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It is well known that any given density ρ(x) can be realized by a determinantal wave function for N particles.
The question addressed here is whether any given density ρ(x) and current density j(x) can be simultaneously
realized by a (finite kinetic energy) determinantal wave function. In case the velocity field v(x) = j(x)/ρ(x) is
curlfree, we provide a solution for all N , and we provide an explicit upper bound for the energy. If the velocity
field is not curl-free, there is a finite energy solution for all N � 4, but we do not provide an explicit energy bound
in this case. For N = 2 we provide an example of a non-curl-free velocity field for which there is a solution and
an example for which there is no solution. The case N = 3 with a non-curl-free velocity field is left open.
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I. INTRODUCTION

A question that arose in the early stages of density-
functional theory is whether, given the one-body density ρ(x)
of an N -body system of fermions, there exists an N -body
wave function (with finite kinetic energy) whose reduced
one-body density equals the given one. More particularly,
can this be accomplished with a determinantal wave function
(under the obvious, necessary assumption, which will be made
throughout, that ∇√

ρ is square integrable).
This article provides a proof of the existence of a fermionic

N -body determinantal state with a given one-body density
ρ(x) and a given one-body current density j(x) provided the
velocity field v(x) = j(x)/ρ(x) is curl-free. When N � 4, we
prove the existence of solutions even if the velocity field is
not curl-free, like when there are vortices, for example. The
proof is much more complicated in this case. To avoid dwelling
on unenlightening points of mathematical rigor, definitions of
function spaces, smoothness, and other technical questions
are left to the reader. We do assume the obvious requirement
that the support of j is contained in the support of ρ and,
for simplicity, that j, ρ, and v are differentiable. Actually we
assume that ρ and v are given and thus we let the current be
defined as j = ρv.

In addition we provide a solution for an example with N =
2 in which v(x) is not curl-free, which implies that “curl-
freeness” is not a necessary condition for finding a solution
when N = 2. Again in the N = 2 case, an example is provided
for which no solution exists. This is contrary to a claim made
without proof in Ref. [1] [see the discussion preceding relation
(A1) there] that there always is a solution. The same claim
was made in Ref. [2] [see the sentence containing relation (54)
there]. Presently, it remains an open problem whether solutions
always exist when N = 3.

To avoid possible confusion, we emphasize that we are
discussing only the existence of determinantal functions with
the stated density and current; this state is not required to be the
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ground state of any Hamiltonian. We also note that we consider
only spinless (i.e., spin-polarized) particles here; spin can be
included but it is an unnecessary complication here.

II. STATEMENT OF THE PROBLEM

Notation. In our units, h̄ = 1 and the particle mass and
particle charge are m = 1/2 and −e = −1. Vectors are
denoted by boldface. The density associated with a one-particle
function φ is given by ρ(x) = |φ(x)|2. The current density is
given by

jφ(x) = 1

2i
[φ∗(x)∇φ(x) − φ(x)∇φ∗(x)] := 1

2i
φ∗(x)

←→∇ φ(x),

which also defines the symbol
←→∇. This current is often called

the paramagnetic current. Clearly,
∫
R3 ∇ · j(x)dx = 0 by

Green’s theorem. The actual physical current, in the presence
of the magnetic vector potential A(x), equals j(x) + A(x)ρ(x).
Since ρ(x) and A(x) are regarded as given, the additional Aρ

term is thereby fixed and can be ignored for our considerations.
A fermionic N -body wave function ψ(x1,x2, . . . ,xN ) is

totally antisymmetric and normalized, i.e.,

‖ψ‖2 =
∫
R3N

|ψ(x1,x2, . . . ,xN )|2dx1dx2 · · · dxN = 1. (2.1)

As stated above, spin variables could, but will not be, included
in our discussion. The associated kinetic energy is defined as

T (ψ) =
N∑

i=1

∫
R3N

∣∣∇xi
ψ(x1,x2, . . . ,xN )

∣∣2
dx1dx2 · · · dxN .

(2.2)

To this function ψ we associate the one-body density

ρψ (x) = N

∫
R3(N−1)

|ψ(x,x2, . . . ,xN )|2dx2 · · · dxN, (2.3)

such that by (2.1) ∫
R3

ρψ (x)dx = N. (2.4)
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The associated current density is

j(x) = N

2i

∫
R3(N−1)

ψ�(x,x2, . . . ,xN )
←→∇x ψ�(x,x2, . . . ,xN )

× dx2 · · · dxN . (2.5)

When φ1(x), . . . ,φN (x) are orthonormal functions on R3, the
N -body determinantal state

ψ(x1, · · · ,xN ) = (N !)−1/2 det{φk(xi)}1�i,k�N (2.6)

is normalized and

ρψ (x) =
N∑

k=1

|φk(x)|2 =
N∑

k=1

ρk(x),

jψ (x) = 1

2i

N∑
k=1

φ�
k (x)

←→∇ φk(x) =
N∑

k=1

jk(x), (2.7)

T (ψ) =
N∑

k=1

∫
R3

|∇φk(x)|2dx.

We look for one-body functions that can be written as

φk(x) = ρk(x)1/2 eiχk (x), (2.8)

with single-valued phase functions χk and with the orthonor-
mality property

〈φl,φk〉 =
∫
R3

ρk(x)1/2 ρl(x)1/2 exp{i[χl(x) − χk(x)]}dx

= δkl . (2.9)

Our condition (2.8) should be noted. We are restricting
ourselves to functions with a well-defined global phase.
For example, the function ψ(x) = (x1 + ix2)e−|x|2 is a real
analytic function that solves the problem for a smooth j and
ρ, whose velocity field has a curl (a δ function), yet it has
no global phase function. The fact that we can solve the
problem for N � 4 with functions having a well-defined phase
is, therefore, of some interest.

The second equation in Eq. (2.7) takes the form

j(x) =
N∑

k=1

jk(x) =
N∑

k=1

ρk(x) ∇χk(x). (2.10)

Our finite kinetic energy condition means that each component
of the vector field ∇φk(x) is square integrable.

Finally, we define two energies: the kinetic energy of a
density ρ(x),

E(ρ) =
∫
R3

|∇ρ(x)1/2|2dx, (2.11)

and the kinetic energy of a current density j,

E(j; ρ) =
∫

R3

1

ρ(x)
|j(x)|2dx =

∫
R3

ρ(x) |v(x)|2dx, (2.12)

with the velocity field

v(x) = 1

ρ(x)
j(x). (2.13)

One quickly checks that, for a determinantal function,

T (ψ) =
N∑

k=1

[E(ρk) + E(jk; ρk)]. (2.14)

This identity is the motivation for introducing the kinetic
energy associated with a density and with a current density.

