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Abstract: We present a hierarchical coarse-graining framework for modeling semidilute polymer
solutions, based on the wavelet-accelerated Monte Carlo (WAMC) method. This framework forms
a hierarchy of resolutions to model polymers at length scales that cannot be reached via atomistic
or even standard coarse-grained simulations. Previously, it was applied to simulations examining
the structure of individual polymer chains in solution using up to four levels of coarse-graining
(Ismail et al., J. Chem. Phys., 2005, 122, 234901 and Ismail et al., J. Chem. Phys., 2005, 122, 234902),
recovering the correct scaling behavior in the coarse-grained representation. In the present work,
we extend this method to the study of polymer solutions, deriving the bonded and non-bonded
potentials between coarse-grained superatoms from the single chain statistics. A universal scaling
function is obtained, which does not require recalculation of the potentials as the scale of the system
is changed. To model semi-dilute polymer solutions, we assume the intermolecular potential between
the coarse-grained beads to be equal to the non-bonded potential, which is a reasonable approximation
in the case of semidilute systems. Thus, a minimal input of microscopic data is required for simulating
the systems at the mesoscopic scale. We show that coarse-grained polymer solutions can reproduce
results obtained from the more detailed atomistic system without a significant loss of accuracy.

Keywords: multiscale simulations; structure-based coarse-graining; wavelet transform; Monte Carlo
simulation of self-avoiding polymer chains

1. Introduction

Despite rapid advances in computational power in recent decades, realistic simulation of polymers
remains a major scientific challenge because of the enormous range of time and length scales that
must be accessed. To address this challenge, numerous solution paradigms have been introduced.
One approach has been through so-called multiresolution simulation, in which a single computational
routine that is capable of consistently simulating a system at different length scales is developed. In this
manner, different simulations can be studied at a common length scale by appropriately coarse-graining
a given model without switching between the different simulation methods. These methods are
different from common coarse-graining techniques, which are adequate for studying the large-scale
features of a system, but usually address the system at just two different levels of detail [1–9].

Recently, several approaches have been proposed that use a single computational routine to
model the system using a hierarchy of different resolutions. Pandiyan and co-workers [10] devised
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a hierarchical multiscale scheme where high temperature polyimide HFPE-30 was coarse-grained at
three different levels of detail, and the structural properties were reproduced at each of the resolutions.
Lyubarstev et al. [11] formulated a hierarchical multiscale approach that covered three different
levels of description by using inverse Monte Carlo (IMC). Yang et al. [12,13] developed structure-
and relative-entropy-based coarse-graining methods for homopolymer melts and compared the
structural and thermodynamic properties of the original and the coarse-grained (CG) systems at
various coarse-graining levels. Zhang et al. [14] developed an elegant hierarchical coarse-graining
and reverse-mapping strategy to model high molecular weight polymer melts, mapping the atomistic
chains onto a model of soft spheres with fluctuating size.

The wavelet-accelerated Monte Carlo (WAMC) method developed by Ismail et al. [15–19] is
a multiresolution approach capable of forming a sequence of resolutions of a system within one
computational scheme, allowing for feasible computation without distorting the large-scale structural
features of the system. As the wavelet transform is recursive, it produces averaged objects, which can
be further averaged to provide a much coarser representation of a given system; therefore, the explicit
construction of mapping from atomistic to CG representation is not required [19]. Thus, it is a
systematic strategy that can model a system with an arbitrary number of length scales and may be
particularly useful for systems that are so large that modeling with only two levels of coarse-graining
remains insufficient. The WAMC technique was successfully applied to freely jointed and self-avoiding
chains using up to four stages of coarse-graining. It was shown that the method preserves sensitive
measures from the fine-grained calculations such as the mean end-to-end distance and the radius of
gyration. Furthermore, as a result of the reduction in the number of degrees of freedom, independent
configurations could be generated with a speedup of up to seven orders of magnitude.

A similar approach was used by Chen et al. [20] to simulate DNA molecules by fitting the CG
potentials to analytical functions for additional computational efficiency. Maiolo et al. [21] formulated
the wavelet-based MSCG approach and demonstrated its robustness through studies modeling liquid
water and methanol. In addition to the aforementioned sequential multiscale methods, concurrent
multiscale simulation approaches have also been developed in the last decade, where the coupling
between the atomistic and CG regions allows for “on-the-fly” particle exchange [22,23].

Our goal in this paper is to extend the work on topological coarse-graining of polymer chains to
a fully-functional and hierarchical approach for coarse-graining polymers solvated by good solvents in
the semidilute regime. This is done by determining the potentials between coarse-grained units using
simulations at one length scale and deriving new potentials at different resolutions through the use of
scaling laws. This allows one to tune the WAMC algorithm so that the potentials are not recalculated
when changing the resolution, something that would not be possible for algorithms operating at fixed
levels of coarse-grained resolution. Thus, using the results of single chain statistics (zero-density
simulations), we develop potentials that are transferable to finite densities in the semi-dilute regime.
The major advantage of such an approach is that a minimal input of microscopic data or fine-grained
simulation is required to simulate polymer chains at different coarse-grained resolutions.

