View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Institutional Repository of the Freie Universitat Berlin

SERIE B — INFORMATIK

Minkowski-Type Theorems and
Least-Squares Partitioning®

Franz Aurenhammer *!

Friedrich Hoffmann **

Boris Aronov ***

B 92-09
April 1992

Abstract

The power diagram of n weighted sites in d-space partitions a given m-point set into
clusters, one cluster for each region of the diagram. In this way, an assignment of
points to sites is induced. We show the equivalence of such assignments to Euclid-
ean least-squares assignments. As a corollary, there always exists a power diagram
whose regions partition a given d-dimensional m-point set into clusters of prescribed
sizes, no matter where the sites are taken. Another consequence is that least-squares
assignments can be computed by finding suitable weights for the sites. In the plane,
this takes roughly O(n®m) time and optimal space O(m) which improves on previ-
ous methods. We further show that least-squares assignments can be computed by
solving a particular linear program in n + 1 dimensions. This leads to a gradient
method for iteratively improving the weights. Aside from the obvious application,
least-squares assignments are shown to be useful in solving a certain transportation
problem and in finding least-squares fittings when translation and scaling are allowed.
Finally, we extend the concept of least-squares assignments to continious point sets,
thereby obtaining results on power diagrams with prescribed region volumes that are
related to Minkowski’s Theorem for convex polytopes.

®Part of the work on the paper was carried out when third author was visiting the Institut fiir Informatik,
Freie Universitat Berlin.

*Institut fiir Informatik, Fachbereich Mathematik und Informatik, Freie Universitat Berlin, Takustr. 9,
D-14195 Berlin, Germany

tResearch of the first author was supported by the Deutsche Forschungsgemeinschaft under grant Al 253/1-
4, Schwerpunktprogramm ”Datenstrukturen und effiziente Algorithmen.

**Institut fiir Informatik, Technische Universitat Miinchen, Germany.

***Computer Science Department, Polytechnic University, New York, USA

https://core.ac.uk/display/199429772?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1 Introduction and Statement of Results

Consider a set 5 of n points, called sites, in the Euclidean plane. S induces a partition of
the plane into n polygonal regions in the following natural way. The region of a site s € 5,
reg(s), consists of all points # which are closer to s than to the remaining n — 1 sites.
This partition is known as the Voronoi diagram of 5. If we fix a set X of m points in the
plane, this set is partitioned by the Voronoi diagram of S into subsets. More precisely,
the diagram defines an assignment function A : X — 5, given by

Az) = s <=z € reg(s).

Equivalently, A=!(s) = X Nreg(s) for all s € 5. Observe that the assignment A has the
following optimization property: It minimizes the sum of the distances between sites and
their assigned points, over all possible assignments X — 5.

Given S and X, we would like to be able to change the assignment by varying the
distance function that underlies the Voronoi diagram of S. To this end, we attach a set
W = {w(s) | s € S} of real numbers, called weights, to the sites and replace the Euclidean
distance §(x, s) between a point z and a site s by the power function

poww(z,s) = §%(x,s) — w(s).

The resulting partition of the plane is known as the power diagram of 5 with weights
W. (Interested readers may consult the survey paper [3] for properties of Voronoi-type
diagrams in general and power diagrams in particular.) FEach region is still a convex
polygon, and has the property of shrinking (expanding) when the weight of its defining
site is decreased (respectively, increased). As above, we obtain an assignment function
Aw : X — 5 which now clearly depends on the particular choice of weights.

The concepts introduced above extend to arbitrary dimensions in a straightforward
manner. We show the following general result:

Theorem 1: Let S and X be sets of n sites and m points in Euclidean d-space IE?,
respectively. For any choice of integer site capacities ¢(s) with > ¢ e(s) = m, there
exists a set W of weights such that |A};!(s)| = ¢(s), for all sites s € 5.

In other words, there always exists a power diagram whose regions partition a given
d-dimensional finite point-set X into clusters of prescribed size, no matter where the sites
of the power diagram are chosen. More generally, let Ay : IE? — S be an assignment
induced by a power diagram and viewed as mapping points of the entire d-space to sites
of S. Put Ay (s) = regw(s), the region of site s in the power diagram of § with weights
w.

