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1 General Introduction 

1.1 Structure determination in structural biology 
 
In order to understand cellular processes of biological systems, structural information is 

mandatory. In structural biology, the identification of structure and function of proteins 

such as ion-channels, amyloid fibrils, receptors, enzymes, transporters etc. can reveal 

mechanisms associated with diseases and lead potentially to the development of new 

drugs. The contribution of solid-state NMR spectroscopy to the determination of three-

dimensional structures of proteins is comparatively little. More than 90 % of the protein 

structures in the PDB were solved by X-ray crystallography and this technique is clearly 

dominating structure determination in structural biology (figure 1). 

 

 
Figure 1: Percentage distribution of methods used for protein structure determination according 
to the PDB (Aug 2017) 
 

Membrane proteins are very attractive targets in drug development due to their 

involvement in most signaling cellular processes. However, the structural investigation 

of membrane proteins remains challenging due to their embedment in lipid bilayers. In 

the PDB only 3.49 % (Aug 2017) of all protein structures are from membrane proteins 

although they are accounting for 30 % of the proteome[1]. Unfortunately, membrane 

proteins are often structurally heterogeneous or not soluble in aqueous solution. For 

structure determination of membrane proteins, X-ray crystallography and also other 

methods like electron microscopy (EM), are often inappropriate since a well defracting 

3D crystal or a somehow long or short range order of the analyte is required. In addition 

for soluble proteins, solution-state NMR spectroscopy has proven to be an efficient 

method to investigate structural as well as dynamic properties in a broad temperature 
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range and a large timescale large from picoseconds up to several seconds[2, 3]. 

Additionally, solution-state multidimensional experiments provide excellent resolution 

for structure determination[4]. However, due to the anisotropic interactions that are not 

averaged out by molecular tumbling, solution-state NMR linewidths of membrane 

protein spectra are broadened, making resonance assignments almost impossible.  

 

1.2 Solid-state NMR supported structural biology 
 
Solid-state NMR spectroscopy can help to gain detailed information about dynamic 

properties at physiological conditions and structural information at atomic resolution. In 

recent years several structures of microcrystalline proteins[5-7], membrane proteins[8], 

amyloid fibrils[9, 10] and protofilaments[11] could be solved with MAS NMR 

spectroscopy. By spinning the sample mechanically at q=54.7° (magic angle) with 

respective to the applied magnetic field (B0), anisotropic interactions are averaged out 

so that isotropic chemical shifts can be detected. As a consequence, MAS NMR is not 

limited by molecular weight of the protein and can provide structural information on  

large complexes[12] with restricted mobility and molecular assemblies[13, 14]. 

One of the major problems in MAS NMR is its inherently low sensitivity. To overcome 

this limitation all systems expressed in E. coli can be synthesized with isotopic labeling. 

When additionally [1,3-13C glycerol] or [2-13C-glycerol] or [1-13C-glucose], [2-13C-

glucose] are used as carbon source for the protein expression[5, 15-18], the resulting sparse 

labeling dilutes the spin systems. Such labeling strategies makes resonances 

assignments possible that otherwise would have been ambiguous.  

In recent years there has been a lot of effort to develop approaches within the solid-state 

NMR field to increase sensitivity. Since both resolution and sensitivity increase with 

magnetic field strength, there had been a push to develop instruments of higher field 

strengths, and in the past 20 years instruments up to 23.5 T became available. 

Additionally, the recent methodological progress enables the detection of 1H in 

bimolecular MAS NMR. Previously, 13C has been the most commonly used nucleus for 

detection, but the fast MAS methodology has now enabled 1H detection at high 

resolution. 1H detection is inherently more sensitive due to its higher gyromagnetic ratio 

(g). The large homonuclear dipolar couplings that previously formed the bottleneck for 
1H detection, are efficiently averaged out at high MAS rates (up to 100 kHz[19]). 

Combined with perdeuterated samples, and subsequent back-exchange, it is possible to 



 

     3 

obtain high and almost solution-nmr like resolution[20]. Another way to gain sensitivity 

is the use of hyperpolarization methods[21]. In these methods, the polarization 

distribution is shifted beyond the thermal or Boltzmann equilibrium. In the course of 

this work, the methodology of dynamic nuclear polarization for biomolecular MAS 

NMR is further developed. 

The interest in this method grew in the recent years, especially since the instrumental 

setup became commercially available. The total number of scientific publications as 

well as the citations per year are growing fast (figure 2). In a DNP experiment, 

polarizing agents that contain an unpaired electron are added to the sample. Through 

microwave irradiation (produced by a gyrotron) the large polarization of electrons can 

be transferred to the molecules of interest. In this way the signal-to-noise ratio of the 

NMR spectra can be increased by several orders of magnitude. Thus, DNP enables one 

to design and carry out NMR experiments that would otherwise require prohibitively 

time-consuming signal averaging.  

 

 
Figure 2: Number of citations per year (left) and total amount of publications (right) involving 
dynamic nuclear polarization 
 
 
In the course of this work, improved and new polarizing agents were investigated, and 

sample conditions and parameters for efficient polarization transfer were evaluated for 

biomolecular NMR applications. A brief introduction of the fundamental basics and 

tools used in solid-state NMR spectroscopy is given in chapter 1. The concept of 

hyperpolarization with focus on a MAS DNP setup is described in chapter 2. This 

includes all important sample conditions and parameters and goals formulated for this 
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thesis. In chapter 3 an overview of the material and methods for the investigated 

samples is provided along with some spectroscopical details. In chapter 4 all 

experimental results are discussed including examples for biomolecular NMR 

applications. A brief overview and future perspective of DNP MAS NMR spectroscopy 

is given in chapter 5. Finally, in chapter 6 all results are summarized with conclusions. 

 

 

1.2.1 Fundamental principles of NMR 
 
In this section, the fundamental theory and concepts of NMR and MAS NMR are briefly 

described. For a comprehensive and detailed description of NMR theory please refer to 

excellent textbooks written by Keeler and Levitt[22, 23]. The basic principle of NMR is 

based on the fact that almost all elements have at least one magnetic isotope that has 

more than one quantized energy level when placed in a magnetic field. NMR active 

nuclei have intrinsic quantum mechanical properties. The intrinsic angular momentum p 

of magnetic nuclei (also known as “spin”) is quantized and can be seen as a vector. The 

length of this vector is I(I+1)	ℏ with 2I+1 possible projections, where I is the spin 

quantum number (I ≠ 0 for NMR active nuclei) and ℏ= h
2π

 the reduced Planck constant. 

This angular momentum is coupled to the intrinsic magnetic moment µ that is quantized 

as well, and can in the spin I = ½ case be oriented either parallel (ma= +½) or 

antiparallel (mb = -½) to the applied magnetic field. The magnetic moment µ is 

connected to p through a proportionality constant, the gyromagnetic ratio g (formula 1). 

This ratio can also be negative if spin angular momentum and magnetic moment are 

antiparallel (see table 1). 

 µ = g	p (1) 

 
The higher the ratio of magnetic moment and spin angular momentum the bigger the 

sensitivity in an NMR experiment. In table 1, the spin quantum number, the 

gyromagnetic ratio and the natural abundance of the most common used nuclei in 

biomolecular NMR are listed. The nuclei detected in biomolecular NMR predominantly 

have spin I = ½.  Deuterium has a spin of I =1 and possesses a quadrupolar moment. 

Although 2H is not acquired routinely, its role in biomolecular NMR is of high 

importance for improve the resolution improvement, for example by diluting the strong 

dipolar couplings between 1H spins[24-26]. 
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Table 1: Nuclei that are usually detected in biomolecular NMR and their spin quantum number, 
gyromagnetic ratio and natural abundances. For comparison of the gyromagnetic ratio, 
electrons are additionally shown at the end of the table  

Nucleus Spin 
[I] 

gyromagnetic 
ratio 

gn [106 rad s-1T-1] 
natural abundance [%] 

1H ½ 267.513 99.98 
2H 1 41.065 0.02 

13C ½ 67.262 1.10 
15N ½ -27.116 0.37 
17O 5/2 -36.28 0.037 
31P ½ 108.291 100 
19F ½ 251.8 100 
e- ½ 176086 [-] 

 

In the presence of a magnetic field, the energy levels of the spin I= ½ nucleus are no 

longer degenerate (so called Zeeman splitting, figure 3). The energy difference between 

the two energy level (DE) is directly proportional to the strength of the magnetic field B0 

(see formula 2, where h is the Planck constant). 

 

 
DE = h |g|B0

2π
 (2) 

 

At the resonance frequency nNMR transitions between the two energy levels (ma = +1/2 

and mb = -1/2) can be induced by the absorption of electromagnetic radiation 

(radiofrequencies).  

 
nNMR = |γ|B0

2π
 (3) 

Individual nuclei of molecules experience different chemical environments. This leads 

to slightly different resonance frequencies due to shielding effect of electrons 

surrounding the nuclei. Therefore, different chemical groups exhibit distinct chemical 

shifts. The population (N) of the two different spin states at a given temperature (T) can 

be described with the Boltzmann distribution (formula 4) where kb is the Boltzmann 

constant. The NMR signal intensity is determined by the population difference of the 

two spin states. This difference is defined as the spin polarization (P) and is directly 

proportional to the NMR sensitivity. However, population differences of the spin states 

at thermal equilibrium are very small (< 0.01 %) and consequently NMR generally is a 
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relatively insensitive analytical method. Formula 5 shows how the polarization depends 

on magnetic field, the temperature (T) and (g).  

 

 
Figure 3: Energy diagram for spin ½ nuclei: When placed in a magnetic field, the spins occupy 
two levels with different energy, known as the Zeeman effect. The energy difference between 
the two level is proportional to the magnetic field strength and the size of the magnetic moment 
 

 Nβ

Nα
= e 

-∆E
kbT (4) 

 

The polarization (P) can be increased by either applying higher magnetic fields or by 

decreasing the temperature as seen in formula 5. Besides these two parameters in DNP 

also g can be exploited to increase the nuclear polarization as we will see in chapter 2. 

 

 P = 
nα- nβ

nα+ nβ
= tanh

g	ℏ	B0

2 kbT  (5) 

 
 
The small population excess of the low energy a state gives rise to a macroscopic net 

magnetization M0. In the vector model, the net magnetization vector is precessing 

around the Z-axis of the B0 field with the so called Larmor frequency (formula 6 and 

figure 4).  

 

 
𝜔r= -

1
2π gB0 (6) 

 

To measure the NMR signal, this net magnetization is rotated by the use of an on-

resonance rf field B1 into the xy plane. The magnetization (Mxy) is still precessing 

around B0, but instead of being aligned along B0 it is now perpendicular to B0. 

The net magnetization relaxes back to the state of equilibrium parallel to the applied 

magnetic field B0. During relaxation, the rotating magnetization can be thought of as a 
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fluctuating magnetic field. The oscillating magnetic field induces a current that can be 

detected by a detection coil as part of a tuned circuit that is placed in xy plane. As 

detected by the coil, the FID is the data acquired in NMR experiments as a response 

over time. After Fourier transformation the familiar spectrum format with frequency 

units can be extracted and interpreted. Multidimensional 2D and 3D NMR correlation 

experiments can be recorded simply as a series of 1D experiments, where the second 

and third dimensions are acquired indirectly by delays that modulate the 1D NMR 

signal.  

 

 
Figure 4: (a) Precession of net magnetization along the z axis (A): After a B1 field (90° pulse) is 
applied the transverse phase coherence of the spin ensemble is lost (B-D) in a spin-spin (T2) 
process. It relaxes back along the z axis (E) towards the net magnetization equilibrium state (T1 
relaxation process): (b) Population of a spin ensemble as a function of time. After a sufficient 
time, magnetization recovers to thermal equilibrium (MZ = M0). The relaxing magnetization 
induces a current in a detection coil in the xy plane. (c) The required NMR information can 
extracted from the FID with Fourier transformation 
 
 
 
 
1.2.2 Relaxation 
 
After perturbation of a spin system through a B1 field, the magnetization relaxes back to 

its initial equilibrium state in a magnetic field. In NMR, the two most important 

relaxation parameters are the spin-lattice relaxation (T1) and the spin-spin relaxation 

(T2). The T1 time constant determines how long it takes after excitation to relax to the 

equilibrium along the Z-axis and therefore determines how fast an experiment can be 

repeated (formula 7). During the T1 process, the relaxation into the thermal equilibrium 

is mediated by the energy transfer through couplings (dominantly dipolar couplings) to 

the chemical environment. This relaxation process can be measured experimentally with 
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an inversion recovery experiment (see chapter 3.8). It is desirable to have systems with 

short T1 time constants in order to be able to repeat experiments very often in a short 

time for signal averaging. 

 

 
MZ t = M0 (1- e- t

T1) (7) 

 

The T2 time constant is the decay rate e- t
T2  of the phase coherence in the transversal 

plane perpendicular to the magnetic field and is associated with the NMR linewidth (∆).  

 

 MXY t = M0 ( e- t
T2) (8) 

 

 

 
∆1/2= 

1
πT2

* =  
1

πT2
+ g∆B0 (9) 

The T2 time is always expressed as the effective transverse relaxation time T,∗ 

accounting for small field inhomogeneities each individual spin experiences. The T,∗ 

time can be measured with a spin echo experiment (see chapter 3.8). The shorter the T2 

the broader the lines in the NMR spectra. ∆1/2	 is defined as the line width at the half 

height of the signal amplitude. Whereas the length of the T2 process is in the range of 

milliseconds, the spin lattice relaxation time T1 time constant can be several seconds. 

For DNP, it is important to note that both time constants are shortened if a paramagnetic 

species is present in the sample. This allows one in principle to acquire NMR spectra in 

shorter time but at the expense of increased linewidths. However, we will see in chapter 

2 and 3 that the benefits of shorter T1 times are dominant. As it will be discussed, the 

signal broadening caused by the polarizing agents is small compared to heterogeneous 

broadening resulting from low temperatures. 
 
 
 
1.2.3 Cross polarization  
 
Most experiments in biomolecular MAS spectroscopy use cross polarization (CP) 

mediated by dipolar coupling (1H-13C, 1H-15N). With cross polarization the sensitivity in 

MAS NMR experiments can be increased if low g nuclei such as 13C and 15N are 

detected. Usually, the magnetization is often transferred from the abundant 1H spins. To 

efficiently transfer magnetization from 1H to 13C the Hartman-Hahn condition[27] must 
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be fulfilled (formula 10, 11). 

  g(1H)B(1H) = g(13C)B(13C) (10) 

 |w1H ± w13C,15N| = n wr (11) 

 

In a common hC (1H-13C CP) experiment, the magnetization of the 1H nuclei are excited 

with a 90° (p/2) degree pulse followed by two B1 spin lock pulses for 1H and 13C in the 

transversal plane (B1H and B13C, respectively). In a way analogous to the Zeeman effect, 

these lock pulses lead to energy splitting along the two B1 fields that can be adjusted 

with the amplitude of the radio pulses. If the splitting for 1H and 13C becomes equal, an 

energy-conserving magnetization transfer between 1H and 13C is possible. In practice, 

this condition is narrow and therefore ramps are used to cover a broader range of 

frequencies[28]. Under MAS conditions the frequency difference of 1H and 13C must 

match integer values of the MAS rate (formula 11).  With the use of CP, the repetition 

rate of NMR experiments is depending on the T1 relaxation time of 1H instead of 13C or 
15N. The T1 of protons is generally much shorter, hence this allows for much shorter 

recycle delays and repetitions rates. This concept was also further extended to specific 

cross polarization steps between 15N and CO or Ca nuclei in biomolecular MAS 

NMR[29]. 

 

 

 
1.2.4 Spin diffusion 
 
Spin diffusion in MAS NMR is usually understood as the magnetization exchange 

through a network of NMR-active nuclei. In proton-driven spin diffusion (PDSD[30, 31]), 

transfer between 13C nuclei through the proton network is enabled via 1H dipolar 

couplings, of which 1H-13C and 1H-1H dipolar couplings both play a part. The 

magnetization propagates in a diffusion-like manner through the sample. PDSD is the 

standard experiment to correlate 13C chemical shifts with each other to allow 

assignments of amino acid resonances. This experiment is often used as a first judgment 

of sample quality. To enable sensitive detection of large inter-nuclear distances, longer 

mixing times are applied using the efficient DARR[32, 33] (dipolar assisted rotational 

resonance) experiment. A more detailed description of the DARR pulse sequence is 

discussed in section 3.8.3. 
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1.2.5 Magic-angle spinning 
 
In solution-state NMR orientation-dependent nuclear spin interactions are averaged out 

by the rapid molecular tumbling of the molecules. In contrast, in MAS NMR 

spectroscopy, spectra are broadened through anisotropic interactions. The main 

Hamiltonians for solid-state NMR are those for the chemical shift anisotropy (HCS), the 

heteronuclear dipolar coupling (HIS, where I is the 1H spin and S the 13C or15N spin), 

and the 1H homonuclear interaction. All three Hamiltonians contain a term (3 cos2 q- 1). 

Here q depends on the orientation of the interacting spins or molecules with respective 

to the magnetic field.  

heteronuclear dipolar coupling HIS = - d(3cos2q-1)IZSZ (12) 

chemical shift anisotropy HCS = gB0IZ [½dCSA(3cos2q-1)] (13) 

homonuclear dipolar coupling HII = - d½ (3cos2q-1)(3I1z I2z - (I1I2) (14) 

 

If the solid-state NMR sample is spun mechanically in a rotor at q = 54.74° with respect 

to B0, q will be averaged to the magic angle, hence the factors (3 cos2 q- 1) will average 

to zero. Anisotropic interactions are time averaged to zero assuming that the MAS rate 

is sufficiently fast compared to the size of the interaction. Otherwise the averaging is 

incomplete and some couplings will remain. The resonance lines in the NMR spectra 

become narrower and are closer to the isotropic value. CSA results in the appearance of 

spinning side bands in the spectrum.  

 

 
Figure 5: Schematic representation of a NMR rotor spinning at the magic angle of qm = 54.74° 
with respect to the magnetic field B0 (left); orientation dependent interactions are time averaged 
to zero (right) 
 
 
In order to recover the structural information that is encoded in the NMR sample, 

anisotropic interactions are selectively reintroduced with radio frequency pulses based 

on rotor-synchronized recoupling methods. Well-established recoupling techniques for 

homonuclear recoupling include experiments such as RFDR[34], SPC-5[35], POST-C7[36] 
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and REDOR/TEDOR[37] for the recoupling of heteronuclear spins. In combination with 

proton decoupling methods like TPPM[38] and SPINAL[39] high resolution MAS NMR 

correlation spectra can be recorded.  

 

2 Dynamic Nuclear Polarization 

2.1 Overcoming the sensitivity problem in MAS NMR with DNP 
 
NMR is a relatively insensitive method as compared to other spectroscopic analytical 

methods (e.g. IR or UV spectroscopy). Hyperpolarization is a method to overcome its 

inherently low sensitivity by shifting the population differences of the energy levels 

beyond the thermal Boltzmann distribution (figure 6). There are several 

hyperpolarization mechanisms and techniques available in different fields such as, 

dissolution DNP[40], CIDNP[41], para hydrogen induced polarization (PHIP)[42] and 

optical pumping in MRI[43]. Further reading about these methods can be found in the 

literature [21, 44]. The focus in this thesis is on DNP MAS NMR. In the following some 

important theoretical and technical aspects of DNP MAS NMR are emphasized. A 

comprehensive overview about all DNP mechanisms along with a complete description 

of the state-of-the-art instrumentation is given in detail in the review of Thankamony et 

al[45]. 

