMSE

SEM 33.5 62.2 114.8 317.3
AD HOC 60.6 102.1 201.3 730.0

Table 2: Results of the simulation study: mean of absolute percentage deviance (APD) measures over the
nsim = 100 simulation runs.

Method Average APD 95% Quantile APD 99% Quantile APD Max APD

SEM 9.8 % 29.7% 47.2 % 73.7%
AD HOC 14.4% 44.4% 68.8 % 85.8%

Finally, we want to compare whether there are some regional pattern in the absolute relative deviation

of the SEM estimates as well as the ad hoc estimator and their reference values. By comparing Figure

4 with Figure 2 we find that (not surprisingly) the regional differences are bigger for areas with severe

cross-cuttings of ZIP and LOR borders. Also for smaller areas the deviations seem generally smaller than

for larger ones.

Figure 4: The relative deviation of SEM (left) and ad hoc method (right) compared to their reference
values averaged over all simulation runs
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3.3 The data

The number of students on ZIP-code area level in the years 2005, 2010 and 2015 could be established for

the three – by far largest – universities of Berlin: Freie Universität (FU), Humboldt Universität (HU)

and Technische Universität (TU). The same applies for the rather small Alice Salomon Hochschule. Only

for the year 2015 we were provided with numbers from Beuth Hochschule, the Hochschule für Wirtschaft

und Recht (HWR) and the Hochschule für Technik und Wirtschaft (HTW). All numbers refer to the

beginning of winter term (’Wintersemester’, abbr. WS), except for the data of FU and HU in 2015, which

refer to summer term (’Sommersemester’, abbr. SoSe). Table 3 gives an overview on the total number

of students in each year for every college and university as well as the total number of students in Berlin

(data source: Statistical Office for Berlin-Brandenburg). Figure 11 visualizes the locations and size of the

colleges and universities in Berlin. Furthermore, we have information on all dormitories in Berlin and the

number of students there for every considered year.

Table 3: Number of students in 2005, 2010 and 2015 for available colleges.

College/University WS 2005 WS 2010 WS 2015 SoSe 2015

TU Berlin 29,772 29,758 33,933 -
FU Berlin 34,936 33,518 36,674 33,173
HU Berlin 32,428 29,689 34,214 31,098

Beuth - - 12,532 -
HTW - - 13,355 -

Alice Salomon 1,611 2,512 3,422 -
HWR - - 10,009 -

Σ available colleges 98,697 95,477 144,139 -
Σ all Berlin colleges 133,024 147,030 175,651 -

As our information on ZIP totals covers not all Berlin educational institutes with students our totals

sum up only to 80 percent of the total Berlin student numbers. With respect to the total number of

students in Berlin there is precise information from official statistical sources. In order to cover the rest

of the students from other institutes we used some calibrations for the ZIP totals. As this calibration is

not relevant for the method displayed here we deferred the details of our calibrations to the appendix.

3.4 Results

Table 4 shows the estimated proportions of students living in Berlin, in the surrounding municipalities, in

other municipalities of Brandenburg and out of Berlin or Brandenburg. The proportion of students living

in Berlin has slightly but steadily increased from 82.3% in 2005 to 84.4% in 2015. In contrast to that, the

percentage of students from foreign countries and other German regions as decreased from 7.1% in 2005

to 5.0% in 2015.

3.4.1 The location of students in 2015 in different map representations

The maps in Figures 5 to 7 visualize the absolute number of students in ZIP-Code area, the kernel density

estimate computed on the basis of these counts and the estimated absolute number of students in the
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Table 4: Distribution of students of Berlin colleges living in Berlin, in the surrounding municipalities, in
other municipalities of Brandenburg and out of Berlin/Brandenburg.

2005 2010 2015

Berlin 109,436 (82.3%) 121,356 (82.5%) 148,231 (84.4%)
Surrounding municipalites 6,713 (5.0%) 7,648 (5.2%) 9,595 (5.5%)
Other municipalities of Brandenburg 7,504 (5.6%) 8,620 (5.9%) 9,059 (5.2%)
Other German regions and foreign countries 9,470 (7.1%) 9,406 (6.4%) 8,766 (5,0%)
Overall 133,024 (100%) 147,030 (100%) 175,651 (100%)

LORs of Berlin and its surrounding municipalities in 2015.