Theorem 2: Let S be a set of n sites in IE?, let o be some probability distribution on
IE? which is zero outside [0,1]% and let u(X) = [y o(z)dz denote the measure of
a set X C IE? with respect to p. For any capacity function ¢ : § — [0, 1] with
Y ses c(s) = 1, there is a set W of weights such that p(regw(s)) = c(s), for all sites
s €S,

By taking, for instance, g to be the uniform distribution in [0, 1]? we get:

Minkowski-Type Theorems and Least-Squares Partitioning 3

Corollary 2’: For any set of n sites there exists a power diagram that partitions the unit
hypercube into n polyhedral regions of prescribed volume.

This seems surprising, as the placement of the sites determines the normals of the
facets separating the regions. Corollary 2 is related to Minkowski’s Theorem for convex
polytopes (see, e.g., [8]) which, for our purposes, can be stated as follows: Choose any n
vectors in IE“T!, no two parallel. There exists a convex polytope in IEAT! with n+1 facets,
n of which correspond to the given vectors in that each face is normal to its corresponding
vector and has d-dimensional volume equal to its length. In fact, such a polytope is unique
up to translation. Since power diagrams in IE? are exactly the projections of unbounded
convex polyhedra in IE*! [4], which can be viewed as “polytopes” with the (n 4 1)-st
facet at infinity in the direction of projection, Corollary 2’ implies a generalization of
Minkowski’s Theorem for unbounded polyhedra.

As we shall see, the assignment function Ay has the remarkable property that it mini-
mizes — for all possible assignments satisfying the same capacity constraints as Ay does —
the sum (the integral in the continuous case) of the squares of the distances between sites
and their assigned points. Such an assignment will be called a least-squares assignment
subject to the capacity function. More generally, the following will be shown:

Theorem 3: Let S be a finite set of sites in IE?. Any assignment induced by a power
diagram of § is a least-squares assignment, subject to the resulting capacities. Con-
versely, a least-squares assignment for 5, subject to any given choice of capacities,
exists and can be realized by a power diagram of 5.

The second part of Theorem 3 implies Theorems 1 and 2. By Theorem 3, a least-
squares assignment subject to any given capacity constraints can be computed by finding
weights W such that Ay satisfies these constraints.

To illustrate the usefulness of the concept of a constrained least-squares assignment
L:X — 5, let us mention some properties of L for the case when X is a finite point-set.

(1) The induced clusters L71(s), s € S, are pairwise convez-hull disjoint. Had we cho-
sen to minimize a different function, such as the sum of Euclidean distances to sites, rather
than the sum of squared distances, the optimum assignment would not be guaranteed to
have the disjointness property. Hull-disjointness of clusters is desirable as, for example, it
eases the classification of new points.

(2) In section 5 we will show that solving a certain transportation problem is equivalent
to finding least-squares clusters of prescribed size.

(3) L is invariant under translation and scaling of 5. This property is useful, for
example, for finding the best least-squares fitting of two n-point sets 5 and X if transla-
tion and scaling is allowed. It ensures that the least-squares matching between these sets
(c(s) =1 for all s € 9) already coincides with the bijection in the optimal fitting. Given
the bijection, however, it is an easy task to find the optimizing translation vector and
scaling factor. The relationship between least-squares matching and least-squares fitting
is discussed in Section 5.

Exploiting the machinery of power diagrams, we propose two algorithms for computing
constrained least-squares assignments. The first algorithm works for finite point-sets X. It

starts with the Voronoi diagram of 5 (all n weights are zero) and with X = (), and proceeds
by inserting the m points into X, one by one, at each step adjusting the weights such that
the capacities are not exceeded. In the plane, time complexity of O(n?m log m+nmlog®m)
and optimal space complexity O(m) are achieved. (Note that we may assume m > n as
attention can be restricted to sites with non-zero capacities.) This is an improvement over
the best known deterministic algorithm [7] that achieves time O(nm? + m%logm) and
space O(nm) by transformation into a minimum cost flow problem. (For a discussion of
the general assignment problem, see also [12].) We mention that the randomized algorithm
of Tokuyama and Nakano [13] achieves expected time O(nm +n*y/nm) and space O(nm);
their algorithm is much more general than ours in that it finds the optimum constrained
assignment for any cost function, and not just the square of the Euclidean distance, to
which we have restricted our attention in the current paper.

