
Cheminformatics Approaches to Drug Discovery: 

From Knowledgebases to Toxicity Prediction and 

Promiscuity Assessment 
 

 

 

 

Inaugural-Dissertation� 

to obtain the academic degree 

 Doctor rerum naturalium (Dr. rer. nat.)  

 

 

 

submitted to the Department of Biology, Chemistry and Pharmacy 

of Freie Universität Berlin 

 

 

 

by 

VISHAL BABU SIRAMSHETTY 

from Hyderabad, India 

 

2018 

  



This research work was conducted from December 2014 to June 2018 under the supervision of 

PD Dr. Robert Preissner at the Charité – Universitätsmedizin Berlin. 

1. Reviewer: PD Dr. Robert Preissner (Charité – Universitätsmedizin Berlin)

2. Reviewer: Prof. Dr. Gerhard Wolber (Freie Universität Berlin)

Date of defense: 09.01.2019



 

 

Acknowledgements 
 

I would like to take this opportunity to thank all those people who have accompanied me during the 

last years and contributed in many ways to the completion of this dissertation. 

 

Firstly, I would like to thank my supervisor PD Dr. Robert Preissner for his guidance, encouragement, 

and support throughout my doctoral study. The last four years had a significant impact on my life. I 

believe I evolved as a researcher as well as a social human being. I feel privileged to participate in 

international conferences, meet some pioneers in the field and present my work. Dear Robert, I 

sincerely thank you for providing the freedom to explore my interests and the trust you placed on me. 

I would also like to thank Prof. Dr. Gerhard Wolber for being the co-referent of my thesis. 

 

I extend my gratitude to all my colleagues of the Structural Bioinformatics Group at Charité for being 

so kind and for providing a friendly and interactive working atmosphere. Many thanks to Malgorzata 

Drwal, Priyanka Banerjee, Andreas Oliver Eckert, Björn Oliver Gohlke, and Janette Nickel-Seeber 

for the highly productive and pleasant collaborations within the group. I would like to thank the 

postdoctoral researchers Björn Oliver Gohlke, Mathias Dunkel, Andrean Goede, and Malgorzata 

Drwal for being approachable for all my questions. Qiaofeng Chen, Prashanth Devarakonda and 

Karolina Dawid, I am grateful that I could share my experience with you while supervising your 

work which was also a learning experience for me. I wish you all the very best for your future 

endeavors. My best wishes to the young colleagues Qiaofeng, Renata, and Vinoth for their doctoral 

studies. I would also like to thank the Berlin-Brandenburg Research Platform BB3R for funding my 

research work. 

 

Finally, I am indebted to my family and friends for their encouragement and support during the last 

years. Thank you, Mom (Manjula) and Dad (Narsimha Rao) for being the best parents. I would never 

be able to complete this journey without you. Special thanks to my Sister (Soumya) for always 

motivating me and proof-reading my drafts. Chandu (Samba), Sankalp, and Menorca, you have been 

very supportive and motivated me throughout this journey. Thank you so much for being there during 

the ups and downs and whenever I needed. My friends Srikanth, Mahender, Rajesh, Pradeep, Bhanu, 

and Ravi receive a special mention as our conversations never failed to cheer me up whenever I was 

low. Finally, I thank my fiancé Monica Theddu, whom I met during this journey, for her reliable and 

invaluable support and motivation.  

I



 

 

  

II



 

 

Abstract 
 

Polypharmacology marked a paradigm shift in drug discovery from the traditional ‘one drug, one 

target’ approach to a multi-target perspective, indicating that highly effective drugs favorably 

modulate multiple biological targets. This ability of drugs to show activity towards many targets is 

referred to as promiscuity, an essential phenomenon that may as well lead to undesired side-effects. 

While activity at therapeutic targets provides desired biological response, toxicity often results from 

non-specific modulation of off-targets. Safety, efficacy and pharmacokinetics have been the primary 

concerns behind the failure of a majority of candidate drugs. Computer-based (in silico) models that 

can predict the pharmacological and toxicological profiles complement the ongoing efforts to lower 

the high attrition rates. High-confidence bioactivity data is a prerequisite for the development of 

robust in silico models. Additionally, data quality has been a key concern when integrating data from 

publicly-accessible bioactivity databases. A majority of the bioactivity data originates from high-

throughput screening campaigns and medicinal chemistry literature. However, large numbers of 

screening hits are considered false-positives due to a number of reasons. In stark contrast, many 

compounds do not demonstrate biological activity despite being tested in hundreds of assays. 

 

This thesis work employs cheminformatics approaches to contribute to the aforementioned diverse, 

yet highly related, aspects that are crucial in rationalizing and expediting drug discovery. 

Knowledgebase resources of approved and withdrawn drugs were established and enriched with 

information integrated from multiple databases. These resources are not only useful in small 

molecule discovery and optimization, but also in the elucidation of mechanisms of action and off-

target effects. In silico models were developed to predict the effects of small molecules on nuclear 

receptor and stress response pathways and human Ether-à-go-go-Related Gene encoded potassium 

channel. Chemical similarity and machine-learning based methods were evaluated while highlighting 

the challenges involved in the development of robust models using public domain bioactivity data. 

Furthermore, the true promiscuity of the potentially frequent hitter compounds was identified and 

their mechanisms of action were explored at the molecular level by investigating target-ligand 

complexes. Finally, the chemical and biological spaces of the extensively tested, yet inactive, 

compounds were investigated to reconfirm their potential to be promising candidates. 

  

III



 

 

 

  

IV



 

 

Zusammenfassung 
 

Die Polypharmakologie beschreibt einen Paradigmenwechsel von "einem Wirkstoff - ein 

Zielmolekül" zu "einem Wirkstoff - viele Zielmoleküle" und zeigt zugleich auf, dass hochwirksame 

Medikamente nur durch die Interaktion mit mehreren Zielmolekülen Ihre komplette Wirkung 

entfalten können. 

 

Hierbei ist die biologische Aktivität eines Medikamentes direkt mit deren Nebenwirkungen 

assoziiert, was durch die Interaktion mit therapeutischen bzw. Off-Targets erklärt werden kann 

(Promiskuität). Ein Ungleichgewicht dieser Wechselwirkungen resultiert oftmals in mangelnder 

Wirksamkeit, Toxizität oder einer ungünstigen Pharmakokinetik, anhand dessen man das Scheitern 

mehrerer potentieller Wirkstoffe in ihrer präklinischen und klinischen Entwicklungsphase aufzeigen 

kann. Die frühzeitige Vorhersage des pharmakologischen und toxikologischen Profils durch 

computergestützte Modelle (in-silico) anhand der chemischen Struktur kann helfen den Prozess der 

Medikamentenentwicklung zu verbessern. Eine Voraussetzung für die erfolgreiche Vorhersage 

stellen zuverlässige Bioaktivitätsdaten dar. Allerdings ist die Datenqualität oftmals ein zentrales 

Problem bei der Datenintegration. Die Ursache hierfür ist die Verwendung von verschiedenen 

Bioassays und „Readouts“, deren Daten zum Großteil aus primären und bestätigenden Bioassays 

gewonnen werden. Während ein Großteil der Treffer aus primären Assays als falsch-positiv 

eingestuft werden, zeigen einige Substanzen keine biologische Aktivität, obwohl sie in beiden Assay-

Typen ausgiebig getestet wurden (“extensively assayed compounds”). 

 

In diese Arbeit wurden verschiedene chemoinformatische Methoden entwickelt und angewandt, um 

die zuvor genannten Probleme zu thematisieren sowie Lösungsansätze aufzuzeigen und im Endeffekt 

die Arzneimittelforschung zu beschleunigen. Hierfür wurden nicht redundante, Hand-validierte 

Wissensdatenbanken für zugelassene und zurückgezogene Medikamente erstellt und mit 

weiterführenden Informationen angereichert, um die Entdeckung und Optimierung kleiner 

organischer Moleküle voran zu treiben. Ein entscheidendes Tool ist hierbei die Aufklärung derer 

Wirkmechanismen sowie Off-Target-Interaktionen. 

 

Für die weiterführende Charakterisierung von Nebenwirkungen, wurde ein Hauptaugenmerk auf 

Nuklearrezeptoren, Pathways in welchen Stressrezeptoren involviert sind sowie den hERG-Kanal 

gelegt und mit in-silico Modellen simuliert. Die Erstellung dieser Modelle wurden Mithilfe eines 
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integrativen Ansatzes aus “state-of-the-art” Algorithmen wie Ähnlichkeitsvergleiche und “Machine-

Learning” umgesetzt. Um ein hohes Maß an Vorhersagequalität zu gewährleisten, wurde bei der 

Evaluierung der Datensätze explizit auf die Datenqualität und deren chemische Vielfalt geachtet. 

Weiterführend wurden die in-silico-Modelle dahingehend erweitert, das Substrukturfilter genauer 

betrachtet wurden, um richtige Wirkmechanismen von unspezifischen Bindungsverhalten (falsch-

positive Substanzen) zu unterscheiden. Abschließend wurden der chemische und biologische Raum 

ausgiebig getesteter, jedoch inaktiver, kleiner organischer Moleküle (“extensively assayed 

compounds”) untersucht und mit aktuell zugelassenen Medikamenten verglichen, um ihr Potenzial 

als vielversprechende Kandidaten zu bestätigen. 
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Thesis Outline 

 

The thesis consists of eight individual chapters and is structured as follows. 
 

Chapter 1 introduces the cheminformatics research discipline, provides an overview of the state-of-

the-art developments and current challenges in the field, and states the aims and objectives of the 

thesis. Chapter 2 details the sources of data and describes the different computational methods 

employed. The results of the thesis are presented in the Chapters 3, 4, 5 and 6. 
 

Chapter 3 describes two publicly-accessible integrated databases that are potentially useful in 

knowledge-driven in silico drug discovery. SuperDRUG2 is a database that serves as one-stop source 

for approved drugs and the WITHDRAWN database is a comprehensive resource for withdrawn and 

discontinued drugs. The databases provide a wide range of information on drugs and compound 

collections from them were employed for further studies in this thesis. 
 

Chapter 4 describes the three studies that reported in silico models based on chemical similarity and 

machine-learning methods to predict toxicological outcomes of small molecules. The first two focus 

on models developed to predict the potential of chemical structures to disrupt nuclear receptor and 

stress response pathways that may lead to various toxicities. In the third study, binary classifiers were 

developed to identify the small molecule inhibitors of human Ether-à-go-go-Related Gene (hERG) 

encoded potassium channel. The performances achieved using different modeling methods and 

chemical descriptors were compared and the challenges involved in the development of robust 

models with broad applicability were discussed. 
 

Chapter 5 investigates the activity profiles and the mechanisms of action of pan assay interference 

compounds that are widely employed to detect frequent hitter compounds. The true promiscuity 

trends of frequent hitters in different compound collections were established. Further, the structure-

level investigations confirmed their participation in molecular interactions responsible for binding to 

target macromolecules. 
 

Chapter 6 presents a retrospective outlook on the promiscuity and safety of the extensively tested 

compounds (dark chemical matter), that have been inactive in multiple biological screens. Their 

chemical space was compared with that of marketed drugs to forecast the prospects to identify 

promising candidates. 
 

Finally, Chapter 7 discusses the major findings of this research work in the light of the recent 

developments in the field and Chapter 8 presents the overall conclusions and a general outlook.  
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Chapter 1 
 

Introduction 

 

The fundamental goal of drug discovery is to identify small molecules that are active against a 

biological target of interest and alter its biological function. The research and development (R&D) 

investments dramatically increased over the decades with a recent estimate of the collective annual 

R&D expenditure by the big pharmaceutical companies summing up to $50 billion [1, 2]. However, 

only a small proportion of the candidate drugs is approved and introduced to the market [3, 4]. The 

overall productivity remains a huge concern despite the introduction of novel discovery technologies 

such as genomics/proteomics, combinatorial chemistry, high-throughput screening (HTS), ligand 

and structure-based drug design [5]. Temporal trends indicate that poor pharmacokinetics contributed 

to a significantly lesser number of failures more recently as compared to the 1990s, while efficacy 

and safety remain the major concerns behind the high overall attrition rates [6-8]. Earlier studies tried 

to establish links between physicochemical properties and the likelihood of attritions due to poor 

pharmacokinetic profile [9-11]. Later studies focused on the influence of these properties on 

compound promiscuity and toxicity [12-15]. A recent analysis of the data from four major 

pharmaceutical companies suggested that physicochemical properties can be linked to the failures 

due to safety issues [16]. 

 

An understanding of the drug discovery and development pipeline (Figure 1.1) helps identify key 

steps that could be influenced in order to improve the R&D productivity. A conventional drug 

discovery pipeline begins with the identification of an appropriate biological target. Once the target 

is validated, a range of experimental techniques is applied in the discovery and screening phase to 

identify a promising lead compound. Then, medicinal chemistry and rational drug design methods 

are employed to optimize the lead compound for efficacy, safety, and pharmacokinetics. The 

optimized lead compounds are validated for biological activity in in vivo experiments. Finally, the 

candidates are selected for testing in preclinical phases. Drug development includes the preclinical 

and clinical phases of testing. While preclinical testing primarily focuses on pharmacokinetics and 

safety of the drug, the clinical phases I, II and III evaluate pharmacokinetics, tolerability, safety, 

efficacy, and dosage. After successful completion of Phase III, the regulatory authorities grant an 

approval for the drug. Post to marketing, the long-term effects are evaluated based on reports from 
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patients and clinicians in Phase IV, also known as post-marketing surveillance. This process spans 

over a period of 10 to 17 years with less than 10% probability of success [17]. 

 

 
 

Figure 1.1: An overview of (a) the traditional (de novo) drug discovery and development pipeline; 

 (b) drug repositioning. The figure is adapted from [17]. 

 

Exploring new uses other than the original medical indication for existing drugs is a process referred 

to as drug repurposing or repositioning [17]. Drug repositioning offers a significant advantage over 

the de novo drug discovery by shortening the R&D timelines to a duration of 3 to 10 years (Figure 

1.1) on the grounds of well-established pharmacokinetic and safety profiles of the repositioned 

candidates. However, many successful repositioning events were serendipitous and the strategy as 

such is not devoid of challenges [17]. Therefore, the pharmaceutical industry has been in a constant 

pursuit of promising methods and technologies that could significantly reduce the R&D timeline and 

costs. A shift in the paradigm was marked by the increasing focus on integrating bioinformatics and 

cheminformatics disciplines to complement the experimental drug discovery programs [4]. The 

interdisciplinary approaches were expected to support drug discovery programs at various levels 

ranging from data management and database mining to the introduction of a novel tool for discovery 

and design [4]. This research work primarily relies on the cheminformatics methods to contribute to 

different aspects of drug discovery. The following sections provide a brief background and the state-

of-the-art developments in the field. 
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1.1  Cheminformatics - a Historical Background 
 

As defined by Frank Brown in 1998, “chemoinformatics is the mixing of those information resources 

to transform data into information and information into knowledge for the intended purpose of 

making better decisions faster in the area of drug lead identification and optimization” [18]. It can 

be interpreted as the combination of various information resources required to optimize the properties 

of a ligand to become a drug. While both terms chemoinformatics and cheminformatics have been in 

use, the shorter variant cheminformatics gained much popularity with the recent establishment of the 

Journal of Cheminformatics. The essential components of cheminformatics are those methods that 

aid decision making in pharmaceutical research, methods that bridge the gap between computational 

and experimental programs, the computational infrastructure to store, manage and analyze data 

related to chemicals, and the approaches to investigate structure-activity and structure-property 

relationships with an ultimate goal to identify or design better molecules [19]. 

 

 
 

Figure 1.2: Cooperation between bioinformatics and cheminformatics research disciplines. 

 

The difference between cheminformatics and bioinformatics is that the former largely deals with 

small molecules, while the latter has been moving from genes to proteins [20]. A cooperation 

between the two disciplines (Figure 1.2) is highly essential in order to understand the structure, 

properties, and function of proteins and nucleic acids. For instance, in drug design, genomic and 

proteomic methods are useful in identifying the protein targets for newly developed candidate drugs 
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Target Identification
and Validation

Lead Identification Lead Optimization

Genomics
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Systems Biology
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Structural Bioinformatics

Drug Design
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Molecular Databases
Data Mining
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while the cheminformatics methods are helpful in lead identification and lead optimization. Although 

established as a relatively newer field, the early developments in cheminformatics date back to the 

1960s. These efforts (listed in Table 1.1) have laid the foundations for many methods and algorithms 

that are currently employed in modern drug discovery. 

 

Table 1.1: Some of the earliest developments in the cheminformatics research field. 
 

Year(s) Developments 

1957 

An algorithm for substructure searching, reported by Ray and Kirsch [21], 

introduced the concept of searching a database of chemical compounds using 

defined substructure queries. 

1960s 

The advent of structure databases (e.g. Chemical Abstracts Service [22]) 

facilitated the storage and searching of structural and textual information related 

to chemicals [23]. 

1962 

Quantitative structure-activity relationship (QSAR) studies, marked by the 

contributions of Corwin Hansch [24], were the first attempts to correlate 

physicochemical properties of a compound with its biological activity. 

1964 

The DENDRAL project [25, 26] was a prototype for application of artificial 

intelligence techniques to chemical problems (e.g. automated chemical structure 

generators, prediction of chemical structures from mass spectra etc.). 

1969 and 1970s 

Artificial intelligence methods for computer-assisted chemical synthesis design 

and the methods for elucidation of chemical structure from experimental data 

[25, 27, 28]. 

1980s 
Development of software and graphical methods that are useful in interactive 

visualization and analysis of three-dimensional (3D) structures [29-31]. 
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1.2  Cheminformatics Approaches to Drug Discovery 
 

Although cheminformatics has been a long-established discipline, the recent gain in prominence 

could be attributed majorly to the developments in areas such as HTS and combinatorial chemistry, 

which produce vast amounts of structural and bioactivity data. Sophisticated informatics methods are 

required to analyze this data. This section provides an overview of the cheminformatics approaches 

harnessed by the pharmaceutical industry and academia while highlighting the state-of-the-art 

developments that significantly impact various aspects of preclinical drug discovery. However, the 

primary focus is on those aspects dealt with in this research work. 

 

1.2.1 Data Explosion and Growth of Knowledgebase Resources 

 

‘Big data’ currently influences several research disciplines, and chemistry is not an exception. While 

there exists no general definition for big data in chemistry, it is often referred to databases that are 

considerably larger, in several orders of magnitude, than those that are commonly used [32]. A 

remarkable increase in the amount of publicly accessible compound and compound bioactivity data 

has been witnessed in the last decade (Table 1.1) [33-35]. Introduction of high-throughput methods 

[32, 34-36] and enhanced access to large data repositories facilitated by large-scale data mining 

efforts (e.g. patents and literature) contributed the most to this data explosion [37-39]. Medicinal 

chemistry, a conservative research discipline that responds slow to new trends, is also currently 

entering the big data era [40]. For instance, polypharmacology and compound promiscuity are 

aspects that are positively affected by the big data phenomenon. 

 

The publicly accessible databases such as ChEMBL [41, 42], BindingDB [36] and PubChem [34] 

emerged as large repositories of compound bioactivity data. ChEMBL and BindingDB contain 

compound bioactivities extracted from medicinal chemistry literature while PubChem primarily 

incorporates data from primary and confirmatory bioassays. The knowledge hidden in the patents 

was uncovered by SureChEMBL database [38] which currently holds more than 18 million unique 

chemical structures extracted from nearly 15 million chemical patents. The Protein Data Bank (PDB) 

[43] and Cambridge Structural Database [44] are popular resources for experimentally determined 

3D structures of biological macromolecules. On the other hand, commercial databases such as 

Chemical Abstracts Service [45] and Reaxys [46] have been accumulating huge amounts of data 

from publications and patents (see Table 1.2 for detailed statistics). 
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Table 1.2: The contents and coverages of major public and commercial data repositories for chemical 

and biological data. The numbers are based on statistics provided on the corresponding websites 

(accessed approximately in the mid of 2018). M stands for millions. 
 

Database Contents Coverage 

ChEMBL 
Chemical compounds 

Compound bioactivities 

1,828,820 

15,207,914 

BindingDB 
Chemical compounds 

Compound bioactivities 

644,978 

1,439,799 

PubChem 
Chemical compounds 

Compound bioactivities 

> 94 M 

> 235 M 

SureChEMBL Chemical compounds from patents > 18 M 

Protein Data Bank Biological macromolecular structures 139,555 

Cambridge Structural Database Biological macromolecular structures > 900,000 

Chemical Abstracts Service 
Organic and inorganic substances 

Protein and nucleic acid sequences 

> 142 M 

> 67 M 

Reaxys 
Chemical compounds 

Properties, bioactivities and reaction data 

> 105 M 

> 500 M 

 

 

1.2.2 High-throughput Screening and Virtual Screening 

 

HTS is a major source of hits in modern drug discovery [47, 48]. Huge collections of compounds, 

referred to as chemical libraries, are tested for the cellular and biochemical effects and compounds 

that demonstrate a positive response are considered as primary hits [48-50]. These hits are tested in 

the confirmatory assays for biological activity or other properties. HTS hits are, in general, considered 

critically due to the presence of a large number of false-positives and therefore control experiments 
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are conducted for validation. Major concerns associated with false-positives and incorrect assay 

measurements include the purity and stability of compounds, compound concentrations that are lower 

than the typical screening concentrations and non-specific reactivity of compounds [47, 51, 52]. 

Virtual screening (VS) is among those computational approaches developed to compensate for such 

limitations. It was introduced as a cost- and time-efficient alternative to HTS as large libraries of 

compounds can be screened to produce relatively higher hit rates [47, 49]. HTS and VS are generally 

considered complementary screening methods and hence an integration of the two is believed to 

reduce the number of compound hits that require further testing [51, 53]. 

 

Two different VS approaches include structure-based virtual screening [54] and ligand-based virtual 

screening (LBVS) [55]. Structure-based methods rely on the 3D structure of a target to explore and 

identify target-ligand interactions. Molecular docking is an example of structure-based virtual 

screening which involved docking of a large number of database molecules into the 3D structure of 

the target to predict hypothetical binding modes and scoring function based binding affinities [54, 

56]. LBVS requires at least one compound with known activity towards a target in order to identify 

new hits [55]. It enables identification of novel lead compounds that possess desirable biological 

activity, even when the structure of a biological target is not known [57]. Identification of hits is 

largely based on the renowned ‘similarity property principle’ which states that “similar molecules 

should have similar biological properties (activity)”, as proposed by Johnson and Maggiora [58]. 

 

1.2.3 Similarity Searching 

 

Similarity searching is a subdiscipline of VS and one of the widely applied ligand-based approaches 

in drug discovery [59, 60]. Active compounds, either one or more, are employed as reference 

compounds to screen a large database of compounds, which are ranked in the order of decreasing 

similarity. Compounds ranked at the top are expected to exhibit similar biological activity as the 

reference compounds. The essential components of similarity search are: (a) molecular 

representations of compounds; (b) determination of chemical similarity; and (c) search strategy. 

These aspects are discussed in the following subsections. 

 

(a) Molecular representations 

Chemical structure and molecular properties can be numerically encoded as molecular descriptors. 

Molecular descriptors of varying complexity are currently available and capture different levels of 

compound information [61, 62]. They are not only useful in the assessment of the structural diversity 
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of compound databases but also in the identification of potentially bioactive molecules in compound 

libraries [61]. Molecular descriptors are in general grouped into three broad categories: one-

dimensional (1D), two-dimensional (2D) or 3D descriptors; based on the molecular representations 

used to derive them [51]. 1D descriptors (e.g. atom count, molecular weight) are based on the 

molecular formula. 2D descriptors are based on the 2D structure representations (e.g. molecular 

graph, connection table). Topological descriptors and computed descriptors that approximate 

molecular properties such as lipophilicity (e.g. logP) are examples of 2D descriptors. 3D descriptors 

are determined from the 3D molecular conformations. Molecular surface, shape, and volume are 

prominent examples of 3D descriptors. 

 

Line notations such as SMILES, SMARTS, InChI, and InChIKey are among the popular 

representations. SMILES (Simplified Molecular Input Line System) represent a molecule as a linear 

string based on predefined rules and are a choice for efficient storage and retrieval of compounds 

[63]. SMARTS (SMILES Arbitrary Target Specification) is a string representation and an extension 

of SMILES to allow for variability in the represented chemical structure. SMARTS are often used in 

substructure searching [64]. InChI (International Chemical Identifier) was established with an aim to 

unify searches across multiple databases. An InChIKey is a hashed version of InChI and provides a 

unique representation of a chemical structure commonly employed to index chemical structures [65]. 

InChI is made up of multiple layers of information on the chemical structure while InChIKey is a 

fixed-length string of 27 characters generated using a cryptographic hash function [66]. 

 

Fingerprints are popular molecular descriptors that are either bit string or integer string 

representations of molecules capturing the structural features and (or) physicochemical properties 

[67]. In case of binary fingerprints, each bit encodes either the presence or absence of a specific 

feature. If the feature is present in the molecule, then the bit is set to ’1’ or otherwise to ’0’. The non-

binary versions include count fingerprints, where an individual bit is replaced with an integer that 

indicates the number of times a specific feature is present in the molecule. Hashed fingerprints are 

the integer string representations derived by hashing the molecular features. Both 2D and 3D 

structural features can be encoded in fingerprints depending on the type of representation chosen 

[60]. Thus, different fingerprint types may vary in terms of the chemical information encoded and by 

the means in which they are computed [67]. Substructure-based fingerprints, pharmacophore 

fingerprints, and circular atom environment fingerprints are popular fingerprints types. 
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The Molecular ACCess System (MACCS) keys (MACCS Structural Keys. Symyx Software, San 

Ramon, CA, USA, 2002.) are substructure-based fingerprints and one of the most popular and widely 

used fingerprints in the similarity search. While the publicly available MACCS fingerprint contains 

166 structural keys, the commercial version contains about 960 keys. Each bit position in the 

fingerprint encodes for a substructure (or key) and each bit accounts for the presence or absence of 

the corresponding substructure. Later on, compound class-specific fingerprints were also introduced. 

Fragment populations randomly generated from compounds having similar activity are used to 

identify substructures possessing characteristics of an activity-class and used to design such 

fingerprints [68]. Figure 1.3 presents different molecular representations of the drug pioglitazone. 

 

 
 

Figure 1.3: Exemplary molecular representations of a chemical compound. 

 

Pharmacophore fingerprints, also belonging to the class of keyed fingerprints, encode geometrical 

arrangement of atom types as individual bits. All possible pharmacophore patterns of a compound 

generated from its 2D molecular graph can be used to derive a pharmacophore fingerprint. The Typed 

Graph Triangle [60] and Typed Graph Distance [69] fingerprints are well-known examples that 
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consist of 420 and 1704 bits (or pharmacophore patterns), respectively. On the other hand, 

combinatorial fingerprints fall into another category since they do not have a predefined length. 

Extended-connectivity fingerprint (ECFP) [70] that encodes circular atom environments is a typical 

example. Every non-hydrogen atom of the molecule is assigned an atom code that designates the 

element type, mass, valence, charge and the total number of neighbor atoms it is connected to. Next, 

local atom environments are generated around each atom depending on the bond depth (commonly 

4). Each of these atom environments is hashed to an integer and a bit string of all these integers forms 

an ECFP. 

 

Although the amount of information encoded in 2D fingerprints is low in comparison to that available 

from the 3D molecular representations, screening efforts based on 3D descriptors were found to 

perform inferior to similarity searching with 2D fingerprints [71-73]. Furthermore, the 2D fingerprint 

representations implicitly encode valuable information related to ligand-target interactions [74]. The 

2D fingerprints, in general, are simpler and more robust as they do not require the generation of 

multiple conformers, unlike 3D representations. Many studies have therefore employed only 2D 

fingerprints [75] and owing to their superior screening performance in multiple studies [76, 77], the 

ECFPs are one of the widely used fingerprints. 

 

(b) Determination of chemical similarity 

The similarity between two compounds can be calculated by comparing their molecular fingerprints. 

A similarity measure that determines the overlap between two fingerprints is employed in order to 

quantify the similarity. For binary fingerprints, the Tanimoto coefficient (Tc) is the most frequently 

used similarity measure [59]. For a pair of fingerprints A and B, belonging to two molecules, Tc is 

defined as: 

 

!"($, &) =	 "
* + , − " 

 

where, a and b correspond to the number of the bits set to ‘1’ in fingerprints A and B, respectively, 

and c represents the number of bits set to ‘1’ in both A and B. In simpler words, an intersection of the 

fingerprint features is compared with a union of the features present in two fingerprints. The value of 

Tc ranges from 0 to 1, where 0 indicates the least similarity and 1 indicates the maximum similarity 

between the pair of molecules. Other similarity coefficients employed in similarity searching are the 

Tversky coefficient [78], the Russel-Rao coefficient [79] and the Forbes coefficient [80]. 

10



 

 

 

(c) Search strategies 

As mentioned earlier, employing multiple active compounds as a reference instead of a single 

compound is known to improve search performance [81]. Data fusion and fingerprint modification 

are the popular search strategies that utilize the information available from multiple reference 

compounds to improve search performance [60]. Data fusion technique involves the application of a 

fusion rule on the computed similarity values after performing multiple search calculations. 

 

 
 

Figure 1.4: Schematic representation of chemical similarity search and different search strategies.  

The figure is adapted from [60]. 

 

For instance, the k-Nearest Neighbors (k-NN) approach [82, 83] has been widely applied in 

combination with Tc similarity values. Fingerprint modification techniques alter the fingerprint before 

being employed for similarity search. For instance, the individual fingerprints from multiple 

reference compounds can be combined by averaging over each bit position in an approach known as 

the centroid method [82]. The resultant fingerprint is a non-binary fingerprint. Alternatively, a 

consensus fingerprint [84] can be generated, in which a bit position is set to '1' only if at least a 

predefined number of reference compounds have that particular bit set to '1'. In addition to these, 

fingerprint engineering methods were also proposed to improve search performance when employing 

multiple reference compounds [85-87]. Exemplary search strategies are presented in Figure 1.4. 
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1.2.4 In Silico Methods for Prediction of Molecular Properties, Bioactivity and Toxicity 

 

Computer-based (in silico) methods received great attention from both academia and for their ability 

to limit and prioritize the candidates to be screened in experimental validations industry [88]. For 

instance, virtual HTS was introduced to identify drug candidates from large chemical libraries as a 

complementary approach to HTS [89]. The potential of in silico methods in the development of novel 

therapeutics [90-92]) and discovery of hits that could not be identified with conventional HTS efforts 

has been previously demonstrated [93]. Absorption, distribution, metabolism, and excretion 

(ADME) properties and toxicity are crucial indicators of success in a drug discovery campaign. 

While significant improvement has been observed with respect to the failures associated with 

pharmacokinetics, safety concerns still remain a huge concern. This kept the interest open from both 

academia and industry in their quest for promising in silico methods that can identify the toxic 

liabilities of candidate drugs. There are a number of other reasons as to why toxicity prediction has 

gained much importance in the recent times [94]. The notable reasons are: 

 

1. the pressure to reduce the use of animals for experimental testing 

2. legislation in the European Union and North America that encouraged and in some cases 

mandated the use of computational techniques for toxicity prediction 

3. developments in understanding the basic biology and chemistry that facilitate modeling of 

complex toxicity endpoints 

4. the potential to identify and test specific toxicity endpoints that could not be modeled in vivo or 

in vitro 

5. the ability to predict ADME and toxicological properties on virtual chemical structures, without 

the need to carry out synthesis and experimental testing 

6. the opportunities to explore and navigate the enormous chemical space and fill the data gaps 

 

(a) QSAR Modeling 

Amongst the various methods available to predict biological activities and properties, QSAR and 

quantitative structure-property relationship (QSPR) methods receive a special mention. The 

evolution of QSAR/QSPR methods can be explained in three phases: first, the introduction of 

molecular descriptors that correlate with physicochemical properties and biological activity; second, 

the development of statistical measures to evaluate the performance on external compounds that were 

not involved in building model; and third, when applicability domain (the chemical space where 

QSAR/QSPR models can be applied with acceptable accuracy) became the measure of the quality 
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[94]. Typically, QSAR models are specific to a single endpoint, either the activity of a chemical 

towards a particular biological target (e.g. hERG channel blockade) or the likelihood to cause a 

specific adverse/toxic effect (e.g. hepatotoxicity) [95-97]. In addition to the information about 

compound structures, these models may include structural information about the target molecule if 

available. When a model is developed on a chemical space comprising structural analogs, it leads to 

what is called a local QSAR model which suffers from a poor applicability domain when tested on 

new structural classes [98]. However, global models are preferred especially by regulatory agencies 

in order to assess compounds belonging to diverse chemical classes [99, 100]. 