The remainder of the paper is organized as follows: In the first section, we give an overview of the
wavelet transform and WAMC algorithm. In the second section, we derive bonded and non-bonded
(intramolecular) potentials and parameterize the potentials for different levels of coarse-graining for
off-canticle polymer systems. In the third section, we formulate the modified WAMC algorithm for
multiple polymer chains and make an approximation to compute the intermolecular potential. In the
last section, we report the technical details of the simulations and compare the results obtained with
the WAMC algorithm to reference off-lattice simulations. The Results and Discussion section is divided
into two parts. The first deals with the simulation of single polymer chains (zero-density limit), while
the second part deals with multiple polymer chains (finite density). In the zero-density limit case,
we have considered two different scenarios: polymer chains both in an athermal solvent, where the
interaction beads are defined by a hard sphere potential, and in a good solvent, where the interaction
beads are defined by a Lennard–Jones potential.
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2. Methods

2.1. The WAMC Method

2.1.1. Wavelet Transform Representation of a Polymer Chain

A one-dimensional wavelet transform is comprised of two functions: a scaling function
α and a wavelet function β. A mathematical object is decomposed into two components that
represent averages and differences, using the functions α and β. Suppose there is a “signal”
u = [u(1), u(2), u(3), . . . , u(n)]. If the functions α and β are applied to this signal, then one obtains
a set of averages s(i) and a set of differences δ(i) [24,25]:

s(i) =
r−1

∑
k=0

α(k)u(i + k),

δ(i) =
r−1

∑
k=0

β(k)u(i + k), (1)

where r defines a length scale where α and β are nonzero functions with compact support in the
range [0, r − 1]. The coefficients of α and β are usually in the range [−1, 1], and both α and β can
assume negative values [24]. In the previous work [15,16], the Haar wavelet was used, with r = 2,
α = [α(0), α(1)] = (1/

√
2, 1/
√

2) and β = [β(0), β(1)] = (−1/
√

2, 1/
√

2) [26]. The application of
the wavelet transform is straightforward for polymer chains, as they are inherently topological in
structure [2,27]. The coarse-grained representations can be easily created using the connectivity of the
polymer chains as a template. If the input data are the set of positions of the beads within the polymer
chain, R = {r1, r2, . . . , rN}, then the following variables are obtained:

r(k)n =
1
2
[r(k−1)

2n−1 + r(k−1)
2n ],

w(k)
n =

1
2
[r(k−1)

2n−1 − r(k−1)
2n ]. (2)

r(k)n denotes a set of averages {r(k)i }
N/2(k)
i=1 , and w(k)

n denotes a set of differences {w(k)
i }

N/2k

i=1 , where the
superscript notation (k) denotes the number of times that the Haar wavelet transform has been
applied. The averaging operator in Equation (2) creates a new coarse-grained bead r(k)n at the center
of mass of the beads at r(k)2n−1 and r(k)2n , and the differencing operator returns the distance between the
position of one of the original particles and the center of mass. Figure 1 shows the coarse-graining
of a self-avoiding random walk in two dimensions, as described by the wavelet transform method.
After two iterations, four sites are created that lie on quarter-integer lattice points. We neglect the
contributions of the differencing variables in the remainder of this work.

2.1.2. Wavelet-Accelerated Monte Carlo Algorithm

The main idea behind the wavelet-accelerated Monte Carlo (WAMC) algorithm is the division
of the full-atomistic simulation into different stages, where each stage is treated separately at
coarse-grained resolution [15,16]. The algorithm is detailed as follows:

• The WAMC algorithm starts with a full-atomistic simulation of a smaller segment of the initial
chain with Nb,1 � N beads. A simulation of a much shorter segment of the fully-atomistic chain
helps cut down on the computational cost. Thus, each bead still has an effective size Ne,1 = 1,
where the subscript ”1” indicates the simulation stage.

• The subsystem is sampled using the pivot algorithm [28].
• The wavelet transform is applied K1 times to obtain the positions r(K1) of each coarse-grained bead

at regular intervals of O(Nb,1) steps. The effective size of the coarse-grained bead corresponds to
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Ne,2 = 2K1 beads in the fully-atomistic representation. The distribution representing interactions
between these “virtual” coarse-grained beads, which are also referred to as “superatoms”,
is calculated.

• The probability distributions obtained from the the first stage are then used in the second stage of
the (real) simulation that consists of a chain of length Nb,2 beads (Nb,2 = N/Ne,2). The effective
size of the coarse-grained bead is Ne,2, and the total effective chain length is Nb,2 × Ne,2.

• If desired, further coarse-graining of the system occurs by transferring the probability distributions
obtained from the current stage to the next stage of resolution as discussed above.

Figure 2 is the schematic representation of the original WAMC method.

(a) (b) (c)

Figure 1. Coarse-graining of a random walk in two dimensions using the wavelet-transform method.
(a) Random walk on a lattice representing the “atomistic” polymer chain (Ne,1 = 1 and Nb,1 = 16);
(b) coarse-grained chain after one level of coarse-graining (Ne,2 = 2 and Nb,2 = 8); (c) coarse-grained
chain after two levels of coarse-graining (Ne,3 = 4 and Nb,3 = 4). Ne,k corresponds to the No. of beads
in the full-atomistic chain that are coarse-grained, and Nb,k corresponds to the total No. of beads at the
k-th simulation level. Although the figure shows the application of the wavelet transform on a lattice,
our simulations are performed off-lattice.

Figure 2. Schematic representation of the original WAMC method.