 
Figure 6: The difference of the population of spin states between thermal equilibrium (blue) and 
hyperpolarization (orange) in the presence of a magnetic field 
 
 
As already discussed in the previous chapter, the polarization P (formula 5)  can be 

enlarged by increasing  the magnetic field strength (sensitivity µ B3/2) and by 

decreasing the temperature (factor of ~ 3 from RT to 100 K). Experiments like 

insensitive nuclei enhanced by polarization transfer type of experiments (INEPT) and 
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cross polarization (CP) can help to increase the sensitivity if low g nuclei are detected 

(approximately a factor of g1H/g13C ≈ 4). In biomolecular NMR, direct 1H detection  is 

now possible at high MAS rates as described above (~100 kHz[46, 47]). With high 

spectral resolution, this is a very promising technique for the future regarding structure 

determination of membrane proteins. However, the gain in sensitivity by 1H detection is 

small compared to what can be achieved with DNP. In DNP, one can exploit the huge 

electron spin polarization.  Due to their much larger magnetic moment, the Zeeman 

level splitting of electrons is greater (GHz range) compared to that of nuclei (MHz 

range) by three orders of magnitude at the same magnetic field strength and temperature 

(see table 1 for electron vs nuclei comparison). The basic principle in dynamic nuclear 

polarization relies on the polarization transfer from the electrons to the nuclei in the 

sample in order to increase the signal-to-noise ratio by several orders of magnitude 

(figures 7,8). To achieve this, the EPR transitions of the electrons must be saturated by 

microwave irradiation. This concept was theoretically described for the first time by 

Albert Overhauser in 1953[48] and experimentally shown shortly afterwards by Carver 

and Slichter on lithium metal[49]. A central quantity in DNP MAS NMR is the so-called 

enhancement factor e  which can be determined by recording the spectra twice, once 

with (MWON), and once without (MWoff) hyperpolarization (figure 7). 

 

 
εon/off	≡

IOn(ωr)
IOff(ωr)

 (15) 

 

 
Figure 7: hC (1H-13C CP) spectrum of proline in GDH recorded with and without microwave 
irradiation at 110 K, 9.4 T and 8 kHz MAS. By transferring the electron polarization, the signal-
to-noise ratio is enhanced 
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The signal intensities of these two experiments can then be compared by overlaying the 

two spectra to determine of the enhancement factor e (formula 15). In figure 8 the 

polarization is outlined as a function of temperature in a double logarithmic axis. At 

100 K the polarization transfer from electrons to protons can lead to a signal 

enhancement of e ~ 250 (from 0.0096 to 2.4 %). Since the signal-to-noise is 

proportional to the square root of the acquisition time (SNR ~ 𝑡/0 ), the squared 

enhancement factor  represents the time reduction factor. An enhancement factor of        

e ~ 250 means the spectra can be recorded e2 ~ 2502 = 62500 times faster. An 

experiment that would have taken more than 43 days can be recorded in one minute 

with DNP. Through hyperpolarization new systems and scientific questions can be 

addressed that otherwise would have not been accessible because the experiments would 

have taken an inordinate amount of time. Whereas for standard molecules like urea or 

amino acids like alanine, arginine or proline enhancements around e ~ 200-300 are 

possible, the signal enhancements for biological systems rarely exceed e ~ 35 at 

100 K[50].  As we will see in chapter 4.11, the enhancement factor e is a good 

approximation to estimate the gain in signal to noise but does not represent the absolute 

signal-to-noise ratio (ASR) due to bleaching and depolarization effects that must be 

taken into account[51, 52]. 

 

 
Figure 8: Polarization as a function of temperature in a double logarithmic scale of the electron 
and nuclear spin reservoir of protons and carbon at a different magnetic field strength. By 
transferring the polarization of electrons to the nuclear spins, the polarization of nuclei can be 
enhanced 
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The theoretical limit for DNP polarization enhancement is determined through the ratio 

of the gyromagnetic ratios of the electron spin S and the nuclear spins I (gS/g1H ≈ 660, 

gS/g13C ≈ 2600, gS/g15N ≈ 6500). DNP experiments can be carried out on all NMR-active 

nuclei. In biomolecular DNP MAS NMR spectroscopy mostly 13C and 15N are detected.  

 

2.1.1 Instrumentation and conditions for DNP MAS NMR experiments 
 
 
The schematic representation of a general DNP MAS NMR setup is depicted in figure 9.  

In solid-state NMR, the experiment takes place in a low temperature MAS probe that is 

placed in a high-field superconducting magnet (9.4 T). The magnet is connected to a 

gyrotron that generates high-power microwave irradiation (9.7 T, 263 GHz). The 

microwaves produced in the gyrotron are transferred to the probe through a corrugated 

waveguide. The perturbations in the metal tube must have corrugation with quarter the 

length of the microwave length in order to ensure an efficient transfer[53, 54]. 

Additionally, a heat exchanger is connected separately to the probe to cool the probe to 

the required cryogenic temperatures (100-200 K). All electric components are controlled 

by consoles and computers (not shown in picture).  

 

 
Figure 9: Schematic representation of a typical DNP MAS NMR setup. Microwave irradiation 
(red dashed line) produced by the gyrotron is transferred through a wave guide into a cryo- 
probe where it hits a rotor spinning at the magic angle. The polarization of electrons of nitroxide 
biradicals is transferred through the cross effect to the sample molecules. Cryogenic 
temperatures are provided by a heat exchanger with an attached to a liquid nitrogen reservoir 
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An appropriate paramagnetic polarizing agent needs to be added to the diamagnetic 

sample to provide a source of electron polarization. DNP MAS NMR samples are most 

commonly doped with stable binitroxide radicals such as AMUPol[55]. More recently it 

has been shown that paramagnetic metal complexes feature promising aspects towards 

biomolecular NMR applications[56, 57]. In biomolecular NMR the polarization of 

biradicals is mostly initially transferred from electrons to the dipolar coupled proton 

network nearby. This is followed by a cross polarization step to 13C or 15N and then 

eventually distributed further via spin diffusion along the nuclei network. Thereby, 

signals arising from regions that are far away (~ 1µm) from the polarizing agent can still 

be effectively enhanced by DNP[58, 59]. Importantly, glass-forming solvent matrices are 

required to maximize lifetimes of electron spin states and to ensure a homogeneous 

distribution of electron polarization sources[60]. At the same time the solvent acts as a 

cryo protectant to prevent ice crystal formation that can potentially damage the 

biological sample. A solution of 60 % [D8]- glycerol, 30 % D2O and 10 % H2O (v/v/v), 

often termed GDH or “DNP juice”, is frequently used for this purpose. The presence of 

lipids or other carbohydrates can also support glass-formation in a matrix free 

approaches that have been conducted successfully for membrane proteins and 

liposomes[60-64]. It is advisable to test the DNP performance of a polarizing agent 

without glycerol due to its possible negative influence on analyte and spectra. Other 

chemicals that build glass-like matrices, such as water/DMSO mixtures, ortho- 

terphenyl[65] or the organic solvent TCA[66, 67]  are used in material science but are not 

appropriate in biomolecular NMR investigations because they might cause precipitation 

and denaturation of protein-based samples. Sugars like sucrose and trehalose (natures 

cryo protectant) can provide a glass-like matrices and have been tested in DNP 

experiments[68, 69]. Recently it has been shown by Emsley and coworkers that 

acrylamide can provide a glass matrix that can act as a medium able to transfer 

polarization to 113Cd nanoparticles with enhancements up to e ~ 200 at 100 K[70]. For 

some micro particles the physical properties of 29Si provide electronic states that allow 

for DNP and do not require an external solvent to distribute polarization[71]. 
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2.1.2 Gyrotron 
 

Since its discovery more than 50 years ago DNP has undergone an enormous technical 

development. First DNP experiments were conducted at low magnetic fields (0.3-1.4 T, 

13-60 MHz 1H and 9-45 GHz)[72-74] . One of the rate-limiting steps towards higher fields 

was the supply of continuous wave, high-power and high-frequency microwave 

radiation. In the 1990s, scientists in the groups of Griffin at the Francis Bitter Magnet 

Laboratory (FBML) and Temkin at the Plasma Science Fusion Center (PSFC) 

developed a gyrotron for higher fields (5 T) that enabled applications using DNP-

enhanced solid-state NMR[72, 74-77]. At the Massachusetts Institute of Technology (MIT), 

today gyrotrons operating  at 250, 330, and 460 GHz are used for academic research[78-

82]. Similar gyrotrons are available in the groups at the Universities of Warwick (187 

GHz)[83], Osaka (400/460 GHZ)[84-86], St. Louis (200 GHz)[87] and Lausanne (260-530 

GHz)[88-90]. For generating microwave irradiation at 263, 395, and 527 GHz, many 

groups nowadays are equipped with gyrotrons that are commercially available and can 

be purchased from Bruker Biospin/Communication & Power (CPI) industries[53, 91, 92] as 

well as from Bridge12 technolgies (395 GHz)[93] and Gycom (259 GHz)[94]. An 

overview of  the historical development of gyrotrons and DNP including its renaissance 

and current use can be found in the reviews of Nusionvich et al.[95] and Slichter[96]. A 

gyrotron is a cyclotron resonance maser and was introduced in 1964 in Novgorod and 

initially engineered for fusion plasma applications. In figure 10, the basic components 

of a gyrotron are depicted. A gyrotron consists of a high-frequency vacuum electronic 

device that is placed in a homogenous magnetic field of a superconducting magnet (10). 

A ring-shaped electron beam is generated by a cathode (1) (electron gun), accelerated 

by high voltage power and directed into a magnetic field through a drift tunnel (3). 

When electrons enter a magnetic field they start to gyrate with a certain cyclotron 

resonance frequency depending on the field strength. Through circulation along the 

magnetic field from high field to low field lines the electron beam gains rotational 

energy and the electrons undergo so called bunching. In the cavity region (5) the 

gyrating electrons generate an electric field that interacts with the electron beam and the 

bunching process is amplified causing the transformation of kinetic energy into 

microwave irradiation. After mode converting (6) into a free-gaussian beam the 

irradiation leaves the gyrotron towards the waveguide through a window whereas the 

electron beam is diverted in the collector (9).  
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Figure  10: Schematic representation of a gyrotron, figure adapted from Hornstein et.al [97] 
 
 
 
 

2.1.3 Heat exchanger 
 
To conduct a DNP MAS NMR experiment, low temperatures are required (100-200 K). 

The probe is cooled using a heat exchanger (figure 11). The heat exchanger  consists of 

a so called “coil-in-can design” with 3 separate gas flows for bearing, variable 

temperature (VT) and drive. N2 gas is blown through copper windings in a metallic 

cylindrical tube that can be pressurized. A steady flow for each of the three gases is 

required to circumvent spinning instabilities. Additionally, the cans are immersed in a 

liquid nitrogen tank. The level of nitrogen within the pressurized cans is controlled by 

adjusting the pressure and thereby the temperature can be controlled. A large surface 

contact leads to cooling of the gas flow. The transfer between the heat exchanger and 

probe is realized with a vacuum jacket transfer lines that is connected to the probe 

directly. The nitrogen cooling used for MAS spinning causes high running costs since 

the boil of nitrogen and cooling consumes up to 200-300 liter of LN2 per day. A big 

400 L dewar reservoir needs to be refilled every 28 to 36 hours if the system is in 

operating mode. There has been new developments in the lab of Alexander Barnes to 

reduce the consumption of LN2 to less than 90 liters per day[98]. The lowest temperature 

that can be reached with commercial Bruker systems is around ~ 95 K. Further 

reduction of the temperature requires the use of closed cycle helium cooling systems[99-

101]. The maximum achievable MAS rate is significantly lower when operating the 
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system at low temperature due to the viscosity of the cooled N2 gas. Usually, a 3.2 mm 

rotor can be spun up to a MAS rate 23 kHz at room temperature, whereas under DNP 

conditions the upper limit is around 14 to 16 kHz.  

 

 
Figure 11: Schematic representation of a heat exchanger. A copper coil is placed in a 
pressurized copper tube for each of the three gases (VT, bearing and drive). The desired gas 
temperature can be adjusted by controlling the level of LN2 by adjusting the pressure. The three 
chambers are immersed in liquid nitrogen  
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2.2 Polarization transfer via the solid effect and cross effect 
 
The electron polarization can be transferred to the nuclei of the NMR sample via 

different mechanisms in a DNP experiment. The dominating mechanism is determined 

by the balance between the inhomogeneous breadth (D) and the homogenous line width 

(d) of the polarizing agent and the nuclear Larmor frequency wn. The solid effect 

(SE)[102-105] relies on a two spin process, between electron and nuclear spin. The SE is 

dominant when the homogeneous and the inhomogeneous breadth of the EPR spectra is 

smaller than the nuclear Larmor frequency (D,d < wn ). The e-n coupling results in spin 

state mixing and allows for normally forbidden zero quantum (ZQ) and double quantum 

(DQ) transitions induced by microwave irradiation. It results in a negative or positive 

enhancement of the nuclear polarization when the matching condition is fulfilled 

between the microwave frequency (wMW) and the Larmor frequency of the electron (we) 

and the nucleus (wn), (formula 16). However, with increase of the magnetic field, SE 

becomes less efficient due to its inverse-squared field dependency, εSE∝ B0
-2. 

 

 |we ± wn | = wMW (16) 

 

The cross effect (CE) [106-110] is a three-spin effect (two electrons, one nucleus) and is 

unlike the SE based on allowed transitions. It becomes the dominating transfer 

mechanism if the EPR spectra is broadened inhomogenously by the g-anisotropy of the 

polarizing agent, whilst at the same time the homogenous linewidth (d) is smaller than 

the nuclear Larmor frequency (d < wn < D). CE efficiency scales linearly with the 

inverse of the field εCE∝ B0
-1 which makes it more suitable for higher magnetic fields 

than the SE. Five decades after the discovery of DNP and after much progress in the 

development of the gyrotrons in the 1990s, an increasing number of researchers became 

involved in the development of cross effect-based polarizing agents in the early 2000s. 

The cross effect was described in the 1960s and 1970s in terms of monoradical 

concentration to optimize the overall dipolar coupling, it took until 2004 when Hu et. al  

introduced biradicals by theatering two monoradicals moieties (TEMPO) together 

(BTnE series), in order to chemically engineer the optimal radical distance, and thereby 

the orientation, as well as their dipolar coupling, resulting in higher enhancements[111]. 

The achieved enhancement values with biradicals were 3-4 times higher than 

monoradicals, in particular, biradicals can achieve electron dipolar couplings up to 
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18.5  MHz compared to monoradical solutions of 10 mM solution of TEMPO for which 

the electron dipolar couplings are only around 0.3 MHz. Later, biradicals like 

TOTAPOL[112], bTbk[113] and AMUPol[55] were introduced which possess dipolar 

couplings between ~ 20-35 MHz. The CE is thus far the most efficient polarization 

transfer mechanism in DNP MAS NMR spectroscopy. The theoretical quantum 

mechanical description for higher magnetic fields of the CE is not trivial and can be 

found in reviews that take into account only the static case[114, 115] where polarization 

transfer is described with an 8 energy level spin system of two dipolar-coupled electrons 

(e1, e2) and one hyperfine-coupled nucleus (n). The difference of the electron Larmor 

frequencies of the two electrons (we1 and we2) must match the nuclear Larmor frequency 

(wn) (formula 17). It is required that at least one of the two electron frequencies is 

saturated in order to transfer polarization. 

 

 |we2-we1| = wn (17) 

 

In figure 12, the EPR, NMR and CE transitions are shown. At thermal equilibrium, 

there is no degeneracy of the energy levels (figure 12, bottom left). Under DNP 

conditions when electrons are dipolar coupled some spin eigenstates are degenerate 

(green shaded box). When inducing electron spin transitions with microwave irradiation 

for one of the two electrons, the second dipolar coupled electron also undergoes spin 

transitions, this induces a nuclear transition of the hyperfine coupled nucleus at the same 

time in a so-called flip-flop-flip process (e-e-n). However, the CE is more complex as 

described in figure 12 since the spinning of the sample is not yet incorporated. In 2012 

Fred Mentink et al. and Thurber and Tycko described the CE with level anti crossing 

events (LAC)[116, 117] that spin states experience periodically under MAS conditions. 

Spin state mixing and polarization exchange is regulated due to strong anisotropic 

interactions. While the sample is rotating, at certain rotor angles strong mixing is 

possible because of the coupling of degenerate spin states. The events for efficient CE 

are separated in three events. They do not interfere with each other and can arise 

separately from each other making the mechanism less sensitive to the matching 

condition (formula 17). (1) The µw events where the irradiation frequency induces 

single quantum transitions for one of the two electrons (spin flip). (2) (e-e) events where 

the where Larmor frequencies are the same for the two electrons leading to population 

exchange (flip-flop) while the nuclear spin is not undergoing a change in nuclear spin 
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state. (3) CE matching events called e-e-n (flip-flop-flip) where the difference of the 

two Larmor frequencies matches the nuclear Larmor frequency and polarization is 

transferred to nuclear spins[45, 118]. This model further  predicts the nuclear 

depolarization induced by spinning the sample and has been investigated experimentally 

in detail in the group of Gaël de Paëpe et al[51, 52]. 

 

 
Figure 12: (Top) electron Zeeman level splitting of 2 dipolar coupled electrons and one 
hyperfine coupled nucleus result in an 8-energy level diagram. (Bottom) Arrows (↑ = ma = +1/2 
and ↓= mb = -1/2) indicate the spin state of electrons (orange and cyan blue arrows) and nucleus 
(grey arrows). Spin states in green shaded boxes are degenerate. Black spheres schematically 
represent the population of each spin state. Black arrows refer to transitions 
 

Another DNP process is the so-called thermal mixing (TM)[106-108] effect that is very 

similar to the CE and involves a high electron concentration at very low temperatures (T 

< 4 K) where the EPR line is broadened inhomogeneously[119]. It plays no significant 

role in MAS DNP as the experiments are mostly conducted between 95 and 200 K. 

Finally, the last DNP mechanism called the Overhauser effect has been shown in 

insulating solids (OE)[104] by Can et al. relies on time dependent spin-spin interactions 

(scalar or dipolar). It increases with higher magnetic field unlike the CE and SE. It is the 

mechanism with which Carver and Slichter proved Overhauser theory[48] for metallic 

lithium[49] in 1953. Intrinsic lithium electrons were saturated by microwave irradiation 
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and by fluctuating electron-nuclei hyperfine couplings caused by electron nuclear cross-

relaxation. This mechanism has been largely overlooked for a long time. The required 

time-dependent hyperfine interactions that result in electron nuclear cross relaxation 

occur in solutions and conducting solids, were not believed to be present in dielectric 

solids where no itinerant conduction occurs. In a SE study of water soluble sulfonated-

BDPA in 2012[120] Overhauser transitions were found serendipitously in a rather 

accidental observation and shortly after identified unequivocally in the study of Can et 

al. In retrospect, some evidence of the Overhauser effect can be found in studies that 

were already published at this time[45, 75, 121]. Nevertheless, the MAS DNP field is clearly 

dominated by the CE and the development is making rapid progress towards higher 

fields as we will see in the next section. 

 

2.3 Polarizing agents used for dynamic nuclear polarization 
 

To enhance the signal-to-noise ratio of signals arising from nuclei in a DNP experiment, 

polarization must be transferred from paramagnetic centers to the nuclear spins of the 

analyte. Most commonly, small molecules in the form of mono- and biradicals or 

paramagnetic metal ions complexes are added. Depending on the system they can be 

dissolved directly into the sample matrix or as in material science applications[122, 123] be  

impregnated into the sample. 

 

 
Figure 13: Molecular structures of polarizing agents used for solid effect 
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After Slichter proved the feasibility of the DNP concept for lithium metals, the first 

paramagnetic molecules in pioneering DNP experiments were DPPH and Ley´s radical 

followed by erbium-doped yttrium ethyl sulfat (YES:Er)[106, 107, 110, 124] (see figure 13). 

Later in the 1990s one of the first stable narrow EPR line (20 MHz) monoradical used 

for DNP MAS NMR was the BDPA[125] (1,3-Bisdiphenylene-2-phenyl allyl)[72, 73, 75] for 

exploiting the SE. Sulfonated (SA-BDPA) and sulfonamide derivates  with better water 

solubility, which is important for biomolecular NMR applications, were developed in 

later studies, giving enhancements above e ~ 100 in GDH[120]. The second important 

type of mono radicals are the trityl radical series that were developed as single electron 

contrast agents for oximetric imaging in the late 1990s. They can be used for SE in DNP 

MAS NMR with enhancements up to e ~ 90[126-128]. However, although these 

monoradicals are key players in dissolution DNP, (in particular OX063, see figure 

13)[129, 130] they play a rather insignificant role (at least for 400 and 600 MHz) in solid 

state NMR, where the higher efficiency of the CE makes the use of nitroxide radicals 

more feasible. In 1995 Gerfen et al. used the stable and water-soluble TEMPO as a 

polarizing agent to enhance glycine by a factor of 185 at high field (5 T) and 14 K[131]. 

