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Abstract
Background/Aims: In diabetic nephropathy (DN), the current angiotensin-II-blocking 
pharmacotherapy is frequently failing. For diabetic cardiomyopathy (DC), there is no specific 
remedy available. Relaxin-2 (Rlx) - an anti-fibrotic, anti-inflammatory, and vasoprotecting 
peptide – is a candidate drug for both. Methods: Low-dose (32 µg/kg/day) and high-dose 
(320 µg/kg/day) Rlx were tested against vehicle (n = 20 each) and non-diabetic controls (n = 
14) for 12 weeks in a model of type-1 diabetes induced in endothelial nitric oxide synthase 
knock-out (eNOS-KO) mice by intraperitoneal injection of streptozotocin. Results: Diabetic 
animals showed normal plasma creatinine, markedly increased albuminuria and urinary 
malonyldialdehyde, elevated relative kidney weight, glomerulosclerosis, and increased 
glomerular size, but no relevant interstitial fibrosis. Neither dose of Rlx affected these changes 
although the drug was active and targeted plasma levels were achieved. Of note, we found 
no activation of the renal TGF-β pathway in this model. In the hearts of diabetic animals, no 
fibrotic alterations indicative of DC could be determined which precluded testing of the initial 
hypothesis. Conclusions: We investigated a model showing early DN without overt tubulo-
interstitial fibrosis and activation of the TGF-β-Smad-2/3 pathway. In this model, Rlx proved 
ineffective; however, the same may not apply to other models and types of diabetes.
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Introduction

In spite of the enormously rising prevalence of diabetes mellitus in industrialized 
countries [1], clinical medicine as well as health economy are equally challenged to manage 
the different facets of diabetic end-organ damage. Among these deleterious ramifications of 
diabetes, diabetic nephropathy (DN) plays the major role and represents the leading cause 
worldwide of end-stage renal disease [2]. Likewise, diabetic cardiomyopathy (DC), defined 
as diastolic and/or systolic dysfunction in the absence of hypertension and coronary artery 
disease [3, 4], is another serious complication contributing to the overall diabetic risk burden. 
Prevention and treatment of DN are based on the control of hyperglycemia, the treatment 
of concomitant classic risk factors, and the therapeutic inhibition of the renin-angiotensin-
aldosterone system (RAAS) [5, 6]. However, angiotensin-converting enzyme inhibitors or 
angiotensin receptor blockers are frequently ineffective in preventing DN despite an optimal 
control of hyperglycemia and risk factors. For DC, no specific pharmacological therapy at all 
has been identified hitherto. This illustrates the pathophysiological involvement of pathways 
distinct from RAAS and the urgent need for novel therapeutic approaches.

The insulin-related endogenous peptide hormone relaxin-2 (Rlx) may pose such a novel 
candidate drug. Signaling via its cognate G protein-coupled receptor, RXFP1 [7, 8], and the 
glucocorticoid receptor [9] Rlx has been demonstrated to exert the following effects that 
may address major hallmarks of DN and DC: Above all, Rlx is one of the most powerful 
anti-fibrotic agents in many different models of heart, lung, kidney, and liver fibrosis [10-
15]. It has recently been shown to be superior to enalapril in experimental cardiac fibrosis 
[16]. Rlx is a renal vasodilator stimulating the NO-cGMP axis [17, 18]. It protects against 
endothelial dysfunction [19] and early vascular inflammation [20], and counter-acts the 
vasoconstrictory as well as pro-inflammatory actions of endothelin-1 [21]. Moreover, Rlx 
inhibits several markers of oxidative stress in different animal models [14, 19, 22]. However, 
in the type-1 diabetic mRen-2 rat, Rlx affected end-organ damage differentially: DC was 
markedly improved as reflected by less interstitial myocardial fibrosis and better diastolic 
function [23]. In contrast, DN as assessed by urinary albumin loss, interstitial collagen, 
and glomerulosclerosis was not modified at all [24]. In this work, we sought to investigate 
whether this striking dissociation represents a species-related phenomenon. Accordingly, 
we investigated the effects of two different doses of Rlx in an established mouse model of 
type-1 diabetes which closely mimics the pathophysiology of human DN [25-27] and DC [28].

