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We investigate the quantum phases of the frustrated spin- 1
2 J1-J2-J3 Heisenberg model on the square lattice

with ferromagnetic J1 and antiferromagnetic J2 and J3 interactions. Using the pseudofermion functional
renormalization group technique, we find an intermediate paramagnetic phase located between classically ordered
ferromagnetic, stripy antiferromagnetic, and incommensurate spiral phases. We observe that quantum fluctuations
lead to significant shifts of the spiral pitch angles compared to the classical limit. By computing the response
of the system with respect to various spin rotation and lattice symmetry-breaking perturbations, we identify a
complex interplay between different nematic spin states in the paramagnetic phase. While retaining time-reversal
invariance, these phases either break spin-rotation symmetry, lattice-rotation symmetry, or a combination of
both. We therefore propose the J1-J2-J3 Heisenberg model on the square lattice as a paradigmatic example where
different intimately connected types of nematic orders emerge in the same model.
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I. INTRODUCTION

A cardinal theme in modern condensed matter physics
is the search for novel states of matter, such as quantum
spin liquids. Their identification as a host of fractional
spin excitations and topological order [1], and the seminal
works of Anderson [2,3] highlighting the possible connection
of the “resonating valence-bond” scenario to high-Tc have
established the study of spin liquids as one of the most active
areas of research. The traditional recipe for obtaining spin
liquids involves the task of melting magnetic long-range order
by either geometrical or parametrical frustration in a quantum
antiferromagnet. Recently, the synthesis of a growing number
of quantum magnets with competing antiferromagnetic (AF)
and ferromagnetic (FM) interactions, has also fuelled the
search for paramagnets in a FM environment [4–9]. While
frustration from the interplay between AF and FM couplings
can be similarly efficient in melting magnetic order as in
the purely AF case, the propensity for resonating singlet
bonds is weakened in favor of resonating triplet bonds.
The latter scenario opens up the possibility of stabilizing
an exotic variant of a quantum paramagnet, called a spin
nematic [10–12]. While a spin nematic is characterized by
an absence of dipolar magnetic order, i.e., 〈Ŝi〉 = 0 (where
Ŝi denotes the spin operator at site i), and respects time-
reversal symmetry, it breaks SU(2) spin-rotation symmetry
due to a nonzero quadrupolar order parameter of the form
Oμν

ij = 〈Ŝμ

i Ŝν
j 〉 − δμν

3 〈Ŝi · Ŝj 〉 (with μ, ν = x,y,z). It can be
viewed as a quantum spin analog of the nematic state in
liquid crystals where the spin direction takes the role of the
orientation of molecules. Historically, the search has focused
on S = 1 Heisenberg systems with additional biquadratic
[(Ŝi · Ŝj )2] interactions [13–22], and more recently on systems
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in a magnetic field [23,24]. On the experimental front, the
detection of quadrupolar order is extremely challenging, e.g.,
in thermodynamic measurements their response is widely
indistinguishable from that of antiferromagnets [10]. However,
techniques such as neutron scattering in a magnetic field have
been suggested as probes to detect nematic order [25]. Only
very recently has the possible existence of nematic orders
been reported in iron-based high-Tc superconductors such as
FeSe [26–29], in the mineral linarite [30], and in ultracold
atomic gases [31] (see Ref. [32] for further details on candidate
materials).

In this paper, we investigate a simple frustrated 2D system
with competing AF and FM interactions being the spin- 1