2.1.3. Translate-Jiggle Algorithm

The translate-jiggle algorithm [29] is used to generate trial conformations of the coarse-grained
chain since the length of an individual bond does not change if the pivot algorithm is used, which makes
the pivot algorithm non-ergodic for sampling chains where the bond-length is variable. Thus, a different
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algorithm is required to simulate a coarse-grained polymer chain, which requires correct sampling of
the probability distributions obtained from the original level. In the translate-jiggle algorithm, a bead
is selected randomly (k) and is given a random displacement. As a consequence, the bond between
between beads k and bead k− 1 will be either stretched or compressed, which ensures that the previous
bond lengths between remain constant. After defining the displacement vector for bead k, all the
remaining beads (k + 1, k + 2,..., N) undergo the same vector transformation. The resulting chain is
then tested for energy differences using the Metropolis Monte Carlo algorithm [30] to determine if the
proposed configuration is either accepted or rejected. Since the internal coordinate distributions were
already calculated in the preceding stage of the WAMC algorithm, a new bond length and orientation
(ri, φi, θi) are selected from these distributions to be used in the translate-jiggle algorithm. This ensures
that the coarse-grained model reproduces the aforementioned distributions given sufficient sampling.

2.2. Potentials in a Coarse-Grained System

The complete set of CG interaction functions can be separated into bonded and non-bonded
interactions, which are each obtained separately. The potential energy of a coarse-grained chain can be
written as:

UCG = UB
CG + UNB

CG , (3)

where the superscripts B and NB refer to the bonded and non-bonded interactions, respectively [31].
First, we discuss the non-bonded potentials, with a discussion of the bonded interactions
following later.

2.2.1. Non-Bonded Potentials

There are various methods available in the literature for constructing non-bonded (intramolecular)
potentials between CG beads. One notable approach is to consider the polymer coils as soft particles
and to replace the detailed interactions between the segments with an effective interaction acting
between the center-of-mass of polymer coils [32,33]. This effective interaction is equivalent to the
potential of mean force obtained by Boltzmann inversion of the center of mass distribution of the
polymer chains. The resulting potential is finite at all distances and has a range on the order of the
radius of gyration. In this work, we use a method similar to the method developed by Dautenhahn
and Hall [34]. This method was designed to calculate the potential to a high degree of accuracy, which
is desirable in our work as we want to correlate the potential for different polymer sizes. In the next
sections, we report the technical aspects of this method, and how we obtain a universal potential
function from the functions calculated for different values of Ne.

Construction of Coarse-Grained Force Fields

A self-avoiding polymer chain of length Ne monomers, where Ne is the number of monomers
coarse-grained in the original chain of length Nb × Ne, is simulated using the pivot algorithm and used
to generate two sets of 500 conformations of the polymer chain. In this work, the hard-sphere radius is
taken as σ = 0.5. Therefore, two monomers are considered to overlap if they are separated by a distance
less than rcut = 2σ = 1. Independent conformations are generated each time the number of accepted
pivot algorithm moves is equal to the chain length [35]. In this way, 1000 independent conformations
are generated, and two sets of single-chain conformations, each containing 500 conformations for
Ne = 32, 64 and 128, are used in calculating U(r). One conformation from each set is placed with its
center of mass a given distance at a random orientation. The distance between the centers of mass of
two chains is varied from 0–5-times the average radius of gyration Rg of the chain with spacing equal
to 0.2Rg. The following relation is used to calculate the statistical weight of each configuration at a
given separation:

W(r)
i = exp

(
−φi(r)

kBT

)
, (4)
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where Wi(r) is the weighting of the two-chain configuration i, r is the distance between the centers of
mass of the two chains and φi(r) is the potential between the two chains in configuration i. The potential
of mean force between the chains, U(r), is calculated as a function of the distance between the two
centers of mass using the following relation [34]:

U(r)
kBT

= − ln
∑M

i=1 Wi(r)
M

(5)

where M is the total number of two-chain configurations used at that particular distance.
For self-avoiding chains with no overlap between the conformations, the potential is φi(r) = 0,
and the statistical weight of the configuration is Wi(r) = 1. If the two chains overlap, then φi(r) = ∞
and Wi(r) = 0.

Figure 3 shows the potential obtained for three different polymer chains of length
Ne = 32, 64 and 128. As expected, the potential is short-ranged and finite even at small separations.
There is no attractive potential between the chains. There is a weak repulsion at very small distances
indicating that some of the conformations are able to interpenetrate without monomer overlap when
the centers of mass of the two chains coincide. As the chain length increases, there is an increase in
the number of such conformations since the chains can arrange themselves in an increasing number
of different ways. According to Equation (5), the repulsive potential decreases as the number of such
configurations increases. As we are only working with a two-chain system or an infinitely-diluted
system, the potential of mean force calculated above represents the true potential between the polymer
“soft particles”, since entropy has a negligible contribution to the free energy of the interaction. At finite
densities however, the many-body interactions produce a nonzero entropic contribution, and this
relation no longer holds.
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Figure 3. Non-bonded potential U(r) for CG beads of size Ne = 32, Ne = 64 and Ne = 128.