The second algorithm is applicable to both the finite and the continuous versions
of the problem. It relies on the following interesting fact: Finding a weight vector W
such that Aw is optimal subject to the capacity constraints is equivalent to finding a
maximum of a concave n-variate function whose domain is the weight space. We propose
a gradient method for iteratively improving the weight vector. This method has superlinear
convergence provided the probability distribution p is continuous. Its space requirement
is optimal, O(n).

In the finite case, on the other hand, the n-variate function mentioned above is
piecewise-linear and the maximum is full-dimensional. Finding a point in the maximum is
now a linear programming problem whose number of constraints is, however, exponential
in n. Our iterative algorithm can still be used; it is guaranteed to terminate after a finite
number of steps. Experiments have shown that it can be expected to run quite fast in
practice. Its space requirement is O(m). We are exploring the possibility of combining the
two approaches, in order to obtain a provably fast algorithm for computing a constrained
least-squares assignment for a finite set of points.

2 Proof of Theorem 3

Theorem 3 contains several statements which are now stated separately (and more pre-
cisely) and proved. We start by showing that assignments defined by power diagrams are
constrained least-squares assignments. Let us consider the finite case first.

Lemma 4: Let S and X be finite sets of sites and points in IE?, respectively, and let W
be a set of weights for 5. The assignment A minimizes

> 03w, Alx)

rzeX

over all assignments A : X — § with capacity constraints |A=!(s)| = |A};!(s)| for
all s € 5.

Proof: From the definition of Ay it is evident that Ay minimizes the expression

Y poww(e, As)) = Y 6% (a Au)) = Y w(Ay)

reX rzeX reX

Minkowski-Type Theorems and Least-Squares Partitioning 5

over all possible assignments A : X — 9, regardless of the capacity constraints. The last
sum, being equal to 3, ¢ |Aj} (s)|w(s), is a fixed constant for all assignments A with
capacities [A71(s)| = | Ay (s)], and the lemma follows. 0

The following continuous version of Lemma 4 can be proved in a similar way.

Lemma 5: Let S be a finite set of sites in IE? with weights W, let o be some probability
distribution on [0,1]%, and let u be the measure defined by o. The assignment
Aw :[0,1] — § minimizes

[, e A

over all assignments A : [0,1]? — S with capacities p(A71(s)) = u(Ay/ (s)) for all
ses. a

We proceed to prove the existence of constrained least-squares assignments. Fix a set S of
sites, a capacity function ¢ : .5 — [0,1] with), g c(s) = 1, and a probability distribution
oon [0,1]%. Suppose that a least-squares assignment L : [0, 1]¢ — § subject to ¢ exists. For
convenience, let R(s) = L™!(s). We begin by showing that L has to satisfy the following
property: For any two sites s,¢ € 5, there is a hyperplane separating R(s) from R(t).
More precisely, we have:

Observation 6: Let s,t € 9, s # t. There exists a hyperplane H orthogonal to ¢ — s such
that p(Hys N R(s)) = 0 and p(Hg N R(t)) = 0, where Hy; is the halfspace bounded
by H and containing H + (¢ — s), and Hg is the complementary halfspace.

Proof: Suppose that there is no such hyperplane. Then there is a hyperplane H orthogo-
nal to ¢ — s and such that u(HsNR(s)) > 0 and p(Hs N R(E)) > 0. Now use the fact that,
if a point 5 € R(s) is in Hy, and a point z; € R(¢) is in Hg, then z, can be reassigned
to ¢t and z; reassigned to s, thereby reducing the sum of squared distances.! Integration
over two subsets of R(s) and R(t) of equal positive measure that were assumed to exist
on the wrong sides of H thus shows that these subsets could be reassigned, obtaining an
assignment better than L but subject to the same capacities. a

This proof also works when L : X — 5 and X is finite, if we take ¢ as the indicator
function of X in [0,1]¢, and replace integrals by sums. (Degenerate positions of X may
be handled by defining both Hs and Hys in the statement of Observation 6 as open
halfspaces.) Note that, in any case, we are free to choose the site to which points z with
o(z) = 0 are assigned by L.