Materials and Methods

Study design
This study was carried out in strict accordance with the recommendations in the ‘‘Guide for the Care 

and Use of Laboratory Animals of the National Institutes of Health’’. The protocol was approved by the local 
animal welfare committee of the German State of Berlin (project no. G0209/10). All surgical procedures were 
performed under inhalation anesthesia with isoflurane, and all efforts were made to minimize suffering.

Eight-week old male eNOS (NOS3) knock out C57BL/6J mice (C57BL/6J-Nos3tm1Unc; n= 74) were 
obtained from The Jackson Laboratory (Bar Harbor, ME, USA). The eNOS-/- genotype is known to greatly 
aggravate albuminuria in diabetic models [26, 27, 29, 30]; and it was the main focus of our study to evaluate 
the effect of Rlx on this important clinical end-point of DN. The gain of albuminuria is particularly high 
in eNOS-KO animals treated with the high-dose STZ protocol [25], which for us outweighed the greater 
propensity for non-specific cytotoxic effects related to the high-dose regimen. At last, eNOS-KO on a BLKS 
background are more susceptible to DN than B6 animals [25, 30], but here our choice was merely guided by 
the issue of commercial availability at study beginning.

In accordance with local institutional guidelines for the care and use of laboratory animals, mice were 
housed under standardized conditions (12 h light/dark cycle, temperature of 23 °C, humidity of 50–60%) 
and kept in solitary cages with commercial standard diet (Ssniff Spezialdiäten GmbH, Soest, Germany) 
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and water ad libitum. Before induction of diabetes by streptozotocin (STZ), baseline blood pressure 
was measured using the non-invasive tail-cuff method and metabolic cages were performed. Then mice 
intraperitoneally received STZ (100 mg/kg body weight) on 2 consecutive days. Four weeks after STZ 
treatment, hyperglycemia >250 mg/dl was confirmed. The diabetic mice were then randomly divided into 
the following groups (n = 20 each): vehicle, low-dose Rlx (32 µg/kg/d), and high-dose Rlx (320 µg/kg/d). 
Another 14 mice served as non-diabetic controls and received vehicle after they had been administered 
citrate buffer instead of STZ in equal volume. The high dose Rlx was chosen based on previous reports in 
mice and rats [31, 32] (see also Discussion). The lower dose was based on the mere rationale that many 
long-term effects of peptides can also be observed at sub-maximum levels.

Treatment was conducted for 12 weeks which necessitated the implantation of Alzet-2006 osmotic 
mini-pumps (Charles River) at beginning and at week 6 of Rlx/vehicle administration. The pump reservoirs 
(250 µl) were loaded with vehicle alone, 0.105 mg, and 1.05 mg Rlx for the control, low-dose, and high-
dose groups, respectively. At treatment weeks 5 and 10, baseline measurement of blood pressure and 
metabolic cages were performed; blood glucose levels were determined immediately before the different 
Alzet implantations. Final procedures in treatment week 12 (i. e., week 16 after STZ) included collection 
of urine and blood samples as well as animal sacrifice including determination of organ wet weights and 
harvest for histology. 

Histology
Renal and myocardial morphology (interstitial fibrosis, perivascular fibrosis, glomerulosclerosis, 

myocyte diameter, and media-lumen ratio of blood vessels) was measured as described previously [33]. 
In brief, glomerular matrix expansion was evaluated on periodic acid-Schiff (PAS)-stained slides by rating 
the percentage of the PAS-positive areas within the glomerulus using a subjective, semi-quantitative 
score system (grade I–IV) by two investigators who were blinded to the study groups of the animals. 
The severity of interstitial fibrosis was evaluated after Sirius Red-staining using computer-aided devices. 
Thirty microscopic pictures per kidney/heart section were transferred to a PowerMAC via Hitachi CCD 
camera. After manually setting a threshold using a randomly chosen subset of the pictures, we measured 
the relationship of Sirius Red-stained area (connective tissue) to total area of the picture using ImageJ, an 
image-processing software (shareware from the National Institutes of Health). Accordingly, microscopic 
pictures of kidney/heart sections after Elastica-van Gieson staining that showed arterial blood vessels were 
generated. We measured the area contents of the media and the lumen of intra-renal arteries using ImageJ; 
thereafter, media/lumen ratio was calculated to serve as marker for arterial wall thickening. Likewise, we 
determined myocyte diameters in myocardium.