This  nitroxide radical was known in organic chemistry since the 1960s as a versatile 

oxidizing agent[132, 133] and enjoyed great popularity also in structural biology  as it can 

be used as a paramagnetic spin label[134]. Signal enhancements of a larger 

macromolecular biological system (T4 lysozyme, 18.7  kDa) up to a factor of e ~ 100 

with high radical concentration (40 mM) could be reached with TEMPO[101]. 

The main drawbacks in use of monoradicals is that high concentrations are required, 

resulting in signal bleaching and line broadening of NMR resonances. If the distance of 

the radical is closer than 10 Å to the analyte of interest, signals can be entirely 

depleted[135]. The distance between two electrons on the other hand should not be 

smaller than 25 Å[136, 137] in order to ensure dipolar coupling for the CE three-spin 

mechanism. The linewidths can also be significantly broadened since the presence of 

paramagnetic centers shortens T2 times drastically. To constrain the electron-electron 

distance and therefore the dipolar coupling for CE  at the same time lower the radical 

concentration, Hu et al. connected TEMPO molecules with ethylene glycol chains to 

biradicals (BtNE series)[111] as described in the section 2.2. Following this approach 

Song et al. synthesized the stable and water-soluble binitroxide TOTAPOL[112] that 

represents a milestone in the development of DNP MAS NMR radicals and was the 

polarizing agents of choice for a long time, especially in studies of biological systems. 
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In figure 14, the most common polarizing agents in DNP MAS NMR are depicted in an 

overview. Ever since TOTAPOL was published there has been a rational 

development[138] towards more efficient polarizing agents with an aim to better 

understand the parameters that lead to high CE efficiency. One essential requirement to 

fulfill the matching condition of the biradicals is the relative orientation of their g 

tensors, which must be colinear in one axsis but perpendicular in the other two axes. 

Therefore, a more rigid biketal tether compared to the relatively flexible linker of the 

TOTAPOL was introduced in the bTbK radical derivates[113, 139, 140]. The group around 

Tordo et al. introduced water insoluble bCTbK and TEKPol that are bulky nitroxide 

biradicals with high molecular weights, where the methyl groups of the TEMPO 

moieties are replaced by cyclohexyl rings. These radicals have long electron spin 

relaxation times and show improved DNP efficiencies up to 200 K in DNP 

experiments[141-144]. 

However, these radicals are not suitable for biomolecular NMR approaches due to their 

(if at all) very poor solubility in water. For biomolecular NMR applications, urea based 

radicals such as the PyPol and AMUPol were synthesized by Tordo et al. [55, 145]. The 

higher water solubility (30 mM) and very good performance in DNP experiments makes 

them the radicals of choice at 9.4 T and 100-200 K and exceeding the enhancement 

values of TOTAPOL by a factor of 4. The engineering of the biradicals is still an 

ongoing process where groups investigate the influence of various substituents on 

already established radicals[138, 145]. Other approaches follow the concept of using 

paramagnetic metal ions such as Gd(III) or Mn(II) chelated complexes[146], 

heterodimeric monoradical mixtures[127, 147] or heterodimeric biradicals[148, 149]. The 

latter is probably the most promising approach for the future, as for the TEMTriPol-1 

radicals the performances is better at 18.8 T compared to 14.1 and 5 T[149]. Apart from 

the intrinsic properties of the biradicals many other additional factors might lead to 

better DNP performance. For example the efficiency of the microwave propagation can 

be increased by adding dielectric materials such as KBr to the sample resulting in 

enhancement values increased by a factor of two[150].  
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Figure 14: Representation of the molecular structures of nitroxide radicals used as polarizing 
agents in DNP MAS NMR experiments 
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2.4 Problems and scope of this thesis 
 
The substantial sensitivity increase by exploiting electron polarization in DNP MAS 

NMR spectroscopy makes it a very powerful method for biomolecular studies. 

However, with the advantage of increased sensitivity come also some limitations. At 

cryogenic temperatures, spectra suffer from heterogeneous and homogeneous line 

broadening that constitute the biggest challenges in MAS NMR experiments under DNP 

conditions. The presence of the polarizing agents decrease T2 relaxation times resulting 

in broader resonance line widths. At around 100 K, membrane proteins, oligomers and 

filamentous systems can have sharp resolved resonances for some rigid residues. On the 

other hand, insufficient conformational averaging of relatively mobile side chains of 

amino acid side chains that are exposed to the protein surface lead to heterogeneously 

broadened signals[151-155]. Previously, the effects of low temperatures as well as the 

radical concentration of 1H-TOTAPOL have been already investigated[156, 157]. For the 

62-residue microcrystalline SH3 domain, used as a model protein in this thesis, the 

optimal level of deuteration for maximum signal enhancement was already evaluated in 

earlier studies[158]. Furthermore, it was shown that the spectral resolution for SH3 

spectra can be improved by increasing the temperature to 180 K , therefore  experiments 

at higher temperatures were proposed as a promising approach to enable structure 

determination of proteins[159]. Even so, the resolution achieved so far has not been 

sufficient to assign the majority of the resonances[160].  

In this thesis, the aim is to investigate parameters and aspects that influence the CE 

efficiency in DNP MAS NMR experiments. Therefore, three main topics are addressed. 

Firstly, the exploration of novel polarizing agents. The CE efficiency of different 

deuterated CD3-TOTAPOL isotopologues, 1H-TOTAPOL and AMUPol will be 

evaluated on proline and microcrystalline SH3 standard samples in a temperature range 

between 100 and 200 K. It is expected that deuteration of the biradical 1H-TOTAPOL 

prolongs its electron relaxation parameters in favor of higher CE efficiency. 

Additionally, the highly water soluble binitroxides bcTol and bcTol-M, which have 

been designed specifically for biomolecular applications, are tested for the first time on 

proline, SH3 standard samples, and channelrhodopsin. To further investigate factors 

determining the radical efficiency, the influence of the radical linker in a polarizing 

agent will be tested. Therefore, the performance of the novel cyolyl-TOTAPOL radical 

was compared to other nitroxide biradicals. This radical possesses the same flexible 3 

carbon linker as 1H-TOTAPOL but the TEMPO moiety of the bcTol radical (see figure 
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14). Results are compared to the three biradicals bcTol, AMUPOL, TOTAPOL and 

bcTol-M that have di-, mono- and non-alkylated linkers respectively. EPR relaxation 

parameters at the same magnetic field strength as the DNP MAS NMR data (9.4 T) are 

correlated to electron relaxation parameters and CE efficiency. In addition to the 

common practice of characterizing radicals by measuring the enhancement values, their 

efficiencies will be compared by a signal-to-noise analysis that was developed in this 

thesis.   

The second main topic of this thesis is to further improve the DNP NMR methodology. 

With improved sample preparation procedures for microcrystalline SH3, which was 

used as a protein model system in this work, the feasibility of recording sufficiently 

resolved 2D and 3D MAS NMR spectra under DNP conditions that allow resonance 

assignments is tested. In addition, we aim to determine to which extent the previously 

established sparse labeling methodology can help to increase the spectral resolution by 

diluting the spin systems.   

The third main topic of this thesis, besides making progress in method development, is 

to demonstrate how the new developments can be ideally applied to diverse biological 

problems. Published work from this thesis includes: the structural insights of a signal 

peptide inside the ribosome tunnel[161], the chromophore structure in phytochrome 

photoreceptors[162], and the retinal configuration in channel rhodopsin[163]. Additionally, 

preliminary for the identification of a protein binding site in the sodium transporter 

LeuT are shown. 
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3 Material and Methods 

3.1 Preparation of proline standard samples 
 
All proline standard samples in this work contain 0.25 M 13C15N- proline (Cambridge 

isotopes) and were prepared from a GDH stock solution (60 % [D8]- glycerol, 30% D2O 

and 10 % H2O). For their preparation aliquots of 30 µL were transferred into PCR 

Eppendorf tubes. Radicals agents, as a solid powder, were weighed out and added to the 

sample in the desired amount for the respective concentration. After a few seconds of 

vortex mixing the solution was transferred into 3.2 mm diameter rotors. If a radical 

concentration of 20 mM was used, dissolution of the radical was accelerated by 

sonication (for TOTAPOL isotopologues, AMUPol and cyolyl-TOTAPOL). BcTol and 

bcTol-M did not require the use of sonication due to their high solubility in H2O and 

GDH.  Samples can be either pipetted directly into 3.2 mm ZrO2 rotors or alternatively 

centrifuged into the rotor with a customized funnel tool. Special attention has to be paid 

that no air bubbles in the sample are present. Proline samples were stored at -20°C and 

the DNP enhancement values remain unchanged over the course of 24 months.  

 

3.2 Sample preparation of Src homology (SH3) for DNP application 
 
The protein model system used in this work is the 62 amino acid long SH3 (Src 

homology 3) domain of a-spectrin (Gallus gallus).  

 
        10         20         30         40         50         60  
MDETGKELVL ALYDYQEKSP REVTMKKGDI LTLLNSTNKD WWKVEVNDRQ GFVPAAYVKK LD 

 

SH3 is involved in cellular signaling processes[151, 152] and belongs to proline-rich 

binding motifs such as the WW[153, 154] domain and EvH1[155, 156]. The first structure 

determination with MAS NMR spectroscopy was conducted on this domain by 

Castelliani et al. in 2002[5]. The secondary structure of this protein is a barrel composed 

of five b-strands oriented in two anti-parallel b sheets. In the flexible linker region, the 

formation of a short alpha helix is possible (P54-V58). The expression in E. coli 

(plasmid pET3d) and the comparably easy purification gives high yields. Through a pH-

shift to pH = 7.5 it forms stable micro-crystals that can be used as model systems for 
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DNP MAS NMR spectroscopy. Standard SH3 samples contain usually 5-7 mg SH3 

protein. 

 
Figure 15: Structure of SH3 [PDB: 1M8M] 

 

All standard DNP MAS NMR samples of microcrystalline uniformly 2H15N13C SH3 and 

[2-13C-glycerol]-SH3 were expressed in E. coli BL21 (DE3) according to previously 

described established procedures[5, 157-159]. After protein expression and precipitation in 

H2O:D2O (80:20, back exchange) the SH3 crystals were prepared for DNP 

measurements (see figure 16, top). In the first step the crystals were spun down by 

centrifugation (14.000 g; 4°C) (1a) to remove excess buffer (1b) that contained also 

small amounts of protein (mSH3rem). This step was repeated 2-3 times to obtain a wet-

pellet mwp (2). The weight of the wet pellet is determined, and water content calculated 

by subtracting the protein detected in the removed buffer from the total amount mSH3, 

i.e. mSH3 - mSH3rem.  Afterwards a radical stock solution prepared in the removed buffer 

was added (3). After overnight incubation (4), excess liquid was removed (5). Water 

content was determined again as above. To achieve a final 60 % volume ratio of 

glycerol with respect to the remaining water (v/v), an appropriate amount of [D8]-

glycerol was added (6) taking the total water content into account. After 12 h of 

equilibration (7) excess buffer was removed again by cycles of centrifugation and 

pipetting (8a and 8b). This procedure was used for samples containing TOTAPOL 

isotopologues or AMUPol as polarizing agents. It is important to note here that without 

step 8 the enhancement value obtained on a 20 mM 1H-TOTAPOL sample were in the 

range around e ~ 50-60. After conducting step 8 enhancements were around a factor two 

higher (e ~ 110-120). For the highly water soluble bcTol radical, the 8 step procedure 

can be reduced to 5 steps (figure 16, bottom). Due to their high solubility the bcTol 

derivates can be added together with the [D8]-glycerol.  
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Figure 16: Protocol for the preparation of SH3 DNP MAS NMR standard samples containing 5-
7 mg DCN-labeled (80% 1H backexchange) microcrystalline SH3  
 

The preservation of the crystalline phase of the SH3 protein was verified by recording 
13C-13C correlation spectra. 2D DARR spectra were recorded for SH3 crystals in GDH 

at room temperature (figure 17, blue-green cross peaks), and confirmed by comparing 

the chemical shifts associated with the cross peaks of the amino acids alanine, 

isoleucine, threonine and valine to those observed in a solution spectrum (green) and in 

a solid-state 13C-13C correlation of microcrystalline material prepared without glycerol 

(red). For comparison, the spectra are plotted over a DNP enhanced ssNMR spectrum 

(blue) recorded at 200 K. Overall, the spectra of the two crystalline preparations 

recorded at room temperature show very similar chemical shifts. Characteristic 

differences to the solution spectrum were observed[160] involving amino acids L8, V9, 

Y13, P20, R21, I30, T37, W41, V53, and Y57. These residues are located in crystal 

contact areas, with I30 and T37 shown in Fig. 17. Cross peaks involving the other 

threonine residues superimpose relatively well (figure 17, left spectrum). The largest 

difference between the spectra of the solution vs. the crystalline material appears for the 

Cδ chemical shift of I30 (figure 17, right spectrum). The chemical shift patterns of I30 

and T37 confirm that samples consist largely of crystals. The SH3 samples can be stored 

at -20°C the DNP enhancement values obtained remain unchanged over the course of 24 

months. 
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Figure 17: (A) Estimation of sample quality by solution and solid-state NMR, showing the 
regions with threonine Ca-Cb cross peaks (left) and with the signal pattern involving the Cd of 
I30 (right). blue: DNP DARR spectrum with 20 mM CD3-TOTAPOL-25 at 200 K, 25 ms mixing; 
red: solid state 13C-13C DARR spectrum of SH3 crystals at 295 K; Cyan: crystals with [D8]-
glycerol; green: solution state NMR 13C-13C 20 ms TOCSY (FLOPSY16) mixing at 304 K. (B) 
Orientation of protomers in the crystal structure 1U06 (left) and intermolecular contacts and 
possible hydrogen bond between I30 and T37 (right) 
 

 

3.3 Spin dilution of SH3 sample with [2-13C-glycerol] labeling 
 

The interpretation of MAS NMR spectra obtained for uniformly labeled samples can be 

impeded due to ambiguity of resonances in the case of spectral overlap or crowding. 

The spin dilution through biosynthetically sparse 13C labeling is a very efficient method 

to overcome this problem. Bacteria can be expressed with labeled glucose or glycerol as 

the sole carbon source during the aerobic expression resulting in sited specific labeling 

of amino acids[5, 15, 16, 161, 162]. The amount of resonances in the resulting peak pattern is 
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drastically reduced compared to spectra of uniformly labeled samples. Weak 13C-13C 

dipolar couplings that contain structural information can be observed, which otherwise 

would have been truncated by couplings of 13C nuclei that are directly bound to each 

other, especially resonances of aromatic amino acids (see figure 18, compare figure 42 

in chapter 4.7). 

 

 
Figure 18: 1D hC (1H-13C CP) spectra of microcrystalline SH3 recorded at 200 K, 8.9 kHz MAS 
and 9.4 T. With sparse labeling the resolution can be improved especially in the aromatic region 

 

The reduced 13C-13C scalar coupling is accompanied with the reduction of line 

broadening and spectra obtained from these diluted labeling schemes show improved 

resolution. In order to achieve a complementary labeling scheme, different samples 

where [2-13C glycerol] or [1,3-13C-glycerol] was used as the carbon source in the protein 

expression. Glycerol is metabolized through different pathways such as glycolysis, the 

pentose phosphate pathway and the citric acid cycle. For the pentose phosphate pathway 

and the glycolysis, the amino acids are synthesized in linear enzymatic reactions. 

Accordingly, in [2-13C-glycerol] SH3 the Ca of, for example, serine is fully labeled and 

the carbonyl positions remain completely unlabeled in the Cb. The opposite pattern is 

achieved for 1,3 SH3 where the carbonyl carbon and Cb are labeled and the Ca remains 

unlabeled. For the protein expression the BL21 (DE3) strain was used that contains all 

enzymes involved in the citric acid cycle. Since amino acids such as methionine, 

asparagine or lysine are made in a cyclic way they can undergo the citric acid cycle 

several times resulting in different isotopomers. In figure 19 the resulting labeling 
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pattern is shown. For the purpose of this thesis only a [2-13C-glycerol] labeled sample 

was prepared to assess to what extend the sparse labeling can help to increase the 

resolution in a MAS NMR experiment under DNP conditions.  

 

 
 
Figure 19: Labeling diagram of the 13C enrichment of SH3 expressed in E. coli BL21(DE3). All 
red dots represent the atoms which are completely or partially isotopically-enriched by [213C-
glycerol] labeling; the corresponding pattern for the [1,313C-glycerol]- labeling are shown in 
black 
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3.4 Synthesis of TOTAPOL isotopologues 
 
The synthesis and characterization with ESI-TOF of the various TOTAPOL 

isotopologues was done by Katharina Märker and Dr. Edgar Specker according to 

modified procedures of Song et al[112] in the group of Marc Nazaré at the FMP in Berlin. 

The synthesis of deuterated TOTAPOL isotopologues can be realized by connecting 

deuterated 4-amino-TEMPO (5) and 4-hydroxyTEMPO (4). 

 
 
Figure 20: Synthetic route to deuterated TOTAPOL isotopologues.  Reagents and reaction 
conditions: (a) Na2CO3, MgO, 50°C, 3 d. (b) 1. H2O2, Na2WO4, Na4EDTA, 23°C, 12 h. 2. 
Na2CO3/D2O, 23°C, 12 h. (c) NaBH4, 0 °C, 1 h. (d) NH4OAc/ND4OAc, NaBH3CN, 23 °C, 2 h. (e) 
epichlorhydrin, 23°C, 2 d. (f) LiClO4, 40°C, 3 d. 
 
 
The reaction of deuterated acetone and ammonium chloride gave deuterated 4-oxo-

tetramethylpiperidine (2), that was oxidized with hydrogen peroxide in the presence of 

sodium tungstate to nitroxide radical (3). The 2H content for 3- and 5 position of the 

molecule was adjusted for the respective isotopologue by equilibration in H2O/D2O 

mixture. After reduction of (3) with NaBH4 to the corresponding 4-hydroxy TEMPO (4) 

the alcohol was further reacted with epichlorohydrine. 4-amino-TEMPO (5) was 

obtained by reductive amination NH4OAc/ND4OAc. The reaction of 4-(2,3-

epoxypropoxy)-TEMPO (6) and (5) gave TOTAPOL (1). This concept constitutes a cost 

efficient synthesis for TOTAPOL isotopologues by using precursors with exchangeable 

proton/deuterons. Detailed information for each synthesis step can be found in 

supporting information of Geiger et al[163]. 
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3.5 Synthesis of AMUPol 
 

The AMUPol used in this work was a generous gift of Fabian Aussenac and was 

synthesized according the protocol described by Sauvee et al [55]. 

 

3.6 Synthesis of bcTol derivates 
 
The syntheses of bcTol, bcTol-M and cyolyl-TOTAPOL was done by Anil P. Jagtap at 

the University of Iceland. The synthetic route for the three nitroxide biradicals is 

depicted in figure 21. Acetonine (4) was condensed with hydroxycyclohexanone (5) to 

dihydroxymonoradical (6). After protection of hydroxylgroups with silyl ethers 

reductive amination yielded in amine radical (7). Further reaction with 

carbonyldiimidazole and deprotection gave bcTol (1). The biradical possessed a very 

good solubilty in GDH (150 mM), H2O (100 mM) and glycerol (240 mM) and can be 

used for DNP MAS NMR experiments without sonicating the samples solution before 

rotor filling. bcTol-M can be synthesized starting by protection of (6) with silyl ether 

followed by reductive amination. The resulting methyl derivate (9) is reacted with 

triphosgene and deprotected and yields in bcTol-M (2)  as yellow crystalline solids with 

excellent water solubility in GDH (250 mM) and H2O (170 mM). Cyolyl-TOTAPOL (3)  

was synthesized by protecting the hydroxylgroups of (6) with silyl ether and reduction 

of the keto group to the hydroxylradical (8). Alkylation with epichlorohydrin gave 

epoxy compound (10) that was coupled with (7) to yield cyolyl-TOTAPOL. The water 

solubility of cyolyl-TOTAPOL in GDH is similar to 1H-TOTAPOL (15-20 mM). 