Observation 6 implies that, if L exists, it must be realized by a packing of convex
polyhedra P(s) = ﬂt;ﬁs Hg;. Clearly, the existence of I is trivial in the finite case. For
the continuous case it is enough to show the following. (Here we restrict attention to
probability distributions ¢ with y continuous.)

Lemma 7: The class of assignments A : [0,1]? — S, realizable by a packing of IE? with
convex polyhedra { P(s)}, such that u(P(s)) = ¢(s) and P(s) has less than |.9| facets,
is nonempty. Moreover, among all such assignments there is one that achieves the
least-squares assignment L subject to c.

e, 8 (e, 1) + 6 (14, 8) < 8% (2e,t) + 62 (x4, 8). The easy proof of this fact is left to the reader.

Proof: Let n = |5], and let P; be an at most (n — 1)-facet polyhedron associated with the
i-th site s;. P; is the intersection of n—1 halfspaces in IE?, each of which can be specified by
the vector extending from s; to its defining hyperplane and normal to it. Hence Py,..., P,
are completely determined by a k-tuple of real numbers, for & = n(n—1)d. (For simplicity,
we will not distinguish between P; and its (n — 1)d-tuple in the sequel.) Now consider the
continuous function

o :R¥Y = R", o(Pr,....,P) = (u(P),...,u(B)).

Let II ¢ IR® such that @(Il) = ¢. 1T corresponds to the set of all n-tuples of polyhedra
whose measures fulfill the capacity constraints. Il is a closed set, being the inverse image
of a closed set under a continuous function. Since g is zero outside [0, 1]%, there is a
constant b such that, for all ¢, if |P;|oc < b then pu(P;) = ¢(s;) still can be achieved for
all possible directions of halfspace normals for P;. Hence attention may be restricted to
tuples (P, ..., P,) € Il N[=b,b]*. Next, consider the continuous function

¢ :RF =R, ¢(Pr,...,P,) =) V(PNF),
i

where V' denotes d-dimensional volume. Let Tl C R such that 4(II') = 0. Again, I’ is a
closed set. It corresponds to the set of all n-tuples of polyhedra yielding a packing of IE?.

In summary, we know that, if the constrained least-squares assignment L exists, it is
realizable by an n-tuple of polyhedra (Py,..., P,) in the compact set Il = IINTI' N[—b, b]*.
This set is non-empty; for example, take n parallel slices of [0,1]¢ with measures c(s;).
Now consider the function @ : II” — IR,

QUP,...,P,) = E/ 2)6%(x, s;)dx
_ /[Ol]dg(x)éz(x,A(x))dac,

where A :[0,1]7 — S denotes the assignment defined by Pi,..., P,. @ is a continuous
and non-negative function whose domain is compact, so it must attain its minimum. This
proves the existence of L. a

Finally we show that constrained least-squares assignments — for the continuous case
as well as for the finite — can always be realized by power diagrams.

Lemma 8: The polyhedral packing {P(s)} that realizes L can be chosen such that, for
some choice W of weights for S, P(s) = regw(s) for all s € 5.

Proof: Let P(s) = P(s)N [0, 1], By assigning points = with o(z) = 0 appropriately
we can obviously achieve L='(s) C P(s). But the polytopes P(s) define a packing in
[0,1]% whereas the sets L7'(s) are supposed to define a partition of [0,1]%. Thus we get
L7Y(s) =]5(5) which implies that L can be realized by a partition of the unit hypercube
into convex polytopes.