Now we can formulate the current-density problem.
The current-density problem. Given a density ρ(x) with∫

ρ(x)dx = N and a current density j(x), satisfying
∫
R3 ∇ ·

j(x)dx = 0, is there an N -body determinantal state ψ , with
functions as in Eq. (2.8), and with ρψ (x) = ρ(x) and jψ (x) =
j(x)? Suppose, in addition, E(ρ) + E(j; ρ) < ∞. Can this
state be chosen to satisfy T (ψ) < ∞? If so, what bound can
be placed on T (ψ)?

For a physical motivation of this problem, see Ref. [2]. For
a previous discussion of this problem in the one-dimensional
case, see Refs. [1,2].

We recall a result for the case in which the density ρ(x)
alone is considered; that is, no j(x) is prescribed, and hence
the second condition is merely E(ρ) < ∞. This was solved
affirmatively, independently, and by the same method in
Refs. [3,4]. The solution happens, incidentally, to have the
property that j = 0.

The following bound appears in Ref. [4]:
Suppose E(ρ) < ∞. Then there is an N -body determinan-

tal state ψ satisfying ρψ = ρ and

T (ψ) � (4π )2N2E(ρ). (2.15)

Subsequently, Zumbach improved N2 to N2/3 [5].

III. SOLUTION OF THE CURRENT-DENSITY PROBLEM
FOR A CURL-FREE VELOCITY FIELD

In this section we solve the problem for arbitrary N � 1,
when the velocity field is curl free, ∇× v = 0. See Theorem
1. In Sec. IV we drop this condition and are able to solve the
problem when N � 4. First, we recall the well-known solution
[3,4] to the familiar problem of finding ψ which solves ρψ = ρ

for given ρ. Write x = (x1,x2,x3) and define for −∞ < x3 <

∞

f (x3) = 2π

N

∫ ∞

−∞

∫ +∞

−∞

∫ x3

−∞
ρ(s,t,u)dsdtdu, (3.1)

which is monotone increasing from 0 to 2π . For given N we
introduce the set of N numbers

KN =
{
−N − 1

2
,−N − 3

2
, . . . ,

N − 3

2
,
N − 1

2

}
, (3.2)

satisfying ∑
k∈KN

k = 0. (3.3)

Set

CN = 16π2

N

∑
k∈KN

k2. (3.4)

Define

φk(x) = [ρ(x)/N]1/2 exp{ikf (x3)}, k ∈ KN, (3.5)
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and ψ(x1, . . . ,xN ) = (N !)−1/2 det φk(xj ). Then ρk(x) =
ρ(x)/N and χk(x) = kf (x3). These N functions {φk} are
orthonormal. The kinetic energy of the determinantal state
ψ has the bound given in Ref. [4]:

T (ψ) � (1 + CN )E(ρ). (3.6)

Since we establish a similar bound later, let us briefly recall
the argument for (3.6). We start with (2.14), where the first
sum on the right-hand side is

N∑
k=1

E(ρk) = E(ρ).

For the second sum we have to compute E(jk; ρk) for these
functions φk(x), and we have that

ρk(x)|∇χk(x)|2 = (2π )2ρ(x)

N3
k2g(x3)4,

with the definition

g(u)2 =
∫ ∞

−∞

∫ ∞

−∞
ρ(s,t,u)dsdt = N

2π

d

du
f (u). (3.7)

Hence∑
k∈KN

E(jk; ρk)

=
∫
R3

ρk(x)|∇χk(x)|2dx

= (2π )2

N3

∑
k∈KN

k2
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
ρ(s,t,u)g(u)4dsdtdu

= (2π )2

N3

∑
k∈KN

k2
∫ ∞

−∞
g(u)6du. (3.8)

As shown in Ref. [4],∫ ∞

−∞
g(u)6du � 4N2E(ρ). (3.9)

For the convenience of the reader we briefly recall its proof.
Since

g(u)2 = 2
∫ u

−∞
g(v)

dg(v)

dv
dv

holds, we conclude by the Schwarz inequality that for all u

g(u)4 � 4
∫ ∞

−∞
g(v)2dv

∫ ∞

−∞

(
dg(v)

dv

)2

dv ≡ P. (3.10)

The first integral on the right-hand side equals N by the
normalization condition on ρ. Therefore we obtain the estimate∫ ∞

−∞
g(u)6du � P

∫ ∞

−∞
g(u)2du

= 4N2
∫ ∞

−∞

(
dg(v)

dv

)2

dv. (3.11)

To conclude the proof of (3.9) we must show that∫ ∞

−∞

(
dg(v)

dv

)2

dv � E(ρ) (3.12)

holds. To do this write∫ ∞

−∞

(
dg(v)

dv

)2

dv = 1

4

∫ ∞

−∞

( ∫ ∞
−∞

∫ ∞
−∞

∂
∂v

ρ(x,y,v)dxdy
)2∫ ∞

−∞
∫ ∞
−∞ ρ(x ′,y ′,v)dx ′dy ′ dv

(3.13)

and then use(∫ ∞

−∞

∫ ∞

−∞

∂

∂v
ρ(x,y,v)dxdy

)2

=
( ∫ ∞

−∞

∫ ∞

−∞
2
√

ρ(x,y,v)
∂

∂v

√
ρ(x,y,v)dxdy

)2

� 4
∫ ∞

−∞

∫ ∞

−∞
ρ(x,y,v)dxdy

×
∫ ∞

−∞

∫ ∞

−∞

(
∂

∂v

√
ρ(x,y,v)

)2

dxdy, (3.14)

by Schwarz’s inequality. Insert this bound into the right-hand
side of (3.13) thereby proving (3.12). We insert inequality (3.9)
into (3.8) and perform the sum over k. Collecting terms yields
(3.6).