The bcTol and the bcTol-M radical show highest water-solubility among the biradicals 

used in DNP MAS NMR spectroscopy so far. The so far best solubility of AMUPol 

(30 mM) was exceeded by ~ 8 times for bcTol-M in GDH. Hence, sample preparation 

procedures can be simplified (figure 16, bottom) and the steps of pipetting with stock 

solution shortened by adding the biradical directly to the sample with GDH, especially 

when working with small amounts of liquid. The amine and hydroxyl groups might be 

subjected to further radical synthesis in the future by for example increasing the 

molecular weight of bcTol derivates through pegylation or esterifying the hydroxyl 

groups (functional groups).  A detailed synthetic protocols for each synthesis step can 

be found in the PhD thesis of Anil Jagtap and partially (for bcTol) in the supporting 

information of Jagtap et al [164]. 
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Figure 21: Synthetic route to bcTol, bcTol-M and cyolyl TOTAPOL. Reagents and reaction 
conditions: (a) 1: NH4Cl,EtOH 2: m-CPBA, CH2Cl2 (b) 1:TBDMS-Cl, Imidazole 2: NH4OAc, 
NaBH3CN (c) 1: CDI, Et3N 2: TBAF, THF (d) 1: TBDMS-Cl, Imidazole 2: NaBH4, MeOH  (e) 1: 
TBDMS-Cl, Imidazole 2: CH3NH2, NaBH3CN, MeOH  (f) 1: triphosgene, Et3N, THF, 2: TBAH, 
THF (g) epichlorohydrin, NaOH, H2O (h) 1: (7), LiClO4 2: TBAF  
 
 

3.7 Acquisition of DNP MAS NMR spectra 
 
DNP MAS NMR data was recorded on the Bruker 9.4 T (400 MHz, Avance-III console) 

wide-bore spectrometer at the FMP in Berlin. The connected 263 GHz gyrotron (9.7 T) 

provides microwaves (~ 5 W) at the end of the waveguide[53]. All samples were 

investigated in a triple resonance cryo-MAS probe and if not indicated otherwise in 

3.2 mm ZrO2 rotors at MAS rates of 8 kHz ± 5 Hz for proline standard samples and 

8.89 kHz ± 5 Hz for SH3 samples. Cryogenic temperatures (100-200 K) were 

maintained with a Bruker LT-MAS unit. The field dependent enhancement profile was 

recorded in Wissenbourg on a Bruker Biospin system at 9.4 T equipped with a sweep 

NMR coil by Marcella Orwick-Rydmark. The 18.8 T (800 MHz/ 527 GHz, Bruker ultra 

Avance- III console) data was recorded on the commercial DNP MAS NMR system of 

Bruker Biospin by Deni Mance in the lab of Marc Baldus in Utrecht using wide bore 

magnet. Sample temperatures were calibrated using both the KBr-T1 and chemical shifts 

values according to known procedures[165, 166]. In temperatures series the “set 

temperatures” were equilibrated for at least 15 minutes before measurements. All 

reported temperatures refer to calibrated temperatures with microwave irradiation 

(MWon), which are approximately 6-7 K higher than the corresponding values without 
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microwave irradiation (MWoff) on our instrument. After turning the microwaves on or 

off, the temperatures of the samples were additionally equilibrated for at least 5 minutes. 

Enhancement values were determined by comparing signal intensities of hC (1H-13C 

CP) spectra that were recorded with and without microwave irradiation under otherwise 

identical experimental conditions (see formula 15, chapter 2). For all samples a recycle 

delay of d1 = 1.3 x 1H-T1 for maximum sensitivity per unit time was used. All reported 
1H-T1 values were measured using an inversion recovery pulse sequence (see 3.8.1).  

 

3.8 Pulse sequences for DNP MAS NMR experiments 
 

All 1D, 2D and 3D spectra as well as all reported values for 1H-T1 and T2 in this thesis 

were recorded under continuous microwave irradiation and is not explicitly indicated in 

the respective pulse sequences. 

 

 
3.8.1 1D data acquisition 
 
1D 13C detected spectra were recorded using hC (1H-13C CP) experiments (figure 22a). 

After a p/2 (90°) pulse, the magnetization was transferred to 13C via CP and detected 

while decoupling on protons (TPPM)[38]. Pulse length for p/2 pulses were 2.5 µs (60-

75 W) for 1H, 4.4 µs (60 W) for carbon and adjusted for the respective temperature.  For 

proton decoupling TPPM[38] was used between 60 and 75 kHz. For CP conditions, the 
1H and 13C rf fields were either set to ωH ~ 13/2 ωr vs. ωC  ~ 11/2 ωr, or ω(1H) ~ 11/2 ωr 

vs. ω(13C) ~ 9/2 ωr with a linear ramp from 75 % to 100 % on carbon.  For maximum 

sensitivity recycle delays were set to d1 = 1.3 x T1. All 1H-T1 relaxation times were 

measured with inversion recovery experiments (figure 22 b) where the population of 

spin states are inverted from the Z to the –Z axis by a pulse p (180°) followed by a 

variable delay time (vd) during which nuclear spins undergo relaxation back towards the 

equilibrium Z-magnetization longitudinally. A p/2 pulse (90°) tilts the remaining 

longitudinal magnetization in transverse magnetization into the xy plane that can be 

transferred to 13C via CP followed by detection. The relaxation delay was set to 5 x T1. 

The experiment is always conducted for a series of variable delay times and the 

exponential decay of the signal intensity can be exponentially fitted and the 1H-T1 

relaxation time constant determined. For the determination of T2 relaxation times the 

longitudinal magnetization along the Z axis is tilted into the transverse xy plane by a p/2 
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pulse followed by a vd time were the nuclear spins undergo dephasing due to small field 

inhomogeneities. A 180° pulse is then applied in order to refocus the spin ensemble and 

after a CP to carbon the spin echo signal can be detected (figure 22 c). 

 

 
Figure 22: Pulse sequences used to measure 1D NMR hC (1H-13C CP) experiments, (b) 
inversion recovery pulse sequence for 1H- T1 determination (C) and pulse sequence to 
determine T2 relaxation time 
 
 
 
3.8.2 2D and 3D dimensional data acquisition 
 

3.8.3 Dipolar assisted rotational resonance spectroscopy (DARR) 
 

Figure 23 shows a schematic representation the 13C-13C DARR pulse sequence that can 

be used for the investigation of intra residue correlations as well as long distance 

interactions[32, 33]. The magnetization is transferred from 1H to 13C via CP and from there 

to carbons in close proximity. After the preparation where the magnetization transferred 

to 13C the spins evolve while protons are decoupled. After the evolution time followed 

by a 90° pulse the magnetization is tilted to the Z-axis and a certain a mixing time tm 

(typically 50-500 ms) is used. The rotational resonance condition (vr = n wn ; n=1 or 

n=2) must be full filed for efficient mixing while the decoupling is switched off and 

selectively dipolar couplings between 1H and 13C nuclei are possible. Mixing is 

followed by a p/2 pulse and detection. 
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Figure 23: Schematic representation of the DARR pulse sequence 

 

2D 13C13C correlation spectra were recorded using a spectral width of (50000 Hz x 

46000 Hz), with an increment for delay 20 µsec using 4-8 scans, with between 1948 

(F2) x 512 F(1) and 1948 (F2) x 1024 F(1) complex points in each dimension. The 

DARR mixing times were set to either 25 ms or 50 ms. Recorded spectra were 

processed with Topspin 2.1 and 3.2. 2D spectra were processed with GM (Gaussian 

window multiplication) window function in the direct dimension with a line broadening 

(LB) of -30.00 Hz, a Gaussian max. position (GB) of 0.08, and the Qsine function in the 

indirect dimension (LB 0.30, GB of 0.12 and SBS of 2). 2D spectra recorded at 800 

MHz were recorded with a spectral width of (50000 Hz x 46000 Hz) and 1024 (F2) x 

512 (F1) complex points in each dimension. Other than for the 400 MHz at least 16 

scans are necessary to obtain cross peak resonances at 18.8 T.  

 

3.8.4 3D HNCA(CX)/HNCO(CX) 
 
3D NCACX and NCOCX experiments (where CX can be any carbon) were recorded 

with the pulse sequence depicted in figure 25. The 15N resonance of the (i) residue of 

the protein backbone can be correlated to the carbonyl 13C resonance of the previous (i-

1) residue (NiCOi-1) and to the 13Ca resonance of the same residue (NiCi
a). 15N 13C  

cross polarization steps can be realized by using SPECIFIC CP [29, 167] (figure 24).  

 
Figure 24: Schematic representation of magnetization transfers in NCACX and NCOCX 
experiments 
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The magnetization is transferred from 1H to 15N followed by a chemical shift evolution 

on nitrogen. The magnetization is transferred to carbon via SPECIFIC CP (CO or Ca, 

depending where the offset is placed). Now the magnetization is evolving on carbon and 

mixed to any carbon close in space via DARR mixing followed by detection. 1H are 

decoupled during evolution periods and SPECIFIC CP with TPPM and continuous wave 

(CW) decoupling (figure 25). The experiment was also recorded as a 2D with only one 

evolution step on 15N. With these two experiments spin systems can be identified 

(NCACX) and unambiguously linked (NCOCX) if spectra have sufficient resolution. 

 

 
Figure 25: Pulse sequence for 3D NCACX, NCOCX  

 

2D and 3D NCACX/NCOCX experiments were recorded at 200 K using 8 to 16 scans 

with 8-32 dummy scans, 30-50 ms of DARR mixing and a relaxation delay of 2 s. For 

the CP ω(C) ~ 7/2 ωr, ω(N) ~ 9/2 ωr for the NCACX and ω(C) ~ 11/2 ωr, ω(N) ~ 9/2 ωr for 

the NCOCX CP periods with ~ 75 kHz 1H decoupling was used. The direct dimension 

was acquired with 1558 (F2) x 256 F(1) (States TPPI) in the indirect dimension. The 

NCACX 3D experiments were recorded within 13 h, the NCOCX spectra in 9.5 h. For 

both spectra 4 scans and 32 dummy scans were used and acquired with 1558 x 64 x 88 

complex points with 15 ms of DARR mixing. A spectral width of 40000 Hz in the direct 

carbon dimension, 3000 Hz on 15N and 2222 Hz on the 13C-CO dimensions was used. 

The spectra were processed with 4096 x 128 x 128 points. With the GM function in F2 

(LB 30, GB, 0.06) and Qsine in F1 (SBS 4). 
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3.9 EPR spectroscopy at 6.42 T and 9.4 T 
 
The EPR spectra shown in chapter 4.3 were recorded by Dmitry Akhmetyanov in the 

group of Thomas Prisner at the Goethe University in Frankfurt/Main on a home-built 

high-frequency pulsed EPR spectrometer[168, 169]
  at 180 GHz (G-band). This corresponds 

to a static magnetic field of approximately 6.42 T. The EPR data in chapter 4.10 were 

recorded by Monu Kaushik on a 263 GHz (9.4 T) Bruker EleXsys E780 spectrometer in 

the group of Björn Corzelius in Frankfurt/Main. The longitudinal T1e times were 

measured with saturation recovery experiments and determined from saturation-

recovery curves so that contribution from spectral diffusion are reduced to a minimum. 

The T1e time constant is defined as the time after which the echo decayed from e-2 to e-3 

(where e is Euler number). Saturation pulse train with picket-fence pattern consisting of 

X = 29 (p/2) pi pulses with a length of ~ 85 to 90 ns (with 30 mW) were used for the 

CD3-TOTAPOL isotopologue measurements (chapter 4.3). For all results discussed in 

chapter 4.9 saturation was achieved with X = 64 p pulses with a length of 50 ns (15 

mW). The transverse T2e relaxation times were measured with a two pulse Hahn-echo 

experiment and represent the time constant of the echo decay by a factor of e. In figure 

26 the pulse sequences used are depicted where Td represents a variable delay that was 

incremented to obtain the longitudinal relaxation curves. The echo pulse delays are 

represented by the symbol t. 

 

 

 

Figure 26: (a) Saturation recovery pulse sequence to measure T1e and (b) Hahn-echo pulse 
sequence to measure transverse relaxation times T2e 
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3.10 Determination of signal-to-noise ratios (SNR) 
 
In recent years many nitroxide biradicals became available for DNP MAS NMR 

spectroscopy. Their performance was mostly judged by comparing the enhancement 

value e. However, the enhancement value e  does not describe the net polarization gain. 

Due to MAS induced depolarization and bleaching effects[51] caused by the presence of 

the polarizing agent the apparent enhancement values are higher than the actual 

improvement in signal-to-noise compared to standard solid-state NMR without added 

radical species[170]. In a study conducted by Bouleau et al. DNP MAS NMR 

spectroscopy was pushed to its limits. A cellulose sample was spun at 25 kHz at a 

sample temperature of 55 K that can only be achieved with a cryogenic helium cooling 

system[170]. The apparent enhancement value exceeded the theoretical maximum of         

e ~ 660 (677 ± 34 was measured for 1H signal) because the depolarization is not covered 

by the e value. How the absolute signal-to-noise ratio (ASR) and depolarization can be 

determined and which factors need to be taken into consideration was shown by de 

Paëpe et al. in detail [51, 52]. However, the determination of all factors can be time 

consuming. Nevertheless, it is clear that polarizing agents have different bleaching and 

depolarization effects and the enhancement value can only be seen as an approximation. 

A convenient method way how to compare the performance of polarizing agents 

regarding their CE efficiency in a biomolecular DNP MAS NMR experiment must be 

found. One possibility was described by Corzilius et al. who evaluated the practical 

sensitivity gain where the longitudinal build-up constant TB time is combined with a 

quenching factor to a DNP sensitivity factor (E)[171]. Alternatively, the eabs that involves 

depolarization as well as signal bleaching can be determined[172]. Unfortunately, these 

methods either do not account for the Boltzmann polarization at different temperatures 

and differences in 1H-T1 relaxation or need comparison to a static sample or undoped 

sample. This is rather impractical for the assessment of samples in biomolecular DNP 

MAS NMR as the samples need to be spun to be able to obtain site specific information 

and comparisons between different temperatures are often made.  

However, the most important point is how much signal-to-noise can be gained with a 

polarizing agent in a certain time in an DNP MAS NMR experiment. The following 

approach allows for comparison of samples with different radicals and different radical 

concentrations at different temperatures.  The signal-to-noise ratio per 10 minutes 

(10minSNR) is evaluated and compared. Factors like built-up time, signal depolarization 
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and signal bleaching, thermal noise, different 1H-T1 times and different amount of scans 

are covered in this value although not quantified. To compare the sensitivity k 

normalized per scan and taking the 1H-T1 relaxation time into account of different 

samples the Ernst formula[173] can be used (formula 18). In this formula 10minSNR is the 

signal-to-noise ratio per 10 minutes, c the radical concentration,  1H-T1 the spin lattice 

relaxation time and (sc) the number of used scans  

 

 
κ = 

SNR10min

c· sc·1.3· H-1 T1

 (18) 

 

One-dimensional hC (1H-13C-CP) spectra were recorded with an acquisition time of 

30 ms. The recycle delay was set to 1.3 x 1H T1 and the number of scans adjusted to 

complete each measurement within 10 min. All spectra for SNR determination were 

processed without using a window function. Two baseline corrections with a 

polynomial degree of five were applied, the first between 750 ppm and -550 ppm and 

the second from -300 ppm to -550 ppm for SH3 and from -295 to 550 ppm for proline. 

The 10minSNR were determined for the carbonyl resonances (194 ppm to 164 ppm) using 

the region ranging from -350 ppm to -450 ppm as noise for SH3 and -300 and 400 ppm 

for proline (figure 27). After defining the signal and the noise the values were 

determined with the Topspin command “SINO”. 

In addition, 10minSNR of hC (1H-13C-CP) experiments were recorded as a function of the 

recycle delay (d1) under constant microwave irradiation at 180 K in order to validate the 

approach and to confirm the maximum sensitivity for d1=1.3 x T1. The 1H-T1 (4.1 s) 

time was determined in a separate measurement via an inversion recovery experiment. 

The curve (figure 28) shows an increase of the enhancement values until a maximum at 

approximately 5 s, followed by smaller values towards longer recycle delays. This is in 

accordance with the predicted value (5.3 s) from NMR theory. 
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Figure 27: Proline 1D hC (1H-13C) spectrum acquired with a broad spectral width. The spectrum 
is baseline corrected twice once over the whole spectral width (top) and a second time in the 
range between -350-550 ppm (bottom). After a second baseline correction the noise was 
defined between (-)295-(-)550 for SH3 samples and between (-)300 and - (-)400 for proline 
samples 
 

 

 
 
Figure 28: Signal to noise values per 10 minutes as a function of the recycle delay d1 recorded 
at 8.9 MAS spinning rate in a 3.2 mm zirconia rotor for a sample containing SH3 (7.2 mg), bcTol 
(20 mM) (1H-T1 of 4.1 s was determined via inversion recovery experiment) measured at 9.4 T 
and 5 W microwave power at the end of the probe waveguide  
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4 Results and Discussion 

4.1 The effect of deuteration on TOTAPOL   
 
Various factors influence the CE efficiency of a biradical in a DNP MAS NMR 

experiment. Besides the solubility of the solvent used and the relative orientation of its 

g-tensors, the electron spin relaxation parameters are reported of high importance in 

literature. The higher enhancement values obtained for TEKPol over bCTbK and 

AMUPol over 1H-TOTAPOL where the methyl groups of the TEMPO moieties are 

replaced by cyclohexyl rings that possess higher molecular weights are associated with 

longer electron spin relaxation times in literature[143, 144]. Following this approach 1H-

TOTAPOL was partially deuterated to improve the CE efficiency of the radical. 

TOTAPOL isotopologues were therefore synthesized with fully deuterated methyl 

groups but 3- and 5-positions (CH2 groups) of the TEMPO rings only fractionally 

deuterated (figure 29).  The synthesis was done according to modified procedures of 

Song et al. with deuterated precursors (see chapter 3.4)[112] . This approach can be seen 

as a straight forward development as so far the deuteration of glycerol that is used as a 

cryoprotectant and deuteration of the used model protein SH3 led to higher 

enhancement values[158]. In figure 29 the molecular structure of the TOTAPOL and the 

respective isotopologues are depicted with the corresponding ESI-TOF-MS spectra. The 

enatiomeric excess represents the percentage amount of 2H at the 3- and 5 positions in 

each respective molecule. The obtained deuteration pattern differs from the study 

conducted by Perras et al. that was published almost at the same time to this 

investigation. Radicals were either full or partial deuterated resulting in higher 

enhancement values[174].  The field dependent enhancement profile for the isotopologue 

CD3-TOTAPOL-25 was recorded and compared to 1H-TOTAPOL on proline samples 

for hC (1H-13C-CP) experiments with 20 mM radical concentration for both radicals. 