Recall from Observation 6 that the corresponding partition {P(s)} of IE? has a special
property. For any pair of sites s,t € S, if P(s) and P(t) share a facet F', the vector ¢ — s

Minkowski-Type Theorems and Least-Squares Partitioning 7

is orthogonal to F. Moreover, F' + (¢ — s) lies on the same side of F' as R(t) does. It is
known [4] that these two conditions are necessary and sufficient for a convex partition to
be the power diagram of 5 for some suitable set W of weights. This completes the proof
of the lemma. O

3 Computing the Weights

In this section we describe an algorithm that, for a set 5" of n sites and a set X of m points
in the plane, computes a least-squares assignment L : X — 5 subject to a given capacity
vector ¢ = (¢(s))ses € IN® with |¢|; = m. By Theorem 3, it is sufficient to compute a
weight vector W = (w(s))ses such that | X Nregw(s)| = ¢(s) for all s € S. The algorithm
below computes such a weight vector in time O(n?m log m +nmlog? m) and optimal space
O(m) and, as a byproduct, also determines the desired assignment L = Ay . Note that
the correctness of this algorithm gives another proof of Theorem 1.

The algorithm starts with W = 0 (i.e., with the Voronoi diagram of 5) and no points,
and proceeds in m phases. During each phase, one point of X is inserted into the current
diagram. W is then recomputed such that the invariant b(s) < ¢(s) for all s € S is
maintained, where b(s) denotes the current number of points in regy (s). More specifically,
the algorithm does the following for each point z to be inserted:

1. Determine the region regy (s) of the current power diagram containing z. Add z to
set of points contained in regw(s). If b(s) < ¢(s) the phase ends — there is no need
to change W. Otherwise, let D = {s}. Intuitively, D will contain the sites whose
regions are too large and must be shrunk.

2. Repeat the following two steps:

(a) Shrink all D-regions by simultaneously decreasing their weights. More formally,
find the smallest positive number A so that decreasing the weights of all D-sites
simultaneously by more than A causes one of the shrinking regions to lose a
point, say p’. Notice that in this process a site in 5\ D cannot lose a point to
a D-site, and that no point can move between two D-regions or between two
non-D-regions.

(b) Consider the region reg(s’) where p’ would end up, had we shrunk the weights
by more than A. If b(s') < ¢(s’), we found a region which is not full. Go to 3.
Flse add s’ to D and repeat (a).

3. We have found a region reg(s’) that is not full and a point p’ on its boundary. Assign
P’ to s’. This makes some region reg(s”) with s € D less than full. But s” was
added to D because of some point p” that it shared with site s”’ that had already
been in D. So assign p” to s’ and follow the chain back, until the original site s is
encountered and relieved of one point—this restores the invariant that was violated
in the beginning of the current phase and the phase ends.

To analyze this procedure, we must decide (1) how to store points belonging to a region,
(2) how to detect the smallest weight change that makes a set of regions lose a point. We
store the points of reg(s) as a dynamic convex hull structure that allows O(log? m) time
insertion and deletion. We need a data structure that can return, in logarithmic time,

the two points of the hull that define the two tangents to the hull with given slope [11].
Each time D changes we recompute the power diagram and determine the list of edges
separating D-regions from the non-D-regions. Those are the O(n) edges that will move
by translation as A varies. For each edge, use the convex hull data structure to determine
the first time (i.e., the value of A) at which the line supporting the edge will strike a point
contained in the D-region that it bounds. This requires O(nlogm) time. The smallest
such A is the one we are looking for. At this point, one region has shrunk so much as
to lose a point. Check if the new region is non-full. If it is, we are done — reshuffling
O(n) points clearly takes only O(n) updates to the convex hulls (and thus O(nlog?m)
time) and the phase is complete. If not, the new region joins D and we again recompute
the power diagram, identify moving edges, find the first time each edge hits a point in
a D-region, etc. Growing D by one requires O(nlogn + nlogm) time, hence one phase
requires O(n?logm + nlog? m) time, as claimed. The space requirement is dominated by
the convex hull structure and is O(m).

It is not necessary to recompute the power diagram anew after each shrinking step, as
it can be maintained dynamically. However, we did not succeed in proving a better than
O(n?) upper bound on the number of combinatorial changes in the diagram during one
phase of the algorithm. In fact, we suspect that the number of changes is Q(n?) in the
worst case.

We already mentioned the connection of least-squares assignments to network flow
problems. In the terminology of network flows, the chain-like process of reassigning points
to sites at the end of a phase corresponds exactly to an augmenting path.

4 An Iterative Approach

We now propose a method for iteratively improving the weight vector W. The method
relies on the fact that the “power sum” of the assignment Ay is a concave function of W.
The continuous case is treated first.