 

Despite the developments over the time, these models are still under active development within 

regulatory bodies, limiting their use to flag compounds that are potentially toxic and gaining extra 

information as opposed to decision making [101]. QSAR models to predict pharmaceutically relevant 

endpoints such as QT prolongation, resulting from drug-induced inhibition of hERG channel, have 

been used on a routine basis [102, 103]. Lead initiation and optimization are the stages where these 

models are of high value, helping medicinal chemists understand the relationship between chemical 

structure and the affinity towards hERG channel. Although many previous models contributed to a 

broader understanding of the complex interactions of ligands with hERG channel, none of them 

proved to have a global acceptance due to their limited applicability domains [96]. Similarly, multiple 

models [104-106] have been developed to predict adverse events related to the peroxisome 

proliferator-activated receptor family (a type of nuclear receptors known to be important in disease 

areas such as cancer, diabetes, obesity etc.), [107] and toxic effects such as cardiac toxicity, 

hepatotoxicity and reproductive toxicity [108]. Additionally, many models were recently reported to 

predict the effects of chemical structures on the nuclear receptor and cellular stress response pathways 

as a part of the Toxicology in the 21st Century (Tox21) Data Challenge [105]. 

 

(b) Machine Learning Approaches 

Compound classification techniques represent another category of LBVS methods [51]. They 

facilitate prediction of compound class labels (active versus inactive) based on the models derived 

from training data and rank the test set (e.g. a database compounds) according to their probability to 

be active against a target. Basic classification methods such as clustering and partitioning and 

machine-learning (ML) approaches are gaining have gained popularity in LBVS. One of the first 

applications of ML in drug discovery was substructure analysis performed on biological screening 

data by Cramer et al [109]. Today, with the increasing availability of big data collections, ML is an 

active area of research to develop novel tools for data mining [110, 111]. Currently, there exists a 
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broad spectrum of applicability for ML methods to aid in several steps of the drug discovery process: 

protein structure and function prediction, identification and optimization of hit compounds, 

prediction of biological activity, pharmacokinetics (ADME) and toxicity [112-115]). 

 

In pharmaceutical R&D, particularly in the area of cheminformatics, several ML methods such as 

naïve Bayes (NB) [116], k-NN [117], Random Forests (RF) [118] and Support Vector Machines 

(SVM) [119] have been increasingly applied to datasets that are now transforming into the big data 

[120-124]. These methods could be used for either binary or multi-class prediction problems or on 

continuous data. While the initial focus, when the drug discovery datasets started out to be very small, 

was on methods such as local QSAR or pharmacophore methods, more complex problems could be 

handled with ML methods [125]. Most of these methods have been utilized in the development of 

QSAR, classification and regression models for a long time. More recently, deep learning (DL) 

methods have been highly successful across a wide range of applications such as self-driving cars, 

computer vision, speech recognition and natural language processing, among others [126]. The 

flexible architecture provided by neural networks [127], increased availability of big data and 

enhanced computational power play a key role in the success of DL methods [126]. Some earliest 

applications of machine learning methods to drug discovery are presented in Figure 1.5. 

 

 
 

Figure 1.5: Timeline of events signifying the application of ML methods to drug discovery. 
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Unlike similarity search, the development of classification models requires a training set containing 

both active and inactive compounds. Although it is recommended to have as many compounds as 

possible in the training set, in the practical scenario, the number varies depending on the complexity 

of the system and data availability [128-130]. Compared to regression models that require explicit 

biological activities (e.g. IC50 or Ki values) for training set compounds, classification models are 

simple to construct, since it is easy to acquire such data from the literature [131]. 

 

Development of optimal prediction models for chemical applications is challenged by multiple 

limitations. In the early stages of drug discovery, little knowledge about the biological target is 

available and the experimental data is often available for small datasets of compounds with low 

structural diversity. Prediction models developed using such data are prone to overfitting and have 

limited generalization capabilities. Representation of chemical structures is also a challenge since not 

all methods consider the flexibility of molecules and special features such as tautomers and 

conformations. For instance, if the dataset contains stereoisomers (or other types of isomers) it must 

be ensured that the molecular descriptors employed are sensitive to chirality [132]. LBVS methods, 

including the ML methods, tend to rely on the assumption that similar molecules exhibit similar 

properties. However, several highly similar compounds sometimes exhibit a large difference in 

potency, referred to as ‘activity cliffs’ [133, 134]. Presence of a high number of activity cliffs in 

training set has been implicated in the failure of QSAR models [132, 135]. In a nutshell, the predictive 

power of an in silico model depends on the dataset characteristics (size of the dataset, structural 

diversity, the presence of activity cliffs etc.) and the modeling procedure (data curation, descriptor 

selection, validation, applicability domain etc.) [128, 136-138]. 

 

1.2.5 PAINS and Assay Artifacts 

 

A successful HTS strategy involves judicious assessment of the screening results to identify 

promising lead compounds and at the same time distinguish them from false-positive hits [139]. 

Without appropriate control experiments, more than 80% of the primary hits from HTS assays can 

be considered false-positive hits, more commonly referred to as assay artifacts [140]. Regardless of 

the observed potency, the screening results with artifacts are not useful to medicinal chemists because 

the apparent activity is simply a consequence of chemical reactivity or other effects. The literature 

describes a variety of mechanisms that include covalent protein reactivity [141], redox activity, 

interference with assay detection technology [142-144], membrane disruption [145], decomposition 

in buffers [146] and the formation of colloidal aggregates [147-149]. The different sources of false-
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positive hits are summarized in Figure 1.6. Several approaches were introduced to improve the 

quality of chemical libraries and to detect false-positive and nuisance compounds. Examples include 

library enhancement approaches such as drug-likeness filters and structural/substructural alerts that 

identify frequent hitters and potentially reactive compounds [150, 151]). 

 

 
 

Figure 1.6: The fate of hits from HTS assays and different sources of false-positive hits. 
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INterference compoundS (PAINS). To ensure reproducibility, they derived about 480 structural 

alerts called “PAINS alerts” which are nothing but the substructural features frequently found in 

PAINS. The alerts were made publicly available for the community to flag suspicious compounds in 

screening collections [52]. Eventually, PAINS alerts received great attention from the community 

and were widely employed to deprioritize or discards any matching screening hits before 

experimental validation [152]. Similarly, the candidates with PAINS were deprioritized for further 

validation even after passing the experimental screens [153]. Web-based platforms [154, 155] that 

facilitate detection of PAINS were developed and databases such as ChEMBL and ZINC [154] 

started to flag compounds containing these filters. This prompted many follow-up studies [156-158]. 
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highly promiscuous compounds contain these alerts [159]. A similar analysis suggested that many 

compounds with PAINS did not show high assay promiscuity [160]. Furthermore, the applicability 

domain of PAINS alerts was criticized to be limited owing to the proprietary nature of the compound 

library they were derived from and the type of assay (only AlphaScreen assays) they were tested in 

[160, 161]. Amidst these mixed reports [160, 162], it is unclear whether the application of these alerts 

to discard hits at an early stage is a good idea. 

 

1.2.6 Compound Promiscuity, Extensively Assayed Compounds, and Dark Chemical Matter 

 

The shift in the drug discovery paradigm from 'one-drug, one-target' to 'one-drug, many-targets' is 

marked by the emerging theme of polypharmacology [163, 164]. It is increasingly understood that 

drugs elicit therapeutic effects by interacting with multiple targets and perturbing multiple pathways 

[165]. Literature surveys indicate that drugs bind, on average, to two to seven biological targets [166]. 

While there are on one hand therapeutic areas such as oncology where activity at multiple targets is 

essential to achieve a desired therapeutic effect, on the other hand, areas such as infectious diseases 

require selective activity towards a target [165]. In this regard, compound promiscuity can be 

understood as the ability of small molecules to interact with multiple biological targets [167, 168]. 

This behavior (‘good’ promiscuity) should not be confused with the non-specific or undesirable 

effects (‘bad’ promiscuity) of aggregating compounds or PAINS in biological screens [159]. Taken 

together, promiscuity forms the molecular basis for polypharmacology, which is desirable but may 

as well lead to undesired side-effects due to specific interactions at some targets [164, 169]. 

 

Drug-target annotations [170], compound bioactivity data from medicinal chemistry literature [41, 

171] and bioassay collections [172] are the major sources of data for estimation of promiscuity. More 

recent estimates indicated that, on average, approved drugs and bioactive compounds bind to 5.9 and 

1.5 targets, respectively [165]. However, data incompleteness (i.e. not all available compounds are 

tested against all known targets) is an important factor to consider when attempting to generate 

statistically meaningful promiscuity estimates [173, 174]. Thus, considering assay frequency 

information, available from major repositories such as PubChem, provides a more meaningful 

assessment [169]. In this context, investigation of the ‘extensively assayed compounds’ was expected 

to push compound promiscuity analysis to a next level while addressing the issue of data 

incompleteness [169]. To this end, Bajorath et al [169] recently compiled a data set of 437,257 

compounds extensively tested in hundreds of primary and confirmatory assays. The average and 

median degrees of promiscuity were 3.4 and 2.0, respectively (for primary assays) and 2.6 and 2.0, 
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respectively (for confirmatory assays) [169]. Surprisingly, these values were only slightly higher than 

the previously detected promiscuity degree (1.5 targets) based on activity data from ChEMBL. These 

findings confirm that bioactive compounds are only moderately promiscuous, in general, and less 

promiscuous than drugs. 

 

On the other end of the scale are those compounds that failed to demonstrate any activity despite 

having been tested in hundreds of assays against multiple targets. Little light has been shed on these 

seemingly biologically inert compounds as to how they are identified and treated while designing 

screening libraries for HTS campaigns. A recent study by Wassermann et al [175] from Novartis 

introduced the term dark chemical matter (DCM), referring to those compounds that have not shown 

biological activity in at least 100 HTS assays. These compounds were analyzed in additional assays 

to identify potent hits that showed antifungal activity. Owing to their ‘unique activity’ and ‘clean 

safety’ profiles, DCM compounds were proposed as valuable starting points for lead optimization 

efforts [175]. A similar study analyzed the screening collections of Boehringer Ingelheim and found 

that only compounds tested in more than 125 assays showed deteriorating hit rates [176]. Therefore, 

it is not certain whether an absolute criterion can be established to define DCM and whether 

compounds identified as DCM in one screening campaign are also biologically inert in other 

screening campaigns. 

 

1.3  Motivation and Aim of Thesis 
 

The shift to the ‘big data’ era presents both new opportunities as well as challenges that require careful 

and efficient mining of the data. The data originating from the scientific literature may be associated 

with significant levels of uncertainty due to various reasons [177-180]. The process of automated 

data mining also has many limitations such as errors in extracting activity values, units, and chemical 

names. Bioactivity data from public sources poses serious problems for a large-scale analysis since 

most of the data is assay specific and is comparable only under certain conditions [178, 180]. Data 

redundancy is another significant issue. Large amounts of redundant data were detected among the 

contents of ChEMBL and PubChem databases [181]. This redundancy, not obvious to users, might 

provide an unrealistic picture of the underlying compound and bioactivity data. This was previously 

highlighted by comparing both public and commercial databases for the extent of overlap and 

complementarity in compound and compound activity data [182, 183]. A more recent analysis 

indicates that differences in the deposition dates and variability in chemical structure standardization 
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procedures are responsible for the discordance between major portals [184]. All these observations 

suggest that the research community might benefit more from databases that serve as comprehensive 

or one-stop resources that carefully integrate data from decentralized portals. 

 

Comparison of the promiscuity trends of drugs and bioactive compounds revealed that highly 

promiscuous drugs are often picked from the pool of bioactive compounds that are, in general, 

moderately promiscuous. Thus, promiscuity, although essential in many cases, is one primary reason 

behind the unwanted side effects that may lead to the failure of a candidate drug. In the light of a 

steadily increasing number of new chemical entities introduced each year, early assessment of the 

pharmacokinetic and safety (commonly referred as ADME/T) profiles is highly essential. In this 

context, alongside in vitro and in vivo methods to assess toxicity, in silico approaches gained much 

attention. Many consortia-based and crowd-sourced projects have been actualized with the 

fundamental goal to replace or complement the in vitro and in vivo methods with in silico alternatives. 

In the Tox21 program, more than 10000 chemicals were screened in quantitative HTS format for 

interference in nuclear receptor and cellular stress response pathways. Through a data challenge, 

model development was crowdsourced and several in silico models were assembled. A key 

advantage is that gold-standard data from single standard assay format were employed in model 

development. A large amount of such data is often unavailable at the publicly accessible bioactivity 

databases for a majority of targets. For instance, the ChEMBL database provides more than 18000 

bioactivity records for hERG, but they are collected from different sources and such data may not be 

comparable under certain conditions, necessitating extensive curation efforts. On the other hand, 

models based on smaller data sets have limited applicability domain. Thus, in silico models that are 

based on high-confidence data sets, that best represent the chemical space tested for a particular 

biological target, are much needed. 

 

Much of the bioactivity data originates from primary assays. Presence of a large number of false-

positive hits in the screening output has been a predominant concern. Often, these false-positive hits 

are frequent hitter compounds that exhibit unusually high promiscuity or those that are chemically 

reactive towards the target via an unwanted mechanism of action. In this context, PAINS alerts were 

introduced to identify frequent hitters. While a ‘black-box practice’ of deprioritizing or omitting 

compounds contains PAINS has been increasingly noticed, recommendations were made as to not 

completely omit PAINS liable compounds until unless confirmed in orthogonal assays. Thus, 

exploring the activity profiles and mechanisms of action of PAINS might provide useful insights in 

this regard. In contrast, screening libraries also comprise those compounds that do not demonstrate 
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any biological activity despite being tested in hundreds of assays. The fate of such compounds, 

whether to be excluded from screening libraries in favor of less tested or untested compounds, is not 

clearly understood so far. The recent literature on ‘dark chemical matter’ sheds light on these 

compounds and highlights their potential to be promising candidates. However, the criteria for 

inclusion of compounds in this category are questionable on the grounds that the dark chemical matter 

shares their chemical space with marketed drugs. Therefore, it is worth investigating the true potential 

of these compounds to possess ‘unique activity’ and ‘clean safety’ profiles. 

 

The objective of this thesis is to utilize cheminformatics methods to address the challenges in the 

aforementioned diverse, yet highly related, aspects of drug discovery that are crucial in improving 

decision making. The primary aims of the thesis include: 

 

1. Development of comprehensive knowledgebase resources that integrate data spanning multiple 

chemogenomics resources that could be used for knowledge-driven drug discovery research. 

2. Construction and validation of different in silico models that facilitate prediction of chemical 

toxicity. 

3. Investigation of the true promiscuity and mechanisms of action of the frequent hitter (i.e. PAINS) 

and non-frequent hitter (i.e. DCM) compounds in biological screens. 
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Chapter 2 
 

Methodology 
 

Constant improvements in the availability and efficiency of computational tools and resources 

complement the diverse range of cheminformatics methods employed in this thesis. The thesis work 

started with the identification of publicly accessible resources for data on small molecules and 

biological macromolecules. The data extracted from multiple resources were carefully curated and 

integrated into two knowledgebase resources that serve as rich resources for further use in drug 

discovery research. Next, in silico models were developed for predicting different toxicological 

endpoints. This involved collection and curation of data, generation of molecular features, application 

of chemical similarity and machine learning-based methods to develop binary classifiers, and finally 

the usage of statistical methods to validate their performance. Furthermore, huge collections of HTS 

data and the wealth of experimentally determined biological macromolecule structures were analyzed 

for the promiscuous (frequent hitter) behavior of small molecules and the structural context of 

PAINS. This section describes the different data sources and cheminformatic methods employed to 

achieve the aforementioned tasks. 

 

2.1  Publicly Accessible Resources for Chemogenomics Data 
 

Much of the data needed to construct knowledgebase resources were extracted from the publicly 

accessible repositories. These resources provide different kinds of data including drugs, drug targets, 

small molecule structures, compound bioactivity data and target-ligand complexes. The resources 

that are central to different studies of this thesis are DrugBank [185, 186], ChEMBL [41, 42], Tox21 

browser [187], and Protein Data Bank [43]. Brief descriptions of these resources are provided in 

Table 2.1. Additionally, some data sets were directly extracted from primary literature for use in this 

thesis. While some comprise activity annotations against specific biological targets, some include 

screening data from primary (HTS) and secondary (confirmatory dose-response assays) screens. 

These data sets were primarily used for the development of in silico models that are able to predict 

chemical toxicity and for the estimation and comparison of promiscuity trends. 
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Table 2.1: Different publicly accessible databases that served as sources for chemogenomics data. 

 

Database Contents 

DrugBank 

A cheminformatics and bioinformatics resource for data on drugs and drug 

targets. It is constantly enriched with different kinds of data ranging from 

chemical, pharmacological and pharmaceutical data to pharmacogenomics 

and metabolomics data. Drug target information available from DrugBank 

is a valuable resource to estimate compound promiscuity estimates. 

However, compound activity data is not available for drugs. 

ChEMBL 

Bioactivity database that primarily focuses on compound activity data 

extracted from medicinal chemistry literature. It also provides additional 

details such as ADMET properties and predicted targets for small 

molecules. The database also provides accessibility through web services. 

ChEMBL also holds information on drug withdrawals and most of this data 

was extracted from WITHDRAWN database [188]. 

Tox21 Browser 

The Tox21 library comprises more than 10,000 approved drugs and 

environmental chemicals tested in a high-throughput robotic screening 

system (quantitative HTS assays) for their ability to disrupt biological 

pathways that could result in toxicity. The data set made available via the 

Tox21 Data Challenge 2014 was employed to develop in silico models to 

predict the outcomes against the nuclear receptor and cellular stress 

response pathways. 

Protein Data Bank 

A global resource for experimental data on biological macromolecules 

(proteins and nucleic acids) that primarily archives their three-dimensional 

(3D) structure data. In its current version, PDB provides more than 140,000 

structural records of which a majority is based on the experimental methods 

X-ray crystallography and nuclear magnetic resonance spectroscopy. 

However, the recent introduction of Cryo-electron microscopy facilitated 

determination of structures of certain macromolecules (e.g. ion channels and 

transporter proteins) that could not be resolved using other methods. 
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2.2  Integration of Chemogenomics Data for Knowledgebase Development and 

Modeling 
 

The number of compounds and activity records available at major publicly-accessible portals such 

as PubChem [172] and ChEMBL [41, 42] increased dramatically in the order of millions. With 

limited or no access to commercial resources, much of the academic research relies on the data from 

these resources. However, many studies reported inconsistencies and uncertainties with compound 

structure representation and the heterogeneous compound activity data [136, 180, 189, 190]. The 

choice of descriptors has a strong influence on the resulting QSAR models. Therefore, the erroneous 

representation of chemical structures could hamper the performance of the models [136]. It was also 

reported that the activity values of chemical compounds obtained from different laboratories 

frequently disagree [138]. Thus, the establishment of appropriate search criteria to mine the wealth 

of data and careful integration of data extracted from different resources are highly essential. To this 

end, the recommendations [138, 191, 192] proposed in the literature were essentially practiced. 

 

2.2.1 Integration of Compound Data 

 

While many major resources provide compounds in standard file formats such as SDF (with 2D or 

3D coordinates), some provide simpler representations such as SMILES. Depending on the software 

and sometimes the version of the software used to generate them, minor discrepancies can be 

expected. Therefore, the data obtained from different sources may contain duplicate entries. The 

following steps were adapted consistently throughout this thesis to integrate compound data obtained 

from different resources. 

 

(a) Curation of Chemical Structures 

 

This step involves standardization of the chemical structures in the data set. The curation protocol 

typically starts with the removal of inconsistent chemical records such as inorganic compounds, 

mixtures of compounds, counterions, and biologics. Next, the structures are validated by correcting 

violations in valency of atoms, aromaticity, tautomers, and charges. Finally, the structure of the 

compound is cleaned and a 3D representation is generated. Dealing with tautomers is challenging 

since the ratio of different tautomers is subjective [193]. A number of software tools facilitate 

performing these tasks. For instance, the JChem suite from ChemAxon [194] provides a standardizer 
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and the open-source cheminformatics toolkit RDKit [195] provides Structure Normalizer nodes in 

KNIME [196]. More detailed guidelines are provided by Tropsha et al [138, 192]. In this thesis, the 

curation of chemical structures was performed using the InstantJChem software from ChemAxon, 

accessed with an academic license. 

 

(b) Identification of Duplicates 

 

It is often the case that the same compound is tested in different experiments and recorded multiple 

times in a bioactivity database [192]. For instance, the same compound available from different 

vendors might be tested in the same assay across multiple laboratories resulting in multiple activity 

records identified by different internal identifiers [197]. This is also the case when collating drugs 

from different resources that use different internal identifiers. Detecting the structurally identical 

compounds is the first step in dealing with such data. Many methods and freely accessible tools are 

available that identify duplicates based on different structural representations such as molecular 

descriptors, chemical names, SMILES, database identifiers etc. [192, 198, 199]. In this thesis, hashed 

InChI notation (commonly referred to as standard InChIKey) was employed owing to its wide 

acceptance as a standard chemical structure identifier [66]. Compounds standardized in the previous 

step are processed to generate InChIKey notations that are checked for duplicates via string matching. 

 

2.2.2 Integration of Compound Bioactivity Data 

 

Large-scale treatment of bioactivity data is a much difficult endeavor compared to the previous steps. 

Pharmaceutical companies often the measure activity of a compound in duplicates or triplicates in 

the same assay in order to assess the experimental variability of the assays using different statistical 

metrics [178, 192]. Since such data is often not available for academic research, alternative 

recommendations are needed that facilitate efficient mining of the bioactivity data in the public 

domain. Identification of duplicate compound entries is the starting point when treating compound 

bioactivity data. Therefore, the protocol starts with the two steps described before. The following 

steps are followed in order to arrive at curated sets of bioactivity data. 

 

(a) Search Criteria for High-confidence Bioactivity Data 

 

It is acknowledged that large amounts of compound bioactivity data are heterogeneous and are 

therefore associated with different experimental uncertainties and hence different levels of 
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confidence [191]. For instance, the target annotations of drugs from ChEMBL databases highly 

varied with different data selection criteria [200]. Therefore, the data selection criteria influence the 

conclusions drawn from such data. Practical recommendations were proposed by Bajorath et al to 

select compound data sets with high confidence [191]. These criteria, outlined in Figure 2.1, have 

been adapted for this thesis. 

 

 
 

Figure 2.1: Compound selection criteria for generation of high-confidence bioactivity data. The criteria and 

figure are adapted from [191]. 

 

(b) Detection of activity cliffs 

 

The presence of pairs of compounds that share a high structural similarity and possess highly different 

bioactivity values is considered as one of the challenges in the development of robust QSAR models 

[132]. Such pairs of compounds are referred to as activity cliffs (Figure 2.2) [135, 201]. Different 

similarity assessment strategies could be employed to identify activity cliffs. Matched molecular pair 

(MMP) and fingerprint similarity-based approaches are commonly employed to detect activity cliffs 

[201]. Identification and treatment of activity cliffs are recommended as one of the criteria before 

initiation of a computational study [192]. Consideration of 3D structural differences might be subject 

to the availability of the 3D structure of the target and the binding modes of at least one compound 
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from the pair forming an activity cliff. Therefore, in this thesis, detection of the 2D activity cliffs 

alone was considered. 

 

 
 

Figure 2.2: Exemplary activity cliffs found within the hERG bioactivity data set from the ChEMBL database. 

The activity cliffs are based on (a) matched molecular pair; (b) fingerprint similarity (ECFP4). 

 

(c) Estimation of data set modelability 

 

Having analyzed the impact of activity cliffs on the performance of QSAR models, Tropsha et al 

introduced the concept “data set modelability” which provides a prior estimate of the feasibility of 

obtaining a predictive QSAR model using a given data set [132]. Estimation of MODelability Index 

(MODI) not only facilitates identification of a subset of the data set with high modelability but also 

the best set of descriptors that may result in highly predictive models [192]. MODI was originally 

defined as “an activity class-weighted ratio of the number of nearest-neighbor pairs of compounds 

with the same activity class versus the total number of pairs” [132]. The higher the MODI value, the 

higher the likelihood to obtain a highly predictive QSAR model. In general, a MODI value of 0.6 

was proposed as the threshold for a data set to qualify for a computational study [192]. However, 

different sets of descriptors might provide different MODI values for the same data set, as also 

observed in this thesis. 
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2.3  Construction of Knowledgebase Resources 
 

In this thesis, two knowledgebase resources were developed: SuperDRUG2 and WITHDRAWN. 

The sources described in Table 2.1 are among additional resources used for data collection which 

include regulatory agency websites (e.g. U.S. Food and Drug Administration, European Medicines 

Agency etc.) and several online drug compendia (e.g. Drug Central, KEGG Drug etc.). Both 

resources were made publicly accessible and all data were stored in relational databases (MySQL). 

All interactions with the database are performed using scripts written in Java and JavaScript 

programming languages (Figure 2.3). They are hosted as Web applications on a virtual Linux server. 
 

 
 

Figure 2.3: A generic scheme for the construction of a web-accessible knowledgebase and its components. 

 

2.4  Development of In Silico Models for Toxicity Prediction 
 

Once a data set of interest is identified and standardized on the basis of the earlier described protocols, 

development of an in silico model involves three consequent steps: feature generation; model 

development; and model validation. The basic principle underlying a prediction model is that ‘similar 

chemical structures exhibit similar activity or toxicity’. While the similarity-based methods tend to 
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perform well on this basis, it is often the case that certain targets, owing to their flexible binding 

pockets and presence of allosteric sites, interact with multiple ligands that are quite dissimilar [202]. 

ML methods perform well in such cases due to their potential to capture complex relationships 

between the biological and chemical spaces [203]. Both chemical similarity and machine learning 

based approaches were evaluated in this thesis. Depending on the study goal and the data set in hand, 

different sets of features were employed in different studies. An overview of the different features 

and modeling methods is provided in Table 2.2, followed by brief descriptions of the individual 

features in Table 2.3. 
 

Table 2.2: An overview of the features and methods used for development of in silico models. 

 

Study Toxicity 

Endpoint(s) 

Molecular Features Modeling Method(s) 

Drwal et al. 

[204] 

Nuclear receptor 

and cellular stress 

response pathways 

MACCS, ECFP4, 

ToxPrint fingerprints 

and descriptors 

- naïve Bayes 

Banerjee et al. 

[205] 

Nuclear receptor 

and cellular stress 

response pathways 

MACCS, ECFP4, 

ToxPrint, ESTATE 

fingerprints and 

descriptors 

- k-Nearest Neighbors 

- naïve Bayes 

- Random Forests 

- Probabilistic Neural 

Networks 

Siramshetty et al. 

[206] 

hERG channel 

blockade 

MACCS, ECFP4, 

PubChem, Morgan 

fingerprints 

- k-Nearest Neighbors 

- Support Vector Machines 

- Random Forests 

 

Table 2.3: Brief descriptions of different molecular features employed for model development. 

 

Feature Type Description Remark 

MACCS Substructure 
fingerprint 

A bit string representation based on a 
dictionary of substructures (MACCS keys). 
Each bit position encodes the presence or 
absence of a key. Publicly available version 
contains166 bits. 

Simplest and one of the most 
commonly used fingerprints 
in similarity search (e.g. 
virtual screening). 

28



 

 

ECFP [70] Circular 
fingerprint 

The ECFPs are circular topological 
fingerprints that encode circular atom 
neighborhoods. Naturally represented as 
varying-length lists of integer identifiers but 
can be compressed into fixed-length bit 
string (typically 1024 bits). The number and 
size of the neighborhoods depend on the 
diameter of the circular neighborhood. 
Commonly chosen diameter is 4 (hence 
ECFP4). 

Fingerprint generation can be 
customized to obtain circular 
representations for different 
purposes. ECFPs are 
commonly used for virtual 
screening and structure-
activity modeling. 

ToxPrint Substructure 
fingerprint 

Publicly available fingerprints based on 
generic structural fragments, genotoxic 
carcinogen rules [207] and ‘threshold of 
toxicological concern’ risk assessment 
categories [208]. Publicly available version 
contains 729 bits [209]. 

Most commonly employed in 
predicting toxicity endpoints. 
Fingerprints were generated 
using ChemoTyper software. 
(Molecular Networks 
GmbH). 

ESTATE 
[210] 

Topological 
fingerprint 

Electrotopological state index (ESTATE) is 
an atom level topological fingerprint that 
combines electronic state of the atoms with 
their topological nature in the context of the 
molecular skeleton. The open-source RDKit 
implementation provides 79 bits. 

The atom-based fingerprints 
are commonly employed in 
QSAR studies [211, 212]. 

PubChem Substructure 
fingerprint 

A dictionary-based bit string representation 
containing 881 bits that encode for hierarchic 
element counts, ring systems, atom pairs, 
simple and complex atom neighborhoods. 

Employed by the PubChem 
database [213] for similarity 
search and identification of 
neighbors. 

Morgan 
[70, 214] 

Circular 
fingerprint 

An ECFP-like fingerprint that also encodes 
circular atom neighborhoods. A Morgan 
fingerprint with the radius 2 for the circular 
neighborhood is roughly equivalent to an 
ECFP fingerprint with a diameter of 4. Both 
hashed and bit string representations are 
available. RDKit implementation provides 
1024 bits. 

A newer version of circular 
fingerprint popularly applied 
in similarity searching and for 
picking diverse subsets of 
compounds from a data set or 
compound library. 

Molecular 
descriptors 

Descriptor 
fingerprint 

Selected molecular descriptors based on the 
topological and physicochemical properties 
were transformed into binary bit string 
representations by binning. The bins (and 
therefore bits) were populated based on the 
descriptor value ranges. For example, if a 
descriptor value was found in a specific 
range, the corresponding bit was set to 1. 

Descriptor-based fingerprints 
are useful in discriminating 
compounds between different 
activity classes [215]. Can be 
used alone or in combination 
with other fingerprints. 
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(a) Modeling methods 

The k-Nearest Neighbors approach was adapted to develop chemical similarity-based models while 

the ML-based models were developed using different learning algorithms: naïve Bayes (NB), 

Random Forests (RF), Support Vector Machines (SVM), and Probabilistic Neural Networks (PNN). 

Descriptions of these methods are provided below. 

 

1. k-Nearest Neighbors: 
 

The k-NN method is among the simplest and intuitive algorithms used for both classification and 

regression [216]. Since its inception, the algorithm has been widely applied in the development 

of QSAR models to predict physicochemical properties, biological activity and toxicity [217-

224]. In the training phase, each training set example is stored along with its label. To perform a 

prediction for a test sample, its distance from each training example is computed. Then the closest 

k examples, where k ³ 1 is the fixed integer value, are computed. The label that is most common 

among these k examples becomes the prediction for the test example [225]. In simple words, a 

compound is classified on the basis of the majority vote of its neighbors (see Figure 2.4). 
 