2
Heisenberg model on the square lattice with FM nearest-
neighbor (J1), and AF second neighbor (J2) couplings. Strong
frustration in the vicinity of the classical (S → ∞) transition
point at J2/|J1| = 1/2 separating ferromagnetic order at
J2/|J1| < 1/2 [with wave vector Qcl = (0,0), see Fig. 1(b)]
from collinear stripe AF-order at J2/|J1| > 1/2 [with Qcl =
(π,0) or (0,π ), see Fig. 1(c)] has raised the question of an
intermediate paramagnetic phase in the quantum case, which
could possibly be nematic in nature. Herein, we study different
nematic phases on the square lattice in a broader context by
adding an AF third-neighbor interaction J3. Classically, this
gives rise to the appearance of two additional magnetic states
[33], a 1D helimagnet (HM) consisting of lines of parallel
spins in the (0,1) or (1,0) direction [with Qcl = (±q,0) or
(0, ± q), see Fig. 1(d)] and a 2D helimagnet consisting of
lines of parallel spins in the (1,1) or (1, − 1) direction, [with
Qcl = (±q, ± q), see Fig. 1(e) and the inset of Fig. 1(a) for the
classical phase diagram]. In general, these helical orders are
incommensurate with the lattice periodicity. Little is known
about the effects of quantum fluctuations in this model. In the
lowest (first) order in 1/S, a significant enhancement of the
stripe AF phase at the expense of FM and HM states has been
reported [34–37], and the effect of the J3 interaction was also
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FIG. 1. (a) Quantum phase diagram of the spin- 1
2 J1-J2-J3 Heisenberg model [Eq. (1)] obtained within PFFRG. The coupling constants

are normalized such that |J1| + J2 + J3 = 1. The phase diagram hosts a large PM domain featuring s-SN, d-SN, and LN orders. Interpolating
colors indicate regions of uncertainties near the phase boundaries. The corresponding classical phase diagram is shown in the upper left. A
depiction of the exchange couplings is shown in the upper right. (b)–(e) Illustrations of the real space pattern (upper row) and momentum-space
resolved magnetic susceptibility profile (lower row) in units of 1/|J1| for magnetism at ordering vectors Q = (0,0), (π,0), (q,0), and (q,q),
evaluated at the parameters (|J1|,J2,J3) = (0.84,0.08,0.08), (0.52,0.42,0.06), (0.48,0.38,0.14), and (0.52,0.06,0.42), respectively.

analyzed using exact-diagonalization (ED) on systems up to
36 spins [38,39].

To shed more light on the quantum effects in the J1-J2-J3

Heisenberg model on the square lattice, we employ a state-
of-the-art implementation of the pseudofermion functional
renormalization group (PFFRG) method enabling access
to large correlation areas (∼1000 sites). In particular, we
introduce generalized nematic response functions within the
PFFRG framework. Aside from d-wave spin nematic (d-SN)
order that breaks SU(2) spin-rotation symmetry as well as
lattice-rotation symmetry [38–41], we also find regimes of s-
wave spin-nematic (s-SN) order, which exclusively break spin-
rotation symmetry (while keeping lattice symmetries intact),
and lattice nematic (LN) orders, which only break lattice-
rotation symmetries (while keeping spin-rotation symmetries
intact). Our main results are summarized as follows: quantum
fluctuations melt significant portions of the HM and FM orders,
stabilizing a PM phase over a vast region of parameter space.
The PM phase features different domains wherein either the
d-SN, s-SN, or LN response function dominates, indicating
that all three types of nematic orders might be realized in the
system.

II. MODEL AND METHOD

The Hamiltonian of the J1-J2-J3 Heisenberg model reads

Ĥ = J1

∑
〈i,j〉

Ŝi · Ŝj + J2

∑
〈〈i,j〉〉

Ŝi · Ŝj + J3

∑
〈〈〈i,j〉〉〉

Ŝi · Ŝj , (1)

where J1 � 0 (FM) and J2,J3 � 0 (AF) and 〈i,j 〉, 〈〈i,j 〉〉, and
〈〈〈i,j 〉〉〉 denote sums over nearest-neighbor (NN), second-
nearest-neighbor (2-NN), and third-nearest-neighbor (3-NN)
pairs of sites, respectively [see inset of Fig. 1(a)]. Within the
PFFRG scheme [42–47] this Hamiltonian is first rewritten in
terms of Abrikosov pseudofermions, Ŝi = 1

2

∑
α,β ĉ

†
i,ασσσαβ ĉi,β ,

where α, β =↑ or ↓, and ĉ
†
i,α (ĉi,α) are the pseudofermion

creation (annhilation) operators, and σσσ is the Pauli vector.