For an arbitrary but fixed assignment A : [0, 1] — S, define the function f4 : R"” — IR
by

fa(W) = /[0 » o(@)poww(z, A(z))dz.

Let S = {s1,...,8,}, define a vector B(A4) = (H(A_I(Si)))i_l .» and put

QA = [o) A,
[0,1]¢
With this notation, f4 can be written as

fa(W) = =(B(A), W) + Q(A),

where (.,.) denotes the inner product. Hence f4 is a linear function. Now consider the
function f = fa,; recall that Aw is the assignment induced by the power diagram with
weights W. We claim that f is the pointwise minimum of the class of functions f4 because,
for fixed W, the assignment Ay minimizes the value f4(W) by definition of the power
diagram of 5 and W. In other words, the graph of f is the lower envelope of a set of

Minkowski-Type Theorems and Least-Squares Partitioning 9

hyperplanes in IR"*1. Hence f is a concave function. If g is continuous then f describes
a smooth surface. Note that the gradient <7 f(W) of f at W is given by —B(Aw).

Recall that we aim to find a weight vector W* such that B(Aw+) = C, the given
capacity vector. Consider the function

gW) = f(W)+(C,W)
= <C—B(Aw),W>—|—Q(Aw)

Its gradient y7g(W)is €' — B(Aw). But B(Awx) = C just means s7g(W>) = 0, which
corresponds to a global maximum of the concave function g. So the problem we want to
solve is: Find W* such that g(W™) is maximal.

Finding the maximum of a concave and smooth n-variate function is a well-studied
problem. In our case, we can exploit the fact that, for any given weight vector W, we
can compute ¢g(W) and y7g(W). So a gradient method (see, e.g., [5]) for iteratively
approximating W* can be used. Starting, for example, with the weight vector Wy = 0
(i.e., the Voronoi diagram of), we use the iteration scheme

Wit = Wi+t 7 g(W).

If the step sizes t; are chosen properly then Wy converges to the solution W* at a super-
linear rate. Intuitively, what happens is that weights of sites whose region measures are
too small (large) are increased (respectively, decreased) at each step.

If 5 is a set of n sites in the plane, and p is the uniform distribution in the square, each
step can be carried out in O(nlogn) time. For the current weight vector Wy, we need
O(nlogn) time to construct the power diagram of S and Wi, and time O(n) is needed in
addition to calculate the area and the integral of squared distances for each region within
the unit square. The space requirement is optimal, O(n).

The method just described was inspired by the algorithm for “inverting” Minkowski’s
Theorem, i.e., computing a three-dimensional polytope given by normals and areas of all
its facets, proposed by Little [10].

In the finite case Ay : X — 5, the graph of g is the lower envelope of finitely many
hyperplanes, and thus is a concave polyhedral surface in IR"*!. The gradient of the
hyperplane spanning the facet that lies vertically above W is given by C' — B(Aw), where
B(Aw) = (|A17Vl(5i)|)i:1,...,n counts the numbers of points of X in the regions regw (s;). By
Lemma 4, the number of hyperplanes defining ¢ is equal to the number of different vectors
B(A) for all possible assignments A : X — 5, which is (m:fl_l) for | X| = m. Theorem 1
implies that the surface g actually realizes as many facets. Except for degenerate sets X,
the maximum of ¢ is attained by a facet; the set {W* | \7g(W*) = 0} has dimension n.

Finding a maximum of g can now be seen as a linear programming problem. Its
number of constraints is, however, at least exponential in n. On the other hand, this
linear program has a very special structure; in Section 3, we have described a polynomial
algorithm for solving it.