The performance of the deuterated TOTAPOL version for maximum negative and 

positive enhancement exceed values obtained on standard 1H-TOTAPOL significantly 

(figure 30). In table 2 enhancement values for all proline and SH3 samples obtained for 

measurements at 9.4 T are summarized in an overview. All enhancement values 

measured for deuterated isotopologues of TOTAPOL were larger compared to the fully 

protonated 1H-TOTAPOL (figure 31). The enhancements that were achieved so far with 
1H-TOTAPOL on our instrument were 50 ± 3 for proline and 145 ± 5 for 

microcrystalline SH3.  
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Figure 29: TOTAPOL isotopologues with different levels of deuteration at the ring CH2 sites and 
the corresponding ESI-TOF mass spectra  

 

 

Figure 30: Field-dependent DNP enhancement profiles, via 13C-CPMAS experiments, for both 
protonated TOTAPOL (red) and CD3-TOTAPOL-25 (black) in proline standard samples (20 mM 
radical concentration). The deuterated TOTAPOL isotopologue leads to larger DNP 
enhancements than the protonated nitroxide biradical 
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Table 2: e(1H) measured by (1H13C CP) and 1H-T1values for standard proline and SH3 samples 
containing TOTAPOL isotopolgues and AMUPol at different temperatures under DNP conditions  
 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

[a] DNP measurements in 30 µL [D8]-glycerol/D2O/H2O (60/30/10 v/v/v) at 400 MHZ/263 GHz), 
8 kHz MAS, 20 mM biradical concentration (except for AMUPol 10 mM) [b] 5-7 mg uniformly 
labeled CDN SH3 (80 % 1H back exchange), ̴ 60 % [D8]-glycerol, 8.8 kHz MAS, 20 mM radical 
concentration for TOTAPOL isotopologues and 10 mM for AMUPol respectively  
 
 
 
 

 
Figure 31: 1D hC (1H-13C CP) spectra of proline samples containing different TOTAPOL 
isotopologues as polarizing agents acquired at 110 K and 8 kHz MAS. The deuterated 
isotopolgoues show a better CE efficiency compared to 1H-TOTAPOL 

The triple radical DOTOPA-TEMPO (see Figure 14) that constitutes a side product of 

the TOTAPOL synthesis was also tested. For a proline sample containing 20 mM 

DOTOPA-TEMPO enhancement values of e ~ 63 and 1H-T1 of 15.5 s were obtained at 

110 K and e ~ 8 and 1H-T1 of 3.8 s at 181 K. This radical is not suitable for 

  100 K 180 K 200 K 

  ε(1H) T1(1H) 
[s] ε(1H) T1(1H) 

[s] ε(1H) T1(1H) 
[s]  

pr
ol

in
e[a

]  

1H-TOTAPOL 50  2.7 4 0.7 

(no glass) 

AMUPol (10 mM) 224  3.5 33  1.6 

CD3-TOTAPOL-0 104  6.3 8  1 

CD3-TOTAPOL-25 94  6.3 6  2 

CD3-TOTAPOL-50 91 5.6 9  0.9 
CD3-TOTAPOL-100 69  6.8 12  0.9 

SH
3[b

]  

AMUPol (10 mM) 195 14.4 40 7.3 14 2.6 
AMUPol (20 mM) 181 6.1 25 2.3 11 1.2 
CD3-TOTAPOL-0 162 3.5 22 1.2 9 0.5 
CD3-TOTAPOL-25 165 3.8 37 1.9 16 0.5 

CD3-TOTAPOL-100 154 3.0 22 1.3 8 0.3 
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biomolecular DNP MAS NMR applications due to its comparatively poor solubility in 

GDH (1% DMSO is required to dissolve it in GDH for a 10 mM solution). Also the 

pegylation with tetraethylene glycol monomethyl ether did not increase the performance 

and therefore no SH3 sample was prepared for this radical. Thurber et al. could show 

that this radical outperforms TOTAPOL below 80 K (no MAS) and is rather suited for 

low temperature measurements [166].  

 
 
 

4.2 Temperature dependence of enhancements and 1H- T1 values  
 

For the four partially deuterated TOTAPOL isotopologues, 1H-TOTAPOL and 

AMUPOL the enhancement values and 1H T1 times were recorded as a function of 

temperature between 110 and 200 K on proline samples and microcrystalline SH3. The 

samples were prepared as described in chapter 3.1 and 3.2. The optimal concentration of 
1H-TOTAPOL was subject in studies conducted by Lange et al[175]. Due to the minor 

differences of the molecular structure the study was not repeated for the CD3-

TOTAPOL isotopologues. Common radical concentrations used for DNP MAS NMR 

samples are 20 -30 mM for 1H-TOTAPOL and for AMUPol 10 mM was reported for 

maximum sensitivity on proline in literature[55]. For comparison enhancement values (e) 

were measured for hC (1H13C CP) experiments and 1H-T1 times with inversion recovery 

experiments. In figure 32 the obtained values are plotted as a function of temperature. 

All deuterated isotopolgoues show higher enhancement values compared to the 

protonated version 1H-TOTAPOL. The differences among the isotopologues are 

nonetheless relatively small. For the proline samples the highest enhancements were 

measured for the CD3-TOTAPOL-0 (e ~104) were the CH2 are fully protonated. By 

increasing the amount of 2H, at the position 3- and 5 of the TEMPO ring (CH2) the 

enhancement values decrease. Although the enhancement factor of TOTAPOL could be 

exceeded by a factor of two through partial deuteration, the sample with 10 mM 

AMUPol shows higher e values (factor of 4 compared to 1H-TOTAPOL at 110 K) at all 

temperatures. It has shorter 1H-T1 values allowing for faster repetition. With increasing 

temperature, the values for e and 1H-T1 values decrease for all samples. The 1H-T1 

relaxation times for the TOTAPOL isotopologues are slightly above a sample 

temperature of 170 K than for AMUPol (figure 32).  

The trend for the microcrystalline SH3 samples is very similar although the 

enhancement values for the deuterated TOTAPOL isotopolgoues and AMUPOL do not 
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differ vastly and are significantly higher than enhancements for 1H-TOTAPOL. As 

mentioned above the optimal radical concentration for AMUPol was determined at 

10 mM. However, the comparably long 1H-T1 time (14.4 s) led to speculations that the 

preparation of a SH3 sample with 20 mM AMUPol might be worthwhile. The e values 

for the SH3 samples are in general higher compared to proline in a range between           

e ~160 -190 at 110 K. At 200 K the values are still in a range e ~10-17 and 200 K. As 

for proline the radicals CD3-TOTAPOL-0 and CD3-TOTAPOL-25 perform better on 

SH3 in the temperature range between 110-150 K compared to the other isotopologues. 

2D correlation spectra were additionally recorded for these two radicals (see chapter 

4.5). At 110 K the 1H-T1 times of the SH3 samples with deuterated TOTAPOL are 

between (~ 3-4 s) and shorter than the two AMUPol samples (14 s and 6.1 s for the 

10 mM and 20 mM AMUPol radical concentration respectively (figure 32). The 

differences in enhancement for the proline and SH3 samples might be explained with 

the deuteration of the SH3 microcrystals. The deuteration of 20 % at the non-

exchangeable sites of the protein, results in a favorable proton and 13C relaxation times 

and hence for efficient spin diffusion that is homogenously distributed along the proton 

network to all sides of the protein. 

Figure 32: Temperature dependent 1H DNP enhancement profiles (left) and corresponding 
apparent 1H-T1 relaxation times (right) recorded at 263 GHz/400 MHz of A: proline standard 
samples and B: microcrystalline SH3 samples  
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4.3 EPR characterization of CD3-TOTAPOL-25 and 1H-TOTAPOL at 6.4 T 
 

In order to investigate if the deuteration of the TOTAPOL molecule affects its 

paramagnetic relaxation parameters, EPR measurements were conducted in a 

temperature range between 80 and 200 K at 6.4 T (correspond to 180 GHZ) for CD3-

TOTAPOL-25 and protonated 1H-TOTAPOL. The field swept Hahn–echo curves are 

depicted in the top panel of figure 33.  The shape of the obtained EPR spectra (recorded 

with constant inter-pulse delay changes with temperature) reflect the anisotropy of T2e. 

This kind of profiles were investigated in studies by Kiriliana et al. at lower radical 

concentrations and might be correlated with the librational motion of the radicals [176, 177]. 

The longitudinal relaxation times T1e and transversal relaxation times T2e were 

measured at two spectral resonance positions and are plotted as a function of 

temperature in a double logarithmic scales for the two radicals in figure 33, lower panel. 

Position 1 corresponds to the maximum of the EPR spectrum (gyy position). Position 2 

referrers to the 14N hyperfine mI = 1 component (gzz parallel to B0) in figure 33. Both 

positions are indicated with arrows in the top panel and with filled and unfilled symbols 

in the lower pannel. For both spectral positions and increase of T1e with increasing 

temperature can be observed whereas the values for the first field position (unfilled 

symbols) is much larger compared to the second (filled symbols). In detailed EPR 

studies Eaton et al. reported similar effects and associated them with the anisotropic 

vibrational modulation of electron spin-orbital couplings[178-180] . At around 150 K the 

rotation of the methyl groups start to contribute to T1e relaxation[178, 179]. As it can be 

seen from figure 33 the deuteration of the TEMPO units on the methyl groups and 3- 

and 5 position of the TEMPO ring of the TOTAPOL molecules did not influence the T1e 

time significantly. This is in accordance with observations of  the deuteration study of 

Perras et al. at lower magnetic field strength[174]. The values for T2e increase as well 

with increasing temperature (figure 33, right) although there are small differences 

between the two radicals between 140 and 180 K. These differences might be caused by 

the rotation of the methyl groups that contributes to the electron spin echo dephasing[181-

183]. The increase in temperature increases the librational motion of the radicals resulting 

in modulation of the resonance frequencies by the hyperfine-tensor [183]. The anisotropy 

of the g-tensor further enhances this effect in the case of higher magnetic fields [177]. 

When comparing the temperature-dependent curves from figure 33 with figure 32 a and 

b (left), the EPR results do not support the hypothesis that the better DNP performance 
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of the deuterated TOTAPOL isotoplogues can be attributed to with increased electron 

spin relaxation as observed for other polarizing agents[55, 184]. The improved 

performance upon the methyl deuteration is instead likely due to the CH2 protons that 

are involved in initial polarization pick up. The 1H-T1 times for these protons might be 

prolonged and thus facilitate effective polarization transfer. This suggestion is supported 

by the fact that CD3-TOTAPOL-0 shows higher enhancement values (~ 33 % higher) at 

elevated temperatures. This results are in contrast to simulation studies conducted by 

Mance et  al[185]. 

 

 
 

Figure 33. Top Panel: G-band (180 GHz, 6.4 T) Hahn-echo detected field-swept EPR spectra of 
protonated 1H-TOTAPOL (left) and CD3-TOTAPOL-25 (right) obtained between 80 and 200K 
with a pulse separation time of 200 ns. All spectra were normalized to the intensity of the 
transition (14N hyperfine component) mI = -1 with gzz parallel to the external magnetic field. 
Normalization was performed because the canonical spectral position possesses a relatively 
high orientational selectivity, and hence, the corresponding relaxation rate T2e is weakly affected 
by librational motion of the radical. The abscissas represent the field offset from this resonance 
position. Positions marked 1 and 2 correspond to the field offsets at which electron relaxation 
rates were recorded. Bottom Panel: Temperature dependence of the electron spin longitudinal 
relaxation rate (T1e, left) and the electron spin transversal relaxation rate (T2e, right). The filled 
and unfilled symbols represent positions 2 and 1 respectively in the field-swept EPR spectra. 
The data corresponding to 20 mM protonated 1H-TOTAPOL and CD3-TOTAPOL-25 are shown 
in red and black colours, respectively  
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The multiplication of the EPR and NMR relaxation parameters gives the so called 

relaxation factor (T1e·T2e·T1H) of the electron spin relaxation times and proton 

longitudinal relaxation time T1e·T2e·T1H and can help to explain the temperature 

dependency of the enhancement values. In figure 34 the relaxation factor and 

temperature depended enhancement values for proline (left) and SH3 (right) are shown 

for 1H-TOTAPOL and CD3-TOTAPOL-25. 

 
Figure 34: Comparison of DNP enhancements for proline (left) and SH3 domain (right) with a 
product of T1e·T2e·T1H as a function of temperature. DNP enhancements for the corresponding 
protein samples are represented by the filled symbols and solid lines and the products of 
T1e·T2e·T1H are represented with the unfilled symbols and dashed lines. 1H-TOTAPOL and CD3-
TOTAPOL-25 are shown by red and black colors, respectively. The values for subproduct 
T1e·T2e (saturation factor) are obtained at position 2 in the EPR spectrum (Figure X) 
 
 
The overall trend of the relaxation factor (T1e·T2e·T1H) is very similar to the DNP 

enhancement values and correlates to drop in enhancement value as a function of 

temperature. Small deviations might be explained by spectral diffusion rates and 

depolarization effects that contribute to the overall DNP efficiency especially in SH3 

samples. 

 

4.4 Signal-to-Noise ratios per 10 minutes (10minSNR) for SH3 samples 
 

As already described in section 3.10 the overall sensitivity of samples in this work is 

evaluated by comparing signal to noise ratios per 10 min (10minSNR). As the temperature 

increases SNR accounts for the apparent enhancement values and also for Boltzmann 

distributions, thermal noise, 1H- T1 times and depolarization effects. Using SNR, a fair 

comparison of different radicals with different concentrations can be made. SNR values 

for samples containing 20 mM CD3-TOTAPOL-0 and AMUPol were compared to a 
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sample that is not containing any radical (Table 5).  In table 5 the values are 

summarized. For radical-containing the 10minSNR are approximately ~14 to 15 times 

higher at 110 K compared to 200 K and do not differ vastly from each other (table 5, 

columns 2 and 3). The amount of protein also plays an important role as it affects the 
10minSNR significantly so the values were divided per mg SH3. (table 5, columns 6 and 

7). At a sample temperature of 181 K, the 10minSNR are 37- and 25- times higher 

compared to the sample without radical. At 200 K 10minSNR are similar for the radical 

samples at around ~ 16 (table 5, columns 6 to 8, row 3). The SNR decreases for CD3-

TOTAPOL-0 sample between 110 to 181 K (~ 6.5) compared to the AMUPol-

containing sample (~ 9.0) and is also reflected in the different 1H-T1 relaxation times. 

The 10minSNR drops faster than the e values due to polarization loss and thermal noise. 

However, the loss is to a certain extent compensated by shorter 1H- T1 and improved 

linewidths. Since the difference in both relaxation behavior and depolarization effects[51] 

of the SH3 samples with radicals is remarkable, this underlines the necessity of SNR 

measurements when comparing radicals at different temperatures, rather than only 

comparing enhancement (e) values alone.  

 
Table 5. Values of signal-to-noise ratio per unit time (SNT) determined in measurements with 
and without microwave irradiation (on and off, respectively), for microcrystalline SH3 samples 
with 20 mM AMUPol (7.2 mg protein) or 20 mM CD3-TOTAPOL-0 (5.2 mg protein) in GDH. In 
columns 6 and 7, the SNTON was normalized to 1 mg protein. For comparison, a 
microcrystalline SH3 sample was measured without biradical in GDH (4 mg of protein) 

T[K] [a]SNTon [b]SNToff [c]SNTon/mg [d]SNToff/mg 

 AMUPol CD3-TOT-0 AMUPol CD3-TOT-0 AMUPOL CD3-TOT-0 no 
radical 

200 656 
±21 

492 
±22 

35 
±2 

31 
±2 

91 
±3 

95 
±4 

6 
±1 

181 1056 
±51 

1163 
±33 

36 
±2 

25 
±1 

147 
±7 

224 
±6 

6 
±1 

110 9497 
±188 

7553 
±293 

49 
±2 

45 
±2 

1319 
±26 

1452 
±26 

13 
±1 

[a] Signal to noise ratio per 10 min data acquisition with microwave irradiation; [b] Signal to 
noise ratio per 10 min data acquisition without microwave irradiation; [c] SNTON values 
normalized to 1 mg protein (the SNTON values are divided by 7.2 and 5.2 for AMUPol and 
CD3-TOTAPOL, respectively); [d] normalized Signal to noise ratio per 10 min data acquisition 
without microwave irradiation for a SH3 sample without radical 
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4.5  2D DNP MAS NMR spectroscopy on SH3 samples 
 
For the best performing TOTAPOL isotopologues CD3-TOTAPOL-0 and CD3-

TOTAPOL-25, 2D 13C-13C correlation spectra[32] at three different temperatures were 

recorded under DNP conditions and compared to the performance of AMUPOL on SH3. 

Figure 35 gives an overview of 2D 13C -13C DARR spectra obtained on different SH3 

samples containing different radicals as polarizing agents. Depending on the used 

number of scans and acquisition time spectra can be recorded in 12-16 h at 110 K, 4-7 h 

at 181 K and 2-4 h at 200K respectively. The signal loss at higher temperatures was 

tolerable in favor of improved resolution. The obtained enhancement values are similar 

at 110 K, but resolution is better for the sample containing AMUPol. Nevertheless, 

spectral improvement can be observed for all three samples when the temperature is 

increased. At 200 K the isotopologues show more similarity with the AMUPol sample 

than at lower temperatures. In all spectra at 200 K the resonance position for Ca-CCH3 

match the spectra measured at room temperature. In Figure 36 the Ca-CCH3 region of 

CD3-TOTAPOL-25 is overlaid with the spectrum recorded at room temperature 

(without radical). By comparing the linewidths for 1D cross sections at different 

temperatures and for different radicals the improvement is shown on the Ca-CCH3 cross 

peak of Ala 55 in figure 36 (right). It is not possible to record spectra above 200 K due 

to the glass-liquid transition of the cryoprotectant [D8]-glycerol. Also the signal 

enhancements are expected below 10 at temperatures greater than 200 K. However, 

many resonances are in ambiguous cross peak patterns that are heterogeneously 

broadened. To assess to which extent the resolution can be further increased by sparse 

labeling, a [2-13C-glycerol] microcrystalline SH3 sample was prepared. The polarizing 

agent used in this sample was the novel highly water soluble urea based bcTol that is 

discussed in chapter 4.7 in more detail. In figure 37, 2D DNP MAS NMR DARR 

spectra of [213C-glycerol] labeled SH3 standard samples recorded at 181 and 200 K are 

shown. The expected peak pattern was obtained. The peak pattern for the Val residues 

of this sample resembled the RT spectra better than the Lys, Leu region, which were 

broadened. The aromatic region showed resolved resonances for some protein side 

chains as for example Trp (see figure 38). The results obtained at this temperature 

demonstrated that DNP MAS NMR still has limitations in terms of de novo structural 

determination, but even with the current methodology, it is already possible to carry out 

ligand binding studies of proteins as many binding sites in protein receptors and 

enzymes involve aromatic amino acids[186-189]. 
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Figure 35. The aliphatic regions of DNP enhanced 13C-13C DARR spectra of microcrystalline 
SH3 recorded at 9.4 T with 8.8 kHz MAS using 20 mM of CD3-TOT-0, CD3-TOT-25 and 
AMUPol as a polarizing agent at 110 K (left), 180 K (middle) and 200 K (right) 

 

 
Figure 36: Room temperature spectrum of pure crystals with assignments indicated (red) 
superimposed with Ca-CCH3 regions of 13C-13C correlations recorded under DNP conditions 
using 20 mM CD3-TOTAPOL-25 at 200 K C: Comparison of line widths of the Ca-Cb Ala 55 
cross peak extracted from 2D 13C-13C correlation spectra for samples with AMUPol, CD3-
TOTAPOL-0, and without polarizing agent 
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Figure 37: The aliphatic regions of DNP enhanced 13C-13C DARR spectra of microcrystalline 
SH3 recorded at 9.4 T with 8.8 kHz MAS using 20 mM bcTol as a polarizing agent at 181 K 
(top) and 200 K (bottom) 
 

 

 
 
 
Figure 38: Aromatic region of a 2D DARR DNP MAS NMR spectrum of microcrystalline SH3 at 
9.4 T, 8.9 kHZ MAS, 200ms DARR mixing and 200 K 
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4.6 Heteronuclear 2D and 3D DNP MAS NMR spectroscopy at 200 K 
 
To further investigate if assignments of amino acids can be achieved under DNP 

conditions, heteronuclear 2D NCACX and NCOCX spectra were recorded for 20 mM 

AMUPol and CD3-TOTAPOL-0 at 200 K. The short relaxation 1H-T1 times allow the 

acquisition of a 2D NCACX in 1 h. The 3D data acquisition takes ~ 9 h for the NCACX 

and ~ 13 h for the NCOCX. For comparison, the 3D data acquisition used for the 

structure determination of SH3 at 280 K by Castellani et al. took ~10 days for each 

spectrum[5]. The resolution for the two samples is similar and since the best result were 

obtained for the sample containing AMUPol as polarizing agents, only the spectra for 

this radical is shown in figure 39. In general, the spectra show well resolved peaks for 

some peaks such as the Thr and Ala resonances. Between 50 and 60 ppm the resonances 

are broadened and the chemical shift differences cannot be resolved under DNP 

conditions at 9.4 T. To increase the resolution further respective 3D NCACX and 

NCOCX spectra of SH3 were taken. The spectra display resolved signals, including a 

large number of correlations involving Ca and Cb resonances. In figure 40, four strips for 

correlations of Ala 55, Ala 56 and Tyr 57 are indicating the sequential proximity are 

shown, and additionally two strips are connecting Thr 37 Cb and Asn 38 Ca.  It is worth 

mentioning that the resonances for the Ca residue of Asn 38 are difficult to obtain at RT 

the due to exchange broadening of signals at 293 K. 