Theorem 1. Assume v(x) = ∇τ (x) for some function τ , i.e.,
v is curl-free. For given N � 1 let

χk(x) = τ (x) + kf (x3), k ∈ KN . (3.15)

The revised functions

φk(x) =
√

ρ(x)

N
exp{i[τ (x) + kf (x3)]}, (3.16)

with f given by (3.1), form an orthonormal system. The
determinantal state ψ ,

ψ(x1, . . . ,xN )

= 1

N !1/2NN/2

N∏
k=1

(
√

ρ(xk)eiτ (xk )) det{eikf (x3
j )}, (3.17)

satisfies ρψ (x) = ρ(x) and jψ (x) = j(x) = ρ(x)v(x) with the
energy bound

T (ψ) � CNE(ρ) + E(j; ρ). (3.18)

Proof. Clearly, the relation jψ = j = ρv follows from the
fact that

∑
k∈KN

k = 0. The proof of the first part follows from
[4]. So we only have to prove the estimate (3.18). By (3.15)
we have

∇χk(x) = ∇τ (x) + k∇f (x3) = v(x) + 2π

N
kg(x3)2e3, (3.19)

where e3 = (0,0,1) is the unit vector in the 3-direction.
Since

∑
k k = 0, we have that∑

k

|∇χk(x)|2 = N |v(x)|2 + 4π2

N2
g(x3)4

∑
k

k2;

i.e., the cross term vanishes. Combined with ρk = ρ/N (and
the fact that ρk is independent of k) this gives the inequality∑

k

∫
R3

ρk(x) |∇χk(x)|2dx

� 1

N
E(j; ρ) + 4π2

N2

∑
k

k2
∫ ∞

−∞
g(x3)6dx3. (3.20)

Using (3.7) and summing over k gives the bound (3.18). �
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In summary, the curl-freeness of v is a sufficient condition
for solving the current-density problem.

IV. SOLUTION OF THE CURRENT-DENSITY PROBLEM
FOR A NON-CURL-FREE VELOCITY

FIELD WHEN N � 4

This section is devoted to a proof of Theorem 2.

Theorem 2. Given ρ and j, when N � 4 there is always
a determinantal wave function ψ with ρψ = ρ and jψ = j.
Moreover, if in addition E(ρ) < ∞ and E(j,ρ) < ∞ and if
the curl w = ∇× v of v = j/ρ and its first-order derivatives
satisfy the bounds

sup
x∈R3, j=1,2,3

[1 + (x1)2](1+δ)/2[1 + (x2)2](1+δ)/2

× [1 + (x3)2](1+δ)/2|wj (x)| < ∞
(4.1)

sup
x∈R3, i,j=1,2,3

[1 + (x1)2](1+δ)/2[1 + (x2)2](1+δ)/2

× [1 + (x3)2](1+δ)/2|∂iwj (x)| < ∞
for some δ > 0, then T (ψ) < ∞.

We conjecture that condition (4.1) can be considerably
loosened. We have used the notation ∂i = ∂/∂xi . The proof will
be split into several steps. (To avoid clutter we will sometimes
omit the dependence on x from now on, when the meaning is
clear. Recall that x = (x1,x2,x3) and do not confuse x2 with
|x|2.)

Step 1: Construct the ρi . We do this in such a way that all
ρi for i � 4 are equal, while the ρi for 1 � i � 4 are different.
The motivation for this is that, in the case where the velocity
field is not curl-free, we cannot choose all ρi to be equal to
ρ/N . Indeed, such an ansatz would give

v(x) = 1

ρ(x)
j(x) = ∇ 1

N

N∑
i=1

χi(x)

by (2.10), which shows that curl v = 0 and which is a
contradiction. However, we may and do choose N − 3 of them
to be equal. Set

ξ (x) = 1

m

∫ x

−∞

1

(1 + y2)(1+δ)/2
dy,

with

m =
∫ ∞

−∞

1

(1 + y2)(1+δ)/2
dy,

and where ξ (x) is a continuous, strictly increasing function in
x with ξ (−∞) = 0 and ξ (∞) = 1. δ is the δ in Eq. (4.1) if
the curl w of v satisfies the bound (4.1) and is arbitrary >0
otherwise. Set ρi = ηiρ, with

η1(x) = 2

N
ξ (x1 + α),

η2(x) = 2

N − 1
ξ (x1 + β)[1 − η1(x)],

(4.2)

η3(x) = 2

N − 2
ξ (x2 + γ )[1 − η1(x) − η2(x)],

ηi(x) = 1

N − 3
[1 − η1(x) − η2(x) − η3(x)], 4 � i � N.

α, β, and γ are real and, for the moment, arbitrary.

Observe that η1 and η2 are functions of the first component
x1 of x only, while the ηj for j � 3 depend on x1 and x2 but not
on x3. We claim 0 � 1 − η1(x) − η2(x) and 0 � 1 − η1(x) −
η2(x) − η3(x) hold and thus 0 � ηj for all 1 � j � N . Indeed,
an easy calculation gives

1 − η1(x) − η2(x)

= [1 − η1(x)]

(
1 − 2

N − 1
ξ (x1 + β)

)
,

1 − η1(x) − η2(x) − η3(x)

= [1 − η1(x)]

(
1 − 2

N − 1
ξ (x1 + β)

)
×

(
1 − 2

N − 2
ξ (x2 + γ )

)
,

and this combined with

1 − 2

N − 1
ξ (x1 + β) � N − 3

N − 1
,

1 − 2

N − 2
ξ (x2 + γ ) � N − 4

N − 2

proves the claim.
As a consequence

0 � ρ1 � 2

N
ρ, 0 � ρ2 � 2

N − 1
(ρ − ρ1),

0 � ρ3 � 2

N − 2
(ρ − ρ1 − ρ2),

(4.3)

0 � ρi = 1

N − 3
(ρ − ρ1 − ρ2 − ρ3),

4 � i � N,

N∑
i=1

ρi = ρ.

To fix α, consider the function

I (α) =
∫
R3

ρ1(x)dx = 2

N

∫
R3

ξ (x1 + α)ρ(x)dx,

which is continuous and monotonically strictly increasing in
α (since ξ has these properties). Since limα→−∞ I (α) = 0
and limα→+∞ I (α) = 2, these properties imply that there is
a unique α such that I (α) = 1. We choose this value of
α since it implies that

∫
R3 ρ1dx = 1, as required. Having

thus fixed α, by the same argument and using the fact that∫
R3 (ρ − ρ1)dx = N − 1, we can fix β uniquely such that also∫
R3 ρ2 = 1 is valid. Similarly, we can fix γ such that also∫
R3 ρ3 = 1 is valid. But then we also have that, for 4 � i � N ,∫
x∈R3

ρi(x)dx = 1

N − 3

∫
R3

[ρ(x) − ρ1(x) − ρ2(x) − ρ3(x)]dx

= 1. (4.4)

This completes the construction of all one-body densities
ρi , 1 � i � N .