Universal Scaling

The motivation for using wavelet-accelerated Monte Carlo (WAMC) is to analyze the polymer
system on different length scales, without the need for recomputing the potentials as the scale is
changed. Hence, it is important to have a universal function that gives the potential function at any
length scale using scaling laws. Since the radius of gyration is a measure of the size of the polymer
chain and is often used to scale results for the different chains, we normalize the distance by the root
mean square radius of gyration of the coarse-grained bead of size Ne. Figure 4a shows the potentials
for athermal chains of length Ne = 32, 64 and 128 with the normalized distance. It can be seen that the
potential functions for different chain sizes are considerably different for r/rg < 2. Figure 4b shows
that the different potentials can be collapsed onto a single function by scaling the energy by N−0.19

e .
Consequently, we do not need to recalculate the potential. The exponent −0.19 was determined by
using trial and error. A plot of the variance in the values of U(0) for the three chains after scaling is
shown in Figure 5.
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Figure 4. “Universal” functions for the CG non-bonded potential. (a) Coarse-grained non-bonded
potential obtained from chains of length Ne = 32, 64 and 128, with distance normalized by the radius
of gyration Rg; (b) Collapse of coarse-grained non-bonded potential obtained from chains of length
Ne = 32, 64 and 128 showing an N0.19

e dependence on the magnitude of the potential.
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Figure 5. Variance in the potential U(0) for chains with Ne = 32, 64 and 128 as a function of the
exponent ζ used to fit a scaling relation of the form N−ζ

e .

2.2.2. Bonded Potentials

While non-bonded potentials act between pairs of CG beads separated by three or more
intervening beads, we assume that nearest, next-nearest and next-next-nearest neighbor pairs are
governed by separate interaction potentials:

Ubonded = Ui,i+1 + Ui,i+2 + Ui,i+3, (6)

where the three terms indicate nearest neighbor (or 1–2), next-nearest neighbor (1–3)
and next-next-nearest neighbor (1–4) interactions, respectively. These interactions are computed
in such a way that the distributions of the 1–2, 1–3 and 1–4 distances are identical in the atomistic
and coarse-grained cases. If the distributions computed from the atomistic simulation are Patom(ri)

and the distributions from the coarse-grained system are PCG(ri), then the potentials should be such
that Patom(ri) = PCG(ri). We note that bond, angle and torsion potentials are not used to calculate the
energy of chains. However, as discussed earlier, during the “translate-jiggle” moves, when a bead
is randomly displaced, the values of (r, θ, φ) can be taken from the distributions of the bond length,
bond angle and torsion angle calculated from the atomistic simulations. This ensures that lower energy
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states are adequately sampled with respect to angle and dihedral energy functions. The total potential
energy of a single polymer chain can be written as:

Uintra =
N−1

∑
i=1

φbonded
i,i+1 (rij) +

N−2

∑
i=1

φbonded
i,i+2 (rij) +

N−3

∑
i=1

φbonded
i,i+3 (rij) +

N−4

∑
i=1

N

∑
j=i+4

φnon−bonded
i,j (rij) (7)

The neighbor distributions, as well as the cumulative bond length, angle and dihedral angle
distributions, which are used in the translate-jiggle moves, are calculated using a self-avoiding polymer
chain of length N = 1024 for different values of Ne. The potentials are determined through the use of
an iterative procedure known as reverse Monte Carlo [6,36], which can compute the interactions when
there are interdependent distributions and the entropic contributions cannot be neglected in the free
energy of the interaction. In the following sections, we give an overview of the method and find the
common functions for the potentials obtained for different values of Ne. Figure 6 shows the various
distributions that have been obtained for use in the reverse Monte Carlo routine.
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Figure 6. Distribution functions between the CG beads of size Ne = 32, 64 and 128 required for
reverse Monte Carlo. (a) Bond-length distributions; (b) bond-angle distributions for r < 1.5N1/2

e ;
(c) bond-angle distributions for r > 1.5N1/2

e ; (d) torsion-angle distributions; (e) 1–2 neighbor
distributions; (f) 1–3 neighbor distributions; (g) 1–4 neighbor distributions.
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Reverse Monte Carlo Simulations

A reverse Monte Carlo simulation of a coarse-grained system updates the potential according to:

φnew(r) = φold(r) + f kBT ln

(
P(r)measured

P(r)target

)
(8)

where f = 0.2 is chosen to ensure stable convergence. In this method, an initial guess of the potential
is first used, and the simulation yields a probability distribution function P(r)measured, which may be
different from the target distribution function P(r)target, but can also be used to obtain a first correction
to the potential. This process can be iterated until the distribution function and the potential are
self-consistent. This method has been used to calculate the 1–2, 1–3 and 1–4 interactions, with target
distributions calculated from the atomistic system. In this work, the initial guess for the potential
is taken to be φ(r) = 0. This proved to be a reasonable assumption as the measured distributions
converged to the target distributions in just a few iterations. The potentials obtained after this procedure
are shown in Figure 7 for Ne = 32, 64 and 128. In the next section, we find common functions for the
potentials obtained by polynomial fitting, to avoid further RMC calculations when changing the scale
of coarse-graining.
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(a) 1-2 potential
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(b) 1-3 potential
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(c) 1-4 potential

Figure 7. Potentials for bonded interactions between (a) 1–2 neighbors, (b) 1–3 neighbors and
(c) 1–4 neighbors, as obtained from nine iterations of reverse Monte Carlo. Simulation results are
shown in black, polynomial fits in red.