Figure 5: Distribution of Berlin students on ZIP-code area level in 2015.

All three maps display a joint pattern with a concentration of students in a belt surrounding the

center of the town. This belt can be characterized by a traditional dense settlement. It can be also seen

that some students commute from neighboring municipalities to Berlin universities. Clearly their number

declines rapidly with the distance from Berlin. However, the graphical impression of the map with ZIPs

and LORs is quite different in the Southwest (the area of Potsdam). In the LOR representation it looks

very much that there is a cluster which is densely populated with students. However, the ZIP and the

KDE representation do not exhibit such a pattern. The southwest ”cluster” is simply the result that the

entire municipality of Potsdam is taken as one LOR.

When it comes to see the individual development of the LORs with the highest student counts one

notices that they are located in special districts of Berlin (Wedding, Neukölln, Moabit, Prenzlauer Berg,

Friedrichshain and Kreuzberg). Table 5 lists the ten most popular LORs areas among students (2015)

and their development over time. They exhibit remarkable changes in their student population over time,

thus restating the necessity of studies aiming to monitor the changes of the student population at a low

level of regional aggregation. While the situation is quite stable in the districts Neukölln, Friedrichshain
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Figure 6: Kernel density estimates of Berlin students in 2015. Location of dormatories with its number
of students is added.

Figure 7: Distribution of Berlin students on administrative planning area level in 2015.
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and Pankow there is a remarkable change towards higher student counts in the district of Wedding in the

north of the central belt.

Table 5: The ten most popular urban planning areas LOR in 2015 with students counts for 2005, 2010
and 2015.

urban planning area (LOR) central locality (’Ortsteil’) 2015 count 2010 count 2005 count

Reuter Kiez Neukölln 1938 2057 1943
Samariterviertel Friedrichshain 1723 1774 1820
Rixdorf Neukölln 1711 1425 770
Westhafen Wedding 1595 1142 773
Rehberge Wedding 1553 1082 726
Soldiner Straße Wedding 1512 1006 680
Humboldthain Nordwest Wedding 1467 1042 691
Reinickendorfer Straße Wedding 1362 898 551
Pankow Süd Pankow 1329 1297 1358
Emdener Straße Moabit 1288 994 764

3.4.2 The temporal development 2005-2015

As a by product of the proposed routine one obtains the KDE maps for each of the three reference years

2005, 2010 and 2015 . These maps are displayed in Figure 8. The structure of the students settlement

remains quite stable from this representation. However, if the display the highest densities regions (’HDR’)

we will notice remarkable regional changes. Note, however, that such a representation is restricted to the

KDE approach.

Figure 9 compares the highest density regions (’HDR’) containing 25% and 50% of the students over

time. Parts of the Northwestern inner belt (Moabit and Wedding) as well as the Southern belt (Neukölln)

are now included in the 25% region in comparison to 2005. The parts of the eastern belt (southern

Prenzlauer Berg and parts of Friedrichshain and Kreuzberg) did drop out of the 25% HDR in the last ten

years. Interestingly it becomes apparent, that in general the concentration did decrease. The 25% highest

density region enfolded only 24.64 km2 in 2005. This area enlarged to 28.58 km2 in 2010 and 33.27 km2

in 2015. A similar effect is noticeable for the 50% HDR (2005: 76.88 km2, 2010: 81.45 km2, 2015: 92.40

km2).

The observations described may be due to the general increase of student numbers by almost 50 %

in Berlin. But they are also the result of a tightening housing market, which led the students to search

for an apartment in other areas where housing is affordable for them. This finding is consistent with the

previous analysis of the Senate Department for Urban Development and Environment, showing a shortage

and a price increase in the planning areas, which have lost their importance for student residency. By

contrast, Moabit, Wedding and Neukölln are propagated in the discussion on revaluation and displacement

processes that can be carried out by pioneers such as students.

Analysing the absolute differences in the number of students on the level of the urban planning areas

reveals further insights. Differences over the whole time period are visualized in Figure 10.