Western Blotting
Proteins of murine kidney were extracted as previously described [34], additionally supplemented with 

inhibitor of phosphatases (PhosStop, Roche diagnostics, Indianapolis, IN). Proteins were electrophoretically 
separated and transferred to a nitrocellulose membrane using semi-dry equipment. The membranes were 
blocked and incubated with primary antibodies against TGF-β (sc-146, Santa Cruz Biotechnology, Santa 
Cruz, CA) or phosphorylated Smad 2/3 (sc-11769-R, Santa Cruz). Immunostaining with antibodies against 
total Smad 2/3 (sc-6202, Santa Cruz) or actin (A5060, Sigma-Aldrich) was used as internal control. Then 
membranes were incubated with host-specific HRP-coupled secondary antibodies (sc-2054 or sc-2056, 
Santa Cruz). Immunoreactive bands were visualized with chemoluminescence detection as described 
before [35] and exposure to an autoradiography film (Amersham Hyperfilm ECL (GE healthcare, Chalfont 
St. Giles, UK)). Photos were scanned and the protein bands were quantified using AlphaEaseFC software 
(Alpha Innotech, San Leandro, CA). 

Biochemical parameters
Urinary albumin was measured using an enzyme-linked immuno-sorbent assay (ELISA) according to 

the manufacturer’s instructions (Immundiagnostik, Bensheim, Germany). Urinary and plasma creatinine 
were measured spectrophotometrically based on the Jaffé reaction of creatinine with alkaline picrate 
(Limbach Laboratory, Heidelberg, Germany). Urinary malonyldialdehyde (MDA) was determined by HPLC 
(Immundiagnostik AG).
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Synthetic Rlx: biological effects and plasma levels
Synthetic human relaxin-2 was synthesized by PHARIS Biotec (Hannover, Germany). Its biological 

effects were verified as follows: 

Ligand binding assay. We performed competition binding experiments utilizing HEK-293T cells 
stably transfected with RXFP1 and europium-labeled human relaxin-2 according to Shabanpoor et al. [36]. 
Briefly, cells were plated out in 96-well Isoplates with white walls and clear bottoms precoated with poly-
L-lysine. Competition binding experiments were carried out using europium-labeled Rlx in the presence 
of increasing concentrations of synthetic Rlx or of the reference substance, recombinant human relaxin-2 
(Corthera, San Carlos, USA). Non-specific binding was determined with an excess (500 nM) of unlabeled 
Rlx. Each concentration point was performed in triplicate and peptides were tested in at least three 
independent assays to confirm activity. Curves were fitted using a one site-binding model in GraphPad Prism 
4.0 (GraphPad Software, San Diego, CA, USA). The inhibition constants (Ki) as a measure of peptide activity 
were determined from the IC50 values using the Cheng-Prusoff equation, with pKi being the negative decadic 
logarithm of the inhibition constant Ki.

Functional cAMP assay: cAMP reporter gene assays were carried out as described by Yan et al. [37]. 
Briefly, HEK-293T cells stably expressing RXFP1 and a pCRE-β-galactosidase reporter plasmid were utilized 
to determine the ability of synthetic Rlx to activate RXFP1-related signaling. Stimulation of RXFP1 results 
in the activation of adenylate cyclase and consequently in an increase in cAMP and subsequent activation of 
the pCRE reporter. Cells were incubated for 6 hours with increasing concentrations of synthetic Rlx or of the 
reference substance, recombinant human relaxin-2 (Corthera, San Carlos, USA). Each concentration point 
was performed in triplicate and peptides were tested in at least three independent experiments. Data were 
analyzed with GraphPad Prism 4.0 (GraphPad Software, San Diego, CA, USA), and a nonlinear regression 
sigmoidal dose-response (variable slope) model was used to plot curves and calculate pEC50 values, with 
pEC50 being the negative decadic logarithm of the half-maximum concentration.