Universal Scaling

To obtain the universal functions, we parameterize these potentials by normalizing the distance
with the radius of gyration of the CG bead. Thus, the bonded and non-bonded potentials both have
common functions, which can be tuned for different sizes of the coarse-grained bead. This ensures
that the potentials need not be recalculated as the scale of the system is changed. We fit the 1–2
potential to a quadratic polynomial and the 1–3 and 1–4 potentials to a sixth-degree polynomial
(see Figure 7). If the probability of finding the neighbors at a certain distance is zero, then the potential
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at that distance is not calculated. Hence, the softness of these potentials as r → 0 remains unclear
due to the absence of data at these distances. It can be seen in Figure 7c that below r/Rg < 0.5,
the potential goes to infinity, which corresponds to zero probability of finding the next-nearest
neighbors in Figure 6g. This assumption works well, giving accurate results and retaining the
distributions in the coarse-grained model. The 1–2 potential shows a very small attractive well
(−0.1kBT) at r/Rg ≈ 0.5. Overall, the potential varies from −0.1kBT to 0.4kBT, which is quite small.
However, as mentioned earlier, during the translate-jiggle moves, we used the values of r, θ and φ

from the distributions calculated from the atomistic simulation. This ensures that the bond length
distributions are sampled effectively, leading to a lower bond energy. The 1–3 and 1–4 potentials
show an oscillatory behavior, with a strong repulsive core followed by a small attractive well. The 1–3
potential ranges from 0.2kBT at r/Rg = 1 to−0.1kBT around r/Rg = 1.7, while the 1–4 potential varies
from kBT at r/Rg = 1 to −0.7kBT around r/Rg = 2.7. The 1–2 and 1–3 neighbors pay a significantly
lower energy penalty compared to 1–4 neighbors for r/Rg ∼ 1. Since the 1–4 potential has a much
higher energy penalty for r/Rg ∼ 1, it makes it highly unlikely that the 1–4 pairs approach each other.
The range of the repulsive core in the 1–4 potential is comparable to that of the non-bonded potential.

3. Extension to Semidilute Systems

In the semidilute regime, additional interactions must be added to the coarse-grained
representation when compared with the single-chain model, which have to be evaluated separately.
To compute these interactions, a few approximations are introduced. Our aim is to develop these
potentials from the knowledge of single-chain statistics so as to enable transferability of the force field
to different densities.

3.1. Semidilute Solutions

The coarse-grained representation of many-chain systems consists of intramolecular interactions
between coarse-grained beads in a single chain and intermolecular interactions between beads in
different chains:

Utotal = U
′
intra + U

′
inter, (9)

where

U
′
intra =

M

∑
i=1

Uintra, (10)

and

U
′
inter =

M−1

∑
i=1

Nb

∑
a=1

M

∑
j=i+1

Nb

∑
b=1

Uinter, (11)

where Uinter is the pairwise potential between two beads on different chains, M is the total number
of chains in the system and Nb is number of coarse-grained beads in each chain. The intermolecular
potential acts between all the beads of one particular chain and all the beads in the other chains.

There are different ways to construct the intermolecular potential. The most obvious way is to
simulate the fully-atomistic system and construct an inter-segment distance distribution function,
which can then be used to obtain the potential through Boltzmann inversion. This is a particularly
useful approach for simulating the system on one length scale, although it becomes cumbersome if the
scales of the system are continuously changed, as is done in this work.

As mentioned earlier, our goal is a potential that can be easily transferred to different densities
and resolutions. In light of this requirement, we assume that the intermolecular potential is equal to
the non-bonded potential calculated in the previous section, so that Uinter = φnb. This assumption
holds for dilute systems, where many-body interactions can be neglected, and the potential of mean
force represents the actual potential. Furthermore, as shown by Pierleoni et al. [37,38], this assumption
works well even for semidilute systems. If the number Nb of coarse-grained beads per chain is such
that the coarse-grained bead density is below the overlap density of the coarse-grained beads, then it
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is expected that zero-density potentials between different chains can be safely used (see the Appendix
for a justification of the conditions under which the zero-density potentials can be used). Under such
assumptions, the total energy can be written as:

Utotal =
M

∑
i=1

Uintra +
M−1

∑
i=1

Nb

∑
a=1

M

∑
j=i+1

Nb

∑
b=1

φnb. (12)

With the distributions from the single chain, we can simulate a coarse-grained semidilute polymer
system. We expect the force field to work for all polymer volume fractions satisfying Equation (A3)
under athermal conditions. The force field has to be recalculated for different temperatures; however,
at different densities and levels of coarse-graining at a given temperature, it should yield the
correct results.

3.2. Modified WAMC Algorithm for Semidilute Solutions

The WAMC algorithm has been previously employed to model a single freely-jointed chain [15,16].
In this work, we have modified the algorithm to simulate semi-dilute solutions of polymer chains.
The algorithm is outlined as follows:

• We define a dilute/semi-dilute polymer system containing M polymer chains, where each polymer
chain consists of N beads.

• The first stage is an atomistic simulation in the limit of zero density to calculate intermolecular
and intramolecular potentials discussed in the previous sections. The number of atomistic beads
represented by a coarse-grained bead is Ne = 1 in the first stage, by definition.

• Next, the finite density polymer system is coarse-grained by iterating Equation (2) K1 times,
so that the size of each coarse-grained bead is Ne = 2K1 in the second stage. We then calculate the
true potentials from the universal functions shown in Figures 4 and 7.

• If the level of coarse-graining is sufficient, then we can stop after this coarse-grained simulation.
Otherwise, we apply the wavelet transform (Equation (2)) again K2 times to obtain coarse-grained
beads with an effective size of Ne = 2K2 .

Figure 8. Schema of the modified WAMC algorithm.
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Figure 8 shows a flowchart describing the various steps of the modified algorithm.

4. Results and Discussion

4.1. Single Chains

4.1.1. Technical Details

We perform simulations of off-lattice polymer chains of varying lengths using the atomistic
freely-jointed model and the coarse-grained model under two levels of coarse-graining Ne = 32
and 64. The trial conformations of the freely-jointed chain model are generated using the pivot
algorithm, and the Metropolis criterion is subsequently used to accept or reject the trial conformation.
In an athermal solvent, a trial conformation is rejected if any two monomers appear closer than
one distance unit. We test the WAMC model for polymer chains in good solvents. Although our
simulations do not explicitly include solvent molecules, their interaction with the polymer chains is
effectively accounted for by considering a Lennard–Jones type of potential between the monomers
that has a small attractive well.