 

Figure 39: DNP enhanced MAS NMR spectra recorded at 200 K at a magnetic field strength of 
9.4 T with 8.8 kHz MAS spinning and 30 ms DARR mixing, using AMUPol as biradical. 
Superposition of 2D NCACX-DARR (black) and NCOCX-DARR (red) spectra of microcrystalline 
SH3  
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Figure 40: DNP enhanced MAS NMR spectra recorded at 200 K at a magnetic field strength of 
9.4 T with 8.8 kHz MAS spinning and 30 ms DARR mixing, using AMUPol as biradical. 2D 
planes extracted from 3D NCACX (black) and NCOCX (red) spectra. Grey lines indicate side 
chain correlations between the residues A55 and Y57 and N38 and T37 
 
 
 
 

4.7 bcTol, bcTol-M, cyolyl- TOTAPOL: new biradicals for DNP MAS NMR 
 
In this section a new water-soluble polarizing agent named bcTol is introduced that was 

synthesized using a novel synthetic strategy. The synthesis is described in chapter 3.6 

and its molecular structure can be found in chapter 2, figure 14.  A problem with many 

biradicals that are used in DNP MAS NMR spectroscopy is their relatively high 

hydrophobicity. Hence their solubility in glycerol/water mixtures is limited. Polarizing 

agents that are most suitable for biological applications should ideally show minimal 

binding to the proteins or associated membranes. In a hydrophobic environment of 

membrane proteins hydrophobic polarizing agents have an increased likelihood to bind 

to hydrophobic surfaces and can cause PRE effect that result in lower signal intensities 

and broader line widths to nuclei in close proximity. In the literature the solubility 

problem of polarizing agents was already addressed, with reports on a range of 

approaches such as b-cycoldextrin host guest complexes, sodium octyl sulfat (SOS) and 

surfactants to increase the water solubility of btbK [180, 190-192]. Also the attachment of a 

glycol chain to increase the water solubility is possible as in the case of AMUPol that is 

water-soluble up to 30 mM. However, for bcTol the TEMPO moieties were replaced 

with spirocyclohexanolyl groups that resulted in a high solubility in H2O and GDH. The 

performance of bcTol was investigated on proline, microcrystalline SH3, and on a 

membrane proteine as a function of temperature. In figure 41 the enhancement values 

and 1H-T1 values for this radical are shown. For the proline sample high enhancement 
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values of e ~ 221 could be reached at 110 K. With increasing temperatures, the e drops 

in a linear way to 181 K where enhancement values of e ~ 21 can be still attained. The 
1H- T1 values also decreased as expected with increasing temperature. 

 

 
Figure 41: 1H-DNP-signal enhancement (e filled symbols) and T1 (open symbols) for proline, 
microcrystalline SH3 and channelrhodopsin as a function of temperature using bcTol as a 
polarizing agent. The proline (0.25 M) was uniformly 13C-, 15N-labeled. Spectra were recorded in 
glycerol-[D8] /D2O/H2O (60/30/10 v/v/v) containing bcTol (10 mM), measured at 9.4 T in a 3.2 
mm zirconia rotor at 8 kHz MAS. 1H-T1 was measured via an inversion recovery experiment with 
1H–13C-CP 
 

 

 
Figure 42:  A sample of SH3 (7.0 mg) containing bcTol (20 mM) (18.78 s recycle delay) 
measured in a 3.2 mm ZrO2 rotor at 8.9 MAS rate with and without microwave irradiation at 
9.4 T and (110 K, 16 scans, 4 dummy scans, 5 W microwave power at end of probe waveguide)  
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For SH3, similar to proline, high enhancement values could be reached. At 110 K the 

maximum enhancement values was reached for the CO signal (e ~ 248). At 181 K and 

200 K the values were smaller with e ~ 40 and e ~ 12, respectively.  The 1H- T1 

decreased from 14.5 s at 110 K to 5.1 s at 181 K and further to 2.7 s at 200 K. As 

described in the previous chapter the 10minSNR was evaluated for the SH3 sample under 

the same conditions and acquisition parameters and compared to the performance of 

AMUPol. The values are summarized in table 6.  The sample for bcTol gave 10minSNR 

of 9473 at 110 K and correspond with 7.0 mg of protein in the sample to 10minSNR per 

mg protein of 1353. For the sample containing AMUPol and 7.2 mg of SH3 a 10minSNR 

of 9497 and per mg protein 1319 could be measured. Within the error margins both 

radicals perform equally well at 110 K. For higher temperatures the situation changes. 

When comparing the 10minSNR per mg bcTol is with 238 slightly higher than AMUPol 

147 at 110 K. The enhancement drop of AMUPol is higher (~ 9) than for bcTol (~ 6). At 

this temperature the samples are already near the glass transition temperature of [D8]-

glycerol that makes comparison of 10minSNR at above 181 K difficult. The values for 

200 K show much larger variations. When comparing the values for 10minSNRoff   per mg 

the values for the two samples are similar with 6.8 for AMPol and 6.4 for bcTol. A 

sample that was made without radical for comparison shows a value of 12.5. The loss in 

signal intensity might be explained with the depolarization effects of the polarizing 

agents. However, the gain in signal-to-noise through DNP is order of magnitudes larger 

compared what is initially lost through depolarization and signal bleaching. The third 

sample that was investigated with the new radical was the membrane protein channel 

rhodopsin in liposomes[193]. The signal enhancement value measured for the lipid signal 

at 110 K was e ~ 36 (1H-T1 = 2.3 s). The performance of this sample with bcTol is 3 

times better than 1H-TOTAPOL (e ~10). Since bcTol is performing well on channel 

rhodopsin, bcTol might be a promising candidate for membrane proteins in the future 

due to its structural characteristics. Through its increased polarity the affinity to 

hydrophobic surfaces will be likely decreased, thus placing the radical at optimal 

distance from the protein for maximum DNP enhancement. To assess the performance 

in a 2D spectrum a 13C-13C-DARR spectrum was recorded within ~ 6 h at 181 K and 

enhancement factor of e ~ 40 (figure 43). The resolution of the spectrum bears a strong 

resemblance to the spectrum acquired on the AMUPol sample (see figure 44). The 

linewidths extracted from the bcTol-doped SH3 spectra without applying any window 

function for the cross peaks of Ala55 Cb–Ca (135 Hz), Leu10 Cb–Ca (137 Hz) are 
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favorably narrow and Ala55 Ca–Cb (177 Hz) and are estimated to be sufficiently small 

to measure sequence-specific resonance assignments of 3D spectra as was carried out 

for the AMUPol-doped SH3 sample. 

 
Table 6: Values of signal-to-noise-ratio per unit time (10 min, 10mSNR) 
measured by 1H-13C-CP-MAS experiments with and without microwave 
irradiation (ON and OFF, respectively) for a microcrystalline SH3 
sample with 20 mM bcTol and 20 mM AMUPol. Measurements were 
taken in 3.2 mm zirconia rotors containing 7.2 mg SH3 for the AMUPol 
sample and 7 mg for the bcTol sample at 8.8 kHz MAS 

 

 

 

 

 

 
Figure 43:  DNP enhanced 13C–13C correlation spectrum of microcrystalline SH3 frequency (at 
9.4 T), recorded at 181 K. (A) 2D 13C–13C DARR spectrum recorded with 25 ms mixing time. 
The dashed lines indicate positions of cross sections for evaluation of line widths. (B) Cross 
sections for selected cross peaks as indicated in (A), along with their line widths. To enable the 
evaluation of line width, the spectrum was recorded with a sufficiently long acquisition time and 
processed without application of a window function in F2. 
 

T [K] 10mSNRON  10mSNROFF eon/off(1H-13C CP) 

 bcTol AMUPol bcTol AMUPol bcTol AMUPol 

110 9473±474 9497 ± 188 45±3 49 ± 2 211± 26 187 ± 12 

181 1667±74 1056 ± 51 40±2 36 ± 2 42± 4 26± 4 
200 180±16 656 ± 21 13±1 35 ± 2 14± 2 17± 2 
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In order to assess the spectral resolution of using bcTol as a polarizing agent, the line 

widths of the same cross peak resonances of the spectra in figure 43 were determined 

and compared to a 2D 13C 13C DARR spectrum of SH3 where 10 mM AMUPol was 

used as polarizing agent under otherwise similar conditions (figure 44). The spectral 

widths did not differ from each other significantly. The spectral resolution of the two 

samples were very similar. The line broadening was dominated by heterogenoues line 

broadening at this temperature regime and homogenous line broadening caused by the 

radical was negligible.  

 

 
Figure 44: 1D Cross sections of DNP enhanced 2D 13C-13C DARR correlations recorded 
recorded for SH3 samples containing AMUPol and bcTol as polarizing agents at 181 K and 8.89 
MAS at 9.4 T. The dashed lines represent the 20 mM bcTol sample (see also figure 43). The 
solid lines are taken refer to the 10 mM AMUPol that was recorded at same conditions.  

 

 
Both spectra were recorded with 4 sc/4ds, 25 ms DARR mixing and same enhancement 

value of e ~ 40 was reached. It is worth noting that the spectra for the bcTol containing 

sample was recorded in 6 h and the AMUPol in 11 h. The 1H-T1 is with 6.7 s shorter 

compared to the 9.6 s of the AMUPol containing sample and allows for faster repetition.  

This result underlines that the optimal concentration of biradicals must be evaluated on 

a case to case basis, and can be specific to the protein system being investigated. For 

these two SH3 samples at 181 K it was more efficient to use a radical concentration of 

20 mM bcTol rather than 10 mM AMUPol.  

A second variant of bcTol was synthesized where the nitrogen atoms of the urea linker 

are methylated (bcTol-M, see figure 14). The maximum enhancement achieved with 

this radical were higher compared to bcTol. In a sapphire rotor signal enhancement 

values of e ~ 298 and a 1H-T1 time of 4.2 s could be attained in a 1H13C-CP experiment 

on a proline standard sample at 110 K and 8 kHz MAS rate. Reasons for the slightly 

better performance compared to bcTol might be the better solubility in GDH and the 

influence of methylation on the orientation of the two g-tensors.  The third new radical 
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presented in this thesis is the cyolyl-TOTAPOL. This biradical has the same TEMPO 

moieties as bcTol but the same linker as TOTAPOL and was synthesized to investigate 

the influence of the radical linker and the influence of EPR relaxation and the CE 

efficiency (see chapter 4.9 and 4.10). The solubility of this radical is limited to 17 mM. 

The highest enhancement values in a hC experiment (1H-13C CP) on a standard proline 

sample was e ~164 and a 1H-T1 time of 8.7 s at 110 K and 8 kHz MAS. Therefore, 

based on this result, the bcTol radical series is still superior. 

 

4.8 DNP MAS NMR spectroscopy at 800 MHz on proline and SH3 samples 
 

The performance of a standard proline sample containing 10 mM AMUPol and two 

standard SH3 samples containing 10 mM AMUPol and 20 mM CD3-TOTAPOL-25 

respectively were tested at three different temperatures at 800 MHz under DNP 

conditions. The highest enhancements could be obtained for the proline sample at 100 K 

was e ~ 37 and a 1H-T1 time of 13 s. The enhancement dropped to e ~ 9 when the 

temperature was increased to 160 K, the 1H-T1 shortened almost by a factor of 3 to 4.7 

s. The highest signal enhancements on SH3 samples were obtained for the AMUPol 

sample with e ~ 27. For the CD3-TOTAPOL-25 sample an enhancement value of            

e ~12.5 was observed, respectively at 100 K (table 7). 

 
Table 7: Enhancement values measured by hC (1H-13C 
CP) experiments for a standard microcrystalline SH3 
sample with 20 mM CD3-TOTAPOL-25 and 20 mM 
AMUPol. Measurements were taken in 3.2 mm zirconia 
rotors containing 5.3 mg SH3 for the AMUPol sample and 
5.7 mg for the CD3-TOTAPOL-25 sample at 18.8 T, 100 K 
and 8.9 kHz MAS rate 

 

 

 

 

 

The enhancement values for proline and SH3 standard samples reflect the field-

dependence of the cross effect, and the decreased efficiency in electronic saturation 

when using an anisotropic nitroxide biradical as polarizing agents. The very different 
1H- T1-values suggest a slight overall advantage of the CD3-TOTAPOL containing 

sample. At 190 K, the enhancements drop to very low values. The spectral quality 

T [K] AMUPol CD3-TOTAPOL-25 
 e 1H-T1 e 1H-T1 

100 27 20 12.5  5 
160 5  9 3.5  1.5 
190 2  2.2 1.2  0.34 
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obtained at the 800 MHz instrument was as expected significantly better than at 

400 MHz. As can be seen in figure 45, the methyl signals are sufficiently resolved at 

this temperature, with the overall pattern closely resembling the room temperature 

spectrum (figure 45, compare figure 36). For this reason, it can be assumed that an 

appropriate temperature range for measurements at 800 MHz would be 160-180 K when 

using binitroxide radicals as polarizing agent. However, although signal enhancements 

of 2 means a time reduction of approximately 4, it cannot justify conducting DNP MAS 

NMR experiments due to economic reasons. In general signal enhancements of at least 

e ~ 10 should be reached. Gyrotrons only recently became available compatible for 

18.8 T NMR magnets and all groups now face the issue of low signal enhancements. 

Due to the field dependency of the CE, measurement at higher fields require 

development of a new class of radical as polarizing agents. The recently heterodimeric 

radical series TEMTriPol (chapter 2.3 figure 14) introduced by Mathies et al. can 

provide higher CE efficiency with signal enhancements up to e ~ 65 at 100 K[149]. For 

this reason, further investigations with AMUPol, bcTol or CD3-TOTAPOL-25 are not 

worthwhile, instead the lessons learned from developing highly soluble radicals at 

400 MHz should be applied to heterodimeric radicals for further improvement of DNP 

enhancement at 800 MHz. 

 

 
 
Figure 45: Cα-Caliphatic region of a SH3 DNP standard sample containing 10 mM AMUPol as 
polarizing agent recorded at 18.8 T, 190 K and 8.89 kHz MAS rate. An enhancement e ~ 2 was 
observed. The dashed line indicates a spinning side band 
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4.9 Factors determining the CE efficiency in DNP MAS NMR experiments 
 
Several parameters determine the CE efficiency in a DNP MAS NMR experiment. The  

applied magnetic field, the effect of microwave power, the sample temperature, the 

properties and concentration of the biradical used, sample preparation, the propagation 

of the microwaves within the sample[150] or the effect of sample deuteration[174]. In 

addition, the type of rotor used (also its wall thickness) and the dependency on the MAS 

rate. The two types of rotors mainly used for DNP MAS NMR experiments are made 

from zirconia (ZrO2) or sapphire (Al2O3). The walls of sapphire rotors are more 

transparent to the microwave irradiation and absorb therefore less heat compared to 

zirconia rotors and perform up to 15-20 % more efficient in DNP MAS NMR 

experiments[53]. This is in accordance with results obtained for bcTol-M. For a hC (1H-
13C CP) experiment at 110 K and 8 kHz MAS (9.4 T) a maximum enhancement value of 

e ~ 254 could be measured on a proline sample in a 3.2 mm ZrO2 rotor. For a second 

proline sample that was measured under same conditions in a sapphire rotor, obtained 

enhancements values were ~ 15 % higher, e ~ 302. 

An additional factor determining the CE efficiency can be the MAS rate. It can have an 

influence on the overall sensitivity since the performance of some polarizing agents 

(e.g. TOTAPOL) show a spinning dependency and the spinning itself can cause 

depolarization[51]. Enhancement values for 1H-TOTAPOL are increases up to 3 kHz and 

starts to decrease as a function of MAS from 4 kHz onwards[53]. This result could be 

confirmed for the CD3-TOAPOL-25 isotopologues. For bcTol the MAS dependency 

was also tested, shown in figure 46. The MAS spinning dependence of the DNP MAS 

NMR 1H-13C-CP signal was recorded at 110 K and 8 kHz MAS. 

 

 
 
Figure 46: DNP signal enhancement (1H-13C CP) as a function of MAS rate measured at 110 K 
and 8 kHz MAS, 263 GHz (400 MHz). The sample contains 0.25 M U13C-15N proline in 25 µL 
GDH and 10 mM bcTol. For each data point 16 scans and 4 dummy scans where recorded with 
and without microwave irradiation 
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No significant changes of the enhancement values were observed between 2 and 

12 kHz. The temperature was adjusted by increasing the bearing and drive pressure for 

each spinning frequency, otherwise the value for 2 kHz would be slightly lower due to 

sample heating. This observation is in accordance with values reported for AMUPol.  It 

was suggest in literature that the efficiency of AMUPol is not affected when spinning 

faster due to the stronger electron-electron dipolar coupling compared to 1H-

TOTAPOL[55].  

Another important factor associated with the CE efficiency of polarizing agents that can 

be found in the literature are long electron relaxation times. As discussed in chapter 4.1 

the good performance of the nitroxide biradicals bCTbK and TEKpol are associated 

with prolonged electron relaxation times[143, 144]. In this respect there are two factors that 

are correlated with the enhancement factors. The “saturation factor” that is a product of 

T1e and T2e and describes the efficiency of the continuous wave CW saturation. The 

second factor is the so-called “relaxation factor” and combines electron spin relaxation 

and nuclear relaxation (T1eT2eTn) where Tn = 1H-T1. In the study of Kubicki et al. 

correlations between both saturation and relaxation factors and the enhancement were 

observed for the radicals in the btbK series but not for PyPol, Pypol-CD3, PyPol-diMe, 

PyPol-C6. These radicals are structurally very similar to the AMUPol and bcTol 

structures and possess a urea linker[138]. In chapter 4.3 we could see that there was no 

correlation obtained between EPR relaxation and the CE efficiency for the deuterated 

TOTAPOL isotopologues. However, the values for the DNP MAS NMR data and EPR 

data were so far never recoded at the same magnetic field strength. In order to get a 

better insight for 5 selected radicals the electron relaxation times T1e and T2e were 

recorded at a temperature of 110 K and a magnetic field strength of 9.4 T. They were 

correlated with DNP MAS NMR data also recorded at 9.4 T and 110 K, obtained on 

proline samples. In the following section the numbers 1-5 refer to the respective radical 

were is 1:1H- TOTAPOL, 2: cyolyl-TOTAPOL, 3: bcTol, 4: AMUPol, and 5: bcTol-M. 

In figure 47 the saturation factors (T1eT2e, cyan blue, right ordinate) and the relaxation 

factors (T1eT2eT1H, orange, left ordinate) are shown for the 5 different radicals. The 

corresponding values are listed in table 8. The EPR data were recorded on GDH 

samples and the 1H-T1 values were obtained on standard proline samples at 110 K. The 

proline samples were aliquoted from the same GDH/proline stock solution and 1D hC 

(1H-13C CP) experiments were recorded for 10 minutes (10minSNRon) under continuous 

microwave irradiation for all 5 samples. They are shown in green scaled to 1/10 for 
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better comparison. The absolute numbers are of less importance than the values relative 

to each other (see chapter 4.10 for values). In general, no clear correlation between 
10minSNRon and the saturation and relaxation factor could be observed. 

 

 
Figure 47: Signal-to-noise ratios 10minSNR (bright green) for the carbonyl signal of proline, 
saturation factor (dark green) and relaxation factor (orange) recorded for hC (1H13C CP) 
experiments recorded at 110 K and 8 kHz MAS. 1:1H- TOTAPOL 2: cyolyl-TOTAPOL 3: bcTol, 
4: AMUPol, 5: bcTol-M. All samples contain a radical concentration of 10 mM 
 
According to figure 47, the cyolyl-TOTAPOL should show the best performance in a 
1H-13C CP experiment and bcTol significantly better than AMUPol if the enhancement 

values depend predominantly depending on electron relaxation. This is apparently not 

the case when comparing 10minSNRon values. It is suggested that the performance 

differences have other reasons such as the relative orientation of the nitroxide planes 

concomitant with stronger dipolar couplings and to certain extend the solubility of the 

polarizing agent in GDH. In the literature a T1e value of around 500 µs is suggested as 

optimal among other requirements for high CE efficiency, and can play a role as 

important to the radical should such as the distance of the radical centers[194]. It can be 

speculated that T1e close to 500 µs might be a necessary but not sufficient requirement 

for efficient CE. 