 
 

Figure 2.4: Illustration of k-Nearest Neighbors approach. On the left is the 2D data set of active and 

inactive compounds in the descriptor (D1 and D2) space. On the right, classification based on different k 

parameters are represented. For example, k = 1 classifies the test set compound as active. The figure is 

adapted from [57]. 
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To train a k-NN classifier, the user should specify the value of k and determine the distance 

function. For binary classification, to avoid the ties, it is recommended to choose a small odd 

integer is used to avoid tied votes [57]. The k-NN method is popularly employed in combination 

with Tanimoto similarity when molecular fingerprints as used as features [82, 83]. One of the 

known disadvantages of k-NN is its time complexity required to predict new samples. Without 

preselection of descriptors, k-NN cannot handle high dimensional data. Since only k neighbors 

are chosen, the presence of wrongly classified training examples can lead to wrong predictions. 

Although several implementations of k-NN are available in different toolkits and platforms like 

KNIME, due to the difficulties in adapting it for the data set in hand and the voting scheme 

chosen, a custom k-NN model was developed in this thesis. 

 

2. Naïve Bayes: 
 

Naïve Bayes is a probabilistic method of classification based on the Bayes theorem, which 

describes the probability of an event that might have been based on prior knowledge of conditions 

related to the event [226]. 

 

.($/&) = .(&/$).($)
.(&)  

 

Here, the equation describes probability P for event A to be the outcome given the event B. If 

previous knowledge about .(&/$),	.($) and .(&) is available, probabilities can be derived 

without specific knowledge about .($/&). In our context, it assumes the characteristics of 

descriptors to contribute independently towards the probability that a particular data point (i.e. a 

compound) belongs to a particular class. The classifier has been frequently used for predicting 

biological activity and chemical toxicity [57, 227-229]. Due to its precise nature, the classifier 

can be trained very efficiently using training data sets and a maximum likelihood for parameter 

estimation. The main advantage of a Naïve Bayes classifier is its small size requirement of a 

training data set for parameter estimation. Due to its ease of use, versatility and robustness, 

Bayesian classifiers are increasingly employed in ligand-based virtual screening [230]. A major 

limitation is that the modeling approach is unsuitable when there exist strong conditional 

dependencies between the variables (or descriptors). However, utilizing multitarget Bayesian 

classifiers (commonly referred to as Bayesian networks) has been associated with improved 

classification accuracies [231]. Bayesian networks consider the dependencies between the 
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variables that are not accounted for by a naïve Bayes classifier. Furthermore, combining 

fingerprints with descriptors has been a beneficial approach in Bayesian modeling [232]. Hence, 

this classifier was successfully employed in one of the studies in this thesis for predicting the 

nuclear receptor and stress response pathway interference. 

 

3. Support Vector Machines: 
 

SVMs are one of the most popular ML techniques used in the field of data mining in various 

domains for real-world classification problems. Due to its high generalization capabilities and 

ability to identify global and non-linear solutions, it became a very popular choice of technique 

among the data mining researchers and scientists. Vapnik and colleagues [233] first introduced 

the SVMs. These are supervised learning algorithms that facilitate both classification and 

regression. In one of the earliest reported works, SVMs performed significantly better than other 

ML-based methods in predicting the inhibitors of dihydrofolate reductase [234]. Since then, 

SVMs have been successfully employed in drug discovery for binary activity or property 

prediction [235-238], raking a database of compounds [239, 240] chemical toxicity prediction 

[241, 242] and identification of novel active compounds [243] even in a scenario where no active 

compounds are known for a target of interest [244]. 

 

The basic idea behind SVMs is to derive a separation rule for compounds belonging to two 

different classes [245]. This is achieved by projecting the compounds into a high-dimensional 

descriptor space and generating a hyperplane that distinguishes the compounds with different 

class labels (Figure 2.5). While many such hyperplanes can be approximated, the SVM algorithm 

chooses a hyperplane that maximizes the margin between the two classes, assuming that the 

larger the margin, the lower the classification error. These hyperplanes are ‘support hyperplanes’ 

and the data points lying on them are referred to as ‘support vectors’. The projection of data points 

is facilitated by a kernel function belonging to one of the four families of kernel functions: linear 

kernel, polynomial kernel, sigmoid kernel and radial basis function kernel. Although polynomial 

kernel functions are widely employed in combination with molecular descriptors and 

fingerprints, simple linear kernel based SVMs have also been successfully applied in large-scale 

QSAR studies [246].  Furthermore, a range of new kernel functions was introduced that compute 

similarity by different means. For example, graph kernels assess the overall similarity between 

labeled graphs, without the need to compute vector representations of the compounds [247]. The 

Tanimoto kernel, based on the popular Tanimoto coefficient, compares different compound 
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properties using fingerprint representations, without the need for additional parameters [248]. 

Although SVMs are known to provide accurate results for balanced data sets, they are not robust 

towards imbalanced data sets (i.e. data sets where examples belonging to one of the two classes 

are exceedingly high in number) [249]. SVMs are also sensitive to the presence of a large number 

of irrelevant descriptors [218] which necessitates preselection of descriptors. In this thesis, an 

SVM model based on a linear kernel function was developed using the ML toolkit, Scikit-learn 

[250] in Python programming language [251]. 
 

 
 

Figure 2.5: Illustration of Support Vector Machine approach. (a) Compounds belonging to two classes 

(active and inactive) are represented as data points in the low-dimensional space; (b) The hyperplane H 

separates compounds belonging to the two classes in a high-dimensional space. Those data points that 

determine H are referred to as support vectors. The figure is adapted from [245]. 
 

4. Random Forests: 
 

Random forests are an ensemble of several decision trees (DTs), each of which is created using 

a subset of the total features in order to improve the variance of the predictions [218]. A DT 

comprises of a set of rules that associate a specific feature or descriptor with the activity or 

property of interest [57]. In drug discovery, DTs have been applied to prediction of biological 

activity (more interestingly to identify substructures that can distinguish active compounds from 

inactive ones) [252], properties like ‘drug-likeness’ [253] and several ADME/T properties [254-

259]. A typical DT is depicted as a tree with the root and the leaves at the top and bottom of the 
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tree, respectively. From the root, the tree splits into branches with each branch further branching 

until a leaf node is reached. The leaf nodes correspond to target property while all intermediate 

nodes are assigned with a descriptor which serves as a test condition. Thus, a new compound is 

classified into the target category of the leaf node it ultimately reaches while going through a 

series of questions in a top-down manner (see Figure 2.6). 

 

 
 

Figure 2.6: A schematic representation of the Random Forest algorithm. The figure is adapted from [57]. 

 

DTs are considered to possess the most desirable characteristics since it can handle high-

dimensional data while ignoring irrelevant descriptors [218]. A DT model can be easily 

interpreted and can be used to model multiple mechanisms of actions (i.e. target properties). 

However, the main drawback of a DT is it that it often achieves a low prediction accuracy, 

limiting its applicability in large-scale virtual screening applications [218]. A modern adaption 

of DTs, the random forest (RF) algorithm [260] was developed later to further improve the 

prediction variance. RF comprises of many classification trees grown during the training 

procedure. An individual training set is created for each tree selected by random sampling with 

replacement from the complete data set. During this, one-third of the samples are left out which 

become the out-of-bag cases that are used as test set. The performance of the classifier depends 

Calculation of overall error 
(average of OOB errors)

Data Matrix
N (samples) x M (features)

For each
tree

Random
sample selection

Construction of 
decision tree

Calculation of
out-of-bag (OOB) error

Classification

Iteration of each sample 
through individual trees

Random selection of 
features (m << M)

Sort samples by the 
selected feature

Compute splitting criterion 
(e.g. Gini index)

Choose the best split

For each
feature

Each tree votes the class the 
sample belongs to

The class with the most number of 
votes is the predicted class 

For each node of decision tree

Forest Tree

34



 

 

on the out-of-bag error rates. Splitting of the training set can be based on either single descriptor 

(univariate splitting criterion) or multiple descriptors (multivariate splitting criterion) [261]. 

Information gain [262] and Gini index [260] are two popularly used splitting criteria in DTs. 

 

RF is robust to high-dimensional data, small training set sizes, the presence of large amounts of 

noise and highly correlating descriptors. Furthermore, the RF algorithm is less prone to 

overfitting and can better handle imbalanced datasets unlike the approaches described so far. In 

the early 2000s, Svetnik et al introduced RF as a classification and regression tool for compound 

classification and QSAR modeling [218]. It was found to improve the predictions based on 

quantitative QSAR data owing to its built-in descriptor selection and internal assessment of the 

importance of each descriptor to the model. In this thesis, RF classifiers were built using the 

Random Forest Learner and Predictor nodes in KNIME as well as Scikit-learn. 
 

(b) Model development 

Several models were generated in this thesis and depending on the study goal and availability of data 

sets, the modeling procedures were slightly different. However, a typical model development 

workflow, schematically represented in Figure 2.7, consists of the following essential steps: 
 

 
 

Figure 2.7: A generic scheme for the development of an in silico model for toxicity prediction. 
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1. Assembling training and test data sets: 
 

Once a target or a toxicity endpoint of interest is identified, the first step involves assembling the 

training and test data sets. The sources of data and the data preprocessing steps were already 

discussed in earlier sections (2.1 and 2.2). In a typical classification task, activity values can be 

ignored once the class labels are assigned. For binary classification, the class labels are usually 

‘active’ (or toxic) and ‘inactive’ (or non-toxic), numerically indicated by ‘1’ and ‘0’, respectively. 

A model is useful only when it is predictive and can be generalized to unknown data, which must 

be thoroughly validated [263]. A traditional approach includes partitioning the data set into a 

‘training set’ and a ‘test set’ [120]. The training set is employed for model building and the test 

set serves for validation of the model. It is generally recommended to have a training set bigger 

than the test set to allow sufficient learning on a larger chemical space. Most ML algorithms have 

internal parameters that are optimized to produce the best possible model. For this purpose, a part 

of the training set is left out as internal validation set which is used to find the parameters that 

provide the best performance. 

 

2. Cross-validation: 
 

Cross-validation was introduced as an essential step to estimate the model parameters that 

provide the best prediction performance [264-266]. An ideal scenario where there is sufficient 

data available for training and validating the models rarely exists in life sciences research, 

including QSAR [267]. Therefore, cross-validation is a common and effective approach to 

identify optimal models. In an n-fold cross-validation task, the training set is divided into n 

separate folds. In total, n separate models are generated, each time using a distinct set for testing 

and all remaining sets for training. Thus each instance of the training set is predicted only once 

[263]. In this way, feature selection is carried out independently for each of the n models. 

Different cross-validation approaches have been reported so far, however a 5-fold or 10-fold 

cross-validation is commonly employed [120]. Partitioning of data into training and test sets can 

be performed either randomly or in a stratified fashion. While random partitioning, as the name 

itself indicates, splits data randomly into training and test sets, stratified partitioning considers a 

target variable (e.g. activity class) to make sure the instances are homogeneously assigned to the 

training and test sets (e.g. same ratio of active to inactive compounds is maintained in the training 

and test sets). Taken together, cross-validation ensures that more robust conclusions are drawn 

while finding an optimal model. 
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3. External validation: 
 

Once a model is developed after performing cross-validation on the training set, the test set is 

used to validate its performance. The predicted outcomes on the test set are observed in light of 

the original property values that are not known to the model. In general, it is required for a test 

instance to fall in the same region of the chemical space of the training set in order to be correctly 

predicted. However, in reality, the models built using a particular training set is used to predict 

new data available at a later point of time which may not be within the applicability domain of 

the model [203]. 

 

4. Performance evaluation: 
 

In a binary classification task, the predictions can be grouped into the following categories: true 

positives (TP); true negatives (TN); false positives (FP); and false negatives (FN). In our context, 

positives are active compounds and negatives are inactive compounds. A confusion matrix (see 

Table 2.4) can be built by combining these groups which presents the actual classes against the 

predicted classes. 

 
Table 2.4: A confusion matrix representing the different predictions from a binary classification model. 

 

Data class Classified as positive Classified as negative 

positive true positive (TP) false negative (FN) 

negative false positive (FP) true negative (TN) 

 

 

A range of numerical measures can be estimated based on the numbers in the confusion matrix 

to evaluate the performance of a classification model [268-270]. All performance measures used 

for evaluating the models developed in this thesis are briefly described below. 

 

i. Sensitivity: 

Sensitivity (also referred to as True Positive Rate or Recall) is a measure of the 

proportion of positive class instances that are predicted as such (e.g. the percentage 
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of active compounds in the test set that is actually predicted as active compounds). 

In our context, it is the effectiveness of a classifier to detect active compounds. In 

terms of the elements from the confusion matrix, Sensitivity can be denoted as: 

 

01234546457 = 	 !.
(!. + 89) 

 

ii. Specificity: 

Specificity (also referred to as True Negative Rate) is a measure of the proportion of 

negative class instances that predicted as such (e.g. the percentage of inactive 

compounds in the test set that are actually predicted as inactive). In other words, 

Specificity is a measure of the effectiveness of a classifier to identify inactive 

compounds. It can be denoted in terms of the confusion matrix elements as follows: 

 

0:1"4;4"457 =	 !9
(!9 + 8.) 

 

iii. Area under the ROC Curve: 

The Receiver-Operating Characteristic (ROC) curve is created by plotting the true 

positive rate (TPR) against the False Positive Rate, calculated as (1 - Specificity), at 

different threshold settings. The area under the ROC curve (AUC) is a collective 

measure of the performance of the classifier, which indicates whether on average a 

true positive (i.e. an active compound) is ranked higher than false positives (i.e. 

inactive compounds). AUC is a popularly employed measure for comparing the 

classification performances of multiple ML models. An AUC value of 0.5 indicates 

the performance of a random prediction model which is commonly used as a baseline 

to decide if a classification model is useful. The following illustration of a ROC curve 

(Figure 2.8) clearly represents the AUC. 
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Figure 2.8: An exemplary AUC-ROC curve in which the area under the blue line indicates 

the AUC. The dashed line represents the performance of a random model. 

 

iv. Balanced Accuracy: 

The balanced accuracy (BACC) is the average measure of the proportions correctly 

predicted for each class (i.e. active and inactive) individually [271]. Traditionally, the 

generalizability of a model is estimated by averaging the accuracies obtained in 

individual cross-validation steps. However, this could be problematic in cases where 

the data set is highly imbalanced. In such cases, balanced accuracy was proposed to 

provide a better estimate of the performance of the model [271]. BACC can be 

calculated as a mean of the sensitivity and specificity values, denoted mathematically 

as follows: 

 

&*<*2"1=	$"">?*"7 = 1
2 B

(!.)
(!. + 9.) +

(!9)
(!9 + 8.)C 

 

 

2.5  Other Cheminformatics Methods and Analyses 
 

A majority of the cheminformatics methods directly deal with chemical structures and were 

essentially operations performed on the 2D or 3D molecular structures. An overview of the different 

cheminformatics tasks performed and the methods/tools used is presented in Table 2.5. 
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Table 2.5: Different cheminformatics tasks and the methods/tools/software employed in this thesis. 
 

Task Method Purpose Toolkit/Software 

Substructure 

search 

Ullmann’s algorithm 

for subgraph 

isomerism [272] 

Searching database compounds 

using a substructure query; 

Detecting PAINS compounds; 

RDKit Substructure 

Filter (KNIME); CDK 

Java library [273] 

Molecular 

scaffolds 

Bemis-Murcko 

molecular scaffolds 

[274] 

For comparing the chemical 

spaces of different compound 

data sets (e.g. drugs vs. DCM). 

RDKit Find Murcko 

Scaffolds (KNIME); 

CDK Java library [273] 

3D 

superposition 

Kabsch algorithm 

[275] 

To superimpose drugs of 

interest with ligands in a target-

ligand complex. 

An in-house script based 

on C++ programming 

language 

Activity cliffs 
MMP algorithm by 

Hussain & Rea [276] 

To study the effects of activity 

cliffs on data set modelability. 

BIOVIA Discovery 

Studio (v.4.1.0.14169) 

(Accelrys Inc./BIOVIA) 

 

Analysis of the compound promiscuity was an essential component of this thesis. This primarily 

involved identification of biological targets for each of the compounds in different data sets. 

Promiscuity degree is a simple measure of the number of targets against which a compound is active 

against. In general, highly promiscuous compounds are those compounds with promiscuity degree 

of five [277]. Furthermore promiscuity across different targets and target families were also estimated 

[278]. However, this simple index might not always provide a meaningful estimate of promiscuity 

due to the data incompleteness scenario [174, 279]. For instance, resources such as DrugBank and 

ChEMBL provide target annotations reported in the literature, but do not provide additional 

information such as assay frequency and inactivity. Repositories such as PubChem provide 

information on assay frequency. Therefore, whenever available, promiscuity estimates based on such 

background information can be more reliable. Hit rate, defined as the proportion of assays in which 

a compound has been active against provides a more meaningful estimate of compound promiscuity 

[280]. In this thesis, depending on the data set in hand, both promiscuity degree and hit rates were 

employed.  
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Chapter 3 
 

Knowledgebase Resources for In Silico Drug Discovery 
 

3.1  Construction of Databases of Approved and Withdrawn Drugs 
 

Understanding druglike molecules is an essential step in knowledge-based drug discovery. This 

includes understanding key aspects such as physicochemical properties, pharmacological effects, and 

toxicity profiles. Furthermore, knowledge of the structures and properties of both successful and 

unsuccessful ligands is highly valuable in lead identification and lead optimization stages of a 

cheminformatics-driven drug discovery pipeline. A limited number of resources provide 

comprehensive information around these aspects that highlights the need to develop integrated 

knowledgebases. The two articles in this section introduce SuperDRUG2 and WITHDRAWN as 

knowledgebases of approved/marketed drugs and withdrawn drugs, respectively. Both resources 

primarily focus on small molecule drugs that are annotated with a wide range of information, 

particularly covering the aforementioned aspects. Both databases essentially provide 2D and 3D 

structures of the drugs, their biological targets and toxic effects. A number of additional features that 

facilitate navigation of the chemical and biological spaces of the two categories of drugs are described 

in the original articles. Both resources can be accessed without any registration via the following 

URLs: 

 

SuperDRUG2 - http://cheminfo.charite.de/superdrug2 

WITHDRAWN - http://cheminfo.charite.de/withdrawn  
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5China Scholarship Council (CSC), China

Received September 15, 2017; Revised October 19, 2017; Editorial Decision October 20, 2017; Accepted October 22, 2017

ABSTRACT

Regular monitoring of drug regulatory agency web
sites and similar resources for information on new
drug approvals and changes to legal status of mar-
keted drugs is impractical. It requires navigation
through several resources to find complete infor-
mation about a drug as none of the publicly ac-
cessible drug databases provide all features essen-
tial to complement in silico drug discovery. Here,
we propose SuperDRUG2 (http://cheminfo.charite.
de/superdrug2) as a comprehensive knowledge-base
of approved and marketed drugs. We provide the
largest collection of drugs (containing 4587 ac-
tive pharmaceutical ingredients) which include small
molecules, biological products and other drugs.
The database is intended to serve as a one-stop
resource providing data on: chemical structures,
regulatory details, indications, drug targets, side-
effects, physicochemical properties, pharmacokinet-
ics and drug–drug interactions. We provide a 3D-
superposition feature that facilitates estimation of
the fit of a drug in the active site of a target with
a known ligand bound to it. Apart from multiple
other search options, we introduced pharmacokinet-
ics simulation as a unique feature that allows users to
visualise the ‘plasma concentration versus time’ pro-
file for a given dose of drug with few other adjustable
parameters to simulate the kinetics in a healthy indi-
vidual and poor or extensive metabolisers.

INTRODUCTION

Bioinformatics and cheminformatics are research fields in
which huge amounts of data are being generated each day

at a rapid pace. This vast amount of data is distributed
across several online databases that are either publicly ac-
cessible or often accessible only via subscription. This de-
centralized distribution of data restrains linking of the cur-
rent wealth of information with the enormous amount of
data that has been accumulating over decades. We wit-
nessed a significant progress in the last 10–15 years through
several remarkable contributions that attempted to bridge
this ‘information/informatics gap’. Comprehensive small
molecule databases such as DrugBank (1), KEGG (2) and
ChEBI (3) have been established as expert curated re-
sources. On the other hand, PubChem (4), ChEMBL (5)
and Binding DB (6) serve as major resources for bioactiv-
ity. Therapeutic Target Database (TTD) (7) and Compara-
tive Toxicogenomics Database (CTD) (8) focus on known
or explored therapeutic targets of drugs and literature ref-
erences that report chemical-gene/protein interactions. A
recent addition to the league of publicly accessible drug
databases is DrugCentral (9) which serves as an online
drug compendium with a special focus on active pharma-
ceutical ingredients that are approved by FDA and other
drug regulatory agencies. Further, resources like Protein
Data Bank (PDB) (10) and Cambridge Structural Database
(CSD) (11) archive the experimentally determined three
dimensional (3D) structures of biological macromolecules
and low molecular weight structures. Despite constant en-
richment of data at each of these platforms, there has always
been a need for a resource that could connect several layers
of information on drugs in the context of in silico research.
Especially, no dedicated resources exist for 3D structures
of drugs, with rare exceptions such as e-Drug3D database
(12). In this context, we previously came up with SuperDrug
database containing a total of 2396 experimentally deter-
mined and computed 3D structures for active ingredients
present in the WHO’s essential marketed drugs (13). Al-
though some of the aforementioned resources focus on the
pharmacological aspects of drugs to variable extents, none
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provide comprehensive pharmacokinetic data which facili-
tates simulation of pharmacokinetics of approved drugs.

Here we present SuperDRUG2, an update of our previ-
ous conformational drug database, currently containing in-
formation for 4587 active pharmaceutical ingredients that
are present in pharmaceutical products. We aim to integrate
data that is widely distributed across multiple resources and
serve as a one-stop source. The database features multiple
search options that facilitate two-dimensional (2D) and 3D
similarity calculation, identification of potential drug–drug
interactions in complex drug regimens among several other
features. A special focus of the database lies in simulation of
the ‘plasma-concentration versus time’ curves using phar-
macokinetic data extracted from various sources such as
drug labels and scientific literature. We introduce for the first
time a 3D-superposition feature that superimposes drugs of
interest with those ligands already known to bind with pro-
tein targets in experimentally determined 3D structures.

MATERIALS AND METHODS

Approved and marketed drugs

Several online public resources including the most re-
cent pharmaceutical product collections from the U.S.
Food and Drug Administration (US FDA), the European
Medicines Agency (EMA), Health Canada, the Korea’s
FDA (KFDA), and China’s FDA (CFDA) were searched
for active ingredients used in pharmaceutical products (see
Section 1 in supplementary information (S2) for detailed list
of resources and methods). For convenience, we will use the
term ‘drug’ instead of ‘active ingredient’ which is widely ac-
cepted by chemists and biologists in the field of drug dis-
covery. Currently, the database comprises a total of 4587
drugs grouped into two categories: small molecules (3,982
drugs) and biological/other drugs (605 drugs). Both 2D
and 3D structures were standardized in ChemAxon soft-
ware (https://www.chemaxon.com) for all small molecules
entries. The standardization procedure is detailed in one of
our former database papers (14). The 3D conformations
were also generated using the same software. The 2D de-
pictions on the web site are generated using RDKit toolkit
(http://www.rdkit.org) whereas the interactive 3D structure
visualisation is enabled via 3Dmol.js library (15).

Further, physicochemical properties and chemical struc-
ture identifiers were generated using the RDKit nodes in
KNIME (https://www.knime.com). In order to ensure con-
nectivity with well-known drug databases, every drug en-
try was annotated with links to external resources includ-
ing the WHO’s index of ATC codes (https://www.whocc.no/
atc ddd index). Drug labels were extensively text-mined for
regulatory details (of approval), therapeutic indications and
the recommended doses. In addition, we also flagged some
entries as withdrawn drugs. These drugs were previously
known to cause adverse effects and eventually withdrawn in
one or more countries and sometimes world-wide (14), (16).
It must be noted that sometimes only a particular pharma-
ceutical product or a specific dose or dosage form of the
drug is withdrawn which does not necessarily indicate that
the drug does not exist in any currently approved/marketed
pharmaceutical products.

Drug targets

We extracted target information from DrugBank (v. 5) (1),
TTD (7) and ChEMBL (v. 22) (5). Confirmed drug-target
interactions were found at the first two resources while
ChEMBL provides experimental activity data. Information
from ChEMBL was pre-processed using filter criteria sug-
gested by Bajorath et al. (17) to retain only high confidence
activity data (detailed procedure is described under Section
2 of supplementary information (S2)). Overall, the database
comprises >20 000 confirmed drug-target interactions cov-
ering more than 2300 drugs interacting with 3000 distinct
targets. In order to understand the interactions in the con-
text of side-effects, we used a list of side-effect targets on
the Novartis Safety Panel proposed by Lounkine et al. (18)
and annotated our drug-target relations into two categories:
safety and non-safety. Identification of previously unde-
tected targets for known drugs can provide valuable insights
and leads in drug repurposing endeavours. Our previously
published target prediction server, SuperPred (19) was used
to collect >17 000 drug-target interactions (more than 2500
drugs). Further, protein structures and their co-crystallized
ligands were extracted from PDB (10) and mapped to the
targets in our database, resulting in a total of 23 260 struc-
tures that are used for 3D-superposition.

2D and 3D similarity

The 2D structures of small molecules are converted to MDL
MACCS key based fingerprints to facilitate chemical sim-
ilarity search. Tanimoto coefficient is used as the standard
2D similarity metric. Additionally, we implemented the Ull-
mann’s algorithm for subgraph isomerism using the open
source Chemistry Development toolkit (20) for substruc-
ture similarity search. Up to 200 conformations per drug
were calculated in order to perform pairwise 3D structure
comparisons. Atoms were assigned by minimal distance and
superimposed by using the Kabsch algorithm (21). In a co-
ordinate system comprising normalized set of atoms, the
centre of masses of both conformers are calculated and su-
perimposed. A root-mean-square-deviation (RMSD) score
is derived for each comparison which signifies the extent of
similarity between the two structures. A detailed methodol-
ogy on how 3D similarity is calculated can be found in our
previous work (22).

Side effects

The current version of database includes >100 000 side ef-
fect relations for nearly 950 approved drugs that not only
cover the adverse events recorded during the clinical tri-
als prior to drug approval but also those identified during
the post-marketing surveillance. The side effect data was
collected from SIDER resource (v. 4.1) (23). We also ex-
tracted the frequency information for side effects for each
drug and labelled the relations according to the SIDER fre-
quency scale. A total of 4964 distinct side effects identified
by MEDRA concept identifiers are currently linked from
our resource to the SIDER database.
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Figure 1. A schematic representation of the data and search options in SuperDRUG2.

Table 1. A detailed comparison of SuperDRUG2 database with four other existing drug databases in terms of their content, content type and coverage.
The coverage information of the listed resources is based on our access on 26/05/2017

Pharmacokinetic parameters

The data on pharmacokinetics of drugs is scarce in many
publicly available resources. However, having such data
is essential to simulate the kinetic profile of a drug un-
der varying physiological conditions to improve personal-
ized therapy. We extracted half-life, volume of distribution,
protein binding, bioavailability, and time to peak among
various other parameters that correspond to the ADME
phases. The majority of pharmacokinetic data for hu-
mans is extracted from scientific literature while databases
such as DrugBank and dedicated drug information por-
tal Drugs.com (https://www.drugs.com) provided partial in-
formation for some drugs. Other sources include drug la-
bels and product monographs. More than 50% of all drugs
with pharmacokinetic data were annotated with therapeu-

tic minimum and maximum plasma levels extracted from
literature (24).

drug–drug interactions

We extracted the drug–drug interaction data mainly from
DrugBank and additionally extracted information from
package inserts, labels of pharmaceutical products and sci-
entific literature through semi-automated text-mining. The
interactions are classified into risk categories (1: monitor
therapy; 2: consider replacement; 3: avoid combination)
which are widely used at other public and commercial re-
sources for drug–drug interactions. Further, we annotated
some drugs as potentially inappropriate medications based
on the ‘Beers criteria’ (25) proposed by the American Geri-
atrics Society, originally published in 2012 and last updated
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in 2015. The medications covered in this list are considered
to be associated with poor outcomes in older adults and are
recommended to be avoided for all individuals in this group,
except those in palliative and hospital care. A German vari-
ant of the Beers list, known as the ‘PRISCUS list’ (26) was
also used to annotate drugs that are potentially unsuitable
for the elderly.

Web application, system requirements and data availability

All the data in SuperDRUG2 is stored in a relational
MySQL database and the web site is set up as Java
web application on a virtual Linux (Ubuntu 14.04 LTS)
server, accessible at http://cheminfo.charite.de/superdrug2.
JavaScript is key to almost all search options we of-
fer. Therefore, we strongly recommend using modern web
browsers such as Safari, Google Chrome or Firefox (with
JavaScript enabled). The contents of the database are made
available via customized download links on the web site.

DATABASE SEARCH OPTIONS

The integrated data in SuperDRUG2 can be accessed
via multiple interactive features described below and are
schematically represented in Figure 1. A detailed compar-
ison of the contents, coverage and the uniqueness of our
database with existing drug databases is presented in Table
1. Although the resources compared with are not necessar-
ily exclusive drug databases, the details presented in Table 1
are expected to justify the novelty of our database as a one
stop-resource. A list of web links to the list of pharmaceu-
tical products approved for use in several countries world-
wide is provided in the supplementary information sheet S1.
The national drug lists can also be accessed through a map
visualization on the web site.

Drug search

A simple way to search for drug records is to use the ‘Name
Search’ option under the Drug Search page. In case an ex-
act name or synonym match does not yield any result, the
search query is used to look up the chemical structure at
PubChem and five most similar drugs from the database
are displayed and ranked by the similarity towards the in-
put molecule. A molecule sketching tool provided in the
‘Structure Search’ section facilitates structure-based search.
Three different search types (exact match, similarity search
and substructure search) are provided. Users have the flex-
ibility to choose a similarity threshold and the maximum
number of results. A detailed drug record contains multi-
ple sections that provide: basic details such as synonyms,
indications, ATC codes and marketing status; 2D and 3D
molecular structures; regulatory details; drug targets; side-
effects, pharmacokinetic data; physicochemical properties,
links to external databases via specific identifiers; and mar-
keted drug products.

3D superposition

The feature of 3D superposition could be used in two ways.
The first option is to look up for two small molecule drugs

Figure 2. 3D visualisation of the result of the superposition of niraparib
and PDB ligand 1KS in the crystal structure (4KRS) of Tankyrase 1. Both
molecules (niraparib: white colour; 1SX: red color) are well superposed in
the 1SX binding region of chain A.

using the name search fields. Once a user selects the drugs,
a 3D superposition of the two structures is calculated and
an interactive 3D visualisation of the superimposed struc-
tures is displayed along with an RMSD score that indicates
the structural similarity. The second option is to superim-
pose a drug from the database with a ligand that is known
to bind to a protein in a PDB complex. To start using the
feature, the user has to first search for a protein target of
interest. PDB structures associated with this target are dis-
played along with the chain identifiers and ligands. After
choosing a combination of PDB structure and ligand, the
user is allowed to search for a small molecule drug of inter-
est in the database. An interactive 3D visualisation of the
overlapped molecules is provided in the context of the bind-
ing site of the ligand. This would be an interesting feature to
understand the fit of the drug into the binding pocket of the
target protein of interest. Figure 2 shows an exemplary 3D
superposition result in which niraparib, a well-known poly
ADP ribose polymerase (PARP) inhibitor is superimposed
with a small molecule inhibitor (PDB ligand ID: 1SX) in the
3D structure of tankyrase 1 (PDB ID: 4KRS), an important
regulator of the Wnt/!-catenin signalling. Dual inhibitors
of PARP1/2 and tankyrase 1 are known to inhibit growth
of DNA repair deficient tumours (27). Understanding the
role of known PARP1/2 inhibitors such as niraparib and
olaparib in the inhibition of tankyrase 1 could be useful in
exploring opportunities to repurpose these drugs for other
cancer types.