By changing the well depth ε/kBT, the interaction of the solvent with the polymer chains is
taken into account. Thus, ε/kBT can be viewed as the polymer-polymer potential modified by
polymer-solvent and polymer-polymer interactions. We assume that there is no energetic interaction
between covalently connected beads, while all other neighbors interact with a truncated LJ potential:

U(rij) = 4ε

((
σ

rij

)12

−
(

σ

rij

)6
)

for rij ≤ ro

= 0 for rij > ro

(13)

where rij is the distance between two monomers, ε and σ are the energy and distance parameters
associated with the potential model and ro is the distance at which the potential is truncated.

The parameters in this study are taken from a study of polyethylene [39], in which a single sphere
constituted 3.5 methylene units where ε = 400 and σ = 4.6 Å. The cutoff radius ro was taken to be 2.5 σ.
Furthermore, the important physical quantity in our simulation is the well depth ε/kBT, which defines
the attractive part of the LJ potential. The greater |ε/kBT| is, the greater the attraction. We simulate
the polymer chains for three values of |ε/kBT|: 0.0 (athermal system), 0.10 and 0.15. This represents
the good solvent regime, which was determined by calculating the theta point, which lies around
ε/kBT ≈ −0.25. We simulate freely-jointed chains of length N = 25 = 32 to N = 213 = 8192 for
ε/kBT = 0.0, −0.10, −0.15 and determine the scaling factor for each system: ν = 0.604, 0.599 and 0.590
for ε/kBT = 0.0, −0.10 and −0.15, respectively.

Using these scaling relations, we determine the size of the chains of length N = 214 and
215. The second set of simulations is performed on the coarse-grained model of a freely-jointed
chain at three different values of ε/kBT under two levels of coarse-graining: Ne = 32 and 64,
where Ne represents the size of the CG bead or number of monomers coarse-grained. The total
number of beads in the coarse-grained model was Nb = N/Ne. For the coarse-grained simulations,
the “translate-jiggle”algorithm described in Section 2.1.3 was used. The potential functions for different
Ne were extracted from the fitted functions for the force field derived.

4.1.2. Comparison of Coarse-Grained and Atomistic Results

We compare the atomistic model and the coarse-grained model by calculating the mean squared
radius of gyration and the Flory exponent ν in the polymer scaling law, R ∼ Nν. The calculation of the
radius of gyration provides a good platform to compare the original “atomistic” and coarse-grained
models, as the size of the polymer coil should be similar in the two models. Table 1 shows the
mean-squared radius of gyration obtained from the atomistic and coarse-grained models under
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different solvent conditions, as a function of ε/kBT. It can be seen from these results that the values
obtained from the coarse-grained models agree quite well with the results from the atomistic simulation.
The values obtained from the CG simulation lie within 3% of the values obtained from the freely-jointed
chain simulations.

Table 1. Radius of gyration for polymer chains of different lengths calculated using the atomistic model
and coarse-grained model under two levels of coarse-graining, for ε/kBT = 0.0, −0.10 and −0.15.

N ε/kBT = 0.0 ε/kBT = −0.10 ε/kBT = −0.15
Ne = 1 Ne = 32 Ne = 64 Ne = 1 Ne = 32 Ne = 64 Ne = 1 Ne = 32 Ne = 64

256 177 184 165 143 142 139 133 132 125
512 410 422 378 322 325 316 298 299 283
1024 957 990 916 755 759 716 659 697 641
2048 2198 2283 2130 1732 1737 1657 1493 1591 1481
4096 5052 5151 4895 3973 3932 3772 3583 3618 3373
8192 11,767 11,858 11,243 9006 8935 8548 7864 8070 7613

16,384 27,184 27,240 26,190 20,662 20,468 19,500 17,818 18,282 17,249
32,768 62,799 62,582 61,009 47,404 46,893 44,490 40,370 41,424 39,083

As ε/kBT decreases, the mean-squared radius of gyration decreases, due to the increased attractive
interactions between monomers. While the general agreement is quite good, some discrepancies occur
for large chains, particularly for Ne = 64. The discrepancy is due to end effects induced by the
coarse-graining procedure. We expect the observed radius of gyration, 〈R2

g〉CG, of a chain of length
N for a coarse-grained simulation to be smaller than the value obtained without coarse-graining,
〈R2

g〉atomistic, because the chain’s “tails”, representing the distance between the beginning of the
atomistic chain and the first coarse-grained bead and between the end of the atomistic chain and the
last coarse-grained bead, are effectively excluded. As the eliminated length increases with the level of
coarse-graining, thus the disagreement in the results should increase, as well. The Flory exponent ν

for each system was obtained by fitting this data to the power law
〈

R2
g

〉
∼ N2ν, as shown in Table 2.

The scaling factors are almost identical in the three models for a given value of ε/kBT. This again
shows that the behavior of the polymer is correctly predicted using coarse-grained models, although
there can be a small discrepancy in the actual values.

Table 2. Flory exponent obtained using atomistic and coarse-grained models.

