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Abstract

The power diagram of n weighted sites in d�space partitions a given m�point set into
clusters� one cluster for each region of the diagram� In this way� an assignment of
points to sites is induced� We show the equivalence of such assignments to Euclid�
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whose regions partition a given d�dimensional m�point set into clusters of prescribed
sizes� no matter where the sites are taken� Another consequence is that least�squares
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least�squares assignments are shown to be useful in solving a certain transportation
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thereby obtaining results on power diagrams with prescribed region volumes that are
related to Minkowski�s Theorem for convex polytopes�
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� Introduction and Statement of Results

Consider a set S of n points� called sites� in the Euclidean plane� S induces a partition of
the plane into n polygonal regions in the following natural way� The region of a site s � S�
reg	s
� consists of all points x which are closer to s than to the remaining n � � sites�
This partition is known as the Voronoi diagram of S� If we �x a set X of m points in the
plane� this set is partitioned by the Voronoi diagram of S into subsets� More precisely�
the diagram de�nes an assignment function A � X � S� given by

A	x
  s�� x � reg	s
�

Equivalently� A��	s
  X � reg	s
 for all s � S� Observe that the assignment A has the
following optimization property� It minimizes the sum of the distances between sites and
their assigned points� over all possible assignments X � S�
Given S and X � we would like to be able to change the assignment by varying the

distance function that underlies the Voronoi diagram of S� To this end� we attach a set
W  fw	s
 j s � Sg of real numbers� called weights� to the sites and replace the Euclidean
distance �	x� s
 between a point x and a site s by the power function

powW 	x� s
  ��	x� s
� w	s
�

The resulting partition of the plane is known as the power diagram of S with weights
W � 	Interested readers may consult the survey paper ��� for properties of Voronoi�type
diagrams in general and power diagrams in particular�
 Each region is still a convex
polygon� and has the property of shrinking 	expanding
 when the weight of its de�ning
site is decreased 	respectively� increased
� As above� we obtain an assignment function
AW � X � S which now clearly depends on the particular choice of weights�
The concepts introduced above extend to arbitrary dimensions in a straightforward

manner� We show the following general result�

Theorem �� Let S and X be sets of n sites and m points in Euclidean d�space IEd�
respectively� For any choice of integer site capacities c	s
 with

P
s�S c	s
  m� there

exists a set W of weights such that jA��
W
	s
j  c	s
� for all sites s � S�

In other words� there always exists a power diagram whose regions partition a given
d�dimensional �nite point�set X into clusters of prescribed size� no matter where the sites
of the power diagram are chosen� More generally� let AW � IEd � S be an assignment
induced by a power diagram and viewed as mapping points of the entire d�space to sites
of S� Put A��W 	s
  regW 	s
� the region of site s in the power diagram of S with weights
W �

Theorem �� Let S be a set of n sites in IEd� let � be some probability distribution on
IEd which is zero outside ��� ��d and let �	X
 

R
X
�	x
dx denote the measure of

a set X � IEd with respect to �� For any capacity function c � S � ��� �� withP
s�S c	s
  �� there is a set W of weights such that �	regW 	s

  c	s
� for all sites

s � S�

By taking� for instance� � to be the uniform distribution in ��� ��d we get�
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Corollary ��� For any set of n sites there exists a power diagram that partitions the unit
hypercube into n polyhedral regions of prescribed volume�

This seems surprising� as the placement of the sites determines the normals of the
facets separating the regions� Corollary �� is related to Minkowski�s Theorem for convex
polytopes 	see� e�g�� ���
 which� for our purposes� can be stated as follows� Choose any n
vectors in IEd��� no two parallel� There exists a convex polytope in IEd�� with n�� facets�
n of which correspond to the given vectors in that each face is normal to its corresponding
vector and has d�dimensional volume equal to its length� In fact� such a polytope is unique
up to translation� Since power diagrams in IEd are exactly the projections of unbounded
convex polyhedra in IEd�� ���� which can be viewed as �polytopes� with the 	n � �
�st
facet at in�nity in the direction of projection� Corollary �� implies a generalization of
Minkowski�s Theorem for unbounded polyhedra�
As we shall see� the assignment function AW has the remarkable property that it mini�

mizes � for all possible assignments satisfying the same capacity constraints as AW does �
the sum 	the integral in the continuous case
 of the squares of the distances between sites
and their assigned points� Such an assignment will be called a least�squares assignment

subject to the capacity function� More generally� the following will be shown�

Theorem �� Let S be a �nite set of sites in IEd� Any assignment induced by a power
diagram of S is a least�squares assignment� subject to the resulting capacities� Con�
versely� a least�squares assignment for S� subject to any given choice of capacities�
exists and can be realized by a power diagram of S�

The second part of Theorem � implies Theorems � and �� By Theorem �� a least�
squares assignment subject to any given capacity constraints can be computed by �nding
weights W such that AW satis�es these constraints�

To illustrate the usefulness of the concept of a constrained least�squares assignment
L � X � S� let us mention some properties of L for the case when X is a �nite point�set�
	�
 The induced clusters L��	s
� s � S� are pairwise convex�hull disjoint� Had we cho�

sen to minimize a di�erent function� such as the sum of Euclidean distances to sites� rather
than the sum of squared distances� the optimum assignment would not be guaranteed to
have the disjointness property� Hull�disjointness of clusters is desirable as� for example� it
eases the classi�cation of new points�
	�
 In section � we will show that solving a certain transportation problem is equivalent

to �nding least�squares clusters of prescribed size�
	�
 L is invariant under translation and scaling of S� This property is useful� for

example� for �nding the best least�squares �tting of two n�point sets S and X if transla�
tion and scaling is allowed� It ensures that the least�squares matching between these sets
	c	s
  � for all s � S
 already coincides with the bijection in the optimal �tting� Given
the bijection� however� it is an easy task to �nd the optimizing translation vector and
scaling factor� The relationship between least�squares matching and least�squares �tting
is discussed in Section ��

Exploiting the machinery of power diagrams� we propose two algorithms for computing
constrained least�squares assignments� The �rst algorithm works for �nite point�sets X � It
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starts with the Voronoi diagram of S 	all n weights are zero
 and with X  �� and proceeds
by inserting the m points into X � one by one� at each step adjusting the weights such that
the capacities are not exceeded� In the plane� time complexity ofO	n�m logm�nm log�m

and optimal space complexity O	m
 are achieved� 	Note that we may assume m 	 n as
attention can be restricted to sites with non�zero capacities�
 This is an improvement over
the best known deterministic algorithm ��� that achieves time O	nm� � m� logm
 and
space O	nm
 by transformation into a minimum cost �ow problem� 	For a discussion of
the general assignment problem� see also �����
 We mention that the randomized algorithm
of Tokuyama and Nakano ���� achieves expected time O	nm�n

p
nm
 and space O	nm
�

their algorithm is much more general than ours in that it �nds the optimum constrained
assignment for any cost function� and not just the square of the Euclidean distance� to
which we have restricted our attention in the current paper�
The second algorithm is applicable to both the �nite and the continuous versions

of the problem� It relies on the following interesting fact� Finding a weight vector W
such that AW is optimal subject to the capacity constraints is equivalent to �nding a
maximum of a concave n�variate function whose domain is the weight space� We propose
a gradient method for iteratively improving the weight vector� This method has superlinear
convergence provided the probability distribution � is continuous� Its space requirement
is optimal� O	n
�
In the �nite case� on the other hand� the n�variate function mentioned above is

piecewise�linear and the maximum is full�dimensional� Finding a point in the maximum is
now a linear programming problem whose number of constraints is� however� exponential
in n� Our iterative algorithm can still be used� it is guaranteed to terminate after a �nite
number of steps� Experiments have shown that it can be expected to run quite fast in
practice� Its space requirement is O	m
� We are exploring the possibility of combining the
two approaches� in order to obtain a provably fast algorithm for computing a constrained
least�squares assignment for a �nite set of points�

� Proof of Theorem �

Theorem � contains several statements which are now stated separately 	and more pre�
cisely
 and proved� We start by showing that assignments de�ned by power diagrams are
constrained least�squares assignments� Let us consider the �nite case �rst�

Lemma �� Let S and X be �nite sets of sites and points in IEd� respectively� and let W
be a set of weights for S� The assignment AW minimizes