Step 2: Construction of phase functions χi satisfying (2.10).
We postpone the implementation of the orthogonality to the
remaining Steps 3–5. Given the ρi and ηi constructed in the
previous step, Eq. (2.10) takes the equivalent form

3∑
i=1

ηi∇χi + η4∇
(

N∑
i=4

χi

)
= v. (4.5)
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Recall that we assumed v = j/ρ to be well defined though
ρ may have zeros or even vanish in a region. As already
mentioned in the Introduction the best way to avoid such
problems is to assume ρ and v to be given rather than ρ and j.
The current j is then defined to equal ρv.

We introduce

τ (x) = 1

N − 3

N∑
i=4

χi(x). (4.6)

Then, with the auxiliary quantities

χ̂i = χi − τ, i = 1,2,3 , (4.7)

Eq. (4.5) is equivalent to

∇τ = v −
3∑

i=1

ηi∇χ̂i , (4.8)

which in particular says that the right-hand side has to be
curl-free. The strategy for determining the phase factors is as
follows. We first determine the necessary form of the χ̂k that
makes the right-hand side of (4.8) curl free. Equation (4.8)
then defines τ up to an uninteresting additive constant. In
Step 3 the χi for 4 � i � N are determined in such a way that
they satisfy (4.6) and such that the resulting wave functions
φi = ρ

1/2
i exp iχi,4 � i � N , are orthogonal. For this we

follow the strategy used in the proof of Theorem 1. Finally
in Step 4 we determine the χ̂i and hence the χi,1 � i � 3, via
(4.7) such that all φi, 1 � i � N , are pairwise orthogonal.

To implement these steps, we first take the curl of (4.8) and
obtain the curl-freeness condition:

3∑
i=1

∇ηi × ∇χ̂i = w = curl v. (4.9)

Using (4.2) we can write out (4.9) in components:

∂2η3 ∂3χ̂3 = w1,

−∂1η1 ∂3χ̂1 − ∂1η2 ∂3χ̂2 − ∂1η3 ∂3χ̂3 = w2,

∂1η1 ∂2χ̂1 + ∂1η2 ∂2χ̂2 + ∂1η3 ∂2χ̂3 − ∂2η3 ∂1χ̂3 = w3.

(4.10)

Recall that η1 and η2 depend on x1 only, while η3 depends on
x1 and x2. As a consequence no partial derivatives of the form
∂1χ̂1 or ∂1χ̂2 appear in these equations. As preparation for the
next step we calculate some of the partial derivatives of the
η’s. The inequalities

∂1η1(x) = 2

mN (1 + (x1 + α)2)(1+δ)/2
> 0 (4.11)

and

∂2η3(x) = 2

m(N − 2)[1 + (x2 + γ )2](1+δ)/2

× [1 − η1(x) − η2(x)] > 0

are valid due to

1 − η1(x) − η2(x) > 1
6 , (4.12)

an easy consequence of the definitions (4.2) of η1 and η2. In
particular ∂1η1 and ∂2η3 never vanish.

Let h1, h2, and h3 be arbitrary functions of x1 only. Define

κ1(x) =
3∑

j=1

κ1,j (x), κ2(x) = 0,

(4.13)

κ3(x) =
∫ x3

0

(
w1

∂2η3

)
(x1,x2,s)ds,

with

κ1,1(x) = 1

∂1η1(x1)

∫ x2

0
w3(x1,s,x3 = 0)ds

− 1

∂1η1(x1)

∫ x3

0

(
w2 + ∂1η3

∂2η3
w1

)
(x1,x2,t)dt,

(4.14)

κ1,2(x) = ∂1h3(x1)

∂1η1(x1)
η3(x1,x2),

κ1,3(x) = − 1

∂1η1(x1)
[(∂1η2)h2](x1).

In terms of these quantities the functions χ̂i are defined as

χ̂i = κi + hi, i = 1,2,3. (4.15)

Define

u = v −
3∑

i=1

ηi∇ χ̂i . (4.16)

We have the following lemma.
Lemma 1. u is curl-free for arbitrary h1, h2, and h3.
By what has been said so far, it suffices to check that (4.10)

is satisfied. We give the proof in Appendix A. It is somewhat
intricate and uses the fact that w has zero divergence. By this
lemma u is a gradient field and we define τ to be the solution
to the equation ∇τ = u. τ is unique up to a constant and is
therefore fixed uniquely by requiring it to vanish at the origin.

To sum up, we have determined χ̂1, χ̂2, χ̂3, and τ such that
(4.8) holds. Finally we set

χi = χ̂i + τ, i = 1,2,3. (4.17)

Observe that by (4.13) and (4.14) all components of the curl
w of v enter the definition of these three phase functions.

Step 3: Orthogonality for 4 � i � N . We construct suitable
phase functions χ̂i , 4 � i � N , to achieve the orthogonality of
the corresponding N − 3 one-body wave functions φ̂i

φ̂i(x) = ρi(x)1/2ei χ̂i (x), 4 � i � N. (4.18)

To achieve this we refer to our discussion in Sec. III. Set

ρ̂ = (ρ − ρ1 − ρ2 − ρ3) = (N − 3)ρ4 (4.19)

such that
∫

ρ̂(x) dx = (N − 3), which puts us in a (N − 3)-
body context by which we may invoke the discussion of
Sec. III. Indeed, the associated N − 3-body current is

ĵ =
N∑

i=4

ρi∇χi = ρ̂

N − 3

N∑
i=4

∇χi = ρ̂ ∇τ, (4.20)

and so the associated velocity field 1/ρ̂ ĵ is a gradient field
equal to u by the construction of τ (see the end of Step 3).
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With

f̂ (x3) = 2π

N − 3

∫ +∞

−∞

∫ +∞

−∞

∫ x3

−∞
ρ̂(s,t,u)dsdtdu (4.21)

and for 4 � i � N , we adjust the notation in Eqs. (3.15) and
(3.16) to the present situation and set

χ̂i(x) =
(

i − 4 − N − 4

2

)
f̂ (x3), 4 � i � N. (4.22)

Observe that when i runs through 4,5, . . . ,N , then i − 4 −
(N − 4)/2 runs through the set KN−3 [see (3.2)]. By the
arguments given in the proof of Theorem 1, the functions
(4.18) form an orthonormal system of N − 3 vectors.