ε/kBT ν

Atomistic CG, Ne = 32 CG, Ne = 64

0.0 0.604 0.601 0.610
−0.10 0.599 0.598 0.595
−0.15 0.590 0.595 0.593

4.2. Semidilute Solutions

4.2.1. Technical Details

To demonstrate the applicability of the wavelet-accelerated Monte Carlo method for semidilute
solutions, we perform off-lattice simulations of a freely-jointed chain model and coarse-grained models
at polymer volume fractions φ = 0.69 and 1.72, representing both dilute and semidilute regimes.
We consider chains of length N = 512 under athermal conditions in all simulations and do not allow
individual monomers to overlap.

The trial conformations of the “atomistic” system are generated using a combination of pivot and
translation moves. As the system has a finite density, the polymer chain can be translated by some
distance to generate a new conformation. A total of one hundred million MC cycles is performed,
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where one MC cycle refers to a sweep of M chains one by one. After the chain is translated or rotated
(using the pivot algorithm), it is checked for overlaps with the other chains and also with itself in the
case of pivot moves. To generate independent confirmations, we store a confirmation after every one
thousand accepted moves. The coarse-grained system is constructed analogous to the full monomer
system at the same polymer volume fraction.

We consider three coarse-grained models, with Ne = 16, 32 and 64 in both cases. The trial
conformations of the coarse-grained system are generated using “translate-jiggle” and translation
moves. Unlike the atomistic system, whose energy function is just a hard-sphere potential,
the coarse-grained potential is nontrivial and thus requires the Metropolis criterion to accept or
reject the proposed configurations. A total of ten million MC cycles was performed on the system.
In both systems, periodic boundary conditions were employed in all the directions. Table 3 shows the
specific details of the systems studied in this work.

Table 3. Specific details of the systems studied in this work. Here, N denotes the size of a single chain,
M the No. of chains and L the size of the box.

φ N L M

0.69 512 100 20
1.72 512 100 50

4.2.2. Comparison of Coarse-Grained and Atomistic Models

To compare the coarse-grained and the atomistic models, we calculated the intra-segment
distribution functions, the center-of-mass radial distribution functions and the inter-segment radial
distribution functions. The intra-segment distribution function is defined as the pairwise distance
distribution between segments of length Ne in a single chain, averaged over all M chains in
the system. For a coarse-grained system, this would just be the pairwise distribution function
between coarse-grained beads in a single coarse-grained chain, averaged over all of the chains.
The inter-segment radial distribution function describes, on average, how the segments of size Ne in
the system are radially packed around each other. In the coarse-grained representation, this is the
same as calculating the pair correlation function between a coarse-grained bead of one chain and all of
the coarse-grained beads on the other chains, averaging over all beads that are present in the system.
In addition to the above quantities, the average radius of gyration:

Rav
g =

∑M
i=1 R(i)

g

M
(14)

was determined, where R(i)
g is the radius of gyration of chain i.

Figure 9 compares the intra-segment distribution functions for φ = 0.69 and 1.72 using both the
fully-atomistic and the coarse-grained models. It can be seen that the results from CG simulations
are in good agreement with the fully-atomistic simulations for both φ = 0.69 and 1.72. Furthermore,
increasing the density has no major effect on the coarse-grained distribution functions with only slight
discrepancies between the two models at short distances due to the approximations introduced while
computing the potentials. As discussed in the previous section, the actual intramolecular function
is quite complex, and at higher densities, these approximations are likely to break down due to
many-body correlations. As we move towards higher coarse-graining levels, from Ne =16–64, there is
no change in the results aside from an increase in the probability of finding a segment within a chain.
The agreement between the coarse-grained model with Ne = 64 and the non-coarse-grained model is
quite consistent.

Figure 10 shows the inter-segment radial distribution functions obtained from the atomistic and
with coarse-grained simulations for φ = 0.69 and 1.72. Again, the inter-segment distributions from
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the coarse-grained simulations are in extremely close agreement with the atomistic distribution for all
values of Ne, showing that the coarse-grained model reproduces the center-of-mass pair correlation
functions obtained from atomistic model with great precision. This further justifies the use of the
intermolecular potential as the potential of mean force between two polymer chains of size Ne at these
densities. Provided that the entropic contribution to the free energy of this interaction is negligible,
this can be used as the intermolecular potential between the coarse-grained beads of different chains.
These findings are in agreement with the results obtained by Pierleoni et al. [37,38], who found that
many-body correlations are absent provided that the coarse-grained bead density is below the overlap
density of the coarse-grained beads.
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Figure 9. Intra-segment distribution functions showing the comparison between atomistic and
coarse-grained models: for φ = 0.69 with (a) Ne = 16; (b) Ne = 32; (c) Ne = 64; and φ = 1.72
with (d) Ne = 16; (e) Ne = 32; and (f) Ne = 64.

The results of the intra-segment distributions and inter-segment RDF’s prove that the allowed
moves in the coarse-grained simulation adequately sample the phase space of the underlying atomistic
model. Furthermore, the CG force field is clearly transferable to different densities. It should be
noted that we have only sampled a single freely-jointed chain to obtain the probability distributions
used to simulate semidilute solutions at different resolutions. The center-of-mass radial distribution
functions are shown in Figure 11. This result is of considerable importance as the center-of-mass radial
distribution function can be used to obtain the second virial coefficient of the system. The figure shows
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that there is a satisfactory agreement between the atomistic and coarse-grained systems. As the density
of the system increases, however, the assumption breaks down, and discrepancies at low r/rg begin to
appear, as shown in Figure 11b.
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Figure 10. Inter-segment RDF’s showing the comparison between atomistic and coarse-grained models
for (a) φ = 0.69 and (b) φ = 1.72.
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Figure 11. Center-of-mass RDF’s showing the comparison between atomistic and coarse-grained
models for (a) φ = 0.69 and (b) φ = 1.72.