The introduction of pseudofermions is associated with an
enlargement of the Hilbert space, which, in addition to the
physical spin- 1

2 states, also contains spurious empty or doubly
occupied states carrying zero spin. Since such unphysical
occupations effectively act like a vacancy in the spin lattice,
they are associated with a finite excitation energy of the order
of the exchange couplings. This can be tested by adding onsite
terms ∼ ∑

i S2
i to the Hamiltonian, which change the energetic

difference between physical and unphysical occupations [48].
As a consequence, the ground state of the fermionic system
probed within PFFRG is identical to the ground state of the
original spin model where each site is singly occupied.

Following the introduction of an infrared cutoff � along
the Matsubara frequency axis in the fermion propagator,
the FRG ansatz is formulated in terms of an exact but
infinite hierarchy of coupled flow equations for the m-particle
vertex functions [49,50]. For a numerical implementation,
the hierarchy of equations is truncated to keep only the
self-energy and two-particle vertex functions. This truncation
is performed such that via self-constistent feedback of the
self-energy into the two-particle vertex, the approach remains
separately exact in the large S limit as well as in the large N

limit [where the spins’ symmetry group is promoted from
SU(2) to SU(N )]. This property allows for an unbiased
investigation of the competition between magnetic ordering
tendencies and quantum paramagnetic behavior. Approxima-
tions in the PFFRG scheme concern subleading orders in
1/S and 1/N such as three-particle vertices. Deep inside
magnetically ordered phases the exactness of the PFFRG in
the leading order in 1/S ensures that classical magnetic states
are correctly captured. On the other hand, the leading 1/N

terms guarantee a proper description of nonmagnetic states
deep inside magnetically disordered phases. The neglected
subleading terms given by fermionic three-particle vertices
can become important near quantum critical points, which are
characterized by a competition between quantum fluctuations
and ordering tendencies. As a consequence, phase transitions
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are always subject to an uncertainty within PFFRG. Three-
particle vertices can also become important in chiral spin
liquids where they describe chiral order parameters of the
form ∼〈(Si × Sj ) · Sk〉. Therefore the current implementation
of the PFFRG does not resolve the propensity of a spin system
to form chiral spin liquids.

The two-particle vertex in real space is related to the static
(imaginary time-integrated) spin correlator

C
μν

ij =
∫ ∞

0
dτ

〈
Ŝ

μ

i (τ )Ŝν
j (0)

〉
(2)

with Ŝ
μ

i (τ ) = eτĤŜ
μ

i e−τĤ. Within PFFRG, the thermody-
namic limit is approximated by calculating the correlators C

μν

ij

only up to a maximal distance between sites i and j . The main
physical outcome of the PFFRG are the Fourier-transformed
correlators, i.e., the static susceptibility χμν,�(q) evaluated
as a function of the RG scale �. After performing the
Fourier transform, we generally have access to a continuous
range of q vectors within the Brillouin zone. However, since
correlations beyond a certain maximal length are neglected, the
Fourier sums contain a finite number of harmonics and sudden
changes of the susceptibility in q space can only be resolved
with a limited accuracy. In our case, 15 lattice spacings
corresponding to a total area of 312 = 961 correlated sites yield
well converged results and ensure a proper q-space resolution.
If a system develops magnetic order, the corresponding two-
particle vertex channel anomalously grows upon decreasing
� and eventually causes the flow to become unstable as the
channel flows towards strong coupling. Otherwise, a smooth
flow behavior of the susceptibility indicates the absence
of magnetic order. For further details about the PFFRG
procedure, we refer the reader to Refs. [42,45,46,51].

To probe the nature of the quantum paramagnetic phase, we
examine nematic response functions of three different types of
nematic states, the d-SN, s-SN, and LN. The corresponding
order parameters Od-SN,Os-SN, and OLN are given by

Od-SN = Ozz
i,i+x̂ − Oxx

i,i+x̂ = −(
Ozz

i,i+ŷ − Oxx
i,i+ŷ

)
,

Os-SN = Ozz
i,i+x̂ − Oxx

i,i+x̂ = Ozz
i,i+ŷ − Oxx

i,i+ŷ ,

OLN = 〈Ŝi · Ŝi+x̂+ŷ〉 − 〈Ŝi · Ŝi+x̂−ŷ〉 , (3)

where x̂ and ŷ denote unit vectors along the lattice directions
and with the triplet order parameter O as given in the
introduction. Furthermore, we assume that spin isotropy is
always retained for spin rotations in the x-y plane such that
Oxx