Pharmacokinetics simulation

To the best of our knowledge, SuperDRUG2 is the first aca-
demic resource to provide simulation of pharmacokinetics
of approved drugs as an easily accessible feature. The users
can simply search for a drug by its name to see if a simu-
lation is available within our database. The concentration
vs. time curve for a recommended dose of the drug is dis-
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Figure 3. Plasma concentration versus time curves generated using the pharmacokinetics simulation feature for losartan in two different cases: (A) dose =
100 mg/day and (B) dose = 70 mg twice daily.
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played, assuming that it is administered once per day. A
therapeutic window is displayed whenever the experimen-
tally determined therapeutic minimum and maximum con-
centrations are found. The users are provided with interac-
tive sliders to adjust the dose, intake interval and the time
period of simulation. Furthermore, approximate changes in
drug plasma levels for poor and ultra-rapid metabolisers
can be visualised relative to the plasma levels for a healthy
adult. Optionally, users can provide a dose of interest to
observe changes in plasma level. A use case for dose adap-
tation based on the pharmacokinetic simulation feature is
presented in the next section. It should be noted that this
feature is not aimed at providing recommendations or al-
ternatives to dosing schemes to healthcare practitioners in
clinical practice but may provide hints for possible problems
and solutions. A brief description of the pharmacokinetic
model behind the simulation is provided under Section 4 of
supplementary information (S2).

Drug–drug interactions

Our drug–drug interaction checker takes a list of medica-
tions and provides a list of possible drug–drug interactions
associated with the co-administration of these drugs. The
users are alerted through a ‘traffic light signal’ adaption
displaying one three risk levels whenever a potential drug–
drug interaction is found. In addition, to provide the con-
text of metabolic effects on a drug combination, the users
are linked to our TRANSFORMER resource (28) which
provides detailed report on the effects of a drug on metab-
olizing enzymes. Further, in order to provide special rec-
ommendations to the elderly patient group, we mark those
drugs in the input list that are present in the PRISCUS and
Beer’s list of potentially inappropriate medications. If a drug
is known to be present in the PRICSUS list, all possible al-
ternative drugs and dose levels are provided as recommen-
dations.

USE CASE

The following use case illustrates the utility of pharmacoki-
netics simulation feature of SuperDRUG2 to provide early
recommendations for dose adaption. We use the antihyper-
tensive drug losartan as an example. The minimum and
maximum recommended doses per day are 25mg and 50mg,
respectively. For hypertensive patients with left ventricular
hypertrophy or type 2 diabetic nephropathy, a maximum of
100mg per day is recommended. Losartan undergoes hep-
atic metabolism via cytochrome enzymes 2C9 and 3A4 to
form an active metabolite which is 10–40 times more potent.
Previous studies indicate that decreased levels of losartan
metabolites are observed in carriers of CYP2C9*2 and/or
CYP2C9*3 alleles (29) due to the lowered rate of oxida-
tion of losartan (29) into its metabolite and a higher plasma
AUC losartan/AUC metabolite ratio (30).

In Figure 3A, one can see that the plasma levels of losar-
tan even at a maximum dose for special indications of
100 mg do not remain within the therapeutic window in
order to provide a longer duration of action. Therefore, a
twice daily administration of 50–70 mg might improve the
coverage of the therapeutic window (see Figure 3B). Consis-

tently, a recent study also reported that twice daily admin-
istration of the same daily dose of losartan is more effective
in comparison to once daily administration of a single dose
(31). Additional use cases can be found in Section 5 of sup-
plementary information (S2).

FUTURE DIRECTIONS

We will regularly update the database with new entries to
ensure excellent coverage and data quality standards. Espe-
cially, the pharmacokinetic data needed for simulation of
plasma levels of drug will be further enriched to provide
simulations for as many drugs as possible. We also plan to
improve the list of drugs that have side effects by adding in-
formation from large collections such as the FDA’s adverse
event reporting system. Multiple other ways to browse the
contents of the database will be eventually added to improve
the user experience.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR online.
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Charité - University Medicine Berlin.
Conflict of interest statement. None declared.

REFERENCES
1. Wishart,D.S., Knox,C., Guo,A.C., Shrivastava,S., Hassanali,M.,

Stothard,P., Chang,Z. and Woolsey,J. (2006) DrugBank: a
comprehensive resource for in silico drug discovery and exploration.
Nucleic Acids Res., 34, D668–D672.

2. Kanehisa,M., Goto,S., Sato,Y., Furumichi,M. and Tanabe,M. (2012)
KEGG for integration and interpretation of large-scale molecular
data sets. Nucleic Acids Res., 40, D109–D114.

3. Hastings,J., Owen,G., Dekker,A., Ennis,M., Kale,N.,
Muthukrishnan,V., Turner,S., Swainston,N., Mendes,P. and
Steinbeck,C. (2016) ChEBI in 2016: Improved services and an
expanding collection of metabolites. Nucleic Acids Res., 44,
D1214–D1219.

4. Kim,S., Thiessen,P.A., Bolton,E.E., Chen,J., Fu,G., Gindulyte,A.,
Han,L., He,J., He,S., Shoemaker,B.A. et al. (2016) PubChem
substance and compound databases. Nucleic Acids Res., 44,
D1202–D1213.

5. Bento,A.P., Gaulton,A., Hersey,A., Bellis,L.J., Chambers,J.,
Davies,M., Kruger,F.A., Light,Y., Mak,L., McGlinchey,S. et al.
(2014) The ChEMBL bioactivity database: an update. Nucleic Acids
Res., 42, D1083–D1090.

6. Gilson,M.K., Liu,T., Baitaluk,M., Nicola,G., Hwang,L. and
Chong,J. (2016) BindingDB in 2015: A public database for medicinal
chemistry, computational chemistry and systems pharmacology.
Nucleic Acids Res., 44, D1045–D1053.

7. Zhu,F., Shi,Z., Qin,C., Tao,L., Liu,X., Xu,F., Zhang,L., Song,Y.,
Liu,X., Zhang,J. et al. (2012) Therapeutic target database update
2012: a resource for facilitating target-oriented drug discovery.
Nucleic Acids Res., 40, D1128–D1136.

8. Davis,A.P., Grondin,C.J., Johnson,R.J., Sciaky,D., King,B.L.,
McMorran,R., Wiegers,J., Wiegers,T.C. and Mattingly,C.J. (2017)
The Comparative Toxicogenomics Database: update 2017. Nucleic
Acids Res., 45, D972–D978.

9. Ursu,O., Holmes,J., Knockel,J., Bologa,C.G., Yang,J.J., Mathias,S.L.,
Nelson,S.J. and Oprea,T.I. (2017) DrugCentral: online drug
compendium. Nucleic Acids Res., 45, D932–D939.

48



Nucleic Acids Research, 2018, Vol. 46, Database issue D1143

10. Berman,H.M., Westbrook,J., Feng,Z., Gilliland,G., Bhat,T.N.,
Weissig,H., Shindyalov,I.N. and Bourne,P.E. (2000) The Protein Data
Bank. Nucleic Acids Res., 28, 235–242.

11. Allen,F.H. (2002) The Cambridge Structural Database: a quarter of a
million crystal structures and rising. Acta Crystallogr. B., 58, 380–388.

12. Pihan,E., Colliandre,L., Guichou,J.F. and Douguet,D. (2012)
e-Drug3D: 3D structure collections dedicated to drug repurposing
and fragment-based drug design. Bioinformatics, 28, 1540–1541.

13. Goede,A., Dunkel,M., Mester,N., Frommel,C. and Preissner,R.
(2005) SuperDrug: a conformational drug database. Bioinformatics,
21, 1751–1753.

14. Siramshetty,V.B., Nickel,J., Omieczynski,C., Gohlke,B.O.,
Drwal,M.N. and Preissner,R. (2016) WITHDRAWN–a resource for
withdrawn and discontinued drugs. Nucleic Acids Res., 44,
D1080–D1086.

15. Rego,N. and Koes,D. (2015) 3Dmol.js: molecular visualization with
WebGL. Bioinformatics, 31, 1322–1324.

16. Onakpoya,I.J., Heneghan,C.J. and Aronson,J.K. (2016)
Post-marketing withdrawal of 462 medicinal products because of
adverse drug reactions: a systematic review of the world literature.
BMC medicine, 14, 10.

17. Hu,Y. and Bajorath,J. (2014) Influence of search parameters and
criteria on compound selection, promiscuity, and pan assay
interference characteristics. J. Chem. Inf. Model., 54, 3056–3066.

18. Lounkine,E., Keiser,M.J., Whitebread,S., Mikhailov,D., Hamon,J.,
Jenkins,J.L., Lavan,P., Weber,E., Doak,A.K., Cote,S. et al. (2012)
Large-scale prediction and testing of drug activity on side-effect
targets. Nature, 486, 361–367.

19. Nickel,J., Gohlke,B.O., Erehman,J., Banerjee,P., Rong,W.W.,
Goede,A., Dunkel,M. and Preissner,R. (2014) SuperPred: update on
drug classification and target prediction. Nucleic Acids Res., 42,
W26–W31.

20. Steinbeck,C., Han,Y., Kuhn,S., Horlacher,O., Luttmann,E. and
Willighagen,E. (2003) The Chemistry Development Kit (CDK): an
open-source Java library for Chemo- and Bioinformatics. J. Chem.
Inf. Comput. Sci., 43, 493–500.

21. Kabsch,W. (1976) A solution for the best rotation to relate two sets of
vectors. Acta Cryst., A32, 922–923.

22. Gohlke,B.O., Overkamp,T., Richter,A., Richter,A., Daniel,P.T.,
Gillissen,B. and Preissner,R. (2015) 2D and 3D similarity landscape
analysis identifies PARP as a novel off-target for the drug Vatalanib.
BMC Bioinformatics, 16, 308.

23. Kuhn,M., Letunic,I., Jensen,L.J. and Bork,P. (2016) The SIDER
database of drugs and side effects. Nucleic Acids Res., 44,
D1075–D1079.

24. Schulz,M., Iwersen-Bergmann,S., Andresen,H. and Schmoldt,A.
(2012) Therapeutic and toxic blood concentrations of nearly 1,000
drugs and other xenobiotics. Crit. Care, 16, R136.

25. By the American Geriatrics Society 2015 Beers Criteria Update
Expert Panel (2015) American Geriatrics Society 2015 updated beers
criteria for potentially inappropriate medication use in older adults. J.
Am. Geriatr. Soc., 63, 2227–2246.

26. Holt,S., Schmiedl,S. and Thurmann,P.A. (2010) Potentially
inappropriate medications in the elderly: the PRISCUS list. Deutsches
Arzteblatt Int., 107, 543–551.

27. McGonigle,S., Chen,Z., Wu,J., Chang,P., Kolber-Simonds,D.,
Ackermann,K., Twine,N.C., Shie,J.L., Miu,J.T., Huang,K.C. et al.
(2015) E7449: A dual inhibitor of PARP1/2 and tankyrase1/2
inhibits growth of DNA repair deficient tumors and antagonizes Wnt
signaling. Oncotarget, 6, 41307–41323.

28. Hoffmann,M.F., Preissner,S.C., Nickel,J., Dunkel,M., Preissner,R.
and Preissner,S. (2014) The Transformer database: biotransformation
of xenobiotics. Nucleic Acids Res., 42, D1113–D1117.

29. Yasar,U., Forslund-Bergengren,C., Tybring,G., Dorado,P.,
Llerena,A., Sjoqvist,F., Eliasson,E. and Dahl,M.L. (2002)
Pharmacokinetics of losartan and its metabolite E-3174 in relation to
the CYP2C9 genotype. Clin. Pharmacol. Ther., 71, 89–98.

30. Yasar,U., Tybring,G., Hidestrand,M., Oscarson,M.,
Ingelman-Sundberg,M., Dahl,M.L. and Eliasson,E. (2001) Role of
CYP2C9 polymorphism in losartan oxidation. Drug Metab.
Disposition, 29 , 1051–1056.

31. Szauder,I., Csajagi,E., Major,Z., Pavlik,G. and Ujhelyi,G. (2015)
Treatment of hypertension: favourable effect of the twice-daily
compared to the once-daily (evening) administration of perindopril
and losartan. Kidney Blood Pressure Res., 40, 374–385.

49



Original Research Article 

3.3  WITHDRAWN--A Resource for Withdrawn and Discontinued Drugs 

Siramshetty, V. B., Nickel, J., Omieczynski, C., Gohlke, B. O., Drwal, M. N. and Preissner, R. 

Nucleic Acids Res. 2016 Jan 4;44(D1):D1080-6. https://doi.org/10.1093/nar/gkv1192. 

Author Contributions: 

Implementation of website: Siramshetty, V. B.; Collection and curation of data: Siramshetty, V. B., 

Nickel, J.; Omieczynski, C., Drwal, M. N. and Gohlke, B. O.; Writing of manuscript: mainly 

Siramshetty, V. B., input from Drwal, M. N., Preissner, R., Nickel, J., Gohlke, B. O.; Project 

coordination: Preissner, R. and Drwal, M. N. 

50

https://doi.org/10.1093/nar/gkv1192


D1080–D1086 Nucleic Acids Research, 2016, Vol. 44, Database issue Published online 8 November 2015
doi: 10.1093/nar/gkv1192

WITHDRAWN––a resource for withdrawn and
discontinued drugs
Vishal B. Siramshetty1 , Janette Nickel2,3, Christian Omieczynski2, Bjoern-Oliver Gohlke2,3,
Malgorzata N. Drwal2,* and Robert Preissner2,3,4,*

1Structural Bioinformatics Group, ECRC Experimental and Clinical Research Center, Charité – University Medicine
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ABSTRACT

Post-marketing drug withdrawals can be associated
with various events, ranging from safety issues such
as reported deaths or severe side-effects, to a mul-
titude of non-safety problems including lack of effi-
cacy, manufacturing, regulatory or business issues.
During the last century, the majority of drugs vol-
untarily withdrawn from the market or prohibited by
regulatory agencies was reported to be related to
adverse drug reactions. Understanding the under-
lying mechanisms of toxicity is of utmost impor-
tance for current and future drug discovery. Here,
we present WITHDRAWN, a resource for withdrawn
and discontinued drugs publicly accessible at http://
cheminfo.charite.de/withdrawn. Today, the database
comprises 578 withdrawn or discontinued drugs,
their structures, important physico-chemical prop-
erties, protein targets and relevant signaling path-
ways. A special focus of the database lies on the
drugs withdrawn due to adverse reactions and toxic
effects. For approximately one half of the drugs in the
database, safety issues were identified as the main
reason for withdrawal. Withdrawal reasons were ex-
tracted from the literature and manually classified
into toxicity types representing adverse effects on
different organs. A special feature of the database is
the presence of multiple search options which will
allow systematic analyses of withdrawn drugs and
their mechanisms of toxicity.

INTRODUCTION

Efficacy and safety are two decisive factors that affect the
viability of a chemical entity while furthering in the drug

discovery pipeline. Consequently, the financial burden on
pharmaceutical companies grows higher when the chemical
entities tend to fail in late stages of clinical trials (1). How-
ever, a significant number of new chemical entities (NCEs)
were recalled from the market post to their regulatory ap-
proval due to various reasons ranging from inefficiency to
severe side-effects to financial and regulatory concerns. Ad-
verse drug reactions (ADRs) not only account for market
withdrawals but also for changes in labels or introduction of
new black-box warnings for prescription drugs (2). ADRs
can be interpreted either as primary effects elicited after
modulation of the therapeutic (or primary) target or unin-
tended effects due to interactions with off-targets. In few in-
stances, the primary target is expressed in multiple organs
and simultaneously targeted, leading to the therapeutic ef-
fect in the target tissue and unwanted effects in other tissues.

A well-known class of drugs that cause adverse reactions
due to their activity at primary target are antiarrhythmic
drugs, the benefits of which are, in few cases, hindered due
to aggravation of arrhythmia which is the indication be-
ing treated (3). This effect is due to modulation of the al-
pha subunit of a potassium ion channel (human Ether-à-
go-go-related gene, hERG), which is primarily associated
with regulation of cardiac action potentials (4). The hERG
channel is also a prominent off-target example whose un-
intended modulation can cause severe side-effects. This has
ultimately lead to market withdrawal of drugs inhibiting the
hERG channel, a classical example being the withdrawal of
the antihistaminic drug terfenadine due to severe arrhyth-
mias and death (5).

Although there is much progress in elucidation and un-
derstanding of the mechanisms leading to drug related toxic
effects, gaining clearer insights about these effects at cel-
lular and biochemical level is much needed to appropri-
ately adjust or reinvent the development strategies so as to
overcome the attrition during clinical trial phases of drug
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discovery and withdrawal after drug approval (6–8). This
toxicological knowledge could be used to develop a panel
of relevant in vitro assays that could mechanistically exam-
ine the effects and profile the propensity of drugs to cause
ADRs (9). In contrast to the majority of ADR cases which
are relatively frequent and mostly dose-dependent, few side-
effects are idiosyncratic drug reactions (IADRs), i.e. the ex-
tremely rare drug reactions which occur unpredictably in a
population. The target organs that are most commonly as-
sociated with idiosyncratic events include liver, cardiovas-
cular and central nervous systems (10–12). Hepatocellular
and cholestatic drug-induced liver injury (DILI), liver fail-
ure and hepatic necrosis are the common patterns of IADRs
associated with the liver. Limited knowledge exists to under-
stand the underlying mechanisms of such IADRs. However,
it is apparent that IADRs develop via complex mechanisms
which are subjective to both differential patient responses
and drug combination effects that result from simultane-
ous triggering of multiple off-targets (13). Factors associ-
ated with differential patient responses include genetic at-
tributes like single nucleotide polymorphisms (SNPs) and
mutations, and non-genetic attributes such as gender, age
and co-treatments (14). Drug-induced events are a result of
various effects ranging from direct activity on organs (e.g.
on cardiovascular systems) to reactivity of active metabo-
lites of drugs to interactions with biological transporters
(15).

Over the decades, drug regulatory agencies, pharmaceu-
tical companies and various clinical studies have reported
the events of drug withdrawals due to side-effects (16–
18). About 2.3 million adverse event reports were collected
against ∼6000 marketed drugs between 1969 and 2002 (19).
Yet, only a small proportion (75 drugs; ∼1%) of these mar-
keted drugs were withdrawn during this period. Another
study reported that ∼95 drugs were documented to be with-
drawn due to death as the primary reason between 1950 and
2013 (17). However, not all of these drugs were withdrawn
world-wide. Most drugs were reported to be withdrawn in
the Unites States and European countries.

Several public resources contain information relevant to
drug withdrawals (e.g. websites from regulatory agencies,
World Health Organization’s consolidated list for with-
drawn drugs and scientific literature). However, in many
cases, the information is hidden in regulatory documents
and not easily accessible, impeding comprehensive analy-
ses. Furthermore, there exists no single resource reporting a
complete list of drugs withdrawn due to safety concerns. In
order to allow access to a variety of information related to
drug withdrawals as well as shed light on the mechanisms
of ADRs, we here present WITHDRAWN––a resource for
withdrawn and discontinued drugs. We collected a list of
more than 500 drugs/drug products, which were withdrawn
or discontinued in at least one country, and assembled in-
formation regarding their molecular targets, pathways and
toxicities. For approximately half of the drugs, extensive lit-
erature search revealed that toxic events are associated with
the withdrawal. Thus, WITHDRAWN can be seen as a plat-
form to understand the mechanisms for severe ADRs due
to primary and off-target interactions of drugs, simultane-
ous perturbation of complex biological pathways and ge-
netic polymorphisms (SNPs). Furthermore, it provides mul-

tiple search options to systematically analyse molecules of
interest by performing different types of molecular similar-
ity search across the database’s drugs and can be a valuable
resource for scientists in the drug development and toxicity
prediction field.

MATERIALS AND METHODS

Withdrawn and discontinued drugs

A number of resources including the drug collections from
the U.S. Food and Drug Administration (FDA; http://
www.fda.gov/), the European Medicines Agency (EMA;
http://www.ema.europa.eu/ema/), peer-reviewed literature
(17), public databases such as DrugBank (20), e-Drug3D
(21) and text-books (16) were searched in order to ex-
tract information on drug withdrawals. Monoclonal an-
tibodies and substance combinations were removed from
the dataset. Currently, the database comprises two sets
of drugs: withdrawn and discontinued. A total of 270
drugs, that were identified to be withdrawn or recalled in
at least one country/market due to safety issues are in-
cluded in the former set while the latter consists of 308
drugs that were suspended or discontinued in at least one
market due to unclear reasons. The chemical structures of
the withdrawn/discontinued drugs were standardized us-
ing the JChem Suite (Instant JChem version 14.10.27.0,
ChemAxon (http://www.chemaxon.com)). The standard-
ization steps included aromatization of the structures, ad-
dition of explicit hydrogens, removal of salts, and genera-
tion of 3D structures. InChIKeys were calculated for the
standardized structures and used to join structures from
different datasets and to remove duplicates. In addition to
InChIKeys, the set was scanned for duplicates using chem-
ical names, canonical smiles and external identifiers.

In many cases, the reason(s) for withdrawal and as-
sociated toxicity was directly provided by the source.
The reasons were manually extracted for the remaining
drugs by performing literature search. Furthermore, the
years of first approval, first and last withdrawal, and the
year of first reported death for all the withdrawn drugs
and most of the discontinued drugs were extracted from
the literature. Additionally, the Anatomical Therapeutic
Chemical (ATC) codes and external chemical identifiers
were collected to link the drugs to the public databases
WHO ATC index (http://www.whocc.no/atc ddd index/),
ChEMBL (22) and PubChem (23), respectively. Exter-
nal identifiers were extracted using the PubChem Identi-
fier Exchange Service (https://pubchem.ncbi.nlm.nih.gov/
idexchange/idexchange.cgi) whereas the ATC codes were
collected by looking for drug names in the WHO ATC in-
dex. For those drugs without an ATC code assigned by
the WHO, pseudo-ATC class names were assigned based
on their primary indication areas. The acute oral toxicity
class was calculated for each drug using the ProTox web-
server (24). The toxicity classes (ranging from 1 to 6) are
based on the Globally Harmonized System of Classifica-
tion and Labelling of Chemicals (GHS; https://www.osha.
gov/dsg/hazcom/ghs.html) which classifies compounds us-
ing their median lethal doses (LD50). Drugs that demon-
strated very low structural similarity to the ProTox dataset
were assigned to the class 0.
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Protein targets

Human protein targets for withdrawn and discontinued
drugs were obtained from the Comparative Toxicogenomics
Database (CTD) (25) and the ChEMBL database v. 19 (22).
The targets from CTD were filtered to obtain only interac-
tions with the interaction types involving activity, binding,
transport or metabolic processing. The ChEMBL targets
were filtered using the following criteria, adapted from the
recommendations on search criteria by Bajorath et al. (26).
First, all interactions with an activity comment ‘inactive’,
‘inconclusive’ or ‘not active’ were removed. Second, only in-
teractions with nanomolar (nM) standard units were kept.
Third, all interactions with a confidence score below 4 were
deleted to remove all non-protein targets. Fourth, only in-
teractions with standard activity relations ‘ = ’, ‘<’, ‘<<’,
‘< = ’, ‘ = = ’ and those without a standard activity rela-
tion were kept. In the last step, all interactions marked with
target types as cell-line and ADMET were omitted to re-
tain only interactions those with protein targets measured
in functional or binding assays. As a result, we retained a
total of 1.4 million compound-target interactions. Target
interactions were assigned to the withdrawn/discontinued
drugs by mapping the ChEMBL/CTD compound identi-
fiers which resulted in a total of 20,558 drug-target inter-
actions. These involved 327 drugs and 946 distinct human
protein targets. To provide additional information concern-
ing adverse effects, drug-target interactions were classified
into therapeutic and potential off-targets. Therapeutic or
primary drug targets were identified using mechanism of
action information from ChEMBL (22), primary target in-
formation from PDB (27), pharmacological action from
Drugbank (20) as well as the Therapeutic Target Database
TTD (28). Information regarding targets considered as off-
targets was gathered from the Novartis Safety Panel list
published by Lounkine et al. (29).

Enriched pathways

In order to emphasise the interpretation of drug-target in-
teractions at molecular level, we enriched the biological
pathways from ConsensusPathDB (30) using the human
protein targets from our database. A total of 149 KEGG
pathways were enriched with an enrichment P-value > 0.01
while ensuring that at least two protein targets are involved
in each pathway. The 149 enriched pathways comprise dif-
ferent signaling, metabolic and biochemical pathways in ad-
dition to the drug-target interaction pathways. Altogether,
703 human protein targets were found to be involved in the
enriched pathways.

Genetic variations

Information on genetic variations, or widely known as sin-
gle nucleotide polymorphisms (SNPs), were extracted from
the dbSNP database (31). To extract the SNP informa-
tion from dbSNP for the human protein targets within our
database, the BioMart R package (32) was used. The hu-
man genome assembly GRCh38.p3, provided by the En-
sembl database (33), was used as a reference genome. SNP
information extraction started with a collection of gene

symbols or names as defined by the HUGO Gene Nomen-
clature Committee (HGNC) database (34). The Ensembl-
Mart was queried for HGNC symbols and the correspond-
ing Ensembl transcript identifiers were extracted for each
gene. The chromosomal position was identified for each
transcript and SNP identifiers were used to get additional
information including minor allele frequency (MAF) and
function predictions from SNP-Mart. This information was
mapped to the genes queried for on Ensemble-Mart using
the SNP identifiers and transcript identifiers. In order to
identify the most important variations, only those SNPs lo-
cated within the coding region of a protein and marked as
missense variants with an MAF value were retained. A to-
tal of 889 human protein targets were identified to be as-
sociated with 27 790 unique SNP identifiers. In total, 1731
SNPs have a MAF >1%.

Toxicity types

A total of 14 categories of toxicity types were defined based
on the adverse effects associated with drug withdrawal.
These include the following toxicity types: hepatic, car-
diovascular, haematological, dermatological, carcinogenic,
neurological, renal, gastrointestinal, ophthalmic, muscular,
reproductive and respiratory toxicity as well as the type
‘multiple toxicities’ comprising compounds with observed
multiple organ failure as well as ‘unknown toxicity’ where
no specific toxic effect could be identified, although a safety
issue was associated with the withdrawal. The toxicity types
were manually assigned based on the reasons available and
also the reasons extracted from the literature. The number
of withdrawn/discontinued drugs associated with each tox-
icity type is summarized in Figure 1 and Supplementary Ta-
ble S1.

Server, database and system requirements

WITHDRAWN is based on a relational MySQL database
(http://www.mysql.com/). All data is stored on the MySQL
database and WITHDRAWN is hosted as a Java web
application on a Linux virtual server, accessible at http:
//cheminfo.charite.de/withdrawn. We strongly recommend
using a latest Mozilla Firefox, Google Chrome or Safari
browser, with JavaScript options enabled, to access the web-
site.

DATABASE SEARCH OPTIONS

The data presented by WITHDRAWN can be queried via
multiple search forms, as summarized in Figure 2. A quick
and simple way is to browse through the lists of withdrawn
and discontinued drugs. Different search options available
on the database include.

Drug search

Drugs can be searched using multiple options. In case a di-
rect match by name or synonym is not possible, the structure
of the queried name is obtained from PubChem and five
most similar withdrawn/discontinued drugs will be identi-
fied and displayed to the users. When providing a structure
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Figure 1. Overview of toxicity types associated with drug withdrawals.

input via the molecule sketching tool, the user has the flexi-
bility to search for database compounds at different levels of
Tanimoto similarity (fingerprint similarity using MACCS
keys) and also to adjust the number of results to be dis-
played. In addition, a sub-structure search, using Ullmann’s
algorithm for subgraph isomerism (35), was implemented
to provide an option to lookup for withdrawn/discontinued
drugs that contain the query structure. Additionally, drugs
can be searched using ATC codes. A detailed drug record
displays information about drug withdrawal, physicochem-
ical properties and links to external databases. The users can
also view the target interactions of the selected drug. Two
separate tables for ChEMBL and CTD interactions are dis-
played. ChEMBL interactions can additionally be filtered
using different activity value cutoffs.

Target search

The users can search for protein targets by providing a gene
name, UniProt entry number or UniProt entry name (36)
as query in the target search form. In addition, it is pos-
sible to browse protein targets using their ChEMBL clas-
sification. The resulting target record displays various pro-
tein identifiers, PDB (http://www.rcsb.org) structures, and
links to external target databases. In addition, the interac-
tions of the target with withdrawn/discontinues drugs can
be viewed in the same page. The information includes ac-
tivity types, units and values as well as the organism and
information source. Furthermore, the information on bio-
logical pathways and SNPs, including amino acid changes,
peptide positions, MAFs, PolyPhen scores (37) and links to
dbSNP, were added in the detailed record of a target.

Pathway search

To provide clear insights on withdrawn drug-target inter-
action effects, the pathway maps were extracted from the
KEGG database (38,39) for all the enriched biological path-
ways. In every pathway map, the targets that have an in-
teraction with withdrawn drugs are highlighted. Pathways
can be accessed via a selection list. Additionally, the targets
highlighted within the map are listed below to provide a link
to interacting drugs.

Toxicity type search

Alternatively, the drugs can be browsed by toxicity type. An
interactive wheel was designed to visualize different toxic-
ity types using the open source D3 visualization libraries
(http://d3js.org/). The users can see number of drugs in each
toxicity type as well as the distribution of the drugs into dif-
ferent ATC classes within each toxicity type. Furthermore,
the list of drugs classified in each toxicity type can be exclu-
sively viewed by clicking on the toxicity type. Major with-
drawal reasons under each toxicity type are summarized in
Figure 1 and Supplementary Table S1.

USE CASE

The following use case, represented in Figure 3, illustrates
the utility of WITHDRAWN as a knowledge-base to un-
derstand the mechanism of adverse drug reactions associ-
ated with drug withdrawals:

A search for the drug sibutramine, originally developed
by Knoll Pharmaceuticals, as an appetite suppressant for
treatment of exogenous obesity reveals that it was recalled
in the USA in 2010 due to adverse cardiovascular events
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Figure 2. Schematic representation of WITHDRAWN: various search options and different entity types: drugs, targets, pathways, toxicity types and SNPs.
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Figure 3. Case study––use of WITHDRAWN in connecting links between drugs, targets and SNPs in toxicological context.

including myocardial infarctions and stroke (40). Sibu-
tramine is a non-selective inhibitor that acts by inhibit-
ing the reuptake of the three monoamine neurotransmit-
ters: serotonin, dopamine and norepinephrine. By searching
for sibutramine targets in WITHDRAWN, the drug record
shows additional drug-target interactions including the cy-
tochromes CYP2B6, CYP2C19 and CYP2D6 as well as
the !2B-adrenergic receptor (ADRA2B) where sibutramine
exhibits similar activity as at the primary targets. WITH-
DRAWN shows four genetic variants for CYP2B6 with
a MAF above 1% (rs3745274, rs3211371, rs8192709 and
rs28399499). Indeed, it has been shown that CYP2B6 vari-
ations, particularly rs3745274, may lead to a significant in-
crease in the blood concentration of sibutramine and its ac-
tive metabolites (41,42). As summarized by Zhang et al.
(43), the increased drug concentration could result in an
increased off-target activity at ADRA2B which, through
an increased norepinephrine release, can lead to increased
blood pressure and adverse cardiovascular events. The ex-
ample emphasizes the importance of considering extensive
drug-target and pharmacogenetics studies during drug de-
velopment.