Upon sacrifice of the animals, blood was collected for the determination of therapeutic Rlx levels by a 
commercially available ELISA for human Rlx (Immundiagnostik, Bensheim, Germany). Plasma was diluted 
1:44 in assay buffer, and the ELISA was used according to the manufacturer’s instructions.

Statistical analyses
All values are given as means ± standard error of the mean (SEM). Statistical analyses were performed 

with SPSS 18.0 for Windows (SPSS Inc., Chicago, IL, USA). For comparisons between the four groups of interest, 
the Kruskal-Wallis ANOVA on ranks was used. If global significance was indicated pair-wise comparisons 
were made with the Mann-Whitney U test and Bonferroni-Holm adjustment of P. For comparisons within 
groups over time, the Friedman ANOVA on ranks was used followed by Wilcoxon tests with P adjustment as 
described above. Differences were considered significant if P < 0.05 and highly significant if P < 0.01.

Results

Mortality and blood pressure
In the non-diabetic control group, mortality was 7 % (1 animal of 14). Mortality in the 3 

diabetes groups was clearly higher, i. e., 40 % in the vehicle group (8 of 20), 55 % in the low-
dose Rlx group (11 of 20), and 50 % in the high-dose Rlx group (10 of 20). The prematurely 
deceased animals were not analysed.

At weeks 5 and 10, systolic blood pressure was decreased in all diabetic animals as 
compared to non-diabetic controls, with no further effect of Rlx thereon (data not shown).

Blood glucose and body weight baseline vs final
As summarized in Table 1, diabetic animals did not gain weight significantly and showed 

severely elevated glucose levels at final examination. These characteristics were not affected 
by Rlx at either dose.
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Table 1. Body weight and blood glucose (data are mean ± SEM). *, P < 0.05 vs baseline; **, P < 0.01 vs base-
line. ##, P < 0.01 vs non-diabetic controls

Kidney function and urine analysis
Plasma creatinine levels in non-diabetic 

controls were 43 ± 5.2 and 59 ± 5.2 µmol/l at 
baseline and final examination, respectively. 
In the different diabetic groups, these levels 
showed a trend towards lower values which 
did not reach significance (data not shown).

In diabetic controls, albuminuria 
increased markedly over 16 weeks as 
compared with non-diabetic controls, and 
neither dose of Rlx changed these values (Fig. 
1A). Regarding diabetes-related oxidative 
stress, we detected a massive increase in 
creatinine-normalized urinary MDA levels 
in the diabetic controls which was not 
attenuated by the different Rlx regimes (Fig. 
1B).

Organ weight and histology (Table 2)
The STZ-induced diabetes elevated 

Fig. 1.  (A) Albuminuria at baseline and at final ex-
amination. Data are given as mean ± SEM. *, P < 0.05 
vs baseline; **, P < 0.01 vs baseline; ##, P < 0.01 vs 
non-diabetic control. (B) Urinary levels of malo-
nyldialdehyde (MDA) (in µmol/l) normalized to uri-
nary creatinine levels (in mmol/l). Data are given as 
mean ± SEM. **, P < 0.01 vs baseline; ##, P < 0.01 vs 
non-diabetic control. 

the relative weights of the kidneys and liver, but did not change relative heart weight. Rlx 
treatment had no effect on kidney and liver weight. 

With regard to kidney histology, the diabetes-induced increases in glomerulosclerosis 
score (Fig. 2) and glomerular size were mitigated by neither dose of Rlx. Perivascular and 
interstitial fibrosis as well as media-to-lumen ratio of intra-renal arteries were not altered in 
diabetic as compared to non-diabetic animals.