Step 4: Orthogonality for i = 1,2,3. Here we extend the
orthonormal system (4.18) with the help of suitably chosen
phases χ̂1, χ̂2, and χ̂3 and wave functions

φ̂k(x) = ρ
1/2
k (x)ei χ̂k(x), 1 � k � 3,

to an orthonormal system φ̂i of N vectors. This in turn means
we have to find suitable functions h1, h2, and h3 as introduced
in Step 2. With this ansatz the scalar products, which we have
to make vanish, can be written as

〈φ̂k,φ̂i〉 =
∫
R3

e−i(κk+hk−χ̂i ) η
1/2
k η

1/2
i ρdx,

(4.23)
〈φ̂k,φ̂l〉 =

∫
R3

e−i(κk+hk−κl−hl ) η
1/2
k η

1/2
l ρdx,

for 1 � l, k � 3, l < k, 4 � i � N . We invoke the following
theorem in Ref. [6].

Theorem 3. Let m � 1 functions ψj ∈ L1(Rn),1 � j �
m, be given. Then there exists a real, infinitely differentiable
function χ (x) on Rn, with bounded derivatives, such that∫

Rn

e−iχ(x)ψj (x)dx = 0 (4.24)

holds for all 1 � j � m. The ψj can be complex-valued.
The χ (x) constructed in Ref. [6] is a function of one

variable only (which may be taken to be any one of the
xi that one wishes) and vanishes outside a bounded set in
that variable. Consequently, χ (x) has bounded derivatives.
This implies that if the ψj have finite kinetic energy [i.e.,
∇ψ ∈ L2(Rn)] then the functions e−iχ(x)ψj (x) also have finite
kinetic energy. Unfortunately, the theorem in Ref. [6] or the
one in Ref. [7] does not tell us how large the kinetic energies
of the e−iχ (x)ψj (x) functions are, only that they are finite.

Theorem 3 is a generalization of the Hobby-Rice theorem
[8] (see also [9]), according to which a piecewise constant χ (x)
(equal to 0 or π everywhere) exists with the property stated
in Theorem 3. Such a χ would necessarily lead to infinite
kinetic energy (because of the discontinuities) and would not
be suitable for us. Theorem 3 tells us how to smooth out the
discontinuities and is essential for us.

Theorem 3 can be used to orthogonalize any set of any N

functions, f1, . . . ,fN . It says that one can add a phase to f2

so that f1 and f2 are orthogonal. Then one can add a phase to
f3 so that f3 is orthogonal to f1 and f2. Finally, one can make
fN orthogonal to f1, . . . ,fN−1.

In our case we have to proceed cautiously. We use the three
undetermined functions h1, h2, and h3 as phases, but the astute
reader will notice that our functions already depend explicitly

on h3 and h2 and might complain about lack of independence.
In fact, only ψ1 depends on h3 and h2. Thus, no problem arises
if we do things in the right order: First we determine h3 to
make ψ3 orthogonal to ψi for i � 4. This fixes h3. Then we
fix h2 similarly. Now ψ1 is fixed and we are free to choose h1

to complete the orthogonalization. The order is important!
We first consider the case k = 3 in the first relation in

Eq. (4.23). The aim is to find a suitable function h3 depending
on x1 only. When we set

ψ
(3)
i (x1)=

∫
(x2,x3)∈R2

e−i(κ3(x)−χ̂i (x))η
1/2
3 (x) η

1/2
i (x)ρ(x)dx2dx3,

4 � i � N,

an element of L1(R), we obtain

〈φ̂3,φ̂i〉 =
∫

x1∈R
e−ih3(x1)ψ

(3)
i (x1)dx1, 4 � i � N.

By the previous lemma we can find a continuously differen-
tiable function h3 such that all these expressions vanish. This
choice of h3 determines χ̂3. We turn to the case k = 2 and
introduce the following functions in L1(R):

ψ
(2)
3 (x1)

=
∫

(x2,x3)∈R2
e−i[κ2(x)−κ3(x)−h3(x1)]η

1/2
2 (x)η1/2

3 (x)ρ(x)dx2dx3,

ψ
(2)
i (x1)

=
∫

(x2,x3)∈R2
e−i[κ2(x)−χ̂i (x)]η

1/2
2 (x)η1/2

i (x) ρ(x)dx2dx3,

4 � i � N,

such that

〈φ̂2,φ̂i〉 =
∫
R

e−ih2(x1)ψ
(2)
i (x1)dx1, 3 � i � N.

Again by the lemma there is a continuously differentiable
function h2 in the variable x1 such that all these expressions
vanish. This choice of h2 determines χ̂2. Finally we turn to the
case k = 1. Set

ψ
(1)
2 (x1)

=
∫

(x2,x3)∈R2
e−i[κ1(x)−χ̂2(x)]η1(x)1/2η2(x)1/2ρ(x)dx2dx3,

ψ
(1)
3 (x1)

=
∫

(x2,x3)∈R2
e−i[κ1(x)−χ̂3(x)]η1(x)1/2η3(x)1/2ρ(x)dx2dx3,

ψ
(1)
i (x1)

=
∫

(x2,x3)∈R2
e−i[κ1(x)−χ̂i (x)]η

1/2
1 (x) η

1/2
i (x)ρ(x)dx2dx3,

4 � i � N,

which again are elements of L1(R). Observe that κ1 is known
since h3 and h2 have been determined [see (4.13) and (4.14)].
By construction

〈φ̂1,φ̂i〉 =
∫
R

e−ih1(x1)ψ
(1)
i (x1)dx1, 2 � i � N,

holds. We use the lemma a final time to find a function h1 such
that all these expressions vanish.
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To sum up, the φ̂i for all 1 � i � N form an orthonormal
system. Then

φi(x) = φ̂i(x)eiτ (x) = ρ
1/2
i (x)eiχi (x), 1 � i � N.

are also orthonormal. By construction (2.10) holds, and the
proof of the first part of Theorem 2 is finished. It remains to
prove T (ψ) < ∞ when (4.1) holds. For this we take recourse
to (2.14). Since

∇√
ρi = ∇√

ηiρ = (∇√
ηi)

√
ρ + ηi∇√

ρ

holds, by using the definition (4.2) one can easily check
that each ∇√

ηi is bounded. Since
√

ρ,|∇√
ρ| ∈ L2(R3) we

conclude |∇√
ρi | ∈ L2(R3); that is, E(ρi) < ∞ for all i. To

estimate E(ji ,ρi) we proceed as follows. Since χi = τ + χ̂i

and 0 � ρi � ρ,∫
R3

ρi |∇χi |2dx � 2
∫
R3

ρ|∇τ |2dx + 2
∫
R3

ρ|∇χ̂i |2dx.