CONCLUSIONS

WITHDRAWN is a rich resource of withdrawn or discon-
tinued drugs. Due to a relatively small number of drugs
withdrawn per year (∼10), we will update the database an-
nually to ensure good coverage and high standard. The
database not only contains information related to drug
withdrawals and associated adverse drug reactions but also

drug-target interactions and genetic variations of the pro-
tein targets. The drug-target interaction information is
mapped to biological context by enriching the relevant
pathways. The illustrated case study proves that, connecting
links between drugs, targets and SNPs may explain the un-
derlying mechanisms of toxicity. The knowledge presented
in the database can improve the insights of drug-target in-
teractions in toxicological context and provide the rationale
for further off-target profiling and enhanced pharmacoge-
netics studies in different populations.
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3.4  Summary 

Two knowledgebase resources that provide comprehensive information around approved and 

withdrawn drugs were developed and made publicly accessible via the Web. Interactive features such 

as 2D and 3D similarity search, substructure search, and 3D superposition were implemented to 

explore the chemical space of drugs. An important feature of the two databases is cross-linking of the 

drug entries to other major drug databases. Interesting use cases to exploit these knowledgebases 

were provided in the original articles. For instance, the potential mechanism leading to adverse 

cardiovascular effects of the withdrawn drug sibutramine could be retrospectively understood by 

connecting links between drugs, targets and genetic variations. This use case highlights the need to 

conduct extensive pharmacogenetic studies and investigate off-target effects during drug 

development. Furthermore, off-target relations that are directly related to the reasons for withdrawal 

are highly useful in predicting toxicity (in a read-across fashion) of newer ligands that are structurally 

similar to these drugs. The integrated bioactivity data and drug-target relations can be employed in 

the development of predictive QSAR models. In this regard, data have been made openly accessible 

to the community to complement the ongoing research. For example, ChEMBL database (since 

version 22) has been annotating entries as ‘withdrawn drugs’ on the basis of information extracted 

from WITHDRAWN database. Regular updates have been performed using semi-automated data 

collection and integration protocols. 

The supporting information of these two articles can be obtained via the following URLs: 

Siramshetty et al. - https://doi.org/10.1093/nar/gkx1088 

Siramshetty et al. - https://doi.org/10.1093/nar/gkv1192 
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Chapter 4 

Development of In Silico Models for Toxicity Prediction 

4.1  Chemical Similarity and Machine-learning Methods for Predicting 

Toxicological Endpoints 

Combinatorial chemistry and HTS have led to a significant rise in the number of chemicals 

synthesized and tested each year. Establishing the safety profiles of such a large number of 

compounds using the conventional in vitro and in vivo tests is both costly and time-consuming. In 

the light of the scientific reports that criticize the limited number of drug approvals per year and the 

increase in the number of safety-related drug withdrawals, employing in silico models is associated 

with many advantages. They are fast, cheap, and most importantly can be employed to predict the 

outcomes even before a compound is synthesized. Government based agencies and several scientific 

consortia have actualized large-scale projects to develop better tools for early assessment of chemical 

toxicity. Many data challenges have been crowdsourced to aggregate best performing models from 

the scientific community. The three articles reported in this chapter summarize the in silico models 

developed during this thesis. While the first two articles focus on models that predict the potential of 

chemicals to interfere with nuclear receptor and cellular stress response pathways, the third article 

reports binary classification models to predict hERG channel blockade. The applicability of chemical 

similarity-based methods and machine learning algorithms to develop in silico models were 

discussed. Furthermore, differences in performances of models based on individual descriptors and 

combinations of descriptors were reported. The models achieved very good performance when 

validated on independent data sets and the constantly misclassified compounds were analyzed to 

understand the reasons behind wrong predictions. Most importantly, the importance of data quality 

was highlighted by developing multiple (hERG) models based on data sets of different levels of 

confidence, composition, and chemical diversity. 
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To assess the toxicity of new chemicals and drugs, regulatory agencies require

in vivo testing for many toxic endpoints, resulting in millions of animal experiments

conducted each year. However, following the Replace, Reduce, Refine (3R) principle,

the development and optimization of alternative methods, in particular in silico methods,

has been put into focus in the recent years. It is generally acknowledged that the more

complex a toxic endpoint, the more difficult it is to model. Therefore, computational

toxicology is shifting from modeling general and complex endpoints to the investigation

and modeling of pathways of toxicity and the underlying molecular effects. The U.S.

Toxicology in the twenty-first century (Tox21) initiative has screened a large library

of compounds, including approximately 10K environmental chemicals and drugs, for

different mechanisms responsible for eliciting toxic effects, and made the results publicly

available. Through the Tox21 Data Challenge, the consortium has established a platform

for computational toxicologists to develop and validate their predictive models. Here,

we present a fast and successful method for the prediction of different outcomes of the

nuclear receptor and stress response pathway screening from the Tox21 Data Challenge

2014. The method is based on the combination of molecular similarity calculations and a

naïve Bayes machine learning algorithm and has been implemented as a KNIME pipeline.

Molecules are represented as binary vectors consisting of a concatenation of common

two-dimensional molecular fingerprint types with topological compound properties. The

predictionmethod has been optimized individually for eachmodeled target and evaluated

in a cross-validation as well as with the independent Tox21 validation set. Our results

show that the method can achieve good prediction accuracies and rank among the

top algorithms submitted to the prediction challenge, indicating its broad applicability in

toxicity prediction.

Keywords: molecular fingerprints, molecular similarity, machine learning, toxicity prediction, Tox21 Data

Challenge 2014
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Introduction

The U.S. Toxicology in the twenty-first century (Tox21) initiative
has been established in 2008 with the vision to support the
transformation of toxicology into a predictive science (Krewski
et al., 2010). In order to achieve this goal, a large library
of compounds, including approximately 10K environmental
chemicals and drugs, was screened for different mechanisms
responsible for eliciting toxic effects. Among the screens were
high-throughput assays for two important pathways, the nuclear
receptor and the stress response pathway, which were the subject
of the Tox21 Data Challenge 2014.

Interactions of chemicals with nuclear receptors represent
a major health concern. In particular, binding of chemicals
to steroid receptors can cause the disruption of the normal
endocrine function and have an adverse effect on development,
reproduction and metabolic homeostasis (Huang et al., 2014).
A famous example of an endocrine disrupting chemical is
bisphenol A, a compound which has been widely used, e.g.
in plastic bottles and metal cans, but has only recently been
associated with impairments of neurobehavioral development
(Weiss, 2012). Bisphenol A and its derivatives have been
shown to exhibit a promiscuous binding behavior involving,
for instance, estrogen receptors (ER), androgen receptors (AR)
and peroxisome proliferator-activated receptors (PPAR) of the
γ subtype (Delfosse et al., 2014), all of which are subject
of the Tox21 screening. Another current focus of the Tox21
screening is aromatase, an enzyme involved in the conversion
of androgen to estrogen and therefore a target of endocrine
disrupting chemicals (Chen et al., 2014), as well as the aryl
hydrocarbon receptor (AhR), a nuclear receptor involved in the
mediation of tumorgenesis induced by dioxin (Murray et al.,
2014). Similarly, mechanisms related to cellular stress also play
a role in toxicological pathways. For example, recent studies
have shown that the impairment of mitochondrial function
is associated with drug-induced adverse effects on the liver
and cardiovascular system (Nadanaciva and Will, 2011; Attene-
Ramos et al., 2015).

To assess the risks of new chemical entities, in vivo animal
studies are required by regulatory agencies to evaluate various
toxicological endpoints. However, in silico toxicology is gaining
acceptance as an alternative method which can help to reduce
the number of animal experiments performed. Computational
predictions often rely on the observation or assumption that
similar molecules manifest a similar biological effect. Similarity-
based methods have been successfully applied to solve various
research questions including predictions of targets (Campillos
et al., 2008), therapeutic indications (Nickel et al., 2014) or
side-effects (Lounkine et al., 2012). In particular, machine
learning approaches such as k-nearest neighbors, naïve Bayes

Abbreviations: 2D, two-dimensional; AhR, aryl hydrocarbon receptor; AR,
androgen receptor; ARE, antioxidant response element; ATAD5, genotoxicity
induction; AUC, area under the curve; BAC, balanced accuracy; ER, estrogen
receptor 1; HSE, heat shock response; LBD, ligand binding domain; MMP,
mitochondrial membrane potential; PPAR, peroxisome proliferator-activated
receptor; ROC, receiver operating characteristic; Tox21, U.S. Toxicology in the
twenty-first century initiative.

models, support vector machines, random forests or ensembles
of different classification methods can use the similarity defined
the molecular structure and properties to make predictions
for novel compounds. This concept has also been frequently
and successfully applied to predictions of various toxicological
endpoints (Drwal et al., 2014; Gadaleta et al., 2014; Li et al., 2014;
Liu et al., 2015).

Here, we describe the development of a fast and successful
method for the prediction of different outcomes of the nuclear
receptor and stress response pathway screening from the
Tox21 Data Challenge 2014. The method is based on the
combination of a simple molecular similarity calculation with
a naïve Bayes machine learning algorithm. Three different two-
dimensional (2D) molecular representation methods as well as
their combination were compared and the prediction methods
were optimized individually for every target. The evaluation
of each model showed that all models can achieve good
performance and prediction accuracies as well as rank among the
top submissions among the Tox21 challenge participants.

Materials and Methods

Overview
An overview of the workflow used in this study is given
in Figure 1. In the first step, all molecular structures were
standardized and the duplicates as well as compounds with
ambiguous activity values were removed. The training and test
set provided by the Tox21 Data Challenge 2015 organizers
were merged and used in a 13-fold cross-validation to optimize
parameters for the classification algorithms. The optimized
models were then used to predict the activities of the evaluation
set compounds. All steps are described in detail in the following
sections. For the majority of tasks, the open pipeline generation
platform KNIME v.2.10.0 (Knime.com AG) was used.

Data Preparation
Standardization
All molecular structures were downloaded from the Tox21 Data
Challenge 2014 website (https://tripod.nih.gov/tox21/challenge/
index.jsp) and their molecular structures were standardized
using the Instant JChem software (version 6.2, Chemaxon)
with the following settings: Water molecules were removed,
molecules were aromatized, adjacent positive and negative
charges transformed into double/triple bonds, explicit hydrogens
were added and the 3D conformation was generated and cleaned.
After the standardization, InChIKeys were calculated using
RDKit (http://www.rdkit.org) nodes in KNIME in order to
identify and remove duplicates. In case duplicate molecules were
found to have different activities (1 and 0) for a particular target,
they were marked as ambiguous and removed from the training
set of this target.

Additional Data
For each target, a search for additional known ligands was
performed in the ChEMBL bioactivity database v.19 (Bento et al.,
2014). A search was performed for the target name and EC50

or IC50 values in case of agonists or antagonists, respectively.
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FIGURE 1 | Workflow overview.

Additional datasets were standardized and checked for duplicates
as described above.

Calculation and Combination of Fingerprints
Different types of molecular representations were calculated for
each compound: ToxPrint fingerprints were calculated using
the ChemoTyper software (version 1.0, Molecular Networks
GmbH). Extended-connectivity fingerprints (Rogers and Hahn,
2010) of the ECFP4 type were calculated using RDKit nodes
in KNIME. 960-bit MACCS keys were calculated using the
Discovery Studio 3.1 program (Accelrys Inc./BIOVIA). In
addition, several topological properties indicating the three-
dimensional (3D) structure were calculated using RDKit and
CDK nodes in KNIME. The use of topological descriptors has
been previously reported in a structure-toxicity relationship
study (Pasha et al., 2009). Furthermore, topological descriptors
have several advantages compared to 3D descriptors, including
conformational independency, simplicity and low computational
resources. A number of topological descriptors were calculated,
but only those displaying values with considerable difference
between active and inactive molecules were used further.
These included the Chi0V, Chi1N, Kappa1 and HallKierAlpha
descriptors (Hall and Kier, 1991) as well as the topological polar
surface area. The descriptors were transformed into a binary
vector by binning. For each descriptor, a number of “bins”
(and bits in the fingerprint) was defined, representing different
descriptor value ranges. Whenever the descriptor value was
found in a specific range, the bit at the respective position was
set to 1. Therefore, it was ensured that close values exhibited high
fingerprint similarity. The combined fingerprint consisted of a
concatenation of all four binary fingerprints with a length of 2929
bits—960 bits for MACCS keys, 1024 bits for ECFP4, 729 bits
for ToxPrint and 216 bits for the property-based fingerprint, as
indicated in Figure 2.

Toxicity Prediction Methods
Cross-validation
In order to validate the prediction models, a 13-fold cross-
validation was implemented in KNIME. The KNIME workflows
are presented in Supplementary Figures S1, S2. A 13-fold
validation was chosen in order to produce a test set similar
in size to the final validation set of the Tox21 challenge. It
was investigated whether the addition of external data (known
ligands from the ChEMBL database, see Section Additional
data) was able to improve the prediction rate. Different activity
cut-offs for the ChEMBL compounds were considered for this
purpose. Furthermore, it was also investigated whether reducing
the actives in the training set to the most diverse compounds
was able to increase the performance of the model. In this
case, the RDKit Diversity Picker node was used using different
thresholds. Finally, the effect of the removal of highly correlated
fingerprint bits on the model performance was explored using
the Correlation Filter node. To determine the best settings,
the performance was evaluated using a receiver operating
characteristic (ROC) analysis. The area under the curve (AUC)
was calculated using the ROC curve node.

Naïve Bayes Learning
Naïve Bayes is a commonly applied stochastic classifier based on
the Bayes theorem of conditional probability (Nidhi et al., 2006).
The major characteristic of the classifier is the naïve assumption
that all input features are independent. Main advantages of
the method compared to other machine learning algorithms
are fast computational time during training and prediction
as well as a low parameter complexity and insusceptibility to
irrelevant features. Furthermore, it has been suggested that
the combination of molecular fingerprints with descriptors can
be beneficial in the context of Bayesian modeling (Vogt and
Bajorath, 2008).

Frontiers in Environmental Science | www.frontiersin.org July 2015 | Volume 3 | Article 5465

http://www.frontiersin.org/Environmental_Science
http://www.frontiersin.org
http://www.frontiersin.org/Environmental_Science/archive


Drwal et al. Similarity-based Tox21 predictions

FIGURE 2 | Molecular representation. For every input molecule from

the Tox21 data set, different 2D-fingerprints are calculated and

combined. The concatenation consists of MACCS keys (960 bits), the

extended-connectivity fingerprint ECFP4 (1024 bits), ToxPrint (729 bits)

and a fingerprint developed from topological descriptors (216 bits). Both

MACCS as well as ToxPrint fingerprints encode the presence of specific

substructures. Examples of MACCS and ToxPrint substructures are

shown in boxes. Substructures present in a sample molecule taken

from the Tox21 dataset are highlighted in orange boxes. ECFP4

encodes the connections of each atom within a 4-atom radius. The

property-fingerprint encodes the presence of descriptor values in specific

bins representing value ranges.

Thus, we implemented a naïve Bayes predictor with the
Tox21 training sets. The Fingerprint Bayesian Learner and
Predictor nodes in KNIME were used for this purpose. The
predictor received an input of active and inactive molecules and
their fingerprints. The output consisted of two scores for each
molecule, a score for being active (B1) and a score for being
inactive (B0).

Molecular Similarity
The Tanimoto index is one of the most common metrics
for fingerprint-based molecular similarity calculations and has
recently been shown to be among the best choices for this purpose
(Bajusz et al., 2015). For the comparison of molecular similarity,
three Tanimoto coefficients were computed: the maximum
Tanimoto coefficient to actives in the training set (T1), the average
Tanimoto coefficient to actives in the training set (T2), and the
maximum Tanimoto coefficient to all inactives in the training
set (T3).

Combination of Methods
All scores and Tanimoto coefficients were normalized in KNIME
using Z-score normalization to obtain scores following a
Gaussian distribution and MinMax-normalization to obtain
values between 0 and 1. Different combinations of the naïve Bayes
scores B1 and (1-B0) as well as the Tanimoto scores T1, T2 and
(1-T3) were examined, including the minimum, maximum and
mean of the scores.

Determination of Score Threshold
For every target, a threshold of the final score was determined
which was used to classify the compounds into active
and inactive molecules. The score threshold was determined
by choosing the threshold which resulted in the maximal
balanced accuracy ((sensitivity+specificity)/2) over all rounds of
cross-validation.

Results

The Tox21 Data Challenge 2014 consisted of the prediction
of 12 different screening outcomes (targets): the activation or
inhibition of nuclear receptors AhR, PPARγ, aromatase, ER
and AR (full length and ligand binding domain, LBD) as well
as the effect on stress response pathways consisting of the
activation of the antioxidant response element (ARE), heat
shock response (HSE) and p53 signaling, the disruption of
mitochondrial membrane potential (MMP) and the induction
of genotoxicity (ATAD5). Before building predictive models, all
chemical structures were normalized as described in theMethods
section and duplicates were removed. Only compounds explicitly
marked as active or inactive were used for model development.
Wherever available, additional active molecules were extracted
from the ChEMBL database (Bento et al., 2014) and used for
model development. As summarized in Supplementary Table S1,
the proportion of unique active and inactive molecules as well
as the presence of external actives differed considerably between
targets.
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Choice of Molecular Representation
How well a prediction model performs does not only depend
on the underlying algorithm, but also the features used as
input. In the case of predictions of small molecule toxicities
and other biological activities, the performance thus depends
on the molecular representation which ultimately influences
the computed similarity between molecules (Floris et al.,
2014). Here we compared the performance of three common
molecular fingerprints as well as their combination. ECFP4
is a member of the extended-connectivity fingerprint type
often used to analyze structure-activity relationships of small
molecules (Rogers and Hahn, 2010). MACCS keys are another
frequently used fingerprint type which encodes the presence
of specific substructures and has been successfully used for
predictions of acute oral toxicity (Li et al., 2014). The ToxPrint
fingerprint (Yang et al., 2015a) is based on a library of more than
700 chemotypes which represent molecules in public chemical
and toxicity databases and cover substructures associated with
toxic effects and thus may be of particular importance for in
silico toxicity predictions. We also evaluated the addition of a
property-based fingerprint as has been suggested previously (Xue
et al., 2003). Here, descriptors encoding the topology of the
Tox21 compounds were calculated and translated into a binary
fingerprint.

In order to determine the optimal fingerprint for the
prediction, fingerprints were used individually as well as in
combination and evaluated in cross-validation on one of the
targets, namely ER-LBD. As summarized in Table 1, all three
types of fingerprints showed a good performance using both the
Bayesian classifier as well as the similarity search approach. In
the majority of cases models built with individual fingerprints
exhibited AUC values above 0.75 and a concatenation of all
three fingerprints led to a slight increase in performance.
Furthermore, a combination of the concatenated fingerprints
with a property-based fingerprint encoding the topology of the
molecules demonstrated the best prediction results and was thus
used as a descriptor for all targets of the challenge.

Model Optimization and Validation
In the preliminary evaluation of descriptors for ER-LBD, a
common observation was that a consensus score consisting of
a machine learning score and a similarity coefficient usually
resulted in the best model performance (Table 1). Therefore,
it was investigated which combination of scores led to the
best prediction. In particular, the scores from the Bayesian
classifier and the similarity search were combined into a
consensus score using either a mean, maximum or minimum
value. Since the optimal settings might differ depending on
the target and its active and inactive molecules, the best
parameters were determined individually for every target in a
cross-validation study. The optimization involved the variation
of the following parameters: the addition of active molecules
from external sources (ChEMBL database) using different
activity value thresholds, the addition of a correlation filter
to remove highly correlated fingerprint features as well as the
incorporation of a diversity picker to restrict the number of
active to train a naïve Bayes model to the ones with highest
diversity.

The best settings found for every Tox21 target are shown in
Table 2. As indicated, similarity search gave the best performance
for 4/12 targets when an average Tanimoto was calculated
from the T1, T2, and (1-T3) scores indicating the similarity
to active as well as the dissimilarity to inactive molecules (see
Methods). For all other targets, a combination of the machine
learning algorithm and a similarity scoring showed the best
results. In most cases, a mean function was used to generate
a consensus score combining the naïve Bayes and Tanimoto
coefficients.

The performance of each model was evaluated using
ROC-AUC values as well as balanced accuracies. The cross-
validation results for the best settings as well as the external
validation results provided by the challenge organizers are
summarized in Figure 3. In cross-validation, all models exhibited
excellent performance with AUC values between 0.78 and
0.9, with the best three models obtained for the targets

TABLE 1 | Performance of different fingerprints in cross-validation of predictions for ER-LBD.

Scorea ROC-AUC

MACCS ECFP4 Toxprint Combinedb Allc

naïve Bayes B1 0.7664 0.7870 0.7744 0.7833 0.7874

naïve Bayes 1—B0 0.7720 0.7716 0.7818 0.8031 0.8021

Similarity T1 0.7805 0.7773 0.7840 0.7957 0.8008

Similarity T2 0.6660 0.6873 0.7223 0.6697 0.7023

Similarity 1—T3 0.5455 0.6228 0.5751 0.5831 0.6299

Mean Bayes score 0.7718 0.7823 0.7813 0.7968 0.7991

Mean tanimoto 0.7752 0.8014 0.8034 0.7901 0.8173

Mean consensusd 0.7951 0.8145 0.8148 0.8134 0.8240

aScores have been calculated as follows: B1, naïve Bayes score for actives; B0, naïve Bayes score for inactives; T1, maximum Tanimoto score to actives; T2, average Tanimoto score

to actives; T3, maximum Tanimoto score to inactives.
bCombination of MACCS, ECFP4 and Toxprint fingerprints.
cCombination of all fingerprints with property-based fingerprint calculated from topological descriptors.
dMean of the average Bayes score and the average Tanimoto score.
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TABLE 2 | Parameters of the most successful prediction models.

Target External compounds Correlation filter Diversity Picker Naïve Bayesa Similarityb Consensus score

AhR ≤ 5000 nM – 19% actives Mean Mean Mean

AR ≤ 5 nM – – Mean Mean Mean

AR-LBD ≤ 5 nM – – – Mean –

Aromatase – – 58% actives – Mean –

ER ≤ 5 nM – – Max Mean Mean

ER-LBD ≤ 5 nM 0.9 44% actives Min Mean Mean

PPARγ – – 47% actives Max Max Min

ARE – – – – Mean –

ATAD5 ≤9200 nM – 9% actives 1−B0 T1 Mean

HSE ≤160 nM – 43% actives Max Mean Mean

MMP – – 17% actives 1−B0 T1 Mean

P53 – 0.9 54% actives – Mean –

aCombination of the Naive Bayes scores for active (B1) and inactive (1-B0) compounds.
bCombination of the Tanimoto similarity scores: maximum Tanimoto score to actives (T1), average Tanimoto score to actives (T2), 1—maximum Tanimoto score to inactives (T3).

FIGURE 3 | Performance of models predicting the outcome of the

Tox21 screening outcomes. (A) Area under the curve (AUC) calculated in a

ROC analysis. (B) Balanced accuracies (BAC). Results are shown for our

models in cross-validation (dark red) and external validation (yellow) as well

as the average external validation results among the top 10 challenge

participants.
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AhR, AR-LBD, and MMP. For AhR, MMP, and p53, the
results of the external validation set showed a very similar
performance to the cross-validation, indicating good and
universal models and scores. In the cross-validation, the
balanced accuracies of the individual models ranged between
70 and 82% (see Figure 3). For several targets, including AhR,
HSE, and p53, the balanced accuracy obtained in external
validation remained constant or increased in comparison
to the cross-validation results, illustrating broadly applicable
models.

Comparison to Other Challenge Participants
All models submitted to the challenge were evaluated by the
challenge organizers and ranked according to their AUC values
for the external validation set. The prediction values for the top 10
participating teams are publicly available (https://tripod.nih.gov/
tox21/challenge/leaderboard.jsp) and summarized in Figure 3,
Supplementary Tables S2, S3. Taken together, 7 out of 12
models we submitted were found in the top 10 leaderboard.
While our models were not nominated as the sub-challenge
winners, in many cases their AUC value was found very close
to the winning model. This was for instance observed for the
target HSE, where the top 9 ranking models showed AUC
values differing only by 0.02, suggesting that similarly good
models can be obtained with various approaches. As indicated
in Figure 3, our models for the targets AhR, ER-LBD and p53
were also very close to the average AUC of the leading models.
Although most leaderboard models showed AUC values within a
small range, large differences were observed for the prediction
accuracies (between 49 and 90%). Interestingly, four of our
models (targets: AR-LBD, ER-LBD, aromatase, and HSE) were
the determined to be the most accurate amongst all submissions
(see Figure 3 and Supplementary Table S3). Four additional
models, developed for the targets AhR, ARE, ATAD5, and p53,
displayed accuracies higher or equal to the average of the top 10
submitted models.

Discussion

Here, we describe a successful machine learning method
for the prediction of different outcomes of the nuclear
receptor and stress response pathway screening from the
Tox21 Data Challenge 2014. The key to our method is the
combination of different molecular fingerprints and descriptors
as well as the integration of two different algorithms, a
similarity-based approach and a naïve Bayes machine learning
technique.

Combination of Features and Algorithms
The selection of features is a crucial and non-trivial part
of development of predictive models. The features should be
able to describe the differences between actives and inactives
in the training set and allow extrapolating to other, yet
untested compounds. Although several molecular fingerprints,
such as extended-connectivity, substructure-based or path-based
fingerprints are standards in the chemoinformatics field and
have been successfully applied to prediction tasks, the results

are dependent on the data and none of the methods is able
to clearly outperform the others (Duan et al., 2010). To
avoid the choice of the wrong descriptor, the combination of
(independent) fingerprints has been suggested (Duan et al., 2010)
and several studies have successfully applied combinations of
path- and substructure-based fingerprints (Drwal et al., 2014;
Banerjee et al., 2015). As we report here, the combination of
different fingerprint types has also been of advantage for the
prediction of estrogen receptor ligands. An associated problem,
however, is that a combined fingerprint is likely to contain
highly correlated features. We have thus investigated the use
of a correlation filter to remove fingerprint bits with high
correlation, but the filter was able to increase the prediction
performance only for two targets. A more effective approach
proved to be the use of a diverse subset of active molecules in
the training set, though the size of the diverse subset giving the
best results had to be optimized individually for every target.
As the active molecules of the different Tox21 sub-challenges
might contain different important molecular characteristics,
the use of extensive cross-validation to optimize the feature
selection for every sub-challenge could further improve the
prediction performance. Automated feature selection using deep
neural networks, as suggested by one of the other teams
participating in the Tox21 challenge (Unterthiner et al., 2015),
offers an alternative way to determine the most relevant
features in the input molecules which can be advantageous for
large sets of molecules, but is obviously associated with large
computational costs.

Combinations of multiple machine learning algorithms,
also referred to as hybrid or ensemble learning, are a well-
described approach and have been applied to solve diverse
research questions (Yang et al., 2015b). It is usually assumed
that the use of multiple models can increase the prediction
accuracy as compared to the use of a single model and help
to manage high-dimensional and complex data sets. Similarly
to our approach, several other studies have proven that
merging a naïve Bayes classifier with a similarity-based approach
such as k-nearest neighbors can result in highly predictive
models for various applications including the prediction of
molecular targets (Ferdousy et al., 2013; Liu et al., 2013).
Future investigations could focus on the evaluation of other
classification methods (logistic regression, random forests, etc.)
and larger model ensembles for the purposes of toxicity
prediction.

Conclusions

Our models use a combination of molecular fingerprints and
algorithms and show consistently good performance for the 12
outcomes of the Tox21 screen, four of the models being the most
accurate amongst the challenge participants. We are planning to
make our models publicly available by incorporating them into
our toxicity prediction platform ProTox (http://tox.charite.de) in
the future.

The Tox21 Data Challenge 2014 has provided an excellent
opportunity for academic and industrial groups to assess
and directly compare the quality of their toxicity prediction
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methods. The results will be of great value to the scientific
community and can help to pave the way toward the use
of more in silico toxicity models as decision-making tools to
evaluate potential health hazards of environmental chemicals
and drugs.
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Abstract 
Background: With a constant increase in the number of new chemicals synthesized every year, it becomes impor-
tant to employ the most reliable and fast in silico screening methods to predict their safety and activity profiles. In 
recent years, in silico prediction methods received great attention in an attempt to reduce animal experiments for 
the evaluation of various toxicological endpoints, complementing the theme of replace, reduce and refine. Various 
computational approaches have been proposed for the prediction of compound toxicity ranging from quantitative 
structure activity relationship modeling to molecular similarity-based methods and machine learning. Within the “Tox-
icology in the 21st Century” screening initiative, a crowd-sourcing platform was established for the development and 
validation of computational models to predict the interference of chemical compounds with nuclear receptor and 
stress response pathways based on a training set containing more than 10,000 compounds tested in high-throughput 
screening assays.

Results: Here, we present the results of various molecular similarity-based and machine-learning based methods 
over an independent evaluation set containing 647 compounds as provided by the Tox21 Data Challenge 2014. It was 
observed that the Random Forest approach based on MACCS molecular fingerprints and a subset of 13 molecular 
descriptors selected based on statistical and literature analysis performed best in terms of the area under the receiver 
operating characteristic curve values. Further, we compared the individual and combined performance of different 
methods. In retrospect, we also discuss the reasons behind the superior performance of an ensemble approach, com-
bining a similarity search method with the Random Forest algorithm, compared to individual methods while explain-
ing the intrinsic limitations of the latter.

Conclusions: Our results suggest that, although prediction methods were optimized individually for each modelled 
target, an ensemble of similarity and machine-learning approaches provides promising performance indicating its 
broad applicability in toxicity prediction.

Keywords: Similarity searching, Machine learning, Toxicity prediction, Tox21 challenge, Molecular fingerprints
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Background
The number of new chemical entities launched every 
year has been steadily increasing over the last decades 
irrespective of the number of successful drug approvals. 
High attrition rates in late stage of clinical trials are one 
of the most important reasons for the significantly low 
number of new drug approvals. The lack of efficacy and 

unfavourable safety profiles contribute the most to high 
attrition rates. Reviews indicate an increasing number of 
‘me-too’ drugs that hardly provide an advantage over the 
existing therapeutics [1]. In an attempt to evaluate dif-
ferent drug discovery strategies, it was observed that the 
percentage of newly approved small molecule drugs with 
a novel molecular mechanism of action is less than 20 % 
of the total approvals during the study duration consid-
ered [2]. Currently, the majority of drug candidates are 
aimed at cancer treatment and are therefore studied for 
activity at multiple, possibly novel biological targets, pre-
senting a high probability of multiple unique toxicologi-
cal profiles [3]. Therefore, it is essential to employ novel 
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strategies that can predict the fate of the chemicals in 
early stages of development to overcome the failure rates 
and accelerate the development and approval of promis-
ing candidates. Predictive toxicology, more commonly 
known as in silico toxicology, plays a key role in the opti-
mization of hits by parallel investigation of safety and 
activity, thereby permitting a more efficient drug devel-
opment process [4]. Along with in vitro assays, predictive 
toxicology received, in recent times, great attention as a 
method to evaluate various toxicological endpoints and 
reduce animal experiments, complementing the theme 
of replace, reduce and refine (3Rs) [5]. Additional factors 
that motivate the development of toxicological prediction 
methods include considerable progress with legislations 
in both the European Union and North America and the 
need for the reduction of costs involved in experimental 
testing of an increasing number of chemicals, as well as 
advances in the understanding of the biology and chem-
istry of the active chemical compounds.