Myocardial perivascular and interstitial fibrosis was not changed during the course 
of disease in this model. However, myocyte diameters in all diabetic groups decreased 
significantly in comparison with non-diabetic controls, with neither dose of Rlx showing an 
effect hereon.

TGF-β involvement
In spite of the non-effectiveness of Rlx to ameliorate renal functional (albuminuria and 

MDA) and the related histological alterations (glomerulosclerosis and related inflammation) 
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we sought to determine whether the key target of Rlx’s anti-fibrotic action, TGF-β, contributed 
to the observed pathology in our model. Fig. 3 shows that renal TGF levels were slightly, but 
significantly down-regulated in diabetic controls as compared with non-diabetic animals. 
Similarly, the phosphorylation of the TGF-dependent transcription factors Smad-2 and -3 
showed a downward trend in the diabetic groups which reached significance after high-dose 
Rlx treatment.

Assessment of Rlx activity
Competition binding experiments utilizing HEK-293T cells yielded a pKi of 9.3 ± 

0.15 and 9.0 ± 0.05 for synthetic Rlx and recombinant Rlx, respectively (data not shown). 
cAMP reporter gene assays showed a pEC50 of 10.4 ± 0.05 for synthetic and 10.2 ± 0.04 for 
recombinant Rlx (not shown). The final therapeutic plasma levels of Rlx were 1.27 ± 0.24 and 
6.43 ± 1.0 ng/ml in the low-dose and high-dose groups, respectively.

Table 2. Organ weights (normalized to body weight [BW]) and histological parameters (data are mean ± 
SEM). #, P < 0.05 vs non-diabetic controls; ##, P < 0.01 vs non-diabetic controls

Fig. 2. Representa-
tive examples of his-
topathological find-
ings. (A) Non-diabetic 
control. (B) Diabetic 
control. (C) Diabetic 
low-dose Rlx. (D) Di-
abetic high-dose Rlx. 
Black asterisk indi-
cates accumulation of 
PAS-positive glomer-
ular matrix proteins, 
gray arrow indicates 
hypercellular me-
sangial enlargement, 
black arrow shows 
adhesion with outer 
membrane of Bow-
man capsula, and 
black triangle points 
to tubular atrophy.
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The eNOS-knockout/STZ model used here was introduced by Nakagawa et al. [27] 
and its principal features were confirmed by Kanetsuna et al. shortly thereafter [26]. The 
observed high mortality in our study corresponds well with that reported in Nakagawa’s 
work in which it was ~50 % at week 20 [27]. Accordingly, this model is characterized by an 
inherent survival bias. In line with the early reports on this model [26, 27], we observed an 
early and moderate type of DN with plasma creatinine still in the normal range and increased 
relative kidney weight. The prevailing histological findings were glomerulosclerosis as well 
as glomerular enlargement (Table 2). The pathology did not involve interstitial fibrosis 
or wall thickening of intra-renal arteries. However, the massive increase in urinary MDA 
(Fig. 1B) reflected the diabetes-related inflammatory rise of oxidative stress. As already 
mentioned in the Study Design section, the lower susceptibility of C57BL/6J as compared 
to BLKS mice regarding DN may have contributed to the mildness of histological findings 
[25, 30]. In retrospect, feeding a high-fat diet might have aggravated our model which was 
reported particularly for eNOS-KO mice [38]. 

At first sight, the ineffectiveness of Rlx to ameliorate DN in this study may appear 
contradictory to the many positive experimental studies mentioned above. In more detail, 
Rlx was effective as anti-fibrotic agent in rodent models of renal papillary necrosis [39], 
glomerulonephritis [40], sub-total nephrectomy [41], spontaneous hypertension [12], and 

Fig. 3. (A) TGF-β levels and phospho-Smad-2/3 levels (nor-
malized to total Smad-2/3) in homogenates of renal tissue 
as determined by Western blotting. Data are mean ± SEM, 
given in % of non-diabetic control values. #, P < 0.05 vs 
non-diabetic control; ##, P < 0.01 vs non-diabetic control. 
Numbers of experiments: control, 13; diabetic control, 12; 
diabetic low Rlx, 9; and diabetic high Rlx, 10. (B) Represen-
tative examples of Western blots for TGF-β and Smad-2/3.