 
Table 8. Electron relaxation times T1e, T2e, electron saturation factor and relaxation factor for 
five different biradicals at 110 K. The relaxation parameters are extracted directly from decay 
curves and were recorded at 9.4 T 

 
T1e 
[µs] 

T2e 
[µs] 

1H-T1 
[s] T1eT2e [µs2] 

T1eT2e T1H 

[10-12s3] 
1H-TOTAPOL 283 0.90 7.7 256 1956 

cyolyl-TOTAPOL 526 2.08 8.9 1092 9790 

bcTol 394 1.86 6.9 730 5140 

AMUPol 309 1.33 5.3 411 2258 

bcTol-M 437 1.83 4.2 798 3389 
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4.10  Comparison of linker influence of biradicals on the CE efficiency  
 
For the 5 different proline samples (1-5) shown in section 4.9, the CE efficiency was 

further analyzed in this section. The comparison of radical performance enables insights 

into the interplay of factors determining the optimal hyperpolarization of analytes. The 

CE efficiency is an interplay of individual influences of the determining factors such as 

the, electron-electron dipolar and exchange couplings, the magnitude of the hyperfine 

coupling the relative orientation of the g-tensors and solubility of the polarizing agent in 

the solvent. 

In this comparison study, the radicals can be divided in two different groups according 

to their linkers. The nitroxide biradicals bcTol, AMUPol and bcTol-M contain an urea 

linker that are substituted with protons, polyethylene glycol (PEG), or methyl groups on 

the nitrogen atoms respectively (see chapter 2 figure 14). The nitroxide moieties of 

cyloyl-TOTAPOL and 1H-TOTAPOL are tethered with the same flexible three carbon 

linker. For comparison first, the enhancement was determined by comparing peak 

intensities in spectra recorded with the same number of scans (sc) in the presence and 

absence of microwave irradiation, (e via 1H-13C CP, figure 48 red). Secondly, the 

signal-to-noise ratios per 10 min under microwave irradiation was compared 

(10minSNROn, figure 48 green). 

 

 
Figure 48: Signal-to-noise values 10minSNRon (green), 

1H-T1 (yellow), normalized 10minSNR per 
scan (bright blue), k  (dark blue), enhancement values (red). (1: 1H-TOTAPOL, 2:cyolyl-
TOTAPOL, 3: bcTol, 4: AMUPol, 5: bcTol-M). All samples contain 10 mM polarizing agent. Data 
was recorded at 110 K and 8 kHz MAS at 9.4 T under cw irradiation 
 
 
Figure 48 shows the NMR signal-to-noise ratios per 10 min of the carbonyl signals of 

proline 10minSNR min in green. Values are scaled to 1/10 for better comparison. To 

normalize the 10minSNR to one scan, the values were further divided through the square 
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root of scans (bright blue) yielding SNR per scan. The sensitivity (k) shown in dark blue 

takes 1H-T1 into account yielding SNR per unit time according to the Ernst formula (see 

also formula 18). The 1H-T1 values are depicted in yellow and correspond to the values 

of the right ordinate. In figure 48, the two radicals with TOTAPOL linkers are shown to 

the left (1 and 2), and to the right the degree of urea alkylation is increasing from 3-5. 

The three urea based radicals show a higher CE efficiency in the DNP MAS NMR 

experiments compared to 1H-TOTAPOL and cyloyl-TOTAPOL with the flexible 3 

carbon linker, showing significantly higher 10minSNR and enhancement values. In 

accordance with this observation, additional hyperfine splittings are observed in the 

EPR spectra of the urea-linked radicals, reflecting large effective electron-electron 

dipolar couplings (figure 50).  The enhancement values of the urea-based radicals are 

very similar, whereas their detected 10minSNRon and 1H-T1 values differ considerably 

(see table 9). All reported values are average values from 5 measurements. The 

enhancement values and 10minSNR can provide different insights. The enhancement 

value reports largely the efficiency of the hyperfine coupling of electron and sample 

nuclei, whereas the measurement of 10minSNROn displays the actual sensitivity of the 

experiment as a whole, revealing the effects of all additional factors, including such as 

depolarization and nuclear 1H- T1, which is the most important. 

 

Table 9: Signal-to-noise ratio per 10 min, enhancement e and sensitivity k values at 110 K 
and 8 kHz MAS under CW microwave irradiation. The 5 different proline samples are doped 
with nitroxide biradicals (10 mM) evaluated for hC (1H-13C CP) experiments. All reported 
SNR values refer to the CO signal of proline 

	 radical 10minSNRON 10min SNROFF e 
k 

[s-0.5] 
sc T1 

[s] 

1	 1H-TOTAPOL 1351 ± 52 38 ± 5 42 ± 2 55 ± 2 60 7.7 

2	 cyolyl-
TOTAPOL 3447 ± 8 21 ± 2 164 ± 3 141 ± 1 52 8.9 

3	 bcTol 5358 ± 193 26 ± 2 227 ± 8 220 ± 8 60 7.8 
4	 AMUPol  6079 ± 94 28 ±1 222 ± 9 247 ± 4 88 5.3 
5	 bcTol-M 6463 ± 386 30 ± 1 238 ± 7 264 ± 14 110 4.2 

 
 
The differences of proton 1H-T1 values explain the divergence between enhancements 

and SNR values. Compared to bcTol-M, the enhancement of bcTol is only ~ 5 % 

smaller, whereas the SNR is reduced by ~ 18 % owing to the different 1H- T1H values, 

assuming that the degree of depolarization and bleaching is very similar. If the k values 

are compared as the most precise value to assess the radical performance, bcTol-M is      
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~ 20 % better than bcTol. This observation suggests that SNR increases with the 

alkylation of the urea linker whereby the methyl groups plays a special role for 

enhancing nuclear relaxation. The orientation of the two nitroxide moieties of the 

radicals change upon alkylation. As we could see in chapter 4.9 the electron relaxation 

parameter cannot explain the differences of the radical performances. It can be seen 

from the obtained data that the role of the linker is connected to the DNP efficiency in 

this study. The two employed linkers are very different in terms of molecular structure 

resulting in a different magnitude of the dipolar couplings.  

One essential component determining the efficiency of the CE in DNP MAS NMR 

experiments is the effective electron-electron dipolar coupling between the radical 

centers in the biradicals. The effective dipolar coupling is composed of two 

contributions, an exchange component Jex and the actual dipolar coupling that is 

depending on the distance between the paramagnetic centers together with the relative 

orientation of the nitroxide g tensors that should be nearly rectangular for maximum CE 

efficiency. Jex is equivalent to scalar couplings and is only significant when few 

chemical bonds and favorable geometries such as planar arrangements are present 

between the radical centers in the respective biradical. Due to the angular dependence, a 

more rigid linker enforcing a favorable conformation should be advantageous. As an 

example, a biketal tether compared to the relatively flexible linker of the TOTAPOL 

was introduced in the bTbK radical[113]. The two types of employed linkers are very 

different in terms of molecular structure, affecting the effective electron-electron dipolar 

coupling through several parameters such as the magnitude of Jex, that depends on their 

planarity and p-electron system, different (average) distances between radical centers, 

angles, and mobility. To analyse the situation, the conformational space adopted by the 

biradicals was thus profiled by molecular dynamics simulations (figure 49). The 

TOTAPOL linker has more atoms than the urea linker and is flexible, enabling distances 

even from below 9 Å to a maximum distance of close to 16 Å, with a high frequency of 

conformers in the range of 13-16 Å for TOTAPOL itself. The urea moiety is short and 

may be rigid, keeping the radical centers at a minimum of 9 Å but not further than 13 Å 

apart, depending on the substitution pattern. There is a considerable difference in 

distance distribution when comparing the three urea-linked radicals, with bcTol-M 

allowing for shorter distances (down to 9 Å) than the planar bcTol (12 Å). In all cases, 

the cyclohexyl moiety may rotate around the connecting bond. The actually observed 

effective electron-electron dipolar couplings (table 10) follow the trend expected from 
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the molecular dynamics situations and reflect the ratios of the enhancement values and 

in particular the respectively signal-to-noise values. 

 
 

 
Figure 49: Frequency distribution: Distance of the radical centers calculated with molecular 
dynamics simulations for the biradicals (a) TOTAPOL, (b) cyolyl-TOTAPOL,(c) bcTol, (e) 
AMUPol and (g) bcTol-M. The number of favorable orientations for the molecular structure is 
additionally shown for the molecular structures for the radicals bcTol (d) AMUPol (f) and bcTol 
(h) 
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The differences amount up to 8% and may not be over-interpreted, but there is a clear 

tendency towards larger radical separation distances for bcTol. From the molecular 

dynamics simulations, it may be concluded that this is largely due to the much shorter 

electron-electron distance. However, it is assumed that a larger contribution due to Jex 

will come into play for the non-alkylated linker of bcTol, in part compensating for the 

larger distance between the electron centres. The structural differences between bcTol 

and bcTol-M are similar to the differences between the two radicals PyPol and 

PyPoldiMe. In literature, the better performance of PyPoldiMe is attributed to the 

change of the relative orientation of the TEMPO moieties upon alkylation[145]. However, 

here it is shown that also a notable difference in electron-electron distances occurs due 

to the different nature of the urea-like moieties (sp2 vs. sp3 hybridization at the nitrogen 

centres). Given that the observed SNR and enhancements are not correlating with the 

electron relaxation parameters, several conclusions may be drawn at this point: (i) For 

the nitroxyl-based biradicals in this comparison, SNR and enhancements are largely 

determined by the size of the effective electron-electron dipolar coupling. (ii) 

Comparing different radicals, the ratios of enhancements diverge from the ratios of the 

SNR when proton relaxation times are considerably different. (iii) Urea-based radicals 

are showing higher enhancements and SNR than TOTAPOL-like radicals due to a 

sizeable Jex contribution to the effective electron-electron dipolar coupling, and to some 

extent indeed due to larger electron-electron dipolar couplings. (iv) Within the group of 

urea-based radicals bcTol-M is performing better in proline samples due to the 

shortening of the proton relaxation time, and closer distances.  

 

 

 
Table 10: Electron relaxation times T1e, T2e, and electron saturation factor for each biradical at 
110 K. The relaxation parameters are extracted directly from decay curves. 

radical T1e 
[µs] T2e [µs] T1eT2e 

[µs2] 
D1 

[MHz] 
D2 

[MHz] 
D3 

[MHz] 
D4 

[MHz] 
TOTAPOL 283 0.904 256     
cyolyl -TOTAPOL 526 2.076 1092     
bcTol 394 1.854 730 61.7 60.0 60.0 66.7 
AMUpol 309 1.33 411 63.1 63.3 61.7 66.7 
bcTol M 437 1.827 798 63.1 63.6 65.3 71.7 

 



 

     73 

 
Figure 50: Pseudo-modulated CW EPR spectra at 110 K recorded at 263 GHz. Spectra are 
vertically shifted for better visual comparison to compensate for variation in resonant microwave 
frequency 

 
 

4.11 Assessment of signal bleaching through radicals on proline 

 
In this section the signal bleaching through the presence of the polarizing agents 

AMUPol and bcTol-M was assessed on standard proline samples at 110 K and 8 kHz 

MAS. Their performance was compared to an undoped proline sample. The necessity of 

comparing signal-to-noise ratios rather than enhancement values was already 

emphasized for SH3 samples in chapters 4.4 and 4.10. However, due to the slightly 

different amounts of SH3 in the samples the signal bleaching can be difficult to quantify 

and compare to other samples. As it could be seen for proline and SH3 results in chapter 

4.2 the obtained enhancements for CE polarization are sample specific. For the signal 
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bleaching the same specificity can be expected. The bleaching is depending on the 

sample type as well as on the concentration and distance of the radical to the sample 

molecules. To assess signal bleaching, the use of hC (1H-13C CP) experiments can be 

inaccurate due to slightly different CP matching conditions. In addition, the comparably 

long 1H-T1 of 41 s of the undoped sample allow for only 12 scans in 10 min. The signal 

bleaching caused by the polarizing agents was tested using 1H excitation and 1H 

detection without CP for 10 min (10minSNR). In the literature integrated 1H signals were 

used to judge depolarization as a function of MAS[51].  

In figure 51 10minSNRon (green) and 10minSNRoff (red) are shown (left) and the values for 

sensitivity k (see formula 18) are shown (right) for the detected 1H signal. For 

comparison a proline standard sample without polarizing agent is shown (undoped 

sample). The 10minSNRon values for the sample containing 10 mM AMUPol are ~ 24 

times bigger and for bcTol-M ~ 30 bigger compared to the sample without radical. 

Without microwave irradiation the 10minSNRoff values for the radical containing samples 

are ~ 5-7 times lower.  

For the k values, where the used number of scans and 1H-T1 times are taken into 

account (radical concentration is constant), 10minSNRon values are more than 24 and 30 

times higher with microwaves. Without microwave irradiation the values for k are 5 to 

7 times lower. The samples containing radicals have around 5 times lower sensitivity 

when measured without microwave irradiation. It needs to be mentioned here that only 

20 % of the protons signals that are measured belong to the protons of proline since the 

GDH contains H2O. It becomes obvious that the net gain in polarization is not as high as 

the comparison of the signal intensities obtained for the MWon and MWoff spectra 

suggest. The loss of bleaching must be compensated first. However, these effects are 

sample and radical specific and depend also on the type of experiment. For comparison, 

samples with radicals lacking protonated methyl groups (CD3-TOTAPOL-0 or 

AMUPol) show 76–80% of the SNR of a sample without radicals, in hC (1H-13C CP) 

experiments. These results underline once more the necessity of comparing SNR rather 

than e values. 
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Table 11: 10minSNR and	 k	 values	 for 1H excitation and detection.  Values for 10MinSNR and k of 
two radical containing proline samples are compared to an undoped sample. Experiments were 
recorded at 110 K and 8 kHz MAS at 9.4 T	
  

 

 

 

 

 

 
Figure 51:  Signal-to-noise ratio for 10minSNRon for the 1H signal (left) and sensitivity k (right) for 
3 different proline samples (left) containing 10 mM radical concentration for bcTol-M (2) and 
AMUPol (3) and no radical (1) recorded at 110 K and 8 kHz MAS at 9.4 T. Depicted in green is 
data recorded with and in red without microwave irradiation.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 MWON MWOFF 
 10minSNR k 10minSNR k 

bcTol-M (10 mM) 28352 1157 220 9 
AMUPol (10 mM) 22886 937 161 7 
undoped sample 996 39 1007 40 
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4.12 Biomolecular applications in DNP MAS NMR spectroscopy 
 
The early pioneering work in DNP MAS MMR spectroscopy after Slichters proof of 

principle work on lithium metal was conducted in the labs of Schaefer and Wind where 

NMR signals of  polymers[195, 196], silicon[197], diamond films[198], polyacetylene[199] and 

coal were enhanced at low magnetic fields. An overview about this work can be found 

ins reviews of Wind et al[72]. The development of DNP in the context of structural 

biology was carried out at the MIT by Griffin et al. using home built instrumentation. 

First spectra were taken on single amino acids like glycine and later on the T4 lysozyme 

already mentioned in chapter 2. Rosay et al. conducted one of the earliest biomolecular 

MAS NMR experiments under DNP conditions on Y21M fd bacteriophage as well as 

on membrane proteins[200, 201]. Through 1H diffusion, polarization from the solvent could 

be transferred to encapsulated DNA through a 20 Å thick layer of coat proteins. In a 

similar way, van der Wel et al. could show in 2006 on the polypeptide GNNQQNY, that 

through spin diffusion signals of regions could be enhanced that are ~ 1 µm from the 

polarizing agent[58]. When the DNP system of Bruker Biospin became commercially 

available, more biomolecular applications were published. In the literature many 

biomolecular applications can be found. Amyloid fibrils[202-208], membrane proteins[209-

214], systems embedded in complex environments[210, 215-217] or large biomolecules[218] 

were investigated under DNP conditions.  

Sergeyev et al. could showed for the coat protein of the Pf1 virus in 2017 that is 

possible to conduct 4D side-chain-side-chain (S3) experiments within less than one 

work week under DNP conditions[219]. The experiment was realized with MAS rates of 

25 kHz at 100 K and lead to the almost complete de novo assignments of the protein. 

The conducted S3 4D experiment is similar to (CANCOCX) experiment of Franks et al. 

that can take many days or up to weeks without DNP[220]. With sparse labeling DNP has 

also a very high potential to reveal structural information in protein or ligand binding 

studies[221, 222].  For further reading concerning modern biomolecular applications and 

NMR tools in DNP such as spin tags, please refer to the according reviews [45, 60, 223, 224].  

As we could see in the results obtained on proline differ from those obtained for the 

SH3 domain. The samples are quite different entities on a molecular level, since the 

proline is very small molecule dissolved in a GDH solution compared to the more than 

7 kDa in size SH3 protein in microcrystalline form. The sample specificity underlines 

that in biomolecular DNP MAS NMR the used radical chosen and radical concentration 

must be assessed from case to case for each individual sample. As a rule of thumb for 
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the radical concentration it is suggest to use at least 10 mM but not more than 20 mM 

for urea based radicals. In special cases such as for amyloid fibrils where the polarizing 

agent binds to the sample molecule very low concentrations (0.05 mM) might be 

necessary[208]. To determine how much water or liquid is in a sample and therefore how 

much radical is needed for a certain concentration can be difficult, especially for 

membrane proteins. So alternatively, the radical concentration can be assessed by 

dissolving the radical in 2-5 µL [D8]-glycerol or H2O that is added to the sample. 

However, before adding cryoprotectants to the sample it should be checked first if the 

sample itself can provide a glass-matrix under DNP conditions. Besides the so far 

demonstrated methodical progress in DNP MAS NMR on proline and SH3, 

biomolecular applications are demonstrated in this section.  The sample preparation of 

each individual project (all conducted at the FMP in Berlin) that is discussed in the 

following section could directly gain from experience that was collected through 

method development. Comprehensive information of the projects´ biological 

backgrounds can be found in the corresponding publications. 

  
 
4.12.1 Nascent chain in the ribosome  
 
Lange et al. investigated the 37 amino acid long signal sequence of the disulfide 

oxidoreductase (DsbA) protein within the 80 to 100 Å long ribosome exit tunnel with 

DNP MAS NMR spectroscopy[225]. This system represents an example of how the 

sensitivity and selectivity problem in MAS NMR can be overcome by DNP. The 

biological question that was addressed in this project is whether the formation of a 

secondary structure of the signal peptide within the ribosomal exit tunnel is possible and 

if it can be shown by DNP MAS NMR. The tunnel can accommodate around 30-70 

amino acids depending on whether they occur in a stretched or helical conformation. 

The SecM stalling sequence that interacts with proteins L4 and L22 at the so called 

constriction point was fused with the signal sequence of the DsbA protein to gain 

ribosome complexes that carry a nascent chain in its inside. The ribosome-nascent chain 

complexes (RNC) has a concentration of only 4 nM that were dissolved in GDH and 

ultracentrifuged into a 3.2 mm zirconia rotor. This biological application demonstrates 

that DNP MAS NMR spectroscopy is as a sensitive method. The selectivity problem 

(the ribosome contains more than 5000 amino acids) residue was addressed by the use 

of POST-C7 double to single quantum (DQ-SQ) spectroscopy allowing the suppression 

of the natural abundance signal of the ribosome. A signal enhancement of e ~ 10-15 
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(1H-TOTAPOL) could reduce the experimental time by a factor of 100 to 225 and 

allowed data acquisition within 4 days.  It could be shown that the DsbA adopts the 

alpha helical structure only to a minor extent within the tunnel. 
 

 
Figure 52: Representation of stalled nascent chain interacting with ribsomal proteins within the 
ribosomal exit tunnel. The isotopically labeled amino acids of the SecM stalling sequence and 
the DsbA signal sequence, are represented by black dots. Two of the three proteins that form 
the constriction point (L4 and L22) and the tRNA are shown. 
 