The early efforts for prediction of toxicity date back 
to the 1890s, as emphasized by the work of Richet [6], 
Meyer [7] and Overton [8] on the relationship between 
toxicity and solubility followed by their hypothesis that 
narcosis could be related to partitioning between water 
and oil phases. Since then, steady progress has been 
observed in predictive toxicology, highly complemented 
by advances in cheminformatics approaches such as 
quantitative structure–activity relationship (QSAR) 
modeling [9], physicochemical property and molecular 
descriptor based modeling [10, 11] and statistical meth-
ods [12]. Later, a number of commercial and open-source 
expert systems have been developed for the prediction 
of pharmacokinetic parameters including TOPKAT® 
[13], ADMET Predictor™ [14], ADME-Tox Prediction 
[15], DEREK [16] and Toxicity Estimation Software Tools 
[17]. Machine learning methods have been widely used 
in the areas of bioactivity and ADMET (absorption, dis-
tribution, metabolism, excretion and toxicity) properties 
prediction [18–23]. It has been demonstrated that mod-
els built with machine learning methods which take into 
account high-dimensional descriptors are very successful 
and robust for external predictions [24, 25].

The US toxicology initiative, Toxicology in the 21st 
Century (Tox21), started in 2008, aims to develop fast and 
effective methods for large-scale assessment of toxicity 
in order to identify chemicals that could potentially tar-
get various biological pathways within the human body 
and lead to toxicity [26]. The objectives of this initiative, 
after the initial screening, are to prioritize chemicals 
for further investigation of toxic effects and progres-
sively build toxicity models as well as develop assays that 
measure responses of human pathways towards these 
chemicals. As a part of the screening initiative, a library 

comprising more than 10,000 chemicals was screened 
in high-throughput assays against a panel of 12 different 
biological targets involved in two major groups of bio-
chemical pathways: the nuclear receptor pathway and the 
stress response pathway. Further, during the Tox21 Data 
Challenge 2014 [27], the development of computational 
models which can predict the interference of these chem-
icals in the two groups of pathways was crowd-sourced 
to researchers across the globe. Our previous work [28] 
illustrates the usefulness of a combination of chemical 
similarity and machine-learning approaches in predicting 
the activity of the Tox21 dataset with high accuracy for a 
majority of the targets considered in the challenge [29]. In 
this study, we present and discuss various computational 
methods, ranging from molecular similarity to different 
machine-learning approaches and their intrinsic limita-
tions by comparing them with the best prediction models 
from our previous work [28] that ranked top among the 
submissions to the challenge. In order to keep the com-
parison simple, we limit ourselves to a set of three tar-
gets: aryl hydrocarbon receptor (AhR), estrogen nuclear 
receptor alpha ligand-binding domain (ER-LBD) and 
heat shock protein beta-1 (HSE). We also emphasize on 
the factors that can be attributed to a mixed performance 
of these models via illustration of example compounds.

Results
We compared the performance of four different algo-
rithms as well as four different molecular fingerprints for 
the prediction of the AhR, ER-LBD and HSE assays for 
the Tox21 10 K compound library (for more details, see 
Additional file 1: Tables S1, S2). In particular, similarity-
weighted k-nearest neighbors (kNN) approaches as well 
as three types of machine learning algorithms (Fig.  1) 
were investigated, as described in detail in the Methods 
section. In order to evaluate the performance of differ-
ent fingerprints used as a hybrid fingerprint in our previ-
ous work [28], we investigated MACCS [30], ECFP4 [31] 
and ToxPrint [32–34] fingerprints individually. While 
MACCS fingerprints are based on generic substructure 
keys, ToxPrint fingerprints encode generic substructures 
considering genotoxic carcinogen rules and structure-
based thresholds relevant to toxicology. Extended con-
nectivity fingerprints such as ECFP4 are based on the 
circular topology of molecules and have been designed 
for both similarity searching and structure–activity mod-
eling. In addition, we chose to use ESTATE [35] finger-
prints, to examine whether molecular fragments based 
on the electronic, topological and valence state indi-
ces of atom types can help in prediction of toxic activ-
ity. In addition to fingerprints alone, we also tested the 
concatenation of fingerprints with 13 selected molecular 
descriptors characterising the molecule’s topology and 
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physicochemical properties (see “Methods” section and 
Supplementary Information). The performance of all 
models was investigated in cross-validation and external 
validatio. The best classifier for each target was selected 
based on the AUC values of the models generated.

Similarity search based predictions
In the first step, we implemented a similarity-weighted 
kNN search with three different ‘k’ parameters (3, 5 and 
7). It was noted that all three kNN approaches based on 
the MACCS fingerprint performed better than those 
based on ECFP4, ESTATE and ToxPrint fingerprints in 
cross-validation and external validation. The AUC val-
ues achieved with the best performing fingerprint for 
each target are presented in Fig. 2 (cross-validation with 
error bars) and Fig. 3 (external validation) and those for 
all other fingerprints are available in the Supplementary 
Information (Additional file 1: Tables S3, S4). With all the 
kNN models for AhR and HSE, ESTATE and ToxPrint 
fingerprints performed similarly to MACCS fingerprints 
followed by ECFP4 with the least performance. All mod-
els for ER-LBD showed the worst performance compared 
to the other two targets.

For AhR and ER-LBD, the 5NN approach performed 
better than the 3NN and 7NN approaches. The 3NN 
method, however, achieved clearly better perfor-
mance for HSE. These observations were true for both 

cross-validation (Additional file 1: Table S5) and external 
validation (Additional file 1: Table S6) results.

Overall, the similarity-weighted kNN approaches 
showed target-dependent results with better perfor-
mance on AhR (mean AUC  =  0.81) and HSE (mean 
AUC = 0.8) compared to ER-LBD (mean AUC = 0.71) in 
both cross-validation and external validation.

Machine learning predictions
Three different models, a Naïve Bayes (NB), random for-
est (RF) and probabilistic neural network (PNN) classi-
fier (see “Methods” section for details) were developed. 
Additionally, we have tested support vector machine 
(SVM) models with both a linear and a polynomial ker-
nel function. However, the performance was not con-
sistent across different targets and descriptors, and was 
therefore not considered further. A small description as 
well as the results of SVM can be found in the Supple-
mentary Information (Additional file  1: Tables S7 and 
S8).

In this study, almost all the classifiers reached predic-
tion accuracies around 80  %. Since the data set used in 
this study is highly imbalanced (Additional file 1: Tables 
S1, S2), accuracy alone cannot reflect the performance of 
the models. We have further evaluated the models based 
on the ROC AUCs that represent more accurately the 
performance of the models.

Fig. 1 Workflow of the methodology involved in the classification process. Schematic representation of the methodology: data points, feature 
selection, model development (machine learning and similarity search methods) and validation, implemented in the study
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Based on our analysis using cross-validation and exter-
nal validation, RF models perform best for all the three 
targets and PNN models show the least performance 
(Additional file 1: Tables S3, S4). A comparison of differ-
ent molecular fingerprints and their combination with 
the molecular property based descriptors for different 
models on cross-validation sets as well as external valida-
tion set have been provided in the Supplementary Infor-
mation (Additional file 1: Tables S7, S8).

The RF based model for AhR showed a good perfor-
mance with MACCS, ECFP4 and ToxPrint with an AUC 
value of above 0.88 on the cross-validation sets as well as 
the external validation set. However, the MACCS finger-
print individually and combined with molecular prop-
erty-based descriptors obtained the highest AUC value 
of 0.90 and 0.91 (cross-validation) and an AUC of 0.90 
and 0.87 (external set) (Figs.  2, 3). The combination of 
descriptors did not improve the external set performance 

Fig. 2 Cross-validation performance results of classifiers. Plot representing the 13-fold cross-validation results, in terms of AUC, for the three targets 
(AhR, ER-LBD and HSE) comparing different best performing models (3NN, 5NN, 7NN, RF, NB, and PNN) [28]

Fig. 3 External validation performance results of classifiers. Plot representing the external validation results, in terms of AUC, for the three targets 
(AhR, ER-LBD and HSE) comparing different best performing models (3NN, 5NN, 7NN, RF, NB, PNN, Ensemble (5NN + RF)) with our previous work 
[28] and Tox21 challenge winners for respective targets
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in this case. Similarly, MACCS fingerprints scored high-
est with AUC values of 0.83 and 0.80 (cross-validation) 
and 0.81 and 0.86 (external set) for ER-LBD and HSE, 
respectively (Figs. 2, 3).

Furthermore, the NB based model with MACCS fin-
gerprints in combination with molecular property-based 
descriptors and ToxPrint fingerprints performed com-
paratively good for AhR with an AUC value of 0.84 and 
0.82 respectively. The performance for ER-LBD and HSE 
were relatively poor with an AUC value below 0.75 for 
both cross-validation sets and external set. The PNN 
classifier performed better for AhR, with an AUC value 
above 0.80 for almost all the descriptor combinations 
(Additional file 1: Tables S7, S8). These results could be 
explained by the lack of a balanced dataset which could 
have a negative impact on the performance of PNN and 
NB based models. On the other hand, it is observed that 
the RF algorithm performs well on imbalanced datasets.

To generalize, it is observed that MACCS fingerprints 
based on RF classifier, similarly to the similarity-weighted 
kNN approach, exhibit the best performance (Additional 
file  1: Tables S3, S4). An exception is the AhR assay, 
where in ToxPrint fingerprints performed equally well 
with an AUC value of 0.89 and 0.88 (Additional file  1: 
Tables S7, S8) for the external dataset and cross-vali-
dation sets respectively, when compared to the method 
reported in our previous work [28]. Since the training set 
as well as the number of active molecules available for 
AhR was relatively large when compared to ER-LBD and 
HSE, it reflects that the size of the training set as well as 
the ratio between active and inactive molecules is one of 
the factors contributing to its better performance (Addi-
tional file 1: Tables S1, S2).

Comparison and combination of similarity and machine 
learning methods
In comparison to similarity search approaches, the RF 
based machine-learning models performed better for 
all three targets in external validation (Fig. 3). However, 
both approaches performed equally well in cross-valida-
tion. Assuming that the inferior performance of similar-
ity-based approaches is due to the fact that the actives in 

the external set share little structural similarity with the 
actives in the training set, we combined our best per-
forming similarity approach with the best performing 
RF model in order to improve the prediction. For each of 
the three targets, the scores from the 5NN method and 
the RF model (5NN + RF), both based on MACCS fin-
gerprints, were combined. It was observed that the per-
formance improved for ER-LBD with an AUC value of 
0.83 in external validation (Fig. 3) and 0.85 in cross-val-
idation, using a minimum of the prediction scores from 
both models. However, the RF model remained the best 
performer for the targets AhR and HSE as no additional 
improvement was observed with the 5NN + RF model.

Analysis of chemical space based on RF and NB based 
models
In the next step, we evaluated the patterns associated 
with active chemical structures by analysing the com-
pounds, which were correctly and incorrectly predicted 
by respective models in case of ER-LBD for the external 
set (Tables 1, 2). Since we achieved the best performance 
for ER-LBD using an ensemble method, it is of particu-
lar interest to investigate which chemical characteristics 
were correctly predicted by different methods and finger-
prints (MACCS, ECFP4).

All the active chemical structures predicted by the RF 
model were also correctly predicted by the NB model as 
illustrated in Fig. 4. Additionally, the NB model predicted 
five additional active compounds correctly whereas the 
PNN model failed to predict a single active compound. 
Furthermore, most of the actives in the ER-LBD were 
correctly predicted by both MACCS and ECFP finger-
prints if the functional groups (chloride, bromide, and 
alcohol) were present in the structures and were found in 
‘ortho’ or ‘meta’ position of the ring. On the other hand, 
the number of false positives in NB models was the high-
est with 80 incorrect predictions, followed by RF with 4. 
PNN based models predicted all the inactive structures 
correctly supporting the fact that the model is biased 
towards majority class coverage (Table 1).

Additionally, it was observed that the NB based model 
with both ECFP4 and MACCS fingerprints predicted the 

Table 1 Classification of actives and inactives in external set by different models for ER-LBD

ER-LBD True positives/actives (out of 20) True negatives/inactives (out of 580) Cross-validation AUC External set AUC

NB with ECFP4 9 500 0.76 0.71

NB with MACCS 8 468 0.73 0.69

RF with ECFP4 2 574 0.82 0.78

RF with MACCS 4 576 0.83 0.81

PNN with ECFP4 0 580 0.77 0.69

PNN with MACCS 0 580 0.78 0.69

77



Page 6 of 11Banerjee et al. J Cheminform  (2016) 8:51 

active compounds with higher prediction scores compared 
to RF models (Table 2). It could be because RF fails to pre-
dict the active class when the molecules become more 
complex irrespective of the fingerprints considered (Fig. 4).

Comparison with Tox21 challenge winners
Finally, we compared the prediction values of the best 
performing models for all the three targets with those 
from our previous work [28] and the winning teams 
from the Tox21 data challenge [29]. Our best performing 
model, based on RF using MACCS fingerprints, showed 
slightly better performance than our previous work [28] 
and performed equally well compared to the challenge 
winner team for each of the three targets. Furthermore, 
our combined relatively simple model based on 5NN and 
RF using MACCS fingerprints showed, to a small degree, 
better performance than the Tox21 challenge winner for 
ER-LBD (Fig. 3).

Discussion
In the current study, we present a comprehensive com-
parison of different similarity-based and machine learn-
ing methods in predicting the interference of chemical 
compounds in two major groups of biological pathways, 
the nuclear receptor pathway and stress response path-
way, using the Tox21 screening data. The data, being gen-
erated in an uniform experimental setup, provided a gold 
standard for evaluating performance of different predic-
tion methods.

We noticed that the similarity-weighted kNN methods 
did not perform equally well compared to other machine-
learning models for all three targets investigated in 
this study. A major limitation of the kNN approach 

implemented in this study, although being simple, is that 
the prediction score for every external set compound 
heavily depends on the number and diversity of structur-
ally similar active and inactive molecules in the training 
set, which indirectly determines the number of active and 
inactive molecules within the k neighbours considered. 
The degree of similarity also plays a key role in deciding 
which compounds rank among the top k neighbours. The 
average similarity values (Tables 3, 4) of the training set 
molecules towards individual subsets of actives and inac-
tives of the training set, using three different fingerprints, 
suggest that the evaluation set compounds are more 
similar to inactives rather than actives within the training 
set, explaining the inferior performance of these methods 
when used individually. It is also widely acknowledged 
that the “similar-property principle” has exceptions (e.g. 
activity cliffs) [36, 37]. However, examining the chemi-
cal structures of the ER-LBD training set revealed that 
several compounds consistently have similar molecular 
frameworks, suggesting that similarity-based approaches 
play a key role in improving prediction rates, however fail 
to identify a rare event. The two-dimensional structures 
of some active molecules containing similar core struc-
tures and inactive molecules that are structurally distinct 
from the former are shown in Fig.  5. This also explains 
the improvement in performance associated with the 
ensemble model.

Moreover, we observed that the RF model is the most 
accurate classifier producing the most precise results for 
all three targets. The superior performance of RF models 
can be attributed to the tuning parameters chosen for indi-
vidual targets as well as its ability to predict rare events. On 
the other hand, the inferior performance of PNN models 

Table 2 ER-LBD Active compounds correctly predicted in External set using RF and NB models using MACCS and ECFP4 fingerprints

Prediction scores for activity (models 
+ fingerprints)

NB with 
MACCS 

RF with 
MACCS 

NB with 
ECFP4 

RF with ECFP4 

NCGC00261424-01 0.99 0.58 1 0.57

NCGC00261052-01 0.57

NCGC003 57 055-01 0.95 

0.07 0.02 0.12 

0.01 0.01 0.06 

NCGC00357018-01 0.99 0.94 1 0.94

NCGC00357052-01 0.99 0.04 0.99 0.16

NCGC00357021-01 0.99 0.68 0.99 0.31 

NCGC00356 994-01 0.99 0.52 0.99 0.36

NCGC00357111-01 0.99 0.06 1 0.15 

NCGC0026 1828-01 0.13 0.05 1 0.20 

NCGC0026 1342-01 0.01 0.02 0.99 0.08 

NCGC00357230-01 0.04 0.05 0.98 0.02 

The values correspond to the prediction scores for a compound to be active

Colour denotes different molecules illustrated in the Fig. 4
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can be explained by its strong inclination towards the 
majority class (inactive) of the training dataset. Analysing 
the prediction results revealed that PNN models were able 
to correctly predict all the negatives in the external valida-
tion with a prediction score higher than 0.9 but failed to 

correctly predict any of the true positives for any target. 
NB models predicted the highest number of true positives, 
with prediction scores higher than 0.99, compared to other 
two methods but the true negative rate was low. However, 
RF models incorrectly predicted only 4 negatives. This 

Fig. 4 Analysis of chemical space used by descriptors for classification of actives in external sets for ER-LBD target. The above figure shows the dif-
ferent actives present in the external set of ER-LBD. The compounds highlighted in pink (MACCS), green (ECFP4) are predicted by RF model and blue 
(ECFP4), red (MACCS) are predicted by NB models. The respective prediction scores for each classifier are shown in Table 2

Table 3 Average similarity values of  external set mol-
ecules towards  active and  inactive subsets of  training set 
for ER-LBD

Fingerprint Average T against  
actives

Average T 
against inactives

MACCS 0.59 0.82

ECFP4 0.29 0.56

ESTATE 0.7 0.91

Table 4 Average similarity values of  external set mol-
ecules (only actives) towards  active and  inactive subsets 
of training set for ER-LBD

Fingerprint Average T against  
actives

Average T 
against inactives

MACCS 0.71 0.79

ECFP4 0.41 0.5

ESTATE 0.78 0.94
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shows that RF models are able to identify the patterns 
important for the preferred class even when there is a large 
imbalance in the class distribution within training dataset. 
It should be noted that the external validation set is also 
highly imbalanced (Additional file 1: Table S2).

Additionally, it is observed that ToxPrint and Estate 
fingerprints do not show superior performance com-
pared to standards MACCS and ECFP4 when used 
with different methods. This could be due to the fact 
that compounds specific to the targets and assays as 
such do not have any associated toxicity related alert. 
However, the presence of substructure patterns in 
compounds specific to their individual target is more 
important to predict their activity. Therefore, MACCS 
fingerprint performed better and consistent with both 
machine learning and similarity-based approaches. 
This further adds to the fact that toxicity prediction 
cannot always be encountered with global approaches 
such as identification of certain toxic alerts in a 
chemical compound. Target specificity and local pat-
terns limited to the chemical space used in the study 
play an important role to predict the activity of new 
compounds. At the same time, selection of optimal 
descriptors, which could represent these patterns and 
an unbiased classifier that can learn the patterns is the 
essence of a predictive science.

Overall, we emphasize that a simple RF based classifier 
consistently demonstrated robust prediction for all three 
targets considered in this study. The prediction accuracies 
achieved with our best performing machine-learning mod-
els were better for all the targets when compared to results 
based on the RF/ADTree classifier in a recent study per-
formed on the same Tox21 dataset [38]. Furthermore, an 
ensemble approach that integrates a similarity-weighted 
kNN method with an RF based classifier boosted the 

performance in case of ER-LBD with an AUC value of 0.83, 
slightly better than the winning team of the Tox21 Data 
Challenge [27]. In general, an ensemble model can be effec-
tive when an incorrect prediction by one of the individual 
methods can be compensated by taking into account the 
prediction of other models [39, 40]. It was also observed in 
our previous study [28] that predictions obtained using an 
ensemble model that combines predictions from multiple 
methods improved the overall prediction.

Finally, the computational costs associated with the 
training of our best models were very low compared 
to the Tox21 challenge winning models based on deep 
learning techniques [41]. This further adds to the usabil-
ity of our simple yet optimised methods.

Conclusions
In this study, we emphasize the importance of in silico 
toxicology as a fast and reliable alternative to reduce the 
number of animal studies required for evaluation of toxic 
effects of the ever-increasing new chemical structures. 
We evaluated different chemical similarity and machine-
learning methods using four different types of struc-
tural fingerprints as well as molecular descriptors for 
their performance in predicting the activity of chemicals 
made available via the Tox21 Data Challenge 2014. The 
challenge provided a platform for researchers from both 
academia and industry to evaluate and establish their 
toxicity/activity prediction models.

Our results suggest that a hybrid strategy that com-
bines similarity-based and machine-learning based pre-
diction models can improve the accuracies of prediction 
for one of the investigated targets. However, in general, 
the machine-learning model based on the Random Forest 
classifier showed the most robust performance. Further-
more, our prediction models were highly consistent with 

Fig. 5 Two-dimensional structures of actives and inactives in the training set for ER-LBD target. A set of training set compounds which are active (1) 
and inactive (0) against ER-LBD
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the best-ranked methods from the data challenge and 
performed better than all the top ten models for ER-LBD.

The findings of our study complement the theme of 
3Rs, providing promising and time-saving alternatives 
to animal trials in evaluating different toxicological end-
points for newly synthesized chemical structures.

Methods
Compound datasets, fingerprints and molecular 
descriptors
The Tox21 10K library is a collection of environmental 
chemicals and approved drugs with potential to disrupt 
biological pathways resulting in toxic effects. The chemi-
cal structures were directly downloaded from the Tox21 
challenge website in structural data format (SDF). The 
data has now been made freely available on PubChem 
by the challenge organizers. The complete training sets 
consist of approximately 10,000 compounds (the total 
number of molecules varies for different targets) and 
an external validation set contains 647 chemical struc-
tures. Both datasets were standardized using a pipeline 
explained in our previous work [28]. The steps involved 
in standardization are removal of water and salts, aroma-
tization, neutralization of charges and addition of explicit 
hydrogens. Four different types of fingerprints, namely 
166-bit MACCS [30], ECFP4 [31], ESTATE [35] and Tox-
Print [32–34], and 13 molecular property-based descrip-
tors using RDKit descriptors calculation node in KNIME
(Additional file  1: Table S9) were used in our methods.
While MACCS, ECFP4 and ESTATE fingerprints and
descriptors were calculated using RDKit [42] nodes in
KNIME v.2.12.0 [43, 44], ToxPrint fingerprints were gen-
erated using the ChemoTyper software version 1.0 [45].

Similarity search
Three different similarity-weighted kNN searches were 
performed [46] i.e., 3NN, 5NN and 7NN, employ-
ing all four types of fingerprints. The Tanimoto coeffi-
cient (T) [47] was calculated as the similarity measure. 
In kNN calculations, each evaluation set compound is 
compared to all training set compounds and the top k 
compounds with highest T values were selected as the 
nearest neighbours (NNs). The final score was calcu-
lated based on the types of the NNs (active or inactive), 
to arrive at the prediction score for each evaluation set 
compound.

In particular, if all NNs are either active or inactive, the 
score was calculated as score1 or score2, respectively.

where k is the total number of NNs.
Otherwise, the final score is calculated as follows:

score1 =

∑k
n=1 Tn

k
, score2 = 1 − score1

where ka is the number of active molecules (n) and kin is 
the number of inactive molecules (m) among the NNs. 
All the kNN-based predictions, including the cross-vali-
dations, were implemented using existing KNIME nodes 
(Additional file 1: Figures S1, S2) and an additional Java 
program.

Machine learning
There are multiple algorithms, which have been used 
in the field of predictive modeling. Nevertheless we 
attempted three most popular classification algorithms 
used in machine learning approaches; NB [48], RF [49] 
and PNN [50] as shown in Fig.  1. All three classifiers 
have been previously determined as efficient in terms of 
classification accuracies as well as computational time 
[51–53].

Naïve Bayes
The NB classifier is based on assumption of the Bayes-
ian theorem of conditional probability, that is for a given 
target value, the description of each predictor is inde-
pendent of the other predictions. This method takes 
into account all descriptor-based properties for the final 
prediction [48]. This classifier was implemented using 
the existing NB Learner and Predictor nodes in KNIME 
(Additional file  1: Figure S3). The maximum number of 
unique nominal values per attribute was set as 20. The 
predictor node takes the NB model, test data as input, 
and as output classifies the test data with an individual 
prediction score and predicted class.

Random Forest
The Random Forest classification is based on decision 
trees, where each tree is independently constructed and 
each node is split using the best among the subset of 
predictors (i.e. individual trees) randomly chosen at the 
node. RF based model was implemented using the Tree 
Ensemble Learner and Predictor nodes in KNIME (Addi-
tional file 1: Figure S4), which is similar to the RF classi-
fier [49]. The split criterion Gini is used, which has been 
proven to be a good choice as explained previously [49] 
and gave the maximum predictive performance for AhR. 
On the other hand, for ER-LBD and HSE information 
gain ratio was the optimal split criterion. The number 
of models (trees) was limited to 1000 and a data sample 
of 0.8 for AhR and 0.7 for both ER-LBD and HSE was 
chosen with replacement for each tree; this is similar to 
bootstrapping. Additionally, a square root function was 
used for attribute sampling and different sets of attributes 

score3 =

∑ka
n=1 Tn

ka
+

(

1 −

∑kin
m=1 Tm

kin

)
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were chosen for all the trees. The Predictor node predicts 
the activity of the test data based on a majority vote in a 
tree ensemble model with an overall prediction score and 
individual prediction scores for each class.

Probabilistic neural network
A PNN is based on a statistical algorithm known as ker-
nel discriminant analysis [54]. PNN operates via a multi-
layered feed forward network with four layers. The input 
layer or the first layer consists of sets of measurements. 
The pattern layer or the second layer consists of the 
Gaussian function which uses the given set of data points 
as centres. The summation layer or the third layer per-
forms an average operation of the outputs from the sec-
ond layer for each class. The output layer or the fourth 
layer predicts the class based on votes from largest value 
[50, 54–56]. PNN based model was implemented with the 
PNN learner and predictor nodes in KNIME (Additional 
file 1: Figure S5). All the parameters were kept as default 
except the maximum number of Epochs was set to 42 to 
reduce the computational time complexity. The learner 
node takes numerical data as input and via predictor node 
the test data is predicted with a score and class.

Construction of models
A 13-fold cross-validation was performed on the training 
dataset as described earlier [28] to generate test sets with 
size similar to the external validation set provided by the 
Tox21 challenge organizers. This independent set con-
tained 647 chemical structures was used as a second vali-
dation set over which the performance (external AUC) of 
the trained models was evaluated. Four kinds of molecu-
lar fingerprints and 13 selected physicochemical descrip-
tors (see Additional file 1: Table S9) were used to represent 
chemical structures. It was observed that the Tox21 data-
set is highly imbalanced with respect to active (minority) 
and inactive (majority) classes. Detailed statistics on the 
number of active and inactive molecules for each target 
are provided in Additional file 1: Tables S1 and S2. Since 
it was not feasible to enrich the minority class with more 
compounds for any target, we employed stratified sam-
pling technique during data partitioning to handle this 
imbalance. Therefore, it was ensured that in each cross-
validation run, the ratio of number of active molecules to 
number of inactive molecules in the test set is similar to 
that in the training set. Cross-validation [57] was imple-
mented using a meta-node in KNIME that divides training 
dataset via stratified sampling. A schematic representation 
of the study methodology is presented in Fig. 1.

Performance evaluation
A receiver operating characteristic (ROC) curve [58–60], 
that plots the true positive rate against the false positive 

rate, was generated to evaluate every model on both 
cross-validation and external validation test sets. The 
AUC value was used as a measure to compare the per-
formance of a model with that of other models. The AUC 
values were calculated using ROC Curve node in KNIME.
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4.5  Summary 
 

 

In silico models that are useful in predicting different toxicological outcomes were constructed solely 

based on the knowledge of chemical structures. Chemical similarity based k-Nearest Neighbors 

method and machine learning methods such as naïve Bayes, Support Vector Machines and Random 

Forests were evaluated. The models developed to predict outcomes on 12 different targets belonging 

to the panels of nuclear receptor and cellular stress response pathways were submitted to the Tox21 

Data Challenge (2014). Although the models based on Deep Learning performed the best, 

comparable and slightly better performances were achieved for some targets as reported in the two 

articles. Together with the best performing Tox21 models, these assist in understanding the role of 

chemicals in disrupting biological pathways that could result in toxicity. On the other hand, in silico 

models for predicting hERG channel blockade were developed using by far the largest data set of 

hERG bioactivities. The challenges involved in developing robust models using public domain 

bioactivity data were highlighted. The models performed better than the previously reported QSAR 

models that are developed on either smaller data sets that insufficiently span the chemical space of 

hERG blockers or proprietary data. Data quality, activity threshold settings, training set composition 

and structural diversity of hERG blockers were identified as crucial factors influencing the model 

performance. Furthermore, consideration of additional data to improve the chemical space coverage 

was shown to improve the model performance for Tox21 targets and hERG channel. All models 

(including the data sets) were made publicly available to facilitate prediction of toxicological 

outcomes and can be further developed to improve their reliability and interpretability. 

 

The supporting information of these three articles can be obtained via the following URLs: 

 

Drwal et al. - https://doi.org/10.3389/fenvs.2015.00054 

Banerjee et al. - https://doi.org/10.1186/s13321-016-0162-2 

Siramshetty et al. - https://doi.org/10.1021/acs.jcim.8b00150 
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Chapter 5 
 

Promiscuity and Mechanisms of Action of Frequent Hitter 

Compounds 
 

5.1  PAINS Filters in HTS - Good or Bad? 
 

As shown earlier, data quality plays a key role in the performance of in silico prediction models. 

Major public databases such as PubChem and ChEMBL have been the primary sources of data which 

provide activity data from primary/confirmatory assays and the medicinal chemistry literature, 

respectively. HTS is typically the earliest step in which large compound libraries are tested against 

multiple biological targets. These screening libraries are enhanced by applying substructure and 

property filters to omit reactive or unsuitable compounds. However, it has been acknowledged that a 

large number of hits originating from these screens may not be true hits due to non-specific effects 

that include chemical reactivity and interference with assay signaling. Of the several approaches 

proposed to limit such compounds in screening libraries, pan-assay interference compounds (PAINS) 

have received great attention. Many chemotypes that showed non-specific effects in Alpha Screen 

assays were identified and a list of PAINS rules was proposed to identify frequent hitter compounds. 

However, multiple literature reports disregarded their generalization, primarily criticizing that the 

source of these filters is a proprietary library of compounds tested only using a single assay detection 

technology. The article in this chapter studied multiple compound data sets originating from different 

sources for the presence of PAINS compounds. The promiscuity and activity profiles of PAINS 

containing compounds (drugs, extensively tested compounds, and PDB ligands) were estimated to 

validate if the frequent hitter detection model of PAINS can be generalized. Furthermore, the 

mechanisms of action of PAINS containing ligands were explored at the molecular level by 

automating the analysis of interactions in target-ligand complexes.  
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ABSTRACT: Assay interference is an acknowledged problem in 
high-throughput screening and PAINS filters are one of a number of 
approaches that have been suggested for identification of potential 
screening artefacts or frequent hitters. Many studies highlighted that 
the unwary usage of these structural alerts should be reconsidered, 
criticizing the extrapolation of the frequent hitter model of PAINS 
beyond its applicability domain. Large-scale investigation of the 
activity profiles and structural context of PAINS might provide a 
better assessment if the extrapolation is valid. To this end, multiple 
publicly-accessible compound collections were screened and the 
PAINS matching statistics are comprehensively presented and discussed. Next, the promiscuity trends and activity profiles of PAINS-
containing compounds were compared with those not containing any PAINS. Although the PAINS compounds demonstrated higher 
promiscuity, the assay hit rates indicated no significant differences between the two groups. Furthermore, nearly 2000 distinct target-ligand 
complexes containing PAINS were analyzed and the interactions were quantified and compared. In more than 50% of the instances, the 
PAINS atoms participated in interactions more frequently as compared to the remaining atoms of the ligand structure. Many PAINS 
participated in crucial interactions that were often responsible for binding of the ligand, which reaffirms their distinction from those 
responsible for assay interference. In conclusion, we reinforce that while it is important to employ compound filters to eliminate non-
specific hits, establishing a set of statistically significant and validated PAINS filters is essential to restrict the current black-box practice 
of triaging screening hits matching any of the proposed 480 alerts. 