Discussion

This work aimed at investigating 
the effect of two different doses of 
continuously infused sc. Rlx on the 
development and progression of DN 
and DC. Our hypothesis of Rlx being 
a candidate remedy for this diabetes-
induced organ damage was based 
on a large body of experimental 
evidence indicating remarkably 
potent anti-fibrotic, reno-protective 
and reno-vasodilating, endothelium-
protecting, anti-inflammatory, as well 
as endothelin-1-suppressing effects of 
the peptide [10-21].

The main findings are as follows: 
1) In a mouse model of type-1 
diabetes characterized by early and 
moderate DN (glomerulosclerosis 
and albuminuria) and high overall 
mortality, neither a low nor a high 
dose of Rlx administered for 12 weeks 
resulted in changes of the course of 
disease. 2) The fact that TGF-β, the 
major target of Rlx’s action against 
fibrotic damage, was obviously not 
involved in the pathology of our 
model may lend an explanation to 
the ineffectiveness of the peptide. 3) 
In our model, myocardial fibrosis, a 
hallmark of DC, was not induced so 
that the above-mentioned working 
hypothesis for DC could not be tested 
within the design of this study.
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unilateral ureteric obstruction [11]. At closer look, however, those were models of severe 
interstitial fibrosis with concomitant glomerular sclerosis, and TGF-β was the major inducer 
of pathology. In our type-1 diabetic model, TGF-β was obviously not activated, nor was its 
key down-stream transcription factor, phosphor-Smad-2/3 (Fig. 3). This may explain the 
missing efficacy of Rlx on this disease phenotype since the interference with TGF-β signaling 
poses the established pathway of Rlx’s renal anti-fibrosis [42, 43]. Keeping this in mind, 
our results do corroborate the study conducted by Wong et al. in mRen2/STZ rats [24] in 
which Rlx similarly failed to affect a type-1 diabetes-related renal pathology with prevailing 
glomerulosclerosis and albuminuria, little if any interstitial fibrosis, and preserved 
glomerular filtration rate. 

Notwithstanding these considerations, the question arises as to why TGF-β was not up-
regulated in this model as well as in the mRen2 rat. First, overt TGF activation promoting 
tubulo-interstitial fibrosis – that can be detected in a whole-kidney Western blot – was usually 
found very late in comparable mice models of DN: A modest up-regulation of interstitial 
collagen III was reported at week 20 after STZ earliest [26, 29, 44]. We had to stop our study 
prematurely because of the high mortality and sacrifice our animals at week 16 after STZ 
according to German animal welfare regulations. Thus, it might well have been too early to 
detect and treat this later stage of DN which presumably involves TGF. On the other hand, 
TGF-β is also a pivotal mediator of the early occurring diabetic glomerulosclerosis since it is 
usually up-regulated early in mesangial cells and podocytes [45]. It was not evaluated in the 
studies that established the eNOS-KO/STZ model [26, 27, 29] whether glomerular TGF was 
activated, but if we assume so, why then could Rlx have been ineffective? Besides the absence 
of overt TGF-β activation in their rat model, Wong and coworkers [24] also reported on the 
lack of RXFP1 protein expression in mesangial cells. As these cells are the main players in 
early glomerulosclerosis [45] this would lend another explanation for the ineffectiveness 
of Rlx. The ultimate question, however, if there is RXFP1 protein expression in mouse 
mesangial cells cannot be answered conclusively at present: It is much more difficult to 
isolate primary mouse glomerular cells and, more importantly, there is no reliable antibody 
against mouse RXFP1 to date that could be used for immunohistochemistry. Accordingly, we 
are not aware of any findings elucidating this issue. Instead of being activated, TGF-β was 
even slightly, but significantly down-regulated in the diabetic control group. This can be a 
chance finding in a small group. On the other hand, our type-1 diabetic model is associated 
with severe illness and cachexia (cp. bodyweight in Table 1), and this may have impacted 
on the activation of latent TGF-β. We hypothesize as follows: Plasmin and thrombospondin 
are the main TGF activators [46]. The activation of plasmin, in turn, is decreased in cachexia 
states owing to the up-regulation of plasminogen activator inhibitor [47]. Thrombospondin 
is mainly synthesized in adipose tissue [48] which is progressively lost in cachexia although, 
admittedly, there is also thrombospondin expression in the kidneys [29].