ij = Oyy

ij . Due to the difference between spin correlations
with x and z components, the d-SN and s-SN both break
SU(2) spin-rotation symmetry down to U(1). Additionally,
d-SN breaks the lattice-point group C4v down to C2v , which is
indicated by a relative minus sign between correlations along
the x̂ and ŷ directions in the first line of Eq. (3), leading
to an effective d-wave character of this state. It is worth
noting that the d-SN and s-SN order parameters are both of
symmetric n-type, obeying Oμν

ij = Oμν

ji . This contrasts with
the antisymmetric, chiral p-type nematic state where the order
parameter is of the form Oμ

p,ij = εμνσOνσ
ij and is argued to be

stabilized in the presence of additional ring-exchange terms
[52]. Finally, the LN order parameter breaks the same lattice
symmetries as the d-SN state but keeps SU(2) spin-rotation

FIG. 2. Illustration of the biasing patterns. (a) and (b) The
oval with +(−) sign represents a perturbation proportional to
| ∑i(Ŝ

z
i Ŝ

z
i+ê − Ŝx

i Ŝx
i+ê − Ŝ

y

i Ŝ
y

i+ê)| with a positive (negative) prefactor
and the respective nearest neighbor lattice vector ê = x̂,ŷ. (c) The
perturbation is proportional to the difference in the thickness of the
two diagonals, i.e., 〈Ŝi · Ŝi+x̂+ŷ〉 − 〈Ŝi · Ŝi+x̂−ŷ〉.

symmetry intact. The LN state can therefore not be described
by the triplet order parameters Oμν

ij but is probed by singlet

spin-expectation values 〈Ŝi · Ŝj 〉 [53]. Note that in Eq. (3), the
LN order parameter has been written as a difference between
correlations along the diagonal x̂ + ŷ and x̂ − ŷ directions. As
described below, this type of order parameter turns out to be
particularly suitable to probe the LN state as compared to the
nearest-neighbor term O′

LN = 〈Ŝi · Ŝi+x̂〉 − 〈Ŝi · Ŝi+ŷ〉. For an
illustration of the order parameters, see Fig. 2.

In general, the formation of a spin-nematic state is accom-
panied by a divergence of the corresponding order-parameter
susceptibility, which is given by a four-spin correlator. In
pseudofermion language such a correlator is represented by
the fermionic four-particle vertex. The computation of such
vertices is, however, far beyond the scope of current FRG
implementations. We therefore pursue a simpler and more
direct approach to probe the system with respect to these
types of order. Collecting the operator content of the order
parameters we define the perturbations

Ĥd-SN = δ
∑

i

(
Ŝz

i Ŝ
z
i+x̂ − Ŝx

i Ŝx
i+x̂ − Ŝ

y

i Ŝ
y

i+x̂

) − (x̂ → ŷ) ,

Ĥs-SN = δ
∑

i

(
Ŝz

i Ŝ
z
i+x̂ − Ŝx

i Ŝx
i+x̂ − Ŝ

y

i Ŝ
y

i+x̂

) + (x̂ → ŷ) ,

ĤLN = δ
∑

i

(Ŝi · Ŝi+x̂+ŷ − Ŝi · Ŝi+x̂−ŷ) . (4)

Setting 0 < δ 
 |J1|, J2, J3 and adding these terms to Ĥ
[Eq. (1)] induces a small bias towards the respective type of
nematicity, see Fig. 2. In PFFRG, the response of the system to
these perturbations can be probed via the spin-spin correlator
C

μν

ij defined in Eq. (2). For the three nematic states, the biasing
patterns lead to strengthened (weakened) correlators C+ (C−)
along the respective spin directions/bonds given by

d-SN: C+ = 1
2

(
Czz

i,i+x̂ + Cxx
i,i+ŷ

)
, C− = 1

2

(
Czz

i,i+ŷ + Cxx
i,i+x̂

)
,

s-SN: C+ = Czz
i,j , C− = Cxx

i,j ,

LN : C+ = C
μμ

i,i+x̂+ŷ , C− = C
μμ

i,i+x̂−ŷ , (5)

where i,j denote arbitrary nearest neighbors and μ = x,y,z

can be any spin direction. Since Ĥd-SN generates two inequiv-
alent types of strengthened and weakened bonds we take the
average in the first line of Eq. (5). The generalized nematic
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responses κnem are then defined by

κnem = J

δ

C�
+ − C�

−
C�+ + C�−

, (6)

where J is the coupling on the respective unperturbed bond.
Note that Eq. (6) is normalized such that κnem > 1 (κnem < 1)
corresponds to an enhancement (rejection) of the perturbation
during the RG flow.