(4.25)

First we consider the case i � 4. Then the second term on the
right-hand side is finite by the choice of χ̂i and the discussion
in Sec. III. By the definition of τ and relation (4.16),

|∇τ |2 � 8|v|2 + 8
3∑

i=1

|∇χ̂i |2. (4.26)

Since ∫
R3

ρ|v|2dx = E(j,ρ) < ∞,

by assumption, we are done if we can show that∫
R3

ρ|∇χ̂i |2dx < ∞ (4.27)

holds for all i = 1,2,3. Then incidentally the right-hand side
of (4.25) is finite for all 1 � i � N . By (4.15),∫

R3
ρ|∇χ̂i |2dx � 2

∫
R3

ρ|∇κi |2dx + 2
∫
R3

ρ|∇hi |2dx,

(4.28)
i = 1,2,3.

The second term on the right-hand side is finite by the
choice of the hi , Theorem 3, and the comment thereafter.
As for the first term, the case i = 2 is trivial since κ2 = 0. In
Appendix B we prove Lemma 2.

Lemma 2. The functions |∇κi | for i = 1,3 are bounded.
Given this lemma the first integral on the right-hand

side of (4.28) is also finite, thus completing the proof of
Theorem 2.

V. THE CASE N = 2,∇× v �= 0

In this section we discuss the case of two particles, N = 2.
Surprisingly, we have not been able to provide conditions
that are both necessary and sufficient for a solution of the
problem to exist. Of course curl-freeness of the velocity field
is sufficient but not necessary as the first example shows.
Conversely the second example provides a (non-curl-free)
velocity field, for which there is no solution.

A. Solution to an example with N = 2 and ∇× v �= 0.

Let c 
= 0 be a fixed vector and consider

ρ(x) = 2π−3/2e−|x|2 , j(x) = π3/2(c × x)e−|x|2 , (5.1)

with the resulting velocity field

v(x) = 1
2 (c × x), (5.2)

which is not curl-free. The normalization
∫
R3 ρ(x)dx = 2

holds, ∇ · j(x) = 0, and both E(ρ) and E(j; ρ) are finite. We
consider the case where c = (0,0,1); a general c may be
discussed similarly.

Assume there are ρ1 > 0, ρ2 > 0, χ1, and χ2, with ρ1 +
ρ2 = ρ, which are solutions to the equation

ρ1∇χ1 + ρ2∇χ2 = j (5.3)

subject to the condition∫
R3

ρj (x)1/2ρk(x)1/2ei[χk (x)−χj (x)]dx = δjk. (5.4)

Introduce ηk(x) = ρk(x)/ρ(x) which satisfies 0 � ηk �
1, η1 + η2 = 1. So we may rewrite (5.3) as

η1∇χ1 + η2∇χ2 = v, (5.5)

or equivalently

η1∇(χ1 − χ2) + ∇χ2 = v, (5.6)

and (5.4) as∫
R3

ηj (x)1/2ηk(x)1/2ei[χk (x)−χj(x)]ρ(x)dx = δjk. (5.7)

We take the curl of (5.5) and use ∇η2(x) = −∇η1(x), a
consequence of the relation η1(x) + η2(x) = 1. This gives

∇η1(x) × ∇χ̂ (x) = ∇× v(x) = c, (5.8)

with χ̂ = χ1 − χ2, and is valid for all x ∈ R3. As a con-
sequence of (5.8) the vector fields ∇η1(x) and ∇χ̂(x) are
never parallel and in particular never vanishing. In addition
we conclude that they are orthogonal to c.

We define

η1(x) = 1
2 (1 + tanh x1),

(5.9)
χ̂ (x) = 2x2 cosh2 x1 + h(x1),

where for the moment h is an arbitrary function of x1 alone.
In particular

η2(x) = 1
2 (1 − tanh x1) (5.10)

and 0 � ηj � 1 is satisfied. Also by construction

∇× (η1∇χ̂ − v) = c;

i.e., (5.8) is satisfied. But this implies there is a solution χ2 to
(5.6). More explicitly

χ2(x) = −x2[(1 + tanh x1) cosh2 x1 − x1]

− 1

2

∫ x1

0
(1 + tanh y)

d

dy
h(y)dy + const.,

(5.11)
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where h(y) is undetermined as yet. χ1 is of course given as
χ̂ − χ2. Moreover, since tanh is odd,∫

R3
η1ρdx =

∫
R3

η2ρdx = 1

2

∫
R3

ρdx = 1. (5.12)

Thus (5.4) is satisfied for j = k = 1,2 for any choice of h. To
determine h, we inspect the remaining condition (j = 2,k =
1) in Eq. (5.4), which we write in the form∫

R3
η1η2ρeiχ̂ dx = 1

2π3/2

∫
R3

√
1 − tanh2 x1

× e−(x1)2−(x2)2−(x3)2
ei[2x2 cosh2 x1+h(x1)]dx

= 0. (5.13)

Set

g(x1) = 1

2π3/2

√
1 − tanh2 x1e−(x1)2

×
∫

(x2,x3)∈R2
e−(x2)2−(x3)2

ei2x2 cosh2 x1
dx2dx3

= 1

2π1/2

√
1 − tanh2 x1e−(x1)2

e− cosh4 x1
,

which is integrable and positive for all x1. Condition (5.13)
takes the form ∫ ∞

−∞
g(x1)eih(x1)dx1 = 0. (5.14)

Set

a =
∫ +∞

−∞
g(y)dy > 0.

Then the choice

h(x1) = 2π

a

∫ x1

−∞
g(y)dy, (5.15)

with h(−∞) = 0 and h(∞) = 2π gives∫ ∞

−∞
g(x1)eih(x1)dx1 = a

2πi

∫ ∞

−∞

d

dx1
eih(x1)dx1

= a

2πi
(eih(∞) − eih(−∞)) = 0.

By inserting this solution for h into (5.11), all quantities are
determined. We claim it gives a solution ψ for which T (ψ) <

∞. For the proof we use the identity (2.14). First E(ρ1) < ∞
and E(ρ2) < ∞ is an easy consequence of E(ρ) < ∞ and the
choice of η1 and η2. An easy calulation gives the bound

|∇χ2(x)| � 2|x2 sinh 2x1| + 2 cosh2 x1 + |x1| +
∣∣∣∣∂h(x1)

∂x1

∣∣∣∣,
but

∂h(x1)

∂x1
= 2π

a
g(x1)

decreases strongly as x1 → ±∞. Since ρ2 < ρ, and thanks to
the Gaussian form of ρ, we therefore obtain

E(j2; ρ2) =
∫
R3

ρ2|∇χ2|2dx < ∞.