INTRODUCTION 

Pharmaceutical companies undertake a number of steps to 
successfully bring a drug into the market. Till date, high-
throughput screening (HTS) has been a key perspective in drug 
discovery, furthering promising hits that would need optimization 
in subsequent steps.1 However, a large proportion of the HTS hits 
are believed to be false positives (or frequent hitters) until unless 
validated in appropriate control experiments.2, 3 The frequent 
hitter behavior could be due to the promiscuous or non-specific 
reactivity of the screening compounds under the assay conditions. 
Physicochemical properties such as molecular flexibility, 
lipophilicity and hydrophobicity have been attributed to 
promiscuity of small molecules.4, 5 On the other hand, the frequent 
hitter behavior can also reflect molecular recognition 
characteristics shared by protein targets that use the same co-
factor.6 Typically, the unusual or bad behavior of HTS hits can be 
categorized into two types: the first resulting in a positive assay 
outcome with no effect on the target function (regarded as assay 
interference); and the second leading to a positive assay outcome 
via undesirable mechanism of action.6 Many previous reports 
summarized mechanisms leading to assay interference, which 
include: covalent reactivity towards proteins7; direct interference 
with assay spectroscopy;8 membrane disruption;9 redox activity;10 
and formation of colloidal aggregates.11 While it is essential to 
avoid compounds with non-specific reactivity, in contrast, it is 
also important to retain compounds that interact specifically with 
multiple targets. The latter behavior could make them valuable 
candidates for therapeutic applications where activity must be 
elicited via interaction with multiple targets,12 the basis for 
polypharmacology.2, 3 

 
In 2010, Baell and Holloway13 identified compounds that 

appear as frequent hitters or promiscuous compounds in 
biochemical HTS assays. These compounds, referred to as pan 
assay interference compounds (PAINS), were reported to be 
active in multiple assays and it was suggested that they may 
interfere with the bioactivity detection technology. Thereafter, a 
set of 480 substructural features frequently found in these 
compounds were proposed as ‘PAINS alerts’ that can be 
employed to identify suspicious compounds in screening 
libraries.13 Ever since, the study attracted huge attention from the 
community (with 1230 citations according to Google Scholar on 
16 May, 2018) and the PAINS alerts have been extensively used 
in screening campaigns where in the compounds are flagged as 
PAINS containing.14, 15 Major discussion on the applicability of 
these alerts was noticed in literature as well as scientific blogs. 
Multiple studies advocated the use of these filters to avoid 
PAINful experiences in drug discovery projects.16-18 On the other 
hand, the applicability domain of these filters to predict frequent 
hitter behavior was argued to be limited, owing to the poor choice 
of the dataset (that originates from just six AlphaScreen HTS 
assays that measured single activity), especially when tested at a 
single concentration (ranging from 10µM to 30µM) in assays 
employing similar technology (AlphaScreen assays).6, 19 The 
Journal of Medicinal Chemistry, as per the revised author 
guidelines (under section 2.1.9 of the guidelines),20 requires a 
newly reported active compound to be examined for known 
classes of assay interference and if the compound is PAINS-liable, 
it has to be proven in at least two different assays that the apparent 
activity is not an artefact. However, this was challenged6 on the 
basis of the proprietary nature of the dataset from which PAINS 
alerts were derived since the editorial policy of the journal to 
forbid the use of proprietary data in modeling studies contradicts 
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their strict requirement of screening for the presence of PAINS. 
Multiple studies recommended the cautious use of the filters by 
providing evidences of the presence of PAINS in approved 
drugs19, 21, 22 and other compound collections.19, 23 In this 
continuous debate, Baell and Nissink24 have recently expressed 
concerns on the ‘black-box treatment’ of these filters, that led to 
a dangerous practice of excluding PAINS containing compounds, 
and outlined the criteria for their appropriate use. 

 
A little has been done so far to investigate the activity profiles 

of PAINS containing compounds on a large scale. Bajorath et al25 
systematically analyzed the assay and target promiscuity profiles 
of more than 23,000 extensively assayed compounds that contain 
PAINS substructures to show that a few subsets of PAINS 
showed high number of hits. And the same PAINS substructure 
was often observed in compounds with high number of targets 
and in compounds that were consistently inactive, suggesting that 
the structural context in which PAINS occur could influence the 
activity.25 To achieve this, PAINS must be examined more closely 
to analyze their binding behavior. In a recent study,26 as many as 
2874 X-ray structures with their ligands containing PAINS were 
visually inspected to identify several instances of specific ligand-
target interactions that were likely responsible for complex 
formation, highlighting that consideration of structural data 
presents another perspective to the analysis of interference 
compounds. 

 
In this study, we extracted all target-ligand complexes from 

PDB database that contain PAINS in their ligands. We identified 
and quantitatively analyzed the interactions in these complexes to 
further improve our understanding of the role of PAINS. The 
proportions of interacting atoms in the PAINS and non-PAINS 
regions of a molecule are quantified and compared for different 
types of interactions (hydrogen bonds and aromatic stacking). 
Selected PAINS classes were critically examined to confirm 
whether they are involved in specific interactions that are 
responsible for binding and more particularly if distinct 
interaction types could be detected across multiple targets. 
Furthermore, different compound collections were screened for 
the presence of PAINS and the corresponding statistics are 
detailed and discussed. We also investigated the promiscuity 
trends for different compound collections, in a PAINS vs. no 
PAINS scenario, to indirectly evaluate the ability of PAINS filters 
as a model to predict frequent-hitter behavior. 

MATERIALS AND METHODS 

Compound Collections. We downloaded all approved drugs 
from ChEMBL database (version 23)27 as on February 15, 2018. 
The database contains a total of 2808 approved drugs 
(development phase: 4), of which only 2312 drugs are small 
molecules. A list of 356 withdrawn drugs (small molecules), those 
recalled either world-wide or in one or more countries for safety 
concerns, were extracted from WITHDRAWN database28 and 
included in the study. All approved drugs that are present in the 
list of withdrawn drugs were omitted from the analyses. We 
employed a large set of 437 257 extensively assayed compounds 
that were tested in primary and confirmatory assays as made 
available by Jasial et al.29 This collection is assumed to represent 
a rich set of bioactive compounds. We also downloaded PDB 
ligands that are known to be present in the structure entries from 
the Ligand Expo30 section of RSCB Protein Data Bank.31 
Furthermore, other compound collections such as natural 
products32 and dark chemical matter (DCM)33 were also included 

for the analysis. The chemical structures from all compound 
collections were standardized using JChem Suite 
(http://www.chemaxon.com) (standardization protocol is 
described in Supporting Information, S1). 

PAINS Matching. The different compound collections were 
checked for PAINS in a KNIME workflow 
(https://www.myexperiment.org/workflows/1841.html).34 
Several platforms such as ChEMBL (since version 20),27 ZINC 
(http://zinc15.docking.org/patterns/subsets/pains/), and RDKit 
(http://www.rdkit.org) provide the PAINS alerts as SMARTS 
patterns. As implementation discrepancies were expected, in this 
study we only utilized the list of 480 SMARTS patterns  from 
RDKit (https://github.com/rdkit/rdkit/tree/master/Data/Pains) as 
the substructure matching utilizes an RDKit node in KNIME All 
possible PAINS matches were taken into account for each 
compound and for every match, the list of matching atoms 
(identified by atom indices) was preserved for subsequent use in 
interaction analysis. 

Compound Promiscuity. Three compound collections: drugs 
(approved and withdrawn), extensively assayed compounds and 
PDB ligands; were chosen for promiscuity analysis taking into 
account the possibilities to extract target information (or activity 
records). Target mappings are not readily available for the huge 
collection of natural products included in this study and it was 
already shown that the DCM compounds were inactive in more 
than 100 primary assays.33 Therefore, these two compound 
collections were omitted from promiscuity analysis. 

Approved and Withdrawn Drugs: The compound bioactivity data 
available from ChEMBL database27 was used to fetch confirmed 
biological targets for drugs. Bioactivity data was preprocessed 
using recommended filter criteria35 to retain only high-confidence 
data. The filter criteria include: assay confidence score = 4; assay 
type = B (binding assay) or F (functional assay); standard activity 
type = IC50 or Ki; standard unit = nM (nanoMolar); and standard 
relation = ‘=’ only. Furthermore, only those records were retained 
that comply with an activity threshold of 10µM in concurrence 
with literature on compound promiscuity assessment.36, 37 For 
each drug, we enumerated the total number of assays in which it 
was tested, the total number of targets it was tested against and 
the total number of targets it is active against (promiscuity degree). 

Extensively Assayed Compounds: The original study29 that 
reported the extensively assayed compounds also provided the 
associated compound and assay promiscuity data extracted from 
PubChem bioassay database.38 For each compound, they provided 
the number of primary and confirmatory assays it was tested in, 
the number of primary and confirmatory assays it was active in, 
and the number of unique targets from each assay category it is 
active against. However, we only considered the assay and target 
counts from the confirmatory assays to match with the high-
confidence bioactivity data from which confirmed drug targets 
were extracted. In other words, this set represents compounds 
tested against single protein targets with dose-response 
measurements and whose ‘Activity outcome’ was annotated as 
active. 

PDB Ligands: Each PDB ligand was mapped to ChEMBL 
compound identifiers.  Next, compound bioactivity data from 
ChEMBL database was used to identify confirmed biological 
targets for each ligand. The filter criteria were the same as those 
employed in case of drugs.
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Table 1. Five most commonly found PAINS in approved and withdrawn drugs. 
 

Rank 
Approved drugs (Total compounds: 2028) Withdrawn drugs (Total compounds: 356) 

PAINS % Matches PAINS % Matches 

1 

 

   
het_thio_666_A(13) 

 

20.1 

                                
catechol_A(92) 

27.3 

2 

                           
catechol_A(92) 

14.6 

 

  
het_thio_666_A(13) 

 

18.2 

3 

 

 
quinone_A(370) 

 

9.7 

 
keto_keto_beta_B(12) 

18.2 

4 

 

 
anil_di_alk_E(186) 

 

6.9 

                                   
anil_di_alk_C(246) 

9.1 

5 

 

 
indol_3yl_alk(461) 

 

6.9  
 

azo_A(324) 

9.1 

Target-Ligand Interactions. To investigate the role of PAINS 
in the context of biological activity, we explored the target-ligand 
complexes for the possible interactions. For each PDB instance 
(e.g. in the instance 2V0M_KLN_A, ‘2V0M’ is the PDB code for 
human cytochrome P450 3A4, ‘KLN’ is the chemical component 
identifier for the ligand ketoconazole, and ‘A’ is the chain 
identifier), all possible interactions within predefined distance 
thresholds were calculated. When multiple instances of the same 
ligand were found within a structure (e.g. KLN is present in 
chains A, B, C and D of PDB structure 2V0M), only the first 
instance of the ligand (in this case the one present in chain A) is 
considered to avoid any bias in the analysis. A script that works 
in conjunction with PyMOL (The PyMOL Molecular Graphics 
System, Version 2.0 Schrödinger, LLC.) was used to detect 
hydrogen bonds (acceptor and donor interactions) and pi-pi 
stacking (aromatic interactions). The maximum and minimum 

distances considered for hydrogen bond are 2.6 Å and 3.6 Å, 
respectively. A maximum distance of 6 Å was considered for 
aromatic interactions. 

RESULTS AND DISCUSSION 

PAINS in Compound Collections. Although the presence of 
PAINS in FDA approved small molecule drugs and other 
compounds was previously reported,19, 23, 25 it is worth revisiting 
this topic and inspect the results next to each other. For instance, 
detailed information on PAINS matches in drugs is likely to be of 
interest to drug discovery researchers. About 6.5% of approved 
drugs and 6.2% of withdrawn drugs showed the presence of 
PAINS. However, none of the 9 distinct PAINS present in the 
withdrawn drugs were exclusive from the 31 distinct PAINS
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Table 2. Indication classes and targets of drugs possessing most frequently detected PAINS.

PAINS Indication classes Therapeutic Targets 

het_thio_666_A(13) Antipsychotics; Antihistamines Dopamine receptors; Histamine H1 receptor 

catechol_A(92) Cardiac Stimulants; Adrenergic and Antiadrenergic agents Dopamine receptors; Alpha-, Beta-adrenergic receptors 

quinone_A(370) Cytotoxic antibiotics DNA; DNA topoisomerase 

anil_di_alk_E(186) Contraceptive agents; Antibiotics Progesterone and glucocorticoid receptors; Microbial nucleic acids 

indol_3yl_alk(461) Multiple indications Serotonin receptors; Adrenergic receptors 

found in approved drugs.  It is interesting to note that more than 
80% of the drugs (approved and withdrawn, together) were 
approved before the year 2000 and nearly 50% were approved 
before the year 1980. Most of these drugs belong to the indication 
classes: antipsychotics, cytotoxic antibiotics, anticancer agents, 
anti-inflammatory agents, antifungals, antiprotozoal agents and 
cardiac stimulants. 

Five most commonly found PAINS in approved and 
withdrawn drugs are presented in Table 1. Antifungals, anticancer 
agents and cytotoxic antibiotics were already reported to possess 
PAINS.18, 22, 39 To extend this, we investigated the indication areas 
and therapeutic targets of those drugs that contained the most 
common PAINS (i.e. those present in at least 10 drugs). Again, 
no significant differences could be identified between approved 

and withdrawn drugs in this respect. Frequent indications classes 
and therapeutic targets of the drugs belonging to these classes are 
reported in Table 2 (and Supporting Information, S2). Many first 
and second generation antipsychotic drugs and first generation 
antihistamines showed the presence of het_thio_666_A(13). 
Many cardiac stimulants and adrenergic agents contain 
catechol_A(92), while quinone_A(370) was commonly found in 
many cytotoxic antibiotics. On the other hand, 
indol_3yl_alk(461) was seen in drugs belonging to diverse 
indication classes. Most of the drugs possessing these PAINS act 
against dopamine/serotonin receptors, alpha- and beta adrenergic 
receptors, histamine H1 receptors, nucleic acids (DNA and RNA) 
and related targets. However, many drugs also show activity 
towards targets other than those listed here as therapeutic 
(primary) targets.

Table 3. PAINS matching statistics are detailed for four different compounds collections. Distinct numbers of PAINS matching compounds (# Hits) and 
PAINS classes (# PAINS) are provided along with the 2D representation of most frequently matched PAINS.

Collection # Compounds # Hits # PAINS Most Frequent PAINS 

Natural products 325139 24809 (7.6%) 127 

                  

                        
catechol_A(92) (44.7%) 

 

DCM compounds 139339 3670 (2.6%) 126 

                        
anil_di_alk_A(478) (23.8%) 

 

Extensively assayed compounds 

 
 
 
 
437257 22347 (5.1%) 268 

                

                        
anil_di_alk_A(478) (13.8%) 

 

PDB ligands 25918 1056 (4.1%) 73 

               

                        
catechol_A(92) (20.7%) 
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Table 4. Comparison of the assay hit rates (HR) of PAINS and non-PAINS compounds in different compound collections.

Collection 
PAINS compounds non-PAINS compounds 

Mean HR (%) Std. Dev. Skewness Mean HR (%) Std. Dev. Skewness 

Drugs 80.5 22.1 –0.98 84.4 23.1 –1.45 

Extensively assayed compounds 5.2 8.8 4.9 1.9 5.6 10.6 

PDB ligands 85.4 22.5 –1.4 89.5 20.2 –1.96 

Natural products and DCM compounds showed the highest 
and the lowest proportions of PAINS matches, respectively 
(Table 3). Natural products are overrepresented by the PAINS 
classes ‘catechol_A(92)’ and ‘quinone_A(370)’, together 
accounting to more than 60% of the total matches. While a low 
proportion of matches in DCM compounds could be anticipated 
on the grounds of lack of any activity in more than 100 HTS 
assays, highly diverse matches (126 PAINS classes) were noted 
within the DCM subset. Interestingly, 9 of the top 10 DCM 
PAINS matches are also among the top 10 PAINS from the 
extensively assayed compounds (see Supporting Information, S3). 
Of these nine PAINS, ‘ene_six_het_A(483)’, ‘ene_rhod_A(235)’, 
‘mannich_A(296)’ and ‘anil_di_alk_A(478)’ are in the subset of 
PAINS with large number of extensively assayed compounds 
having high hit rates, as reported by Jasial et al.25 These findings 
further strengthen the prospects of the DCM compounds to 
produce hits in future screens. It should be noted that the numbers 
reported for some compound collections might slightly differ 
from previous reports, mainly due to the differences in the 
implementations of PAINS substructure matching, source of 
PAINS alerts and differences in the number of compounds 
included in the collection. Owing to the low number of PAINS 
detected in the withdrawn drugs, here after, approved drugs and 
withdrawn drugs are grouped into one category (a.k.a drugs) for 
further analyses. 

Promiscuity and PAINS. Amidst reports that both endorse the 
usage3, 12 and criticize the unwary usage6, 19 of PAINS filters 
beyond their applicability domain, it is worth investigating the 
compound promiscuity trends of the PAINS containing 
compounds to retrospectively understand if the extrapolation of 
the frequent hitter model out of its applicability domain would be 
valuable. To this end, promiscuity trends of drugs, extensively 
assayed compounds and PDB ligands were established. In all 
three datasets, the proportion of highly promiscuous compounds 
(those active against more than five targets) was higher for those 
containing PAINS (Figure 1). The mean and median promiscuity 
degree (PD) values were also higher for the PAINS compounds 
in all datasets. However, a limitation in such comparisons is the 
incompleteness of the underlying data which is frequently 
discussed in the context of mining compound-target relations for 
providing statistically meaningful promiscuity estimates.40 
Therefore, it must be noted that the degree of promiscuity might 
often be different from the true promiscuity. For instance, the 
PAINS hitting subset of the extensively assayed compounds was 
previously reported to show very low global hit frequencies.25 
Therefore, we extended the promiscuity analysis by comparing 
the two categories of compounds on the basis of assay hit rates. 
Assay hit rate (HR) represents the proportion of assays in which 

a compound was active.41 For each category, the mean HR and 
the corresponding standard deviation and skewness were 
calculated. Comparing the HR values provided a totally different 
view of the promiscuity trends (see Table 4). Unlike the PD values, 
the average HR was higher for the non-PAINS compounds in case 
of drugs and PDB ligands. The hit rates were generally very low 
for extensively assayed compounds, as previously demonstrated 
too,25 with mean HR values of 5.2% and 1.9% for PAINS and 
non-PAINS compounds, respectively. Distributions of PAINS 
and non-PAINS compounds across different hit rates are 
presented in Supporting Information, S4. 

Figure 1. Compound promiscuity trends of drugs, extensively assayed 
compounds, and PDB ligands with and without PAINS. For each dataset, 
the mean and median promiscuity degree (PD) values are provided for the 
two groups of compounds. 
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Table 5. Five PAINS substructures present in high number of PDB instances (and the corresponding numbers of ligands and PDB structures). 
For example, PAINS class catechol_A was seen in 478 PDB instances belonging to 215 ligands found in 456 distinct structures. The total 
number of interactions in which the PAINS atoms participated are also provided. Numbers in the parentheses report the numbers for different 
interaction types (H-Bond acceptor, H-Bond donor and aromatic interactions, in the same order). 

PAINS # Instances 
(#Ligands / #Structures) 

# Interactions 
(#H-Acceptor / #H-Donor / #Aromatic) 

catechol_A(92) 478 
(215/456) 

4938 
(1835/1728/1375) 

quinone_A(370) 481 
(115/403) 

1361 
(997/0/364) 

azo_A(324) 342 
(66/273) 

1758 
(1737/21/0) 

anil_di_alk_A(478) 110 
(70/98) 

245 
(24/66/155) 

indol_3yl_alk(461) 83 
(57/69) 

414 
(4/36/374) 

Table 6. Quantitative comparison of interactions involving PAINS and non-PAINS atoms. 

Type # Interactions # Interactions (PAINS) # Interactions (non-PAINS) 

All 22486 11100 (49.4%) 11386 (50.6%) 

H-Bond acceptor 10829 5257 (48.5%) 5572 (51.5%) 

H-Bond donor 5677 2192 (38.6%) 3485 (61.4%) 

Aromatic 5980 3651 (61.1%) 2329 (38.9%) 

Table 7. PDB instances are enumerated in context of comparing the number interactions involving PAINS atoms (P) and non-PAINS atoms 
(NP) for different interaction types. For example, in case of aromatic interactions, of the 1130 PDB instances, interactions of PAINS atoms 
were more than those of non-PAINS atoms in 624 instances. 

Type # Instances 
# Instances 

(P > NP) 

# Instances 

(P = NP) 

# Instances 

(P < NP) 

H-Bond acceptor 1872 795 (42.5%) 178 (9.5%) 928 (48.0%) 

H-Bond donor 1252 465 (37.1%) 84 (6.7%) 723 (56.2%) 

Aromatic 1130 624 (55.2%) 96 (8.5%) 423 (36.3%) 

Taken together, although the PAINS containing compounds 
interacted with higher number of targets, the assay hit rates 
indicated no significant differences between the two groups of 
compounds. Thus, it cannot be inferred that the PAINS containing 
compounds are more promiscuous than other compounds based 
on an analysis performed on the public domain screening and 
bioactivity data. A large-scale promiscuity analysis on different 
compound bioactivity datasets obtained from proprietary sources 
might provide a more detailed insight into this. 

Structural context of PAINS. An analysis based on visual 
inspection of 2874 X-ray structures that contain PAINS 
substructures was recently reported by Bajorath et al.26 The 
analysis, supported by exemplary structures, revealed that PAINS 
containing compounds often engaged in specific interactions with 
multiple targets and in few cases demonstrated variable binding 
modes in complexes with unrelated targets. While exploring 
individual PDB files, case by case, might reveal further 
interesting details, it is challenging to inspect a large number of 
structures especially when one wants to quantify and compare the 
interactions in a PAINS versus non-PAINS scenario. For instance, 

statistics such as the total number of X-ray structures where at 
least one or more interactions resulted from the PAINS were not 
reported. Therefore, in our analysis, we quantified different 
interactions (hydrogen bonds and aromatic interactions) in target-
ligand complexes where the ligands contain at least one PAINS 
substructure. These data were further analyzed to detect how 
frequently the PAINS atoms participate in interactions as 
compared to the remaining atoms (referred hereafter as non-
PAINS atoms) in the ligand. The atom indices of ligands obtained 
while performing PAINS matching were used to distinguish 
between PAINS and non-PAINS atoms among those participating 
in interactions with binding site residues. 

A total of 22,486 interactions were detected in 2033 PDB 
instances belonging to 2004 distinct target-ligand complexes that 
contain 980 unique PAINS containing ligands. Five PAINS 
classes that were most frequently detected in PDB ligands are 
summarized in Table 5 along with the number of ligands, target-
ligand complexes and the number of interactions in which the 
PAINS atoms participated. The PAINS classes catechol_A(92) 
AND quinone_A(370) showed presence in nearly half of the PDB 
instances. In more than 1800 instances (1749 complexes and 844 
unique ligands), at least one or more individual atoms in PAINS  
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Figure 2. Interactions of the PDB ligand tadalafil (CIA) in complex with human phosphodiesterase 5 (PDE5; PDB code: 1UDU42) are shown in three-
dimensional (A) and two-dimensional (B) representations. The nitrogen in the PAINS motif ‘indol_3yl_alk’ (colored in pink) forms a hydrogen bond with one 
of the carboxyl groups of Gln 817 and both six and five-membered rings are seen to form aromatic interactions with Phe 820 and Tyr 612 residues. 
 
 
substructure participated in interactions. In many instances, 
PAINS participated in hydrogen bonds alone (927 instances) 
while in a considerable number of instances they participated in 
both hydrogen bonds and aromatic interactions (653 instances). 
Only in 229 instances, the PAINS atoms showed exclusively 
aromatic interactions. 

 
Investigating the individual bond types revealed that 

significant numbers of hydrogen bond acceptor (48.5%) and 
donor (38.6%) interactions involved PAINS atoms. In case of 
aromatic interactions, PAINS atoms participated in as many as 
61.1% of the total interactions observed (Table 6). Further, we 
analyzed for each interaction type, the number of PDB instances 
in which the PAINS atoms participated in more number of 
interactions as compared to the non-PAINS atoms (see Table 7). 
Clearly, in nearly 50% of the instances, PAINS atoms participated 
in higher number of interactions or at least in as many interactions 
as the non-PAINS atoms. As it can be seen from Table 5, PAINS 
substructures varied with respect to the numbers and types of 
interactions. This is subject to the nature of the chemical groups 
present in the PAINS substructure and partly also to the nature of 
binding site residues in target structures. For instance, although 
quinone_A was found in 403 distinct structures, the number of 
interactions detected were considerably less as compared to 
azo_A(324) (found in 273 structures) which participated in huge 
number of hydrogen bonds. Also, the aromatic interactions 
typically involve more number of atoms than do the hydrogen 
bonds which explains the likelihood for high number of PAINS 
atoms to participate in these interactions. 

 
While it is clear that PAINS atoms participate in significant 

number of interactions in the target-ligand complexes, these 
statistics alone do not completely explain whether PAINS atoms 
are actually responsible for binding or more specifically for the 
mechanism of action of the ligand. To investigate further into this 
direction, target-ligand complexes that are representative of 
different PAINS classes were closely inspected. In multiple 
instances, the PAINS atoms participated in crucial interactions 
responsible for binding as supported by the original studies that 
reported these structures to the PDB database. In the following, 
we discuss exemplary target-ligand complexes containing 
commonly and not so commonly detected PAINS. 

Multi-target activity of indol_3yl_alk: We identified many 
instances in which the PAINS atoms were responsible, at least in 
part, for binding of the ligand to the target. One such example is 
the structure of human phosphodiesterase 5 (PDE5; PDB code: 
1UDU42) in which the PAINS motif ‘indol_3yl_alk’ present in 
tadalafil (PDB Ligand code: CIA) is involved in a single 
hydrogen bond with Gln 817 residue, contributed by the nitrogen 
of the indole ring, as well as aromatic interactions with Tyr 612 
and Phe 820 residues (see Figure 2). These interactions were 
observed in the core pocket (Q pocket) of the protein where the 
PAINS motif comfortably fits into. The observed interactions 
were consistent with those detailed in the original study which 
also reports that sildenafil (which does not contain the PAINS 
motif) participates in different interactions with the Q pocket.42 
Other interactions detected in this complex structure include the 
aromatic interactions of the methylenedioxyphenyl ring (non-
PAINS atoms) in the hydrophobic pocket (H pocket) of the 
binding site. As reported26 earlier, this PAINS motif is known to 
participate in interactions with targets belonging to unrelated 
protein families while demonstrating distinct interaction patterns. 
The structures of myeloid leukemia cell protein 1 (Mcl-1; PDB 
code: 5IF443) and human serum albumin (HSA; PDB code: 
5UJB44) containing the ligand 6AK were reexamined in our 
analysis to identify that the PAINS motif which is part of a bulky 
and rigid tricyclic indole lactam participates in aromatic 
interactions alone (see Figure 3). For instance, the residues Tyr 
138 and Tyr 161 in human serum albumin were seen to participate 
in aromatic interactions with the PAINS motif. Although the 
original study describes them as important interactions, certainly 
the interactions involving the non-PAINS atoms were also 
reported to be responsible for binding.44 It can be confirmed from 
these observations that the PAINS motif ‘indol_3yl_alk’ 
participated in crucial interactions, not related to assay 
interference mechanisms, across the binding sites of many 
unrelated targets. However, the strength and nature of interactions 
depend on the embedding of PAINS within the target structure. 

Activity vs. reactivity of catechol_A: Catechols represent another 
prominent PAINS motif widely found in natural compounds as 
well as synthetic compounds.16, 26 They have a high propensity to 
be redox active, chelate with metals and are highly reactive 
towards the nucleophiles in side chains of proteins such as lysine 
and cysteine, all of which were reported to cause frequent  
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Figure 3. Interactions of an indole derivative (6AK) bound to: (A) the human serum albumin (HSA; PDB code: 5UJB44) and (B) myeloid cell leukemia-1 
(Mcl-1; PDB code: 5IF443) are presented. 
 
 

 
 
Figure 4. Three-dimensional (A) and two-dimensional (B) representations of the interactions of catechol (colored in pink) containing ligand tolcapone (TCW) 
in complex with rat catechol-O-methyltransferase (COMT; PDB code: 3S6845). 
 
 
signaling in bioassays.13, 16 Furthermore, the ability catechol 
containing compounds (e.g. flavonoids) to quench or scavenge 
singlet oxygen is also a potential mechanism to interfere with 
AlphaScreen assays.6, 46, 47 We found a number of PDB instances 
in which the catechol groups from the ligand participated in 
crucial hydrogen bonds. For example, tolcapone, a drug used to 
treat Parkinson’s disease, inhibits catechol-O-methyltransferase 
(COMT). Tolcapone is found in two PDB entries (3S6845 and 
4PYL48) of rat COMT. In both structures, the nitrocatechol 
moiety of the ligand shows multiple hydrogen bond interactions 
with asparagine (Asn), aspartic acid (Asp) and glutamic acid 
(Glu) residues apart from the co-ordinate covalent bonding with 
magnesium (Mg2+) as reported in the original study.47 As seen 
in Figure 4, the hydroxyl groups alone participate in a total of nine 
direct hydrogen bonds. While Asp 141 and Asn 170 interact with 
both hydroxyl groups, Asp 169 and Glu 199 interact only with the 
hydroxyl group away from nitro group. The nitro group forms a 
hydrogen bond with Lys 144 residue which is also seen to interact 
with the adjacent hydroxyl group of catechol. It can be confirmed 
that the PAINS motif in tolcapone specifically interacts with 
binding site residues although metal chelation was also 

prominently seen in multiple other complexes. However, it was 
reported long back that the metal-chelation alone is insufficient 
for COMT inhibition as observed in vitro and it is not yet clear if 
the ligand interferes with these assays.49 So, it must be understood 
that while the proposed mechanisms of assay interference are 
plausible evidences for non-specific reactivity, the true activity of 
compounds containing PAINS depends on the structural or 
substructural context which calls for a much deeper investigation. 