III. RESULTS

The PFFRG quantum phase diagram of the spin- 1
2 J1-J2-J3

Heisenberg model of Eq. (1) is shown in Fig. 1. Individual
data points are labeled according to which type of phase
they belong to. For small J2 and J3, FM order prevails,
however, with a diminished extent compared to its classical
domain. For large J2, and small to intermediate J3, the FM
order gives way to stripe AF order, with quantum fluctuations
extending its domain beyond the classically allowed region
[54]. Quantum effects also drastically shrink the domain of
(q,0) HM order to a small pocket. Upon increasing J3 (for all
J2), the (q,q) HM order onsets and prevails over the phase
diagram. The real space illustration and the corresponding
representative magnetic susceptibility profiles of the ordered
phases are shown in Figs. 1(b)–1(e), wherein the Bragg
peaks of the respective types of magnetic orders are clearly
resolved. Throughout the domain of both HM orders, we
do not observe a discontinuous jump of the spiral wave-
vector q → π

2 , thus pointing to the absence of commensurate
magnetic orders with Q = (±π

2 ,0) and (±π
2 , ± π

2 ) as reported
in Ref. [38]. The access to a continuous set of wave-vectors
within our implementation of PFFRG together with a very
large correlation area accounted for in the calculations, enables
us to obtain a high-accuracy estimate of the shift in the spiral
wave vectors with respect to the classical phases. Throughout
the HM ordered phases it is found that quantum fluctuations
always increase the magnitude of the wave vectors leading to
more antiferromagnetic types of order, see Fig. 3. In the (q,q)
HM phase, the shift δQ has a maximal value of δQ ≈ 37% and
decreases monotonically with increasing J2/|J1| and J3/|J1|.
Similarly, shifts of ≈100% are found in portions of the classical
(q,0) HM phase that is turned into stripy AF order by quantum
fluctuations, thus leading to the appearance of a ridgelike
feature of δQ in the vicinity of the quantum phase boundary
as seen in Fig. 3.

The most salient effect of quantum fluctuations is the
stabilization of an extended PM phase. Quantum fluctuations
are found to eat up significant portions of the classical domains
of the two HM phases, and to a comparatively lesser degree
that of the FM phase (mostly at small J3). This leads, in total,
to a PM phase settling in the vicinity of most classical phase
boundaries [see Fig. 1(a)]. In particular, on the J3 = 0 line, a
finite extent of the PM phase for 0.31(2) � J2/|J1| � 0.45(2)
is found. This limit of the phase diagram has been previously
addressed by a variety of methods with contrasting results
on the issue of the presence of a paramagnetic phase, whose
presence was first suspected in Ref. [55]. Exact diagonalization
(ED) studies for up to 36 spins, based on an analysis of the low-
energy ED spectra argued for a PM phase for 0.4 � J2/|J1| �
0.6 [38–41]. However, subsequent ED calculations for up to 40

FIG. 3. Deviation δQ = Q − Qcl of the ordering wave vector Q
from its classical value Qcl as a function of J2/|J1| and J3/|J1|. The
shifts in the black regions are identically zero, and the gray region
denotes the PM phase. The classical boundaries are marked with
white dashed lines. The maximum shifts in the (q,q) and (q,0) HM
phases are ≈37% and ≈100%, respectively, of the classical values.

spins [56], based on the analysis of the ground state spin-spin
correlation functions and the magnetic order parameter, found
the stripe AF order to persist down till J2/|J1| = 0.44, but
were inconclusive between the melting transition of the FM
phase at J2/|J1| = 0.393 and J2/|J1| = 0.44. A high-order
coupled cluster method (CCM) study claimed for the onset
of stripe AF order immediately after the region of stability of
the FM phase, thus finding no evidence for a PM phase [56].
Finally, a variational Monte Carlo (VMC) study employing
projected BCS wave-functions with spin-triplet pairing of
spinons again found a nonmagnetic intermediate phase for
0.42 � J2/|J1| � 0.57 [57].