Concerning the gradient method, the full-dimensionality of the maximum can be ex-
ploited in the choice of step sizes. Initially, an overestimate g of ¢ is determined. Let
Q(A) =Y cx 8%(z, A(x)). Since g(W*) = Q(Aw+), Lemma 4 implies that § = Q(A) will
do for any assignment A with B(A) = C. The horizontal hyperplane H : 2,41 = g in
IR"*! is identified with the weight space. Bj, = \7g(Wy) is the gradient of the hyperplane

10

Hj, spanning the facet of the graph of g vertically above Wj. The (k4 1)-st step now
moves from Wy, in direction of By until Hy is hit. As is easily calculated, this corresponds
to the step size
=9 9(Wi)

(B, B)

This step is iterated until either the maximum is reached, which means By = C, or the
maximum is missed, meaning that g(Wyi1+eBj) < g(Wy41) for all € > 0, or equivalently,
(Bgy1, Br) < 0. If the latter happens, the overestimate g is lowered. H is translated such
that, when identifying the weight space with I, the ray from W}, in direction By, intersects
Hy N Hiyq. That is, g is taken such that

g—9Wg) g—9g(Wip1)

(Br, Br) (Bri1, Brg1)'

With the new estimate, the step above is iterated again, starting from Wy. It is not hard
to see that this procedure will not visit a facet twice, so the maximum is reached after a
finite number of steps.

For sites and points in the plane, the cost for each step is O(mlogn). O(nlogn)
time suffices for computing the power diagram and preprocessing it for point location, and
O(log n) time is needed for locating each of the m > n points in X. The space requirement
is O(m) which is optimal. We have implemented the method for the planar case. For sets
of 100 sites and 1000 points uniformly distributed in a rectangle, the procedure always
stopped after less than 10 steps. Due to numerical errors, however, only a close estimate
By, of C' was reached. We observed |C' — Bi|y & n which suggests that a combination
of this method with the insertion algorithm in Section 3 may yield a good procedure for
computing the least-squares assignment. After identifying a good approximation Wy of
W=, the insertion algorithm should be started with W equal to W} rather than 0.

5 Some Applications

Constrained least-squares assignments, being a quite natural concept, have several appli-
cations. We mention some of them for the finite case below. Here S and X are finite sets
of sites and points in IE?, respectively.

For Y C X and s € 5, define the variance of the cluster ¥ with respect to the
site s as Yy 62(z,s). Then a constrained least-squares assignment L : X — 5 is just a
clustering for X such that the clusters have prescribed size and the sum of cluster variances
is minimized. Besides being optimal in the above sense, these clusters have the important
property that their convex hulls are pairwise disjoint: By Lemma 8, distinct clusters
are contained in different regions of a power diagram, and power regions are convex.
Hull-disjointness is a natural and desirable property of clusters which, for instance, eases
classification of new points. Simple examples show that replacing variance by the sum of
distances destroys this property.

If we define the profit of Y with respect to s as >y (z, s), then L obviously maximizes
the sum of cluster profits for given cluster sizes. This definition is motivated by the
following transportation problem. Interpret a point = (z1,...,24) as a truck loaded
with z; units of the i-th good, and a site s = (s1,...,54) as a market that sells the i-th
good at price s; per unit. Choose the cluster sizes according to the attractiveness of the

Minkowski-Type Theorems and Least-Squares Partitioning 11

markets, and L will tell you where each truck should go in order to achieve maximal profit
for these sizes.

The next application makes use of the property that constrained least-squares assign-
ments are invariant under translation and scaling.

Observation 9: Let 0 € RT and 7 € IE?, and consider a least-squares assignment I :
X — 5 with capacities ¢. Then L is also a least-squares assignment of X to a5+ 7
subject to the same capacities.

Proof: I maximizes) y(z,A(z)) over all assignments A with capacities c. A least-
squares assignment L' : X — ¢ 4+ 7 maximizes

Y {woA(@)+7) =0 (w,A@)) + > (z,7).

reX rzeX reX

Since the last sum does not depend on A and since ¢ > 0, L’ must also maximize

2eex (@, Al2)). O

Assume that 5 and X are of equal cardinality » and consider L : X — § subject to
c(s) = 1forall s € 5. L is called a least-squares matching in this case. Define a least-
squares fitting as the least-squares matching L, such that the value of L, : X — o5 + 7
is minimal for all scaling factors ¢ and translation vectors 7. Observation 9 tells us that
LY os+ 1) = L7(s) for all s € §. This shows that, when computing the least-squares
fitting, we can first calculate and fix the matching I and then determine the optimizing
values of ¢ and 7 for this matching.