The bulky and uncommon styrene_A: The presence of PAINS in 
marketed drugs and biologically interesting small molecules did 
not necessarily urge the abandonment of PAINS filters. In fact, 
there are certain PAINS classes well-known for their frequent 
assay interference behavior and are referred as ‘worst 
offenders’.13 Best examples are five-membered heterocycles such 
as rhodanines that are involved in covalent modifications and 
metal complex formation.13 While confirming the true (drug-like) 
activity of compounds containing notorious PAINS motifs such 
as rhodanines by conducting additional assays (e.g. orthogonal 
assays) is strongly recommended in literature,50 the dependence 
of the assay interference effects on structural context has also  
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Figure 5. Nortriptyline (21B) in complex with dopamine transporter (DAT; PDB code: 4M4851): (A) The benzene groups of the dibenzocycloheptene ring 
(colored in pink) which is the PAINS motif in the ligand are seen to form edge-to-face aromatic interactions; (B) the two-dimensional map shows that the 
amino group which is not part of the PAINS forms a hydrogen bond.

been well-studied.52 However, it was also identified in some 
target-ligand complexes that rhodanine derivatives contributed to 
specific molecular interactions.26 On the other hand, there are 
many PAINS motifs that are rarely found not only in the PDB 
ligands but also in the screening compounds from original study, 
as reported by Capuzzi et al.19 One such example is the 
‘styrene_A’ motif that is only seen in drugs amitriptyline and 
nortriptyline found in a total of four PDB structures. In our 
analysis, this PAINS motif was detected in only six extensively 
assayed compounds and three natural compounds. We analyzed 
the interactions in one of the four complexes where nortriptyline 
is bound to the transmembrane helix (TM3) of dopamine 
transporter (DAT) (PDB code: 4M4851). We noticed that the 
dibenzocycloheptene ring of nortriptyline clearly orients around 
the central region of TM3. While the original study reports crucial 
hydrophobic interactions with Val 120 (this interaction type is not 
currently covered in our study) that faces the cycloheptene ring, 
we confirm the aromatic interactions of the two benzene rings 
with Phe 325 and Tyr 124 residues (see Figure 5) and the 
hydrogen bond involving the amine group of the ligand and Phe 
43 residue in the TM1 region of the transporter protein. We 
noticed that the PAINS motif in the structure represents a major 
part of the ligand which explains the likelihood to form more 
number of interactions as compared to the non-PAINS atoms. 
This highlights the need to evaluate the interactions considering 
the size of the PAINS motif relative to the complete ligand. 
Though detailed investigation was not conducted in this regard, 
we noticed that the average number of PAINS and non-PAINS 
atoms in the PDB PAINS matches was 9 and 42, respectively. 
And the proportion of ligands in which the number of PAINS 
atoms is higher than the non-PAINS atoms was found to be less 
than 3%. Taken together, it is clearly understood that even the 
most frequently detected PAINS, with established mechanisms of 
assay interference, are shown to participate in specific molecular 
interactions. In the light of this, inclusion of the certain PAINS 
(in the set of 480 alerts) derived based on their presence in a 
handful of compounds is not acceptable. Therefore, a community-
wide effort, as suggested earlier19 must be actualized to identify a 
statistically significant and validated set of PAINS alerts. 

CONCLUSIONS 

Extrapolation of the frequent hitter model of PAINS beyond 
the applicability domain was criticized on the grounds of the 
proprietary nature of the screening collection used to derive the 

substructure alerts. In this study, compound data sets of different 
origin were screened for the presence of PAINS substructures. 
We have systematically analyzed the promiscuity trends and 
activity profiles for different data sets to reveal that although 
compounds with PAINS interacted with higher number of targets, 
insignificant differences in the assay hit rates which make it 
difficult to draw conclusions if PAINS can be related to high 
promiscuity. Furthermore, we quantitatively analyzed different 
interactions in a large number of target-ligand complex structures 
with PAINS to evaluate if PAINS motifs participated in crucial 
interactions. Surprisingly, in a large number of crystal structures, 
PAINS atoms participated in interactions more frequently when 
compared to the rest of the atoms. Our data demonstrates that only 
a small proportion of ligands (< 3%) have PAINS substructures 
that are considerably bigger in size relative to the total size of the 
ligands. Through exemplary illustrations, we explored the 
structural context of PAINS to confirm that they are involved in 
specific interactions that are responsible for binding. It was shown 
that certain PAINS interact with multiple unrelated targets 
through distinct interactions and these could be distinguished 
from interactions responsible for assay interference (e.g. metal 
chelation), which were simultaneously detected in some cases. 
However, confirmed interactions of rarely detected PAINS motifs 
in complex structures supports the idea that a revised list of 
statistically validated PAINS filters must be established. Further 
studies which investigate the wealth of PDB structures with 
PAINS motifs, covering other binding mechanisms such as 
hydrophobic interactions, salt-bridges and metal chelation, would 
provide additional details on the structural context dependency of 
PAINS. 
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5.3  Summary 
 

 

PAINS were identified among several compound collections including approved drugs, withdrawn 

drugs, bioactive compounds, extensively tested compounds and PDB ligands. Although the degree 

of promiscuity of PAINS compounds was relatively higher as compared to the non-PAINS 

compounds, the normalized promiscuity estimates revealed a contrasting viewpoint. PAINS 

containing drugs and PDB ligands demonstrated, on average, lower hit rates as compared to the non-

PAINS subsets. Furthermore, a large-scale investigation of the mechanisms of action of PDB ligands 

revealed that the PAINS atoms participated in a remarkable number of hydrogen bonds and aromatic 

interactions. Exemplary target-ligand complexes were presented to emphasize that PAINS 

contributed to crucial interactions that were responsible for binding to the target structures. It was 

confirmed that the interactions were distinct from those responsible for assay interference, although 

detected simultaneously in some structures. The findings of this study are in agreement with previous 

reports that disregarded their generalization and proposed that the true behavior of PAINS depends 

on the structural context. It was emphasized that a list of thoroughly validated PAINS filters must be 

established to prevent the unwary practice of deprioritizing screening hits. 

 

The supporting information of this article can be found in the Appendix, under section D.  
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Chapter 6 
 

Exploring the True Promiscuity of Consistently Inactive 

Compounds 
 

6.1  Is ‘Dark Chemical Matter’ Really Dark? 
 

The recent literature on polypharmacology and promiscuity confirms that many drugs are highly 

promiscuous and the bioactive compounds are, on average, less promiscuous than drugs. On the 

opposite end of the promiscuity scale lie those compounds that did not demonstrate any activity 

despite having been extensively tested in primary assays. Such compounds were recently identified 

in proprietary and public screening collections and those that were inactive in at least 100 assays were 

termed as the dark chemical matter (DCM). The potential of certain chemotypes from the pool of 

DCM compounds to demonstrate biological activity has been reported by researchers from Novartis. 

Subsequently, Boehringer and GlaxoSmithKline analyzed their screening collections for the presence 

of DCM compounds and reported their findings. The perspective article in this chapter focuses on 

estimating the true potential of DCM to be promising candidates for drug discovery. The chemical 

spaces of DCM compounds and drugs were compared at the structural, substructural (scaffolds) and 

functional group levels. Furthermore, the promiscuity trends for those drugs that were structurally 

identical to the consistently inactive compounds were established to study the potential of the latter 

to behave similarly to drugs.  
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6.3  Summary 
 

The DCM compounds were clearly found to share their chemical space with drugs. As many as 16% 

of the current drugs and 3.5% of compounds from a large natural product library were structurally 

identical to DCM compounds. Nearly 8% of the DCM compounds formed activity cliffs with drugs, 

suggesting that minor structural modifications could render them as candidates worth investigating. 

Although less promiscuous when compared to the current average promiscuity of drugs, many DCM-

like drugs interacted with at least five distinct protein targets. However, investigating the promiscuity 

across different target families revealed that a majority of the drugs tends to be selective towards one 

or two target families. It was concluded that the DCM compounds may not be biologically inert and 

their clear similarities to drugs make them attractive candidates. On the same note, the criteria adopted 

to flag compounds as dark chemical matter was questioned. 

  

121



 

 

  

122



 

 

Chapter 7 
 

Discussion 
 

7.1  Drug Knowledgebases as Non-Redundant Data Sources 
 

The process of drug discovery is complex and is associated with huge risks. Of the millions of 

compounds screened in a drug discovery program, only a handful of compounds enter the phases of 

clinical development. Most of them are withdrawn from the pipeline for reasons associated with 

safety, efficacy, and pharmacokinetics. The primary question that arises is, “how to improve the 

success rate?”. Systematic use of the knowledge on successful and unsuccessful ligands is one 

approach that is central to the cheminformatics-driven efforts such as lead identification and lead 

optimization [281]. A recent analysis of the clinical candidates that were reported in the Journal of 

Medicinal Chemistry revealed that 43% of the small molecules were derived from previously known 

compounds (i.e. known active compounds or compounds reported in the literature, patents or 

previous drug discovery programs) [282]. The emergence of big data resulted in the rapid growth of 

major databases [283]. However, data redundancy has been a key issue reported in this context [181]. 

Several open-access databases provide information on drugs but there are limited or no resources that 

provide the complete spectrum of information relevant for drug discovery. 

 

In this context, SuperDRUG2 [284] and WITHDRAWN [188] databases were developed as 

integrated knowledgebase resources that focus on approved drugs and withdrawn drugs, respectively. 

Both databases facilitate navigation of the chemical space of drugs via 2D or 3D similarity search. 

Each drug entry is annotated with a variety of information including the chemical structures, 

physicochemical properties, and biological activities. Most of the drug withdrawals due to safety 

concerns were associated with side effects caused by interactions of drugs with one or more off-

targets that result in toxicity [285]. Therefore, it is essential to identify potential off-targets in humans 

and try to avoid interactions with such targets in order to develop ‘safe’ drugs. In this regard, the 

WITHDRAWN database serves as an excellent resource that could help establish links between the 

off-targets of drugs and the adverse reactions that led to its recall. An example of this was shown in 

the original article that presents the use case of sibutramine, an appetite suppressant drug withdrawn 

from the market due to adverse cardiovascular outcomes [188, 286]. It was shown that specific 
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genetic variations in the metabolic targets (cytochromes) of the drug increase its concentration in 

blood that leads to enhanced activity at the off-target alpha-2B adrenergic receptor which could have 

led to cardiovascular events such as myocardial infarction and stroke [188]. Similarly, a number of 

drugs were withdrawn due to hepatoxicity and cardiotoxicity [188, 287]. In the case of cardiotoxicity, 

hERG channel has been a prominent off-target that lead to the withdrawal of several marketed drugs 

[288]. WITHDRAWN helps users to search for drugs by toxicity type via an interactive search 

feature. This is particularly useful to identify if the chemotypes belonging to a specific chemical class 

are associated with a certain toxicity type. In drug discovery, such information is highly useful in 

deriving the so-called ‘toxicophores’ or ‘structural alerts’ that are useful in flagging compounds that 

are potentially toxic [289]. 

 

SuperDRUG2 was intended to be a one-stop resource that provides a wide range of information about 

approved drugs. It contains the highest number of ‘active pharmaceutical ingredients’ that were ever 

collected in a single database and links almost all small molecule entries with six other major 

compound and compound activity repositories. The integrated and curated activity data serves as a 

non-redundant source for bioactivity data on drugs. Regulatory information fetched from different 

regulatory sources facilitates a temporal analysis of R&D innovation by pharmaceutical companies. 

Furthermore, a 3D superposition feature allows users to evaluate the fit of a drug molecule in a target 

of interest when a ligand is known to bind to a target already. This feature, exclusively available in 

SuperDRUG2, can be very useful in structure-based studies and also in exploring additional 

therapeutic areas for known drugs, i.e. drug repurposing. As stressed earlier, pharmacokinetics has 

also been a major concern in the failure of many candidate drugs. Although much progress has been 

witnessed in optimizing ADME properties using in silico models, estimating the blood plasma levels 

of drugs would be a more useful estimate in the context of personalized medicine [290, 291]. In fact, 

experimental plasma levels are not currently available for all marketed drugs and there are currently 

only a few commercial software available that can provide simulations. SuperDRUG2 is the first 

time open source platform that provides physiologically-based pharmacokinetics simulation as a 

feature that provides an estimate of the plasma levels via the ‘plasma concentration versus time’ 

curves for many drugs, in a normal scenario as well as for poor and fast metabolizers. Taken together, 

the two databases developed in this thesis are excellent resources for integrated information on 

approved and withdrawn drugs with an increasing reception from the research community. 
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7.2  In Silico Models for Toxicity Prediction 
 

Predicting the interactions of small molecules with biological targets by employing in silico methods 

has been attractive for drug discovery not only to prioritize interesting candidates for further 

development but also to identify potentially toxic compounds. Considerable changes in the legislation 

across Europe and North America resulted in an increased acceptance of alternative methods for 

toxicological assessment. For instance, the eTox project [292] integrated bio- and cheminformatics 

approaches and developed alternative tools to model multiple toxicity endpoints [293]. Similarly, the 

EU-ToxRisk project [294] was initiated with an aim to drive the paradigm shift in toxicity assessment 

from animal testing to in vitro and in silico testing. Many 3R (reduce, refine, replace) initiatives (e.g. 

the Berlin-Brandenburg Research Platform, BB3R [295]) began to focus on alternative methods to 

achieve this paradigm shift. The Tox21 program is one such initiative from the United States. In this 

context, three original research contributions were reported in this thesis. 

 

The first two studies focused on developing models for detecting the Tox21 endpoints: nuclear 

receptor and cellular stress response pathways, together accounting for a total of 12 targets [204, 205]. 

These models appeared in the top 10 Tox21 models [296] for seven out of the 12 targets and the 

performances (AUC-ROC scores) were comparable to the average score of the top 10 models. Since 

the training data was highly imbalanced, those models that achieved BACC scores closer to the AUC-

ROC values were considered optimal ones [105]. For eight out of the 12 targets, the external 

validation BACC scores were found to be better than the average BACC value of the top 10 models 

[204] indicating an optimal performance. Furthermore, four models (for the targets AhR, ARE, 

ATAD5, and p53) achieved the highest accuracies compared to the remaining Tox21 models. While 

all models in the first study were based on naïve Bayes method, chemical similarity and machine 

learning based methods were evaluated in a follow-up study with a focus on only three targets (AhR, 

ER-LBD, and HSE). A hybrid strategy that combined similarity and machine learning based 

predictions achieved the highest performance, even compared to the top Tox21 models, for ER-LBD 

[205]. Finally, models that aggregated predictions from individual models outperformed all models 

for six out of the 12 targets [105] which highlights the importance of predictions from individual 

models (i.e. wisdom of crowd). Altogether, it was demonstrated that simple open source 

cheminformatics methods and descriptors could be employed to develop robust in silico models that 

are comparable to those models based on complex modeling architectures (e.g. deep learning [297]) 

and descriptors from commercial software such as MOE (Chemical Computing Group Inc., 
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Montreal, Canada), Dragon (Talete SRL, Milan, Italy) and ChemAxon (ChemAxon LLC., 

Cambridge, MA). 

 

The third study reported binary classification models [206] for predicting the small molecule 

inhibition of the hERG channel, a well-acknowledged off-target in the drug discovery pipeline. 

Several drugs and promising clinical candidates were withdrawn due to their inhibitory potential 

towards hERG, that may lead to the QT interval prolongation which can evolve into a fatal cardiac 

arrhythmia [298]. Many previous studies proposed in silico models that were based on different data 

sets, descriptors and modeling approaches [103]. Models produced from different datasets were 

associated with significantly different prediction performances [299]. In the light of this, the potential 

of chemical similarity and machine learning methods to contribute to robust models was assessed by 

employing by far the biggest data set of hERG bioactivities. It was shown that the models were 

superior in performance compared to the models reported in the literature that employed the same 

data sets [299-302]. The RF models outperformed other models based on k-NN and SVM. They were 

mostly robust to the choice of activity threshold to discriminate blockers and non-blockers in the 

training set and the choice of molecular descriptors. This was understood to be due to the inbuilt 

capabilities of the algorithm to handle high-dimensional data, highly correlating descriptors and 

imbalanced data sets [57, 218]. The k-NN and SVM methods performed competitively with RF only 

when a balanced training set was employed. Considering the huge sizes of the fingerprint descriptors, 

the poor performance of the SVM based classifiers can be attributed to its inability to handle a large 

number of irrelevant fingerprint bits. Although the k-NN classifiers provided better sensitivity and 

BACC values than RF and SVM on imbalanced data sets, the overall performance remained low 

with an additional limitation of higher computational times required for model construction. It was 

also shown that the classifiers based on data sets with a relatively smaller number highly diverse 

hERG blockers performed comparatively well, although the sensitivity values were relatively lower. 

Furthermore, the influence and importance of data quality were demonstrated by developing 

classifiers based on low-confidence training data that provided poor performance. Overall, the 

challenges in developing robust models based on public domain bioactivity data were highlighted. A 

recent assessment of different machine learning approaches in predicting hERG blockade reported 

that the computationally expensive deep neural networks did not provide significant advantages over 

the other methods [303], indicating that the models based on computationally inexpensive descriptors 

and methods are still valuable. 
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7.3  Frequent and Non-frequent Hitters in High-throughput Screening 
 

The presence of a large number of false-positive hits in HTS outputs has been a widely acknowledged 

problem. Among the various approaches proposed to identify such compounds, PAINS filters 

received a great attention in the literature which garnered as many as 1265 citations (according to 

Google Scholar; 26 June 2018) [52]. The computational filters have been criticized for their limited 

applicability domain and their inconsiderate use to deprioritize screening hits [160, 161]. 

Recommendations were proposed for the appropriate usage of these filters [304]. In this regard, the 

true promiscuity of PAINS containing compounds was estimated by evaluating the activity profiles 

of multiple compound collections and exploring the mechanisms of action of PAINS containing 

ligands in binding to target biomolecules. In agreement with previous reports, many PAINS 

containing compounds were found to be highly promiscuous [305]. However, the overall assay hit 

rates were relatively lower of PAINS compounds in comparison to the non-PAINS compounds. This 

trend, in contradiction with the promiscuity model of PAINS, remained the same for both drugs and 

PDB ligands. Analyzing the interactions in target-ligand complexes revealed a significant number of 

interactions involving the PAINS atoms, which in many instances were crucial for binding to the 

target. This was computationally quantified for the first time, although a previous study reported that 

PAINS participate in crucial interactions by manually inspecting several X-ray structures [306]. 

Through exemplary structures, the binding modes of PAINS containing compounds were reported. 

Although the PAINS interactions were responsible for binding, other types of interactions (e.g. metal 

chelation) that are possible mechanisms for assay interference were also noticed in some instances. 

Therefore, the true behavior of PAINS depends on their structural embedding within the target 

structures. 

 

A category of compounds that possess a contrasting promiscuity profile compared to the frequent 

hitters are those that did not demonstrate any biological activity although they have been screened in 

multiple assays. These compounds have been undetected in the screening libraries for a very long 

time until a milestone contribution from Novartis reported the ‘dark chemical matter’ from their in-

house compound collection and the PubChem bioassay collection [175]. The concept was well 

acknowledged by the community as subsequent reports emerged from both academia [169] and 

pharmaceutical industry [176, 307]. It was proposed that the DCM compounds possess ‘unique 

activity’ and ‘clean safety’ profiles [175]. The last contribution of this thesis evaluated the true 

potential of DCM compounds to be uniquely ‘active’ and ‘safe’ [308]. It was reported that these 
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biologically inert compounds clearly share their chemical space with drugs. This was confirmed by 

identifying thousands of DCM compounds forming activity cliffs with drugs which suggests that 

minor structural changes can render these compounds into attractive candidates that can be further 

optimized for activity towards selective targets. Furthermore, analyzing the promiscuity degree of 

DCM-like drugs revealed that many of them are highly promiscuous but are selective towards certain 

target families. In this context, a recent study proposed target hypotheses for the DCM compounds 

based on their structural analogues identified in a large pool of compounds with known bioactivities 

[309]. A follow up of the original DCM study that analyzed screening collections from Merck 

reported strategies to extract value out of the DCM compounds and also highlighted that a DCM 

compound in screening collections of one institution might be biologically active in another 

institution [310]. These cumulative findings highlight the potential of DCM compounds to show 

biological activity in future screens, provided they are screened against different biological targets 

and tested at screening concentrations higher than the typical HTS screening concentrations (1 µM 

to 10 µM) [308, 311]. 
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Chapter 8 
 

Conclusions and Outlook 
 

In the present work, different cheminformatics methods were utilized to establish knowledgebase 

resources of small molecule drugs, develop in silico models for prediction of chemical toxicity and 

analyze the activity and promiscuity profiles of the frequent and non-frequent hitter compounds. An 

important aspect is that these knowledgebases contain integrated information extracted from multiple 

data sources which make them one-stop resources for comprehensive information on drugs useful in 

drug discovery research. The knowledge of chemical structures and properties of approved and 

withdrawn drugs would be highly valuable for lead identification and lead optimization. For instance, 

the core structures of toxic drugs from WITHDRAWN database can be used as templates to avoid 

development of similar drugs with activity against the same off-targets. Similarly, the structure to 

activity relationships of approved and withdrawn drugs can be compared to identify the chemical 

classes or substructures relevant to specific toxicity types. The data and features provided by 

SuperDRUG2 could be used in combination with other resources in the context of personalized 

medicine. Furthermore, both resources provide non-redundant bioactivity data for drugs that were 

employed in the further studies. The richly annotated regulatory information can be used to establish 

temporal trends of drug approvals/withdrawals and investigate the innovation strategies, therapeutic 

focuses and recall policies of pharmaceutical companies. 

 

In the next step, computationally inexpensive in silico models were developed using chemical 

similarity and machine learning based methods. It was shown that models based on simple 

descriptors and modeling approaches provide robust performance in rapid detection of potentially 

toxic compounds. Different data integration approaches and standardization protocols were utilized 

to curate the bioactivity data needed to develop these robust models. These models were able to detect 

the ability of small molecules known to inhibit different human targets that lead to adverse effects 

such as cardiac toxicity, hepatotoxicity, and reproductive toxicity in the context of the 3Rs to reduce 

animal usage for preclinical drug development. The models were on par with and sometimes 

performed better than, those previously or contemporarily reported in the literature. The models made 

available as open source workflows serve as readily available predictive tools and starting points for 

further research. In addition to the ability to detect potentially toxic compounds, interpreting the 
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models could be highly valuable in the identification of structural features overrepresented in the 

toxic compounds. These features could be further developed as generic structural alerts to flag the 

entries of large compound databases for specific toxicity endpoints. Further, the models could be 

used to detect potentially toxic compounds in the marketed drugs, which were not previously tested 

against these off-targets. While computational methods are currently the popular choice for testing 

of cosmetics, it might be much harder for them to ‘replace’ animal trials (for testing candidate drugs 

for use in clinical purposes) in the next few years since such models have to be thoroughly validated 

and no model may achieve an accuracy of 100%, given the constantly expanding chemical space. 

Nevertheless, in silico alternatives have the potential to significantly ‘reduce’ animal testing. 

 

The next two independent contributions established the promiscuity profiles of the nuisance 

compounds (PAINS) and biologically inert compounds (dark chemical matter) found in HTS 

collections. In the first study, the ability of PAINS compounds to participate in crucial interactions 

that contribute to the binding to target macromolecules was demonstrated. These findings are relevant 

for the development of statistically valid PAINS filters that possess wide applicability domain to 

identify potential artifacts in screening libraries. This opens the door for further investigation of the 

mechanism of action of PAINS considering additional interaction types such as salt bridges and metal 

chelation by exploiting the wealth of structural data. Furthermore, it was acknowledged that many 

confirmed nuisance compounds could not be detected in public and commercial screening collections 

using the current set of PAINS filters. Therefore efforts can be extended to develop novel compound 

filters and at the same time identify useless filters that are currently in use. Subsequently, the subsets 

of compounds matching such validated compound filters can be employed for development of 

computational models to predict the frequent hitter behavior arising from either true promiscuity or 

assay interference. In the second study, the potential of dark matter compounds to be biologically 

active was reconfirmed. These findings could guide the identification of interesting candidates that 

possess selective activity towards pharmaceutically relevant targets. In this context, instead of waiting 

for the consistently inactive compounds to be active in future screens, it would also be valuable to 

adopt multiparametric screening methods such as high-content screening and biophysical approaches 

for deorphanizing the dark chemical matter. By systematically searching for consistent structural 

analogues in the space of drugs and bioactive compounds, potential targets can be identified for DCM 

compounds. These hypotheses could be experimentally validated to identify novel lead compounds 

with better safety profiles and essentially lower promiscuity. Furthermore, switching to target-

focused compound libraries might provide higher HTS hit rates as compared to using diverse 

compound collections.  
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D. Supplementary Data 

 
Supporting Information for Section 5.2 

 

Exploring Activity Profiles of PAINS and Their Structural Context in Target-Ligand 

Complexes 

 

S1. Steps involved in the standardization of chemical structures. 

1. Water molecules were removed, 

2. Molecules were aromatized, 

3. Adjacent positive and negative charges were transformed into double/triple bonds, 

4. Explicit hydrogens were added, and 

5. The 3D conformation was generated and cleaned. 

 

 

S2. Indications and primary targets of those drugs that represent the five most frequently detected 

PAINS substructures. 

 

PAINS class: het_thio_666_A 

Drug Name Indication/Class Primary Target 
Ethopropazine Anticholinergics Muscarinic acetylcholine receptor 
Promethazine Antihistamines Histamine receptor 
Thiethylperazine Antihistamines Dopamine receptor 
Methdilazine Antihistamines Histamine receptor 
Methylpromazine Antihistamines Histamine receptor 
Hydroxyethylpromethazine Antihistamines Histamine receptor 
Thiazinamium Antihistamines Histamine receptor 
Fonazine Antimigraine Serotonin receptor 
Prochlorperazine Antipsychotics Dopamine receptor 
Promazine Antipsychotics Dopamine receptor 
Perphenazine Antipsychotics Dopamine receptor 
Triflupromazine Antipsychotics Dopamine receptor 
Chlorpromazine Antipsychotics Dopamine receptor 
Fluphenazine Antipsychotics Dopamine receptor 
Trifluoperazine Antipsychotics Dopamine receptor 
Acetophenazine Antipsychotics Dopamine receptor 
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Fluphenazine Antipsychotics Dopamine receptor 
Mesoridazine Antipsychotics Dopamine receptor 
Fluphenazine Antipsychotics Dopamine receptor 
Levomepromazine Antipsychotics Dopamine receptor 
Dixyrazine Antipsychotics Dopamine receptor 
Thiopropazate Antipsychotics Dopamine receptor 
Perazine Antipsychotics Dopamine receptor 
Periciazine Antipsychotics Dopamine receptor 
Pipotiazine Antipsychotics Dopamine receptor 
Piperacetazine Antipsychotics Dopamine receptor 
Carphenazine Antipsychotics Dopamine receptor 
Promethazine Sedatives Histamine receptor 
Propiomazine Sedatives Histamine receptor 

 

PAINS class: catechol_A 

Drug Name Indication/Class Primary Target 
Methyldopa Antiadrenergic Alpha-adrenergic receptors 
Levonordefrin Sympathomimetic Alpha-adrenergic receptors 
Norepinephrine Cardiac Stimulants Alpha-adrenergic receptors 
Isoetharine Adrenergics Beta-adrenergic receptors 
Rimiterol Adrenergics Beta-adrenergic receptors 
Arbutamine Cardiac Stimulants Beta-adrenergic receptors 
Protokylol N/A Beta-adrenergic receptors 
Benserazide N/A DOPA decarboxylase 
Dopamine Cardiac Stimulants Dopamine receptors 
Dobutamine Cardiac Stimulants Dopamine receptors 
Fenoldopam Cardiac Stimulants Dopamine receptors 
Droxidopa Cardiac Stimulants Dopamine receptors 
Dopexamine Cardiac Stimulants Dopamine receptors 
Levodopa Dopaminergic Dopamine receptors 
Entacapone Dopaminergic Dopamine receptors 
Carbidopa Dopaminergic Dopamine receptors 
Apomorphine Urologicals Dopamine receptors 
Nordihydroguaiaretic acid Antineoplastic N/A 
Tannic acid N/A N/A 
Pyrogallol N/A N/A 

 

PAINS class: quinone_A 

Drug Name Indication/Class Primary Target 
Atovaquone Antiprotozoal Dihydroorotate dehydrogenase 
Rifabutin Antibiotics DNA-directed RNA polymerase 
Mitomycin Cytotoxic Antibiotics DNA 
Doxorubicin Cytotoxic Antibiotics DNA;DNA topoisomerase 
Daunorubicin Cytotoxic Antibiotics DNA;DNA topoisomerase 
Idarubicin Cytotoxic Antibiotics DNA;DNA topoisomerase 
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Valrubicin Cytotoxic Antibiotics DNA;DNA topoisomerase 
Epirubicin Cytotoxic Antibiotics DNA;DNA topoisomerase 
Idebenone Psychostimulants N/A 
Diacerein Antiinflammatory Nuclear receptors 
Phytonadione Vitamin Vitamin K-dependent gamma-carboxylase 
Menadione Vitamin Vitamin K-dependent gamma-carboxylase 

 

PAINS class: anil_di_alk_E 

Drug Name Indication/Class Primary Target 
Cholestyramine Lipid modifying agent Bile acids 
Chlorambucil Anticancer DNA 
Melphalan Anticancer DNA 
Mifepristone Contraceptive Glucocorticoid receptor 
Ulipristal acetate Contraceptive Glucocorticoid receptor 
Ulipristal Contraceptive Glucocorticoid receptor 
Onapristone Contraceptive Glucocorticoid receptor 
Quinupristin Antibiotic Microbial targets 
Mikamycin Antibiotic Microbial targets 
Synercid Antibiotic Microbial targets 

 

PAINS class: indol_3yl_alk 

Drug Name Indication/Class Primary Target 
Rescinnamine Antiadrenergic Angiotensin-converting enzyme 
Deserpidine Antiadrenergic Synaptic vesicular amine transporter 
Reserpine Antiadrenergic Synaptic vesicular amine transporter 
Panobinostat Anticancer Histone deacetylase 
Iprindole Antidepressants Serotonin receptors 
Mebhydrolin Antihistamines Histamine receptors 
Frovatriptan Antimigraine Serotonin receptors 
Oxypertine Antipsychotics N/A 
Tadalafil Urologicals Phosphodiesterases 
Yohimbine Urologicals Adrenergic receptors 

 

 

S3. Top 10 matching PAINS classes in different compound collections (except drugs). Multiple 

instances of PAINS in one molecule are counted as individual matches. 

 

Natural products (Total compounds: 325139) 

Rank PAINS # Matches % Matches 
1 

 

catechol_A(92) 11736 44.71 
2 quinone_A(370) 4526 17.24 
3 mannich_A(296) 2953 11.25 
4 imine_one_A(321) 643 2.45 
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5 anil_di_alk_C(246) 577 2.2 
6 keto_keto_gamma(5) 544 2.07 
7 azo_A(324) 520 1.98 
8 anil_di_alk_E(186) 516 1.97 
9 indol_3yl_alk(461) 361 1.38 
10 anil_di_alk_D(198) 348 1.33 

 

Dark chemical matter (DCM) compounds (Total compounds: 139339) 

Rank PAINS # Matches % Matches 
1 

 

anil_di_alk_A(478) 910 23.77 
2 anil_di_alk_C(246) 497 12.98 
3 indol_3yl_alk(461) 346 9.04 
4 ene_six_het_A(483) 286 7.47 
5 mannich_A(296) 212 5.54 
6 anil_di_alk_D(198) 182 4.75 
7 anil_di_alk_E(186) 162 4.23 
8 ene_rhod_A(235) 122 3.19 
9 pyrrole_A(118) 100 2.61 
10 ene_five_het_A(201) 72 1.88 

 

Extensively assayed compounds (Total compounds: 437257) 

Rank PAINS # Matches % Matches 
1 

 

anil_di_alk_A(478) 3304 13.82 
2 anil_di_alk_C(246) 1867 7.81 
3 indol_3yl_alk(461) 1800 7.53 
4 ene_six_het_A(483) 1492 6.24 
5 mannich_A(296) 1481 6.19 
6 ene_rhod_A(235) 1221 5.11 
7 anil_di_alk_E(186) 855 3.58 
8 anil_di_alk_D(198) 821 3.43 
9 quinone_A(370) 775 3.24 
10 pyrrole_A(118) 759 3.17 

 

PDB ligands (Total compounds: 25918) 

Rank PAINS # Matches % Matches 
1 

 

catechol_A(92) 233 20.73 
2 quinone_A(370) 140 12.46 
3 azo_A(324) 128 11.39 
4 anil_di_alk_A(478) 81 7.21 
5 indol_3yl_alk(461) 72 6.41 
6 mannich_A(296) 54 4.8 
7 anil_di_alk_C(246) 35 3.11 
8 anil_no_alk(40) 35 3.11 
9 anil_di_alk_D(198) 25 2.22 
10 anil_di_alk_E(186) 21 1.87 
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S4. Distributions of PAINS and non-PAINS compounds from different compound collections 

across different hit rates. 
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