In Fig. 4, we plot the magnetic susceptibility profiles at
different parameter values in the PM region. Compared to
the magnetic phases one observes a smearing of the spectral
weight of the susceptibility with soft maxima at the Bragg peak
positions of the nearest orders. Typical RG flow behaviors of
the susceptibility in the different magnetically ordered and
PM phases are shown in Fig. 5(a). While the PM flow does
not show features of instability at any � scale, the magnetic
flows exhibit a pronounced kink below which the evolution of
the susceptibility becomes numerically unstable. Note that the
(q,0) HM is characterized by a weak but still clearly resolved
instability feature which manifests as a slight downturn of the
susceptibility during the flow. This hints at small magnetic
order parameters in this regime.

At each point in the PM phase, we calculated the nematic
response function κnem for s-SN, d-SN, and LN orders.
Interestingly, in a large portion of the PM phase, one response
always clearly dominates over the other two, leading to a sharp
distinction between nematic phases, see Fig. 1(a). Narrow
intermediate regimes where responses are of similar size are
indicated by interpolating colors in Fig. 1(a). A comparison
of the responses shows that in the region surrounding the FM
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FIG. 4. Magnetic susceptibility profiles in the PM regime of the
quantum phase diagram evaluated at the corresponding labeled points.

phase, i.e., when J1 is dominant, the s-SN [see Fig. 2(b)]
response undergoes the largest relative enhancement [see
Fig. 5(b)], pointing to the existence of s-SN order in this regime
[orange region in Fig. 1(a)]. As J2 is increased, the d-SN
[see Fig. 2(a)] response becomes dominant [see Fig. 5(c)].
This region is found to span a vast domain [green region in
Fig. 1(a)] extending into the classical domain of the (q,0)
HM phase. In particular, the d-SN phase ranges down to the
J3 = 0 line as has previously been predicted by ED and VMC
studies [38–41,57,58]. In a narrow strip between the d-SN
and the (q,q) HM phases, we observe strong LN responses
[see Figs. 2(c) and 5(d)] forming the pink region in Fig. 1(a).
As mentioned before, the LN biasing pattern that was used
to identify this phase acts on second neighbor couplings
J2. While in general, the breaking of the lattice-point group
symmetry C4v down to C2v could also be probed with a nearest
neighbor term of the form Ĥ′

LN = δ
∑

i(Ŝi · Ŝi+x̂ − Ŝi · Ŝi+ŷ),
the corresponding response is mostly found to be smaller
[dark purple lines in Figs. 5(b)–5(d)]. As a result, the type
of symmetry breaking that leads to the formation of the
LN phase predominantly affects the correlations on diagonal
bonds. This is expected because LN order parameters probe
the singlet channel of two spins, which is energetically favored
on antiferromagnetic bonds.

An interesting limit of the phase diagram is the line
J1 = 0 [right edge of the triangle in Fig. 1(a)] where only
antiferromagnetic J2 and J3 interactions are finite. Here, the
model reduces to two decoupled copies of the well-known
Heisenberg model on the square lattice with antiferromagnetic
NN and 2-NN couplings (which here correspond to J2 and
J3 interactions, respectively). The existence of a paramagnetic

FIG. 5. (a) Representative RG flows of the magnetic suscepti-
bilities at the ordering wave vectors of the four ordered regimes of
Fig. 1 and the PM regime, evaluated at the following data points
(|J1|,J2,J3): (i) FM: (0.90,0.00,0.10), (ii) (π,0): (0.52,0.42,0.06),
(iii) (q,0) HM: (0.46,0.42,0.12), (iv) (q,q) HM: (0.52,0.06,0.42),
and (v) PM: (0.66,0.26,0.08). The points at which the solid lines
become dashed (marked by arrows) indicate an instability in the
flow and express the onset of order. In the smooth flow (green
curve) indicating paramagnetism, no such instability is found. (b)–(d)
Representative nematic responses [Eq. (6)] inside the three PM
phases of Fig. 1(a), evaluated at the data points (0.74,0.14,0.12) (b),
(0.68,0.30,0.02) (c), and (0.12,0.52,0.36) (d). The dark purple color
curve (LNNN) corresponds to a lattice nematic bias on the NN bonds.