 
 
 
 
4.12.2 Insights into chromophore structure in phytochrome 

photoreceptors 
 

In 2016, the cyanobacterial phytochrome (Cph1) was subject to a DNP MAS NMR 

spectroscopy study conducted by Stöppler et al[226]. The inherent mechanisms for light-

induced isomerization of the bilin chromophore was investigated. Its protonation 

dynamics (exchange pathways) and charge distribution were thereby of particular 

interest. With 2D DNP MAS NMR spectra all pyrole nitrogen atoms could be assigned 

unambiguously allowing for identification of the positive charge of the in 

phycocyanobilin (PCB) chromophore ([13C,15N]-PCB was used). Proton exchange 

pathways of PCB ring nitrogen atoms and functionally relevant H2O molecules were 

also determined. Interactions between water protons and the chromophore could be 

investigated by DNP enhanced 1H-15N correlation spectroscopy. Signal enhancement of 
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e ~ 38 could be achieved at 110 K and MAS rate of 8.89 kHz. This system, is an 

example that reasonable signal enhancements can be achieved without the use of [D8]-

glycerol for biomolecular samples. The highly water soluble biradical bcTol was 

directly added to the sample. 

 
Figure 53: Molecular structure of phyocyanobilin (PCB) 

 
 
 
4.12.3 Retinal in channelrhodopsin (Chr) 
 
In studies of Brunn et al. Raman and DNP MAS NMR spectroscopy could revealed that 

the retinal chromophore of fully dark-adapted channel rhodopsin ChR is exclusively in 

an all-trans configuration[193]. All retinal cross peaks could be found in a DNP enhanced 

2D 13C-13C DARR spectrum with 150 ms mixing time at 110 K and 8.89 MAS. 

Previous attempts to obtain cross peak resonances of the labeled retinal at 18.8 T 

without DNP failed. 

 

 
 

Figure 54: Molecular structure of partial labeled retinal linked to the Lys296 residue of 
channelrhodopsin 
 
 
The sample preparation was carried out without the use of GDH and the biradical 

TOTAPOL was directly added to the sample. This approach did not lead to any signal 

enhancement. A second sample was prepared with 5 µL GDH containing 20 mM 

TOTAPOL resulting in signal enhancements of e ~10. 
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4.12.4 Sodium symporter LeuT 
 

In the future DNP MAS NMR spectroscopy can ideally help to identify new targets for 

pharmacological research. Therefore, substrate binding studies with selective isotopic 

labeling can be realized using DNP MAS NMR spectroscopy. Sodium symporters 

transport mono amine molecules across the cellular membrane and bind specific to 

neurotransmitters (dopamine, serotonin etc.) and constitute popular targets for drug 

development. The direct assessment of substrate binding to the neurotransmitter sodium 

symporter LeuT (from	Aquifex aeolicus) has already been subjected to solid state NMR 

investigations[227]. The aim of this study is to observe conformational changes upon 

substrate binding of the protein. A binding side can be potentially identified by only 

labeling the in the binding involved amino acid Tyr that is occurring in the protein 

sequentially linked to another Tyr. Preliminary data are very encouraging in this respect. 

Although some resonances for the Ca and Cb could be found in a 2D DNP enhanced 
13C-13C correlation experiment (see figure 55) the sensitivity is yet to weak (only 0.8 mg 

protein in the rotor) to optimize the sample in an appropriate time and conduct 

heteronuclear experiments. The 2D spectrum shown in figure 55 took ~18 h with an e ~ 

10.  Samples with more protein content up to 4-5 mg will be prepared with improved 

sample preparation and lipid reconstitution. NCOCX experiments can be recorded in the 

presence and absence of substrate to monitor substrate binding.  

	
Figure 55: 2D DNP enhanced 13C-13C DARR NMR spectrum of LeuT expressed with 13C-,15N 
labeled Tyr recorded at 110 K and 8.8 kHz MAS. Only cross-peaks between nuclei in the Tyr 
residues are visible 
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5 Future Perspective  

Although the goal in DNP MAS NMR spectroscopy since the 1990s was to solve the 3-

dimensional structures of proteins or membrane proteins, it has not evolved to a 

standard method used for structure determination yet. Biomolecular MAS NMR 

spectroscopy became through the use of DNP, a more sensitive method but challenges 

such as the spectral resolution due to heterogeneous line broadening remain. The 

resolution issue can be addressed by non-uniform labeling techniques and conducting 

multidimensional experiments[219, 228].  

In this thesis it was shown that 3D DNP MAS NMR spectroscopy allows for the 

spectral assignment for some of the amino acids of the SH3 domain at 200 K. Further 

experiments at different temperatures times can be conducted in the future towards a 

complete protein assignment. The structure determination of the SH3 domain with DNP 

MAS NMR might be possible by determining unambiguous distance restrains with 

heteronuclear 3D experiments. Various sets of experiments can be recorded with 

uniformly labeled, [2-13C-glycerol] and [13C -1,3-glycerol] labeled samples at the 

temperatures around 180-200 K with signal enhancements still around e ~ 10 or 20. The 

experimental time will be much shorter than compared to the weeks of experiments by 

Castellani et al[5]. Therefore, also other mixing types can be evaluated concerning their 

suitability in 3D DNP MAS NMR experiments such PDSD, RFDR and SPC-5 mixing. 

The acquisition of spectra that normally suffer from low signal to noise 4D 

CANOCX/CONCAX might be worthwhile as the resolution increases with each 

dimension.  

The radical development showed, that the theoretical limit of signal enhancement can be 

reached in special cases[170]. Even at 100 K sample temperatures of  e ~ 420 were 

obtained[57], which is more than 60 % of the theoretical limit. The question whether 

polarizing agents can be even further improved at all was already asked in literature[194]. 

Nevertheless, new polarizing agents can be explored in the future. For this, the well-

established spin tag strategy in EPR spectroscopy might be a source of inspiration 

therefore. The nitroxide based radicals used in DNP MAS NMR are all containing the 

piperidine structure. The five membered ring systems of pyrrolidine and pyrroline are 

not explored yet. Apart from the radical development, it might be worthwhile to develop 

new glass matrices that act as cryoprotectants for applications at greater than 200 K. 

Then, the resolution could be further improved by raising experimental temperatures. 



 

     82 

Due to the field dependency of the CE, the development of new biradicals is inevitable 

for higher fields (18.8 T). The chemical engineering will therefore proceed with the so 

far most efficient heterodimeric polarizing agent TremTripol-1. It can provide 

enhancements up to e ~ 65 and does not suffer from nuclear depolarization when 

spinning at high magnetic fields[149, 172]. The recently shown Overhauser effect in 

insulating solids increases with magnetic field strength[229], thus improved monoradicals 

can potentially lead to higher enhancements in the future. 

In general, spinning the samples at higher MAS rates (> 25 kHz) can improve the 

resolution. First experiments under DNP conditions at 100 K with MAS rates of 

40 kHz[230] were already shown. Enhancement factors of e ~ 60 could be achieved with 

AMUPol at 18.8 T.  Based on this rapid progress, it can be anticipated that structure 

determination projects will be conducted at fields higher than 9.4 T. Nevertheless, DNP 

MAS NMR can still provide possibilities in protein binding and metabolomics studies at 

this field. Additionally, further technical development will lead to new types of 

experiments in the future. The first steps towards the general application of pulsed DNP 

have already been made at 0.34  T[231, 232]. Ways need to be found on how to provide the 

high- power microwave pulses required for higher fields. The development of high 

frequency microwave sources therefore necessary[231]. Also, electron decoupling that 

reduces deleterious effects (such as homogeneous line broadening) of the electrons was 

shown very recently on home built instrumentation by Barnes et al[233]. DNP has also a 

promising a future in material science. Up till today, many DNP studies were conducted 

on nuclei such as 209Pb[234], 35As[235], 29Si[236], 35Cl[235] 31P[237],113Cd[70], Sn[238], 
27Al[239],17O[240]. 19F is in principle accessible as well, and has the advantage that 

fluorinated molecules possess a large chemical shift dispersion that will reduce 

overlap[241]. 

Since the detection limit of MAS NMR is shifted in the nanomolar range by DNP, it is 

becoming an interesting tool for in-cell NMR spectroscopy. In cell MAS DNP can 

provide insights on systems in native environments in the future. A few examples have 

been already published recently. Kaplan et al. studied a cell-embedded complex 

(T4SScc) by the investigation of membrane protein in native vesicles of human cells[218] 

and can be seen as the first in-cell DNP MAS NMR spectroscopy. Also studies on cell-

lysates of the yeast prion protein Sup35 and E. coli cell lysates for selective protein 

hyperpolarization have been already conducted[242, 243]. Yamamoto et al. could reach 

enhancements of e ~ 16 for membrane-anchored cytochrome-b5 in native E. coli 
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cells[244]. Challenges in this field can be the development of polarizing agents that can 

resist the reducing environment of the cell. This problem was known from paramagnetic 

spin labels that half have-lives of less than one hour[245-247]. For current state of the art it 

work on spin labels, the reader is referred to published reviews[134, 223]. 

 

 

6 Conclusions 

In this work, the performance of deuterated TOTAPOL isotopologues and AMUPol 

were tested and compared as a function of temperature on proline and SH3 samples.  

The partial deuteration of the radical 1H-TOTAPOL did not affect the measured EPR 

relaxation times to a large extent for CD3-TOTAPOL-25. Nevertheless, the performance 

of the isotopologues with deuterated methyl groups gave signal enhancements up to a 

factor of two higher at 110 K compared to 1H- TOTAPOL. The highest enhancements 

were obtained for the CD3-TOTAPOL-0 where the CH2 sites were fully protonated and 

upon further deuteration (of the CH2 sites) the performance of the radical decreased 

regarding CE efficiency. It is suggested that the deuteration of the molecules´ methyl 

groups decrease the relaxation times of the so-called core protons that are in close 

proximity to the radical center. This includes the protons in the radical molecule itself as 

well as near-by protons of the GDH glass matrix. These protons are crucial for effective 

spin diffusion. The relaxation behavior of these protons is predominately determined by 

the direct effect of the unpaired electron of the radical molecule. However, some 

relaxation pathways that involve the CH2 sites need to be taken into account. The large 

polarization gain might be explained with the deuteration of GDH, which is 90 % 

deuterated with only 10 % protons. The polarization is distributed from the radical 

molecules CH2 sites in the radical molecule towards the carbon linker to all protonated 

sites of the radical and from there to protons in proximity via spin diffusion. The more 

deuterons at the CH2 sites, the less contribution to spin diffusion resulting in less signal 

enhancement.  

With an improved sample preparation for the microcrystalline SH3 samples, signal 

enhancements around e ~ 10-17 could be achieved at 200 K with CD3-TOTAPOL 

isotopologues. This enables DNP MAS NMR spectroscopy with significantly improved 

resolution as compared to measurements at 110 K. 2D and 3D NCOCX/NCACX spectra 

could be recorded with sufficient resolution that allow for sequential, residue-specific 
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spectral assignments. The temperature dependence of the CE efficiency and the 

relaxation factor (T1eT2eT1H) show the same curve progression, which is slightly better 

for the homogeneous proline than for the microcrystalline SH3 samples. The diffusion 

process within the different sample types might be a possible explanation. Additionally, 

the SH3 sample is in contrast to proline, solid and deuterated. The values for the 
10minSNR per mg protein were compared to an undoped SH3 sample. The radical 

containing sample were a factor of 102 and 112 higher at 110 K, and of 25 and 37 at 

181 K, for AMUPol and CD3-TOTAPOL-0, respectively. The differences of the 
10minSNR at different temperatures are determined by the CE efficiency, 1H-T1- values 

and overall depolarization and bleaching effects. Additionally, when samples are 

measured at 180- 200 K instead of 110 K through the Boltzmann distribution a factor of 

two is lost (see figure 8). The level of noise is also increasing with increasing 

temperature. However, all factors that lead to signal reduction lead to the result that at a 

sample temperature of 181 K are only 7-9 times less effective compared to 110 K.  At 

200 K the signal enhancement is still 15 times higher compared to a sample that is not 

containing any radical (table 5), making DNP MAS NMR measurements at 

temperatures between 180 and 200 K worthwhile. The signal loss is compensated by the 

improvement of the spectral linewidths. 

Due to the temperature dependence and field dependence of the CE measurements are 

yet much less efficient at 14.1 and 18.8 T compared to 9.4 T. However, radical 

development and exploitation of other DNP mechanisms such as the Overhauser 

effect[229]  might overcome this problem in the near future. In general, the value for the 

apparent 1H-T1 relaxation time is of high importance for the efficiency of DNP MAS 

NMR experiment. Values for 1H-T1 change not only when the temperature is changed 

but can also be vary between different sample types. The signal loss towards higher 

temperatures can be partially compensated by shorter 1H-T1 relaxation time, allowing 

for higher repetition rates. Since the effects on the 1H-T1 relaxation are not only 

depending on the sample temperature and sample type but also on the radical type, 

comparisons of radical performances are not trivial and remain challenging. The 

interplay of the many factors of the CE efficiency are sample-specific.  The improved 

resolution at 180- 200 K compared to 110 K might be attributed to a certain extent to the 

presence of the methyl signals that can be absent between 100 and 140 K through 

coalescence effects[248]. Methyl groups very resonances of particular relevance for 

structure determination. Many concepts for increasing resolution in complex systems 
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are based on methyl group magnetization using methyl-methyl, methyl-NH distance 

restraints[249].  They play a crucial role for distance-dependent cross peaks resonances 

involving methyl that are used determine the tertiary structure of proteins. The the DNP 

MAS NMR spectra recorded at 200 K contain all signals that can be expected except for 

the resonances of proline. On the other hand, some residues could be detected in the 

DNP enhanced spectra that are not present in the RT spectrum (N38). For the proline 

samples, other than expected, no changes in line widths could be observed for the 

aliphatic carbon signals when comparing spectra recorded at 110 K and 200 K (MWoff). 

This underlies that results obtained on proline standard samples are not influenced by 

motional processes of the proline puckering as compared to the proline residues in the 

SH3 domain. This indicates that the SNR values should be compared rather than the 

enhancement values as the latter does not account for different Boltzmann distribution, 

thermal noise, and bleaching effects. The radical of choice for each individual 

biomolecular DNP MAS NMR study must be assessed from case to case. It might be 

worthwhile to test multiple polarizing agents, depending on the measurement conditions 

and sample type. It is expected that radicals providing high signal enhancements at 

200 K and at higher magnetic field will be of interest for structure determination 

projects in the future.  

The novel urea based nitroxide biradical bcTol provides high DNP enhancements and 

shows unprecedented solubility in water, GDH and glycerol. The incorporation of 

spirocyclohexanolyl groups represents a new strategy for preparation of efficient and 

water-soluble radicals for DNP. SNR measurements on microcrystalline SH3 samples 

show a comparable CE efficiency at 110 K to a sample that is containing AMUPol as a 

polarizing agent. However, the drop in signal enhancement when the temperature is 

increased to 181 K is smaller. Values for SNR drop only by a factor of 6 for bcTol, for 

AMUPol the values drop by a factor of 9. DNP enhanced 2D DARR spectra of the SH3 

domain at 181 K could reach an enhancement of e ~ 40 using bcTol. The resolution is 

very similar to the one obtained for AMUPol SH3 samples. Hence it is an ideal 

polarizing agent for biomolecular applications. 

Besides the novel urea based water–soluble biradical bcTol, the bcTol-M radical with 

methylated nitrogen atoms showed large enhancement values (e > 230 at 110 K) and 

high 10minSNR on proline standard samples and an even higher water solubility than 

bcTol. The better performance of bcTol-M can be attributed to the methyl groups. 

Given the good performance, high solubility and easy handling it is considered superior 
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to other radicals. It is so far the polarizing agent of choice for biomolecular DNP MAS 

NMR studies at 9.4 T. Due to its high solubility it is possible to prepare stock solutions 

in higher concentration in contrast to other polarizing agents. The comparison of the of 

the CE efficiency radicals bcTol, bcTol-M, 1H-TOTAPOL, AMUPol and cyolyl-

TOTAPOL was made at 110 K, 8 kHz MAS and 9.4 T. The analysis of the experiments 

led to the conclusion that electron relaxation times that were also measured at 9.4 T do 

not dominate the performance of the radicals. The different performance correlates with 

the chosen type of linker which can strongly modify electron-electron dipolar coupling, 

and the degree of alkylation which can affect the size of the electron-electron dipolar 

coupling and the nuclear relaxation times. Given the increase in electron-electron 

dipolar coupling from bcTol to AMUPol to bcTol-M, some influence of the increase in 

dipolar coupling (and maybe also hyperfine coupling) may be acknowledged. However, 

the three urea-based radicals show a considerable difference between the ratios of the 

SNR but not the enhancement values. The very different influence of the radicals on the 

nuclear 1H-T1 relaxation time of the analyte plays therefore most likely a larger role, 

being a function of increasing urea alkylation and in particular the presence of methyl 

groups. 
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Summary 

The signal-to-noise ratio of MAS NMR signals can be enhanced via dynamic nuclear 

polarization (DNP) by several orders of magnitude. DNP can provide new perspectives 

in structural biology, metabolomics studies and material science. At cryogenic 

temperatures (100 K) stable water-soluble nitroxide biradicals are added to the 

investigated samples as polarizing agents. The large polarization of the biradical 

electrons can be transferred to the analytes under continuous microwave irradiation via 

the so-called cross effect (CE). Hence, the use of DNP enables MAS NMR experiments 

that suffer from inherent low sensitivity and would not have been executed normally 

due to the excessively long experimental time required for signal averaging. The current 

challenge in DNP MAS NMR is the homogeneous and heterogeneous line broadening 

and the temperature dependence of the CE.  

In this work, experimental conditions, parameters and aspects that determine the CE 

efficiency were investigated. Novel polarizing agents were tested for the first time, the 

methodology further developed and the new insights applied to biomolecular projects. 

The amino acid proline and the 62 amino acid long protein SH3 in microcrystalline 

form were used as model systems. Four CD3-TOTAPOL isotopologues were 

investigated and compared to already established biradicals such as TOTAPOL and 

AMUPol in the course of this work. Their CE efficiency was assessed by comparing 

enhancement values and the signal-to-noise ratio per 10 min (10minSNR) for 1D hC (1H-
13C CP) experiments in a temperature range between 100 and 200 K at 9.4 T. Signal-to-

noise ratio were analysed and compared with a newly devised procedure. 

The deuteration of the methyl groups of 1H-TOTAPOL led to larger signal 

enhancements compared to 1H-TOTAPOL. The effect of deuteration of 1H-TOTAPOL 

did not influence the electron relaxation parameter as initially hypothesized and are not 

the reason for increased CE efficiency of the polarizing agent. Highest signal 

enhancements were obtained for the isotopologue CD3-TOTAPOL-0 that has deuterated 

methyl groups but protonated 3 and 5 positions of the TEMPO ring. The results 

highlight the importance of protons that are at close proximity to the radical center, 

presumably involved in the initial polarization buildup. In addition, the new polarizing 

agent bcTol, designed for biological applications was tested for the first time in the 

course of this work. The maximum signal enhancement that could be obtained was e ~ 

248 for a sample containing microcrystalline SH3 at 110 K. The bcTol biradical showed 

unprecedented solubility in water, GDH and [D8]-glycerol. Measurements of signal-to-
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noise per unit time suggest a comparable DNP performance of bcTol at 110 K to that of 

AMUPol.  

Furthermore, a 10minSNR study was conducted to investigate the influence of electron 

relaxation parameters and the radical linker. Therefore, the novel polarizing agents and 

cyolyl-TOTAPOL and bcTol-M were investigated for the first time. bcTol-M is similar 

to bcTol but with methyl groups on the nitrogen atoms showed greater 10minSNR ratio 

than bcTol. The maximum signal enhancement that could be measured with this radical 

was e ~ 302 on a proline sample in a 3.2 mm sapphire rotor at 110 K. The superior 

performance compared to bcTol and AMUPol can be mainly attributed to the shorter 
1H-T1 times. The presence of the methyl groups on the linkage presumably promotes 

nuclear relaxation. Given the simplified handling of the radical and its good 

performance in hC cross polarization experiments, bcTol-M constitutes an ideal 