Table 4 shows the average radius of gyration obtained from the atomistic and coarse-grained
simulations. In the zero-density limit, the radius of gyration of a chain with N = 512 monomers
obtained is 20.2. As the density of polymer chains increases, the average radius of gyration of a single
chain decreases due to additional correlations with the other chains. This reduction in the radius
of gyration is captured precisely in the coarse-grained model at all resolutions. As discussed in the
previous section, however, the coarse-grained values will be slightly underestimated when compared
with the atomistic results.

Table 4. Average radius of gyration obtained from the atomistic and coarse-grained system, at different
polymer volume fractions φ.

Model

2–5 φ Atomistic CG, Ne = 16 CG, Ne = 32 CG, Ne = 64

0.0 20.23 20.08 19.87 19.57
0.69 17.12 16.98 16.75 16.59
1.72 16.61 16.24 16.04 15.98
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5. Conclusions and Outlook

We have extended the wavelet-accelerated Monte Carlo approach to a semi-dilute system of
polymer chains under athermal conditions. It was demonstrated that such a coarse-graining scheme is
effective and that one can access different length scales conveniently within a single computational
routine. The bonded and non-bonded potentials were obtained from zero density simulations, which
were then parameterized using different scaling factors. This enables one to use the same potential
functions at each of the different simulation scales, circumventing the need for recalculation when
moving from one scale to the next.

To extend the wavelet transform approach to semidilute system of polymer chains, a significant
approximation was made in which the intermolecular potential was assumed to be equal to the
non-bonded potential. We show that this approximation is quite reasonable provided that the
coarse-grained bead density is below the overlap density of the coarse-grained beads. Thus, using the
results of the single chain statistics, we are able to simulate semidilute systems at different densities
and length scales. The results from the coarse-grained and atomistic simulations were compared
and showed that the coarse-grained polymer systems can reproduce results to a reasonable degree
of accuracy.

Future works might extend the above approach for polymer solutions in concentrated regimes.
The major challenge here would be to compute intermolecular potentials that are “universal” and can
be transferred to different densities. One option would be to use the iterative Boltzmann inversion (BI)
approach to derive an effective coarse-grained potential for a given (nonzero) density. Then, at each
coarse-grained stage, one could use the potential from the previous stage as the starting approximation
and then perform a few additional BI iterations to reach the final potential at that particular resolution.
A somewhat similar method known as multi-state iterative Boltzmann inversion was developed by
McCabe et al. [40]. One can also introduce a reverse-mapping scheme within the WAMC framework
in precisely the same way. Using the probability distributions for the bond, angle, dihedral and
non-bonded terms obtained during the coarse-graining procedure, one can reconstruct the fine details
of the polymer that are consistent with both the geometric constraints and energetic considerations.

We would also like to extend the method to study chain dynamics using molecular dynamics
simulations. The recent work by Hsu et al. [41,42], which shows that parameterizing non-bonded
interactions allow for the good approximation of chain dynamics, could be used as the basis for such
a study.

Acknowledgments: We are thankful to the high-performance computing service at RWTHAachen for providing
the computational resources.

Author Contributions: Animesh Agarwal performed the computations, and all the authors developed the idea.
Animesh Agarwal and Ahmed E. Ismail designed the research plan, and all the authors wrote the paper.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Validity of Using Zero-Density Potentials for the Intermolecular Potential

The concentration of polymer chains is

ρb =
M
V

, (A1)

and the overlap concentration is

ρ∗ =
3

4πR3
g

, (A2)

where Rg = bNν is the radius of gyration. The semidilute regime exists when

φ =
ρb
ρ∗

=
4πMR3

g

3V
> 1. (A3)
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We can think of this system as composed of superatoms or coarse-grained beads, where the local
bead density permits use of the non-bonded potential as the inter-chain potential. If a chain of L
monomers is partitioned into Nb CG beads with Ne monomers per bead, the local concentration of the
beads is

ρCG,b =
MNb

V
, (A4)

and the bead overlap concentration is given by

ρ∗CG = ρ∗ =
3

4πR3
g

. (A5)

If the radius of gyration is taken to be Rg = bNν
e , where b is the Kuhn length that appears in the

scaling of radius of gyration, then:

φCG =
ρCG,b

ρ∗CG
=

MNb4πb3N3ν
e

3V
(A6)

and therefore
φCG

φ
=

Nbb3N3ν
e

b3N3ν
= Nb

(
Ne

N

)3ν

= N1−3ν
b . (A7)

Thus,
φCG = φN1−3ν

b . (A8)

For athermal and good solvents, the Flory exponent ν ≈ 0.588. Upon substitution in the above
equation, this yields:

φCG = φN−0.76
b (A9)

Thus for any polymer volume fraction φ > 1 which is a semidilute regime, Nb can be chosen
such that the coarse-grained bead overlap volume fraction φCG < 1, and hence the beads do not
overlap. It is therefore reasonable to neglect many-body interactions among the coarse-grained beads
and to represent intermolecular interactions by the zero-density pair potential. Thus, the total energy
now becomes:

Utotal =
M

∑
i=1

Uintra +
M−1

∑
i=1

Nb

∑
a=1

M

∑
j=i+1

Nb

∑
b=1

φnb. (A10)
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