phase between J3/J2 ≈ 0.4 and J3/J2 ≈ 0.6 is well estab-
lished for this model [56,59–63] and has also been confirmed
by PFFRG [see Ref. [42] and Fig. 1(a)]. The precise nature
of this phase and the question whether it exhibits spontaneous
symmetry breaking of valence-bond crystal (VBC)-type is,
however, still debated [64–68]. The most promising candidates
for VBCs are columnar dimer order (with singlet dimers on the
J2 bonds, arranged in a columnar pattern) and plaquette order
(with resonating dimers on square plaquettes of J2 bonds).
Previous PFFRG studies found that at J1 = 0 both states yield
only moderate and competing dimer responses such that the
VBC scenario seems unlikely [42]. To better understand the
phase diagram at small J1, we have performed additional
PFFRG calculations also probing columnar and plaquette
orders on the J2 bonds. We generally find the VBC responses to
be weakest throughout the PM phase. Even in the exact J1 = 0
limit and for J3/J2 � 0.55, we find the LN responses to be
about twice in magnitude compared to the columnar/plaquette
VBC responses and an enhancement with increasing J3/J2,

224403-5



YASIR IQBAL et al. PHYSICAL REVIEW B 94, 224403 (2016)

indicating that the LN might even survive in this limit. A
similar observation is made for the d-SN phase which almost
spreads out to the J1 = 0 line (although d-SN order is not
present at exactly J1 = 0 due to vanishing ferromagnetic
exchange). This indicates that a small J1 perturbation away
from the J1 = 0 line might be sufficient to stabilize d-SN
order.

IV. DISCUSSION AND CONCLUSION

In this work, we have investigated the spin- 1
2 J1-J2-J3

Heisenberg model on the square lattice with FM J1 and
AF J2 and J3 interactions. Using the PFFRG approach,
we find that quantum fluctuations lead to the emergence of
intertwined nematic orders over a vast region in parameter
space. The analysis of generalized response functions yields
different nematic domains hosting either d-SN, s-SN, or LN
orders. We conclude that the J1-J2-J3 Heisenberg model
realizes the remarkable situation where three different types of
nematic phases spontaneously arise within relative parametric
proximity to each other.

Qualitatively, the locations of the nematic phases can be
understood as follows. In regions where J1 is the dominant
coupling but J2 and J3 are strong enough to melt the FM order,
the remaining FM correlations generate resonating nearest
neighbor triplets leading to spin nematic order. The isotropy
of FM order in real space persists in the nematic state giving
rise to an s-SN phase at small J2 and J3. In the same way,
the FM J1 coupling induces spin nematic order in parts of
the paramagnetic regime located near the (π,0) AF or (q,0)
HM phases. However, the (π,0) AF and (q,0) HM orders
break the fourfold rotation symmetry of the square lattice.
This symmetry breaking persists in the corresponding melted
state leading to d-SN order in the vicinity of the (π,0) AF and
(q,0) HM phases, which agrees with the findings in Ref. [39].
Finally, the narrow strip of LN order close to the (q,q) HM
phase can be described as a melted version of the classical (q,q)
HM state. The close relation between LN states and coplanar

spiral phases has already been realized in other frustrated spin
models [69,70], and is attributed to the fact that both states
break the fourfold lattice-rotation symmetry. It is important
to note that the (q,q) HM state is the only type of classical
ground state in this model where the ordering wave vector does
not have at least one vanishing component, indicating that FM
correlations due to J1 < 0 are less important for the formation
of this phase. Consequently, the LN phase in the vicinity of the
(q,q) HM ordered region does not exhibit nematicity in spin
space. The absence of spin nematicity in this part of the phase
diagram has previously been realized in Ref. [39].

Methodologically, we have demonstrated that the PFFRG
is a suitable tool to study spin and lattice nematic states
in frustrated quantum magnets and to resolve the complex
interplay between these phases. An extended version of our
approach could be used to study antisymmetric spin-nematic
states of p-type. We leave such investigations for future work.
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