As for E(j1; ρ1) we use |∇χ1| � |∇χ2| + |∇χ̂ | combined with
the estimate

|∇χ̂ | � |x2 sinh 2x1| +
∣∣∣∣∂h(x1)

∂x1

∣∣∣∣ + 2 cosh2 x1,

a consequence of the definition (5.9) of χ̂ . So we may use the
same arguments as for the proof of E(j2; ρ2) < ∞ to conclude
E(j1; ρ1) < ∞. By (2.14) this proves the claim T (ψ) < ∞.

B. No solution to an example with N = 2 and ∇× v �= 0.

For the two-body case (N = 2) we provide an example with
∇× v 
= 0, for which there is no continuously differentiable
solution to the problem. This example originated out of
discussions with Bröcker [10]. Another, older example is by
Taut, Machon, and Eschrig [11].

Example 1 (N=2). Consider the choice

ρ(x) = 2

π3/2
e−x2

,

(5.16)

j(x) = π3/2

2
(0,−2x1 x3,−x1 x2)e−x2

,

with resulting velocity field

v(x) = (0,−2x1 x3,−x1 x2). (5.17)

Clearly E(ρ) < ∞ and E(j,ρ) < ∞.
Proposition 1 (N = 2). There exists no solution to the

problem with continuously differentiable ρk/ρ and χk, k =
1,2, when ρ and j are of the form (5.16).

Remark 1. We have not been able to show that there is no
solution ρ1, j1, ρ2, and j2 to the problem, when the solution is
only required to satisfy T (ψ) = E(ρ1) + E(j1,ρ1,) + E(ρ2) +
E(j2,ρ2) < ∞, which means less smoothness for ρ1(2),j1(2),
and v1(2).

Proof. Introduce the harmonic function on R3,

h(x1,x2,x3) = 1
2 [(x1)2 + (x2)2 − 2(x3)2]. (5.18)

An easy calculation shows that the curl of v equals the gradient
of h,

∇× v(x) = ∇h(x) = (x1,x2,−2x3). (5.19)

With the notation and discussion in the previous subsection,
in particular in connection with the first relation in Eq. (5.8),
we have to look for solutions η1 and χ̂ to the relation

∇η1 × ∇χ̂ = ∇h. (5.20)

But now we claim there are no solutions to (5.20). Indeed,
there is even a stronger result due to Bröcker [10], which reads
as follows. �

Lemma 3. Given the function h (5.18), there are no
continuous vector fields a and b on R3 with

a × b = ∇h. (5.21)

Proof. Assume to the contrary that there are solutions a and
b to (5.21). Note that the vector field ∇h(x) is nonvanishing
for x 
= 0. Hence the vector fields a and b necessarily share
the same property and in addition we must have

a(x) ⊥ ∇h(x), x 
= 0 (5.22)
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[and similarly for b(x)]. Condition (5.22) written out for a(x) =
(a1(x),a2(x),a3(x)) is

a1(x)x1 + a2(x)x2 − 2a3(x)x3 = 0. (5.23)

Introduce the vector field

u(x) = (a1(x),a2(x),−2a3(x)), (5.24)

which, by the discussion just made, is nonvanishing for x 
= 0.
By (5.23) it is orthogonal to the radius vector (x1,x2,x3). Hence
it is tangential to any sphere centered at the origin and nonva-
nishing everywhere there. But this contradicts the hairy ball
theorem of Brouwer [12]. For modern proofs of this theorem
see, e.g., [13], IV, 4.4, [14], Chap.4, Sec.7, Corr.11. A proof
using simple analytic tools is given in [15], VI, 2.4. �

The proposition is now a direct consequence of this lemma
and the preceding discussion.

There is an easier direct proof, that there are no continuously
differentiable solutions a(x) and b(x) to (5.21), which uses a
slightly stronger condition. Indeed, make a Taylor expansion
and write a(x) = â + Ax + o(|x|2) and similarly b(x) = b̂ +
Bx + o(|x|2), where A and B are 3 × 3 matrices. Also let T =
diag(1,1,−2), whence T x = ∇h(x). But then the condition
(5.21) first says a × b = 0 and â × Bx − b̂ × Ax = T x. The
first condition says that â and b̂ are parallel. Now the case â =
b̂ = 0 can be excluded immediately and so we may assume
that at least one vector is nonvanishing, say â 
= 0, and that
b̂ = λ̂a. But with y = T x this leads to the relation

â × (−λA + B)T −1y = y,

valid for all small y and hence, by linearity, for all y. In
particular this means that â is orthogonal to all y, â ⊥ y, which
is a contradiction.
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APPENDIX A: PROOF OF LEMMA 1

With κ3 as given in Eq. (4.13), χ̂3 = κ3 + h3 obviously
solves the first relation in Eq. (4.10). Inserting this into the two
other equations in Eq. (4.10) gives the equations

∂3(∂1η1 χ̂1 + ∂1η2 χ̂2) = ŵ2,
(A1)

∂2(∂1η1 χ̂1 + ∂1η2 χ̂2) = ŵ3,

with

ŵ2(x) = −w2(x) − ∂1η3(x1,x2)

∂2η3(x1,x2)
w1(x),

ŵ3(x) = w3(x) − ∂1η3(x1,x2)
∫ x3

0

(
∂2

w1

∂2η3

)
(x1,x2,s)ds

+ ∂2η3(x1,x2)
∫ x3

0

(
∂1

w1

∂2η3

)
(x1,x2,s)ds

+ ∂2η3(x1,x2)∂1h3(x1). (A2)

Using the fact that w has vanishing divergence by its
very definition, a short calculation shows that the following
necessary and sufficient condition for solving (A1),

∂2ŵ2(x) = ∂3ŵ3(x), (A3)

is valid for any choice of h3(x1). So since (A3) holds for each
x1, (ŵ3,ŵ2) is a two-dimensional gradient field. In other words
there exists ŵ such that (ŵ3,ŵ2) = (∂2ŵ,∂3ŵ) holds. ŵ can
be obtained by integrating this vector field, for example, from
(x1,0,0)—with arbitrary initial value ĥ1(x1)—to (x1,x2,0) and
from there to (x1,x2,x3). Thus

ŵ(x) =
∫ x2

0
ŵ3(x1,s,x3 = 0)ds

+
∫ x3

0
ŵ2(x1,x2,t)dt + ĥ1(x1). (A4)

So with our choice (4.13)–(4.15) for χ̂1, χ̂2, and χ̂3 and the
choice ĥ1(x1) = ∂1η1(x1)h1(x1), the relation

∂1η1 χ̂1 + ∂1η2 χ̂2 = ŵ

is satisfied. Observe that

ŵ3(x1,x2,0) = w3(x1,x2,0) + ∂2η3(x1,x2)∂1h3(x1)

holds. Therefore also relation (4.10) is valid and the proof of
Lemma 1 is complete.