Indeed, the latter task is easy when L is fixed. Let S = {sy,...,s,} and L71(s;) = ;.
We want to find ¢ and 7 = (7, ..., 74) such that

Qo,7)= z”: 6*(xi 08+ 7)
=1

is minimal. Setting the partial derivatives ¢, and (), 1 < j < d, to zero shows that the
minimum is achieved for

— an — <a7ﬁ>
bn — <ﬁ7ﬁ>

A=Y (vis). b= (s,
azzﬂ% ﬁ:Zsi.

Hence O(n) time suffices for these tasks if d is considered a constant. In the special cases
o = 1 (translation only) and 7 = 0 (scaling only) the minimum is achieved for 7 = L(a—§)
and o = a/b, respectively. It is easy to see that the insertion algorithm in Section 3 can be
modified to run in time O(n?) and space O(n) if all capacities are 1. The time complexity
matches that of the bipartite matching algorithm for general weighted graphs [9] which
takes space O(n?). Vaidya [14] described an O(n?y/nlogn) time and O(nlogn) space
bipartite matching algorithm for a version of the problem in which weights are Fuclidean
distances. His algorithm seems to generalize directly to least-squares matchings, with

g

y T = %(Q_Uﬁ)v

12

additively weighted Voronoi diagrams replaced in his data structure by power diagrams.
Recently we have learned [1] that new developments in dynamic closest-pair algorithms
further reduce the running time of Vaidya’s algorithm to O(n?*¢), for any € > 0, with the
constant of proportionality depending on € [2,6]. To summarize, a least-squares fitting of
two n-point sets can be computed either in O(n?*¢) time and O(n!**) space or, with our
algorithm, in O(n?) time and optimal O(n) space.

Notice that the formulas for ¢ and 7 extend to arbitrary capacities, thus we have:

Lemma 10: The least-squares fitting of m points to n sites subject to given capacities
can be computed in O(n?mlogm + nmlog? m) time and O(m) space.

Acknowledgements

The authors gratefully acknowledge numerous helpful discussions with P.K. Agarwal, H.
Edelsbrunner, B. Gartner, F. Johannes, H. Ranke, E. Welzl, and L. Wernisch.

References

[1] Agarwal, P.K.. Private communication, 1992.

[2] Agarwal, P.K., Matousek, J. Dynamic half-space range reporting and its applications,
Tech. Report CS5-1991-43, Duke University, 1992.

[3] Aurenhammer, F. Voronoi diagrams—a survey of a fundamental geometric data struc-
ture. ACM Computing Surveys, 23 (1991), 345-405.

[4] Aurenhammer, F. A criterion for the affine equivalence of cell complexes in IR? and
convex polyhedra in R+, Discrete Comput. Geom. 2 (1987), 49-64.

[5] Bertsekas, D.P. Constrained Optimization and Lagrange Multiplier Methods. Acad-
emic Press, New York, 1982.

[6] Eppstein, D. Fully dynamic maintenance of Euclidean minimum spanning trees and
maxima of decomposable functions, manuscript, 1992.

[7] Fredman, M., Tarjan, R. Fibonacci heaps and their uses in improved network opti-
mization algorithms. J. ACM 34 (1987), 596-615.

[8] Griinbaum, B. Convex Polytopes. Interscience, New York, 1967.

[9] Lawler, E. Combinatorial Optimization: Networks and Matroids. Holt Rinehart and
Winston, New York, 1976.

[10] Little, J.J. Extended gaussian images, mixed volumes, shape reconstruction. Proc.
15t ACM Symp. Computational Geometry (1985), 15-23.

[11] Overmars, M.H., van Leeuwen, J. Maintenance of configurations in the plane. .J.
Comput. System Seci. 23 (1981), 166-204.

[12] Tarjan, R.E. Data Structures and Network Algorithms. Soc. for Indust. and Appl.
Math., 1987.

Minkowski-Type Theorems and Least-Squares Partitioning 13

[13] Tokuyama, T., Nakano, J. Geometric algorithms for a minimum cost assignment
problem. Proc. 7" Ann. ACM Symp. Computational Geometry (1991), 262-271.

[14] Vaidya, P. Geometry helps in matching. STAM J. Comput. 18 (1989), 1201-1225.