In many models of renal pathology, oxidative stress and TGF-β activation are intricately 
linked and act synergistically [49]. In our model, oxidative stress, as measured by urinary 
MDA, and TGF regulation were dissociated. It is, however, well conceivable that increased 
oxidative stress acted independently here, e. g., by inactivating neuronal NOS-derived NO 
which plays an established role in this particular model [26]. Alternatively, oxidative stress is 
known to activate the JNK pathway, a major player in renal disease, via thioredoxin oxidation 
[50, 51]. With regard to the eNOS-knockout model chosen, we would like to emphasize that 
first, the NO-generating renal effect of Rlx is mediated via neuronal NOS [43], and second, 
that a pathological decline of eNOS function is also a fundamental contributor to human DN 
[52, 53]. In other words, our model does not a priori preclude or limit the efficacy of the 
candidate drug.

Biological inactivity can be largely excluded as a potential cause for the inefficacy 
of Rlx in our model. First, the pKi and pEC50 values obtained with our synthetic and with 
recombinant Rlx in HEK-293T cells were identical and correspond well with data reported 
in the literature [54-59]. Second, we determined final plasma values within the targeted 
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range. For comparison, Samuel et al. [32] reported plasma levels between 20-40 ng/ml 
in mice at day 14 using a moderately higher dose of Rlx, 500 instead of 320 µg/kg/d. The 
levels reported by Samuel and the level in the high-dose group measured here, ~6 ng/ml, 
are around the circulating level at maximum renal vasodilator response, ~11 ng/ml, as 
determined by Danielson and coworkers in conscious rats [31]. 

One may wonder why the Rlx-induced small, but significant inhibition of Smad activation 
was not followed by a therapeutic benefit. We strongly believe that this is attributable to the 
fact that this signaling path was not up-regulated at all in the diabetic controls, which is in 
striking contrast to all cases in which Rlx was beneficial by mitigating an increased Smad 
phosphorylation [43].

We were not able to verify our hypothesis regarding DC in our model because no 
myocardial fibrosis developed. The decrease in myocyte diameter was certainly related to 
the cachexia of the diabetic animals. Admittedly, the absence of fibrosis cannot exclude DC 
which is characterized by generalized systolic and diastolic dysfunction as well as metabolic 
disturbances in the STZ model [28]. However, more detailed investigations including 
echocardiography and/or cardiac catheterization were not planned for this study owing 
to logistical considerations and animal welfare regulations. In the type-1 diabetic mRen2/
STZ rat model, Samuel et al. reported beneficial effects of Rlx on myocardial fibrosis and 
the related diastolic dysfunction [23]. As discussed above, Rlx was not beneficial regarding 
the renal pathology of the very same model [24]. These facts may indicate 1) model-related 
differences in the development of DC (eNOS-KO/STZ mouse vs mRen2/STZ rat) and 2) 
organ-related differences (kidney vs heart) regarding the Rlx-susceptibility of the pathways 
involved.

Conclusion

We investigated a model showing early DN without overt tubulo-interstitial fibrosis and 
activation of the TGF-β-Smad-2/3 pathway. In such a model, therapeutic doses of Rlx proved 
ineffective on readouts of disease severity. However, the same may not apply to other models 
and types of diabetes. Instead, Rlx should be tested in type-2 diabetes and the related end-
organ damage. 
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