X
x�X

��	x�A	x



over all assignments A � X � S with capacity constraints jA��	s
j  jA��W 	s
j for
all s � S�

Proof� From the de�nition of AW it is evident that AW minimizes the expression

X
x�X

powW 	x�Ax

 
X
x�X

��	x�Ax

�
X
x�X

w	Ax
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over all possible assignments A � X � S� regardless of the capacity constraints� The last
sum� being equal to

P
s�S jA��W 	s
jw	s
� is a �xed constant for all assignments A with

capacities jA��	s
j  jA��W 	s
j� and the lemma follows� �

The following continuous version of Lemma � can be proved in a similar way�

Lemma �� Let S be a �nite set of sites in IEd with weights W � let � be some probability
distribution on ��� ��d� and let � be the measure de�ned by �� The assignment
AW � ��� ��d � S minimizes Z

�����d
�	x
��	x�A	x

dx

over all assignments A � ��� ��d � S with capacities �	A��	s

  �	A��
W
	s

 for all

s � S� �

We proceed to prove the existence of constrained least�squares assignments� Fix a set S of
sites� a capacity function c � S � ��� �� with

P
s�S c	s
  �� and a probability distribution

� on ��� ��d� Suppose that a least�squares assignment L � ��� ��d � S subject to c exists� For
convenience� let R	s
  L��	s
� We begin by showing that L has to satisfy the following
property� For any two sites s� t � S� there is a hyperplane separating R	s
 from R	t
�
More precisely� we have�

Observation �� Let s� t � S� s 
 t� There exists a hyperplane H orthogonal to t�s such
that �	Hts � R	s

  � and �	Hst � R	t

  �� where Hts is the halfspace bounded
by H and containing H � 	t � s
� and Hst is the complementary halfspace�

Proof� Suppose that there is no such hyperplane� Then there is a hyperplane H orthogo�
nal to t�s and such that �	Hts�R	s

 � � and �	Hst�R	t

 � �� Now use the fact that�
if a point xs � R	s
 is in Hts and a point xt � R	t
 is in Hst� then xs can be reassigned
to t and xt reassigned to s� thereby reducing the sum of squared distances�

� Integration
over two subsets of R	s
 and R	t
 of equal positive measure that were assumed to exist
on the wrong sides of H thus shows that these subsets could be reassigned� obtaining an
assignment better than L but subject to the same capacities� �

This proof also works when L � X � S and X is �nite� if we take � as the indicator
function of X in ��� ��d� and replace integrals by sums� 	Degenerate positions of X may
be handled by de�ning both Hst and Hts in the statement of Observation � as open
halfspaces�
 Note that� in any case� we are free to choose the site to which points x with
�	x
  � are assigned by L�
Observation � implies that� if L exists� it must be realized by a packing of convex

polyhedra P 	s
 
T
t��sHst� Clearly� the existence of L is trivial in the �nite case� For

the continuous case it is enough to show the following� 	Here we restrict attention to
probability distributions � with � continuous�


Lemma 	� The class of assignments A � ��� ��d � S� realizable by a packing of IEd with
convex polyhedra fP 	s
g� such that �	P 	s

  c	s
 and P 	s
 has less than jSj facets�
is nonempty� Moreover� among all such assignments there is one that achieves the
least�squares assignment L subject to c�

�I�e�� ���xs� t	 
 ���xt� s	 � ���xt� t	 
 ���xs� s	� The easy proof of this fact is left to the reader�
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Proof� Let n  jSj� and let Pi be an at most 	n��
�facet polyhedron associated with the
i�th site si� Pi is the intersection of n�� halfspaces in IEd� each of which can be speci�ed by
the vector extending from si to its de�ning hyperplane and normal to it� Hence P�� � � � � Pn
are completely determined by a k�tuple of real numbers� for k  n	n��
d� 	For simplicity�
we will not distinguish between Pi and its 	n� �
d�tuple in the sequel�
 Now consider the
continuous function

� � IRk � IRn� �	P�� � � � � Pn
  	�	P�
� � � � � �	Pn

�

Let � � IRk such that �	�
  c� � corresponds to the set of all n�tuples of polyhedra
whose measures ful�ll the capacity constraints� � is a closed set� being the inverse image
of a closed set under a continuous function� Since � is zero outside ��� ��d� there is a
constant b such that� for all i� if jPij� � b then �	Pi
  c	si
 still can be achieved for
all possible directions of halfspace normals for Pi� Hence attention may be restricted to
tuples 	P�� � � � � Pn
 � � � ��b� b�k� Next� consider the continuous function