APPENDIX B: PROOF OF LEMMA 2

We start with estimates for ∇κ3. By (4.13),

∂1 κ3(x) = − ∂1∂2η3(x1,x2)

[∂2η3(x1,x2)]2

∫ x3

0
w1(x1,x2,s)ds

+ 1

∂2η3(x1,x2)

∫ x3

0
∂1w1(x1,x2,s)ds,

∂2 κ3(x) = − ∂2
2 η3(x1,x2)

[∂2η3(x1,x2)]2

∫ x3

0
w1(x1,x2,s)ds (B1)

+ 1

∂2η3(x1,x2)

∫ x3

0
∂2w1(x1,x2,s)ds,

∂3 κ3(x) = 1

∂2η3(x1,x2)
w1(x).

To see that all |∂j κ3(x)|, j = 1,2,3, are bounded, we proceed
as follows. Let W stand for any of the quantities w1, ∂1w1,
or ∂2w1. By the assumption (4.1) there exists a constant 0 <

C1 < ∞ such that

|W (x)| � C1[1 + (x1)2]−(1+δ)/2[1 + (x2)2]−(1+δ)/2

× [1 + (x3)2]−(1+δ)/2 (B2)

032516-9



ELLIOTT H. LIEB AND ROBERT SCHRADER PHYSICAL REVIEW A 88, 032516 (2013)

holds. Therefore there is another constant 0 < C2 < ∞, such that the bound∣∣∣∣ ∫ x3

0
W (x1,x2,s)ds

∣∣∣∣ �
∫ ∞

−∞
|W (x1,x2,s)|ds � C2[1 + (x1)2]−(1+δ)/2[1 + (x2)2]−(1+δ)/2 (B3)

is valid. With this preparation we start with an estimate for the first term contributing to ∂1 κ3, which we call A1. Now
by (4.12), ∣∣∣∣ ∂1∂2η3(x1,x2)

[∂2η3(x1,x2)]2

∣∣∣∣ = N − 2

N

[1 + (x1 + α)2]−(1+δ)/2[1 + (x2 + γ )2](1+δ)/2

[1 − η1(x) − η2(x)]2
� C3[1 + (x2 + γ )2](1+δ)/2 (B4)

for yet another finite constant C3. We have used the relation

∂1∂2η3(x1,x2) = − 4

m2N (N − 2)[1 + (x1 + α)2](1+δ)/2[1 + (x2 + γ )2](1+δ)/2
.

Combining this estimate with the estimate (B3) for the
choice W = w1 and with the estimate

sup
x2∈R

[1 + (x2 + γ )2](1+δ)/2[1 + (x2)2]−(1+δ)/2 < ∞ (B5)

shows that A1 is bounded.
As for the second contribution to ∂1 κ3, and which we call

A2, we use the estimate (B3) for W = ∂1w1 combined with∣∣∣∣ 1

∂2η3(x1,x2)

∣∣∣∣ � C4[1 + (x2 + γ )2](1+δ)/2, (B6)

which follows from (4.11) and (4.12), and the estimate (B5)
to conclude that A2 is also bounded.

We turn to an estimate for ∂2 κ3 and start with the first
contribution, which we call B1. The relation

∂2
2 η3(x) = − 2(1 + δ)(x2 + γ )

m(N − 2)(1 + (x2 + γ )2)(3+δ)/2

× [1 − η1(x) − η2(x)]

gives the estimate∣∣∣∣ ∂2
2 η3(x1,x2)

[∂2η3(x1,x2)]2

∣∣∣∣
= (1 + δ)m(N − 2)

2

|x2 + γ |[1 + (x2 + γ )2]−(1−δ)/2

[1 − η1(x) − η2(x)]

� C5[1 + (x2 + γ )2]δ/2

� C5[1 + (x2 + γ )2](1+δ)/2. (B7)

Again we have used (4.12) and the trivial bound

|x2 + γ |[1 + (x2 + γ )2]−1 � 1.

We combine this bound with the bound (B3) for the choice
W = w1 and the bound (B5) to conclude that B1 is bounded.

As for the second contribution to ∂2 κ3 and which we call
B2, we proceed in analogy to the proof of the estimate of
A2. That is, we use (B6) and (B5) and (B3) for the choice
W = ∂2w1 to conclude that B2 is bounded.

Finally we use (B2) for the choice W − w1 and (B6) to
conclude that |∂3 κ3| is bounded.

As for κ1, we start with

|κ1(x)| �
3∑

j=1

|κ1,j (x)|.

The boundedness of |∇κ1,1|, see (4.14), follows similar to one
for |∇κ3|. Due to the presence of the factor ∂1h3(x1), κ1,2(x) is
smooth, vanishes for all large x1, and has bounded derivatives;
that is, |∇κ1,2| is bounded. By the definition of κ1,3 it remains
to estimate

∂1κ1,3(x) = −
(

∂1
1

∂1η1
(x)

)
[(∂1η2) h2](x)

− 1

∂1η1(x)

[(
∂2

1 η2
)

h2
]
(x)

− 1

∂1η1(x)
[(∂1η2) ∂1h2](x), (B8)

since κ1,3 is a function of x1 only. The relations

∂1
1

∂1η1
(x) = mN (1 + δ)x1[1 + (x1)2](δ−1)/2

∂1η2(x) = 1

m(N − 1)
[1 + (x1 + β)2]−(1+δ)/2[1 − η1(x)]

− 1

mN (N − 1)
ξ (x1 + β)[1 + (x1 + β)2]−(1+δ)/2

(B9)

show that (
∂1

1

∂1η1

)
∂1η2

is bounded. Since h2 is bounded this shows that the first term
on the right-hand side of (B8) is bounded. By calculating ∂2

1 η2,
a similar argument shows that

1

∂1η1
∂2

1 η2

is bounded, such that the second term on the right-hand side of
(B8) is also bounded. The third term is bounded, since ∂1h2(x1)
vanishes for all large x1. In conclusion, we have established
that |∇κ1,3| = |∂1 κ1,3| is bounded and this completes the proof
of Lemma 2.
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