A very large increase can be observed here for the locality of Wedding(Northwest). The localities

Neukölln (South), Lichtenberg(East), Moabit (Northwest) and to a lesser extent Adlershof (Southeast),

Tempelhof(South) or Schöneberg (Southwest) have gained students. Strong negative trends were recorded

for Prenzlauer Berg (Northeast) and the northern part of Mitte (Center), which can be attributed to the

11



Figure 8: Kernel density estimates of students 2005 (upper), 2010 (middle) and 2015 (lower).
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Figure 9: Regions with highest student density (left: 2005, middle: 2010, right: 2015). Upper panels:
25% of students. Lower panels: 50% of students.

Figure 10: Differences in student numbers 2015 compared to 2005 on administrative planning area level.
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gentrification of these quarters. In addition, the eastern parts of Friedrichshain (East) and Kreuzberg

(Southeast) have lost students in the reference period.

4 Conclusion

Kernel density estimates are a useful tool in the business to transform case number between area systems

which are not hierarchical. Even more, they are easier to use than ad-hoc solutions which base on

unrealistic assumptions about uniform distributions of the characteristic of interest and are often carried

out manually. With the free R-Package Kernelheaping the user can do this task quite automatically.

However, density estimates, which are used here as a transmission tool, have their own merits as they

offer the display of highest density regions which can be used to identify local concentrations in the region

of interest.

The simulation of quasi-exact geo-referenced data is a necessary tool for the estimation of the kernel

densities. It turned out to be a useful tool also for the computation of case numbers in areas.

It should be noted that our algorithm is extremely useful for the construction of maps that are based

on so-called ”open data”, see https://en.wikipedia.org/wiki/Open_data. Because of confidentiality

reasons and their easy access they are often displayed as local aggregates. For example, in Berlin the open

data are presented at the level of LORs or at a grid level, see https://daten.berlin.de/datensaetze.

Appendix

The vast majority (about 80 %) of Berlin’s students in 2015 was covered by our sample of colleges and uni-

versities. Nevertheless, we would clearly underestimate the number of students in the planning areas due

to the missing colleges. A calibration is therefore necessary. The Statistical Office for Berlin-Brandenburg

provides the total numbers of students enrolled in Berlin giving us the possibility to simply upscale the

total number of students in each ZIP-code area by a factor. (e.g. multiplying by 175,651/144,139=1.22

for 2015; cf. Table 3). Beforehand, we also applied a correction for the HU and the FU in 2015 as their

student numbers refer to the summer term instead of the winter term where student numbers are typically

lower. Thus, we multiplied the numbers of these two universities by the ratio of winter term to summer

term 2015 (e.g. FU: 36,674/33,173=1.11). Another issue is the problematic comparison of the years 2005

and 2010 with 2015 as the coverage of colleges and universities is lower in these years. This is especially

important as the specific college has a definite influence on the students living address. We found out

that a large proportion of the students live within in the inner city borders but some are living near the

college as well as the kernel density estimate for 2015 exhibits (cf. Figure 11).

For the year 2015 we think that the effect of missing colleges is negliglable as we have information

on the most important ones and the remaining ones are rather small and quite similar distributed. If we

would leave out the colleges only available in 2015 we get quite different area aggregates for ZIP-Codes

near the missing colleges, e.g. ZIP-code 10318 with only 145 instead of 796 students. Figure 12 shows

exemplary the kernel density estimates of the HTW and the FU student distributions. To account for

the lower number of colleges in 2005 and 2010 we tried to adjust the number of students using the data

of 2015. To achieve this we employed a generalized linear mixed model (glmm, McCulloch and Neuhaus
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Figure 11: Locations of colleges and universities of Berlin with number of students including the kernel
density estimate of the student distribution in 2015. The border of the ’inner city’ is added to the map.
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2001) linking the number of students in each ZIP-code area considering all colleges available (Y ) with the

number considering colleges with data available for 2005 to 2015 (X). With a random intercept for each

ZIP-code (zipi ∼ N(0, τ)) we fitted a Poisson-glmm with a log-link and the following model formula:

Yi = exp(β0 + log(Xi + 1)β1 + zipi)

This formula was then used to predict Y for the years 2005 and 2010.

Figure 12: Kernel density estimates of HTW (left) and FU (right) student distributions with college site
locations.

...
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