	 � IRk � IR� 		P�� � � � � Pn
 
X
i��j

V 	Pi � Pj
�

where V denotes d�dimensional volume� Let �� � IRk such that 		��
  �� Again� �� is a
closed set� It corresponds to the set of all n�tuples of polyhedra yielding a packing of IEd�
In summary� we know that� if the constrained least�squares assignment L exists� it is

realizable by an n�tuple of polyhedra 	P�� � � � � Pn
 in the compact set �
��  �������b� b�k�

This set is non�empty� for example� take n parallel slices of ��� ��d with measures c	si
�
Now consider the function Q � ��� � IR�

Q	P�� � � � � Pn
 
nX
i��

Z
Pi

�	x
��	x� si
dx



Z
�����d

�	x
��	x�A	x

dx�

where A � ��� ��d � S denotes the assignment de�ned by P�� � � � � Pn� Q is a continuous
and non�negative function whose domain is compact� so it must attain its minimum� This
proves the existence of L� �

Finally we show that constrained least�squares assignments � for the continuous case
as well as for the �nite � can always be realized by power diagrams�

Lemma 
� The polyhedral packing fP 	s
g that realizes L can be chosen such that� for
some choice W of weights for S� P 	s
  regW 	s
 for all s � S�

Proof� Let �P 	s
  P 	s
 � ��� ��d� By assigning points x with �	x
  � appropriately
we can obviously achieve L��	s
 � �P 	s
� But the polytopes �P 	s
 de�ne a packing in
��� ��d whereas the sets L��	s
 are supposed to de�ne a partition of ��� ��d� Thus we get
L��	s
  �P 	s
 which implies that L can be realized by a partition of the unit hypercube
into convex polytopes�
Recall from Observation � that the corresponding partition fP 	s
g of IEd has a special

property� For any pair of sites s� t � S� if P 	s
 and P 	t
 share a facet F � the vector t � s
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is orthogonal to F � Moreover� F � 	t � s
 lies on the same side of F as R	t
 does� It is
known ��� that these two conditions are necessary and su cient for a convex partition to
be the power diagram of S for some suitable set W of weights� This completes the proof
of the lemma� �

� Computing the Weights

In this section we describe an algorithm that� for a set S of n sites and a set X of m points
in the plane� computes a least�squares assignment L � X � S subject to a given capacity
vector c  	c	s

s�S � INn with jcj�  m� By Theorem �� it is su cient to compute a
weight vector W  	w	s

s�S such that jX � regW 	s
j  c	s
 for all s � S� The algorithm
below computes such a weight vector in time O	n�m logm�nm log�m
 and optimal space
O	m
 and� as a byproduct� also determines the desired assignment L  AW � Note that
the correctness of this algorithm gives another proof of Theorem ��
The algorithm starts with W  � 	i�e�� with the Voronoi diagram of S
 and no points�

and proceeds in m phases� During each phase� one point of X is inserted into the current
diagram� W is then recomputed such that the invariant b	s
 � c	s
 for all s � S is
maintained� where b	s
 denotes the current number of points in regW 	s
� More speci�cally�
the algorithm does the following for each point x to be inserted�

�� Determine the region regW 	s
 of the current power diagram containing x� Add x to
set of points contained in regW 	s
� If b	s
 � c	s
 the phase ends � there is no need
to change W � Otherwise� let D  fsg� Intuitively� D will contain the sites whose
regions are too large and must be shrunk�

�� Repeat the following two steps�

	a
 Shrink all D�regions by simultaneously decreasing their weights� More formally�
�nd the smallest positive number ! so that decreasing the weights of all D�sites
simultaneously by more than ! causes one of the shrinking regions to lose a
point� say p�� Notice that in this process a site in S nD cannot lose a point to
a D�site� and that no point can move between two D�regions or between two
non�D�regions�

	b
 Consider the region reg	s�
 where p� would end up� had we shrunk the weights
by more than !� If b	s�
 
 c	s�
� we found a region which is not full� Go to ��
Else add s� to D and repeat 	a
�

�� We have found a region reg	s�
 that is not full and a point p� on its boundary� Assign
p� to s�� This makes some region reg	s��
 with s�� � D less than full� But s�� was
added to D because of some point p�� that it shared with site s��� that had already
been in D� So assign p�� to s�� and follow the chain back� until the original site s is
encountered and relieved of one point"this restores the invariant that was violated
in the beginning of the current phase and the phase ends�

To analyze this procedure� we must decide 	�
 how to store points belonging to a region�
	�
 how to detect the smallest weight change that makes a set of regions lose a point� We
store the points of reg	s
 as a dynamic convex hull structure that allows O	log�m
 time
insertion and deletion� We need a data structure that can return� in logarithmic time�
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the two points of the hull that de�ne the two tangents to the hull with given slope �����
Each time D changes we recompute the power diagram and determine the list of edges
separating D�regions from the non�D�regions� Those are the O	n
 edges that will move
by translation as ! varies� For each edge� use the convex hull data structure to determine
the �rst time 	i�e�� the value of !
 at which the line supporting the edge will strike a point
contained in the D�region that it bounds� This requires O	n logm
 time� The smallest
such ! is the one we are looking for� At this point� one region has shrunk so much as
to lose a point� Check if the new region is non�full� If it is� we are done � reshu#ing
O	n
 points clearly takes only O	n
 updates to the convex hulls 	and thus O	n log�m

time
 and the phase is complete� If not� the new region joins D and we again recompute
the power diagram� identify moving edges� �nd the �rst time each edge hits a point in
a D�region� etc� Growing D by one requires O	n logn � n logm
 time� hence one phase
requires O	n� logm� n log�m
 time� as claimed� The space requirement is dominated by
the convex hull structure and is O	m
�

It is not necessary to recompute the power diagram anew after each shrinking step� as
it can be maintained dynamically� However� we did not succeed in proving a better than
O	n�
 upper bound on the number of combinatorial changes in the diagram during one
phase of the algorithm� In fact� we suspect that the number of changes is $	n�
 in the
worst case�
We already mentioned the connection of least�squares assignments to network �ow

problems� In the terminology of network �ows� the chain�like process of reassigning points
to sites at the end of a phase corresponds exactly to an augmenting path�

� An Iterative Approach

We now propose a method for iteratively improving the weight vector W � The method
relies on the fact that the �power sum� of the assignment AW is a concave function of W �
The continuous case is treated �rst�
For an arbitrary but �xed assignment A � ��� ��d � S� de�ne the function fA � IR

n � IR
by

fA	W 
 

Z
�����d

�	x
powW	x�A	x

dx�

Let S  fs�� � � � � sng� de�ne a vector B	A
 
�
�	A��	si



�
i�������n

� and put

Q	A
 

Z
�����d

�	x
��	x�A	x

dx�

With this notation� fA can be written as

fA	W 
  �hB	A
�W i� Q	A
�

where h�� �i denotes the inner product� Hence fA is a linear function� Now consider the
function f  fAW

� recall that AW is the assignment induced by the power diagram with
weightsW � We claim that f is the pointwise minimum of the class of functions fA because�
for �xed W � the assignment AW minimizes the value fA	W 
 by de�nition of the power
diagram of S and W � In other words� the graph of f is the lower envelope of a set of
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hyperplanes in IRn��� Hence f is a concave function� If � is continuous then f describes
a smooth surface� Note that the gradient f	W 
 of f at W is given by �B	AW 
�
Recall that we aim to �nd a weight vector W � such that B	AW �
  C� the given

capacity vector� Consider the function

g	W 
  f	W 
 � hC�W i
 hC �B	AW 
�W i�Q	AW 
�

Its gradient g	W 
 is C � B	AW 
� But B	AW �
  C just means g	W �
  �� which
corresponds to a global maximum of the concave function g� So the problem we want to
solve is� Find W � such that g	W �
 is maximal�
Finding the maximum of a concave and smooth n�variate function is a well�studied

problem� In our case� we can exploit the fact that� for any given weight vector W � we
can compute g	W 
 and g	W 
� So a gradient method 	see� e�g�� ���
 for iteratively
approximating W � can be used� Starting� for example� with the weight vector W�  �
	i�e�� the Voronoi diagram of S
� we use the iteration scheme

Wk�� Wk � tk  g	Wk
�

If the step sizes tk are chosen properly then Wk converges to the solution W
� at a super�

linear rate� Intuitively� what happens is that weights of sites whose region measures are
too small 	large
 are increased 	respectively� decreased
 at each step�
If S is a set of n sites in the plane� and � is the uniform distribution in the square� each

step can be carried out in O	n logn
 time� For the current weight vector Wk � we need
O	n logn
 time to construct the power diagram of S and Wk� and time O	n
 is needed in
addition to calculate the area and the integral of squared distances for each region within
the unit square� The space requirement is optimal� O	n
�
The method just described was inspired by the algorithm for �inverting� Minkowski�s

Theorem� i�e�� computing a three�dimensional polytope given by normals and areas of all
its facets� proposed by Little �����

In the �nite case AW � X � S� the graph of g is the lower envelope of �nitely many
hyperplanes� and thus is a concave polyhedral surface in IRn��� The gradient of the
hyperplane spanning the facet that lies vertically above W is given by C �B	AW 
� where
B	AW 
  	jA��W 	si
j
i�������n counts the numbers of points ofX in the regions regW 	si
� By
Lemma �� the number of hyperplanes de�ning g is equal to the number of di�erent vectors
B	A
 for all possible assignments A � X � S� which is

�
m�n��
n��

�
for jX j  m� Theorem �

implies that the surface g actually realizes as many facets� Except for degenerate sets X �
the maximum of g is attained by a facet� the set fW � j g	W �
  �g has dimension n�
Finding a maximum of g can now be seen as a linear programming problem� Its

number of constraints is� however� at least exponential in n� On the other hand� this
linear program has a very special structure� in Section �� we have described a polynomial
algorithm for solving it�
Concerning the gradient method� the full�dimensionality of the maximum can be ex�

ploited in the choice of step sizes� Initially� an overestimate %g of g is determined� Let
Q	A
 

P
x�X ��	x�A	x

� Since g	W �
  Q	AW �
� Lemma � implies that %g  Q	A
 will

do for any assignment A with B	A
  C� The horizontal hyperplane %H � xn��  %g in
IRn�� is identi�ed with the weight space� Bk  g	Wk
 is the gradient of the hyperplane



��

Hk spanning the facet of the graph of g vertically above Wk� The 	k � �
�st step now
moves from Wk in direction of Bk until Hk is hit� As is easily calculated� this corresponds
to the step size

tk 
%g � g	Wk


hBk � Bki �

This step is iterated until either the maximum is reached� which means Bk��  C� or the
maximum is missed� meaning that g	Wk����Bk
 
 g	Wk��
 for all � � �� or equivalently�
hBk��� Bki 
 �� If the latter happens� the overestimate %g is lowered� %H is translated such
that� when identifying the weight space with %H� the ray fromWk in direction Bk intersects
Hk �Hk��� That is� %g is taken such that

%g � g	Wk


hBk � Bki 
%g � g	Wk��


hBk��� Bk��i �

With the new estimate� the step above is iterated again� starting from Wk� It is not hard
to see that this procedure will not visit a facet twice� so the maximum is reached after a
�nite number of steps�
For sites and points in the plane� the cost for each step is O	m logn
� O	n logn


time su ces for computing the power diagram and preprocessing it for point location� and
O	logn
 time is needed for locating each of the m 	 n points in X � The space requirement
is O	m
 which is optimal� We have implemented the method for the planar case� For sets
of ��� sites and ���� points uniformly distributed in a rectangle� the procedure always
stopped after less than �� steps� Due to numerical errors� however� only a close estimate
Bk of C was reached� We observed jC � Bkj� � n which suggests that a combination
of this method with the insertion algorithm in Section � may yield a good procedure for
computing the least�squares assignment� After identifying a good approximation Wk of
W �� the insertion algorithm should be started with W equal to Wk rather than ��

� Some Applications

Constrained least�squares assignments� being a quite natural concept� have several appli�
cations� We mention some of them for the �nite case below� Here S and X are �nite sets
of sites and points in IEd� respectively�
For Y � X and s � S� de�ne the variance of the cluster Y with respect to the

site s as
P

x�Y �
�	x� s
� Then a constrained least�squares assignment L � X � S is just a

clustering forX such that the clusters have prescribed size and the sum of cluster variances
is minimized� Besides being optimal in the above sense� these clusters have the important
property that their convex hulls are pairwise disjoint� By Lemma �� distinct clusters
are contained in di�erent regions of a power diagram� and power regions are convex�
Hull�disjointness is a natural and desirable property of clusters which� for instance� eases
classi�cation of new points� Simple examples show that replacing variance by the sum of
distances destroys this property�
If we de�ne the pro�t of Y with respect to s as

P
x�Y hx� si� then L obviously maximizes

the sum of cluster pro�ts for given cluster sizes� This de�nition is motivated by the
following transportation problem� Interpret a point x  	x�� � � � � xd
 as a truck loaded
with xi units of the i�th good� and a site s  	s�� � � � � sd
 as a market that sells the i�th
good at price si per unit� Choose the cluster sizes according to the attractiveness of the
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markets� and L will tell you where each truck should go in order to achieve maximal pro�t
for these sizes�
The next application makes use of the property that constrained least�squares assign�

ments are invariant under translation and scaling�

Observation �� Let � � IR� and  � IEd� and consider a least�squares assignment L �
X � S with capacities c� Then L is also a least�squares assignment of X to �S � 
subject to the same capacities�

Proof� L maximizes
P

x�Xhx�A	x
i over all assignments A with capacities c� A least�
squares assignment L� � X � �S �  maximizes

X
x�X

hx� �A	x
 � i  �
X
x�X

hx�A	x
i�
X
x�X

hx� i�

Since the last sum does not depend on A and since � � �� L� must also maximizeP
x�Xhx�A	x
i� �

Assume that S and X are of equal cardinality n and consider L � X � S subject to
c	s
  � for all s � S� L is called a least�squares matching in this case� De�ne a least�

squares �tting as the least�squares matching L� such that the value of L� � X � �S � 
is minimal for all scaling factors � and translation vectors  � Observation � tells us that
L��� 	�s� 
  L��	s
 for all s � S� This shows that� when computing the least�squares
�tting� we can �rst calculate and �x the matching L and then determine the optimizing
values of � and  for this matching�
Indeed� the latter task is easy when L is �xed� Let S  fs�� � � � � sng and L��	si
  xi�

We want to �nd � and   	�� � � � � d
 such that

Q	�� 
 
nX
i��

��	xi� �si � 


is minimal� Setting the partial derivatives Q� and Q�j � � � j � d� to zero shows that the
minimum is achieved for

� 
an� h�� �i
bn� h�� �i �  

�

n
	�� ��
�

a 
X

hxi� sii� b 
X

hsi� sii�

� 
X

xi� � 
X

si�

Hence O	n
 time su ces for these tasks if d is considered a constant� In the special cases
�  � 	translation only
 and   � 	scaling only
 the minimum is achieved for   �

n
	���


and �  a�b� respectively� It is easy to see that the insertion algorithm in Section � can be
modi�ed to run in time O	n
 and space O	n
 if all capacities are �� The time complexity
matches that of the bipartite matching algorithm for general weighted graphs ��� which
takes space O	n�
� Vaidya ���� described an O	n�

p
n logn
 time and O	n logn
 space

bipartite matching algorithm for a version of the problem in which weights are Euclidean
distances� His algorithm seems to generalize directly to least�squares matchings� with



��

additively weighted Voronoi diagrams replaced in his data structure by power diagrams�
Recently we have learned ��� that new developments in dynamic closest�pair algorithms
further reduce the running time of Vaidya�s algorithm to O	n���
� for any � � �� with the
constant of proportionality depending on � ��� ��� To summarize� a least�squares �tting of
two n�point sets can be computed either in O	n���
 time and O	n���
 space or� with our
algorithm� in O	n
 time and optimal O	n
 space�
Notice that the formulas for � and  extend to arbitrary capacities� thus we have�

Lemma ��� The least�squares �tting of m points to n sites subject to given capacities
can be computed in O	n�m logm� nm log�m
 time and O	m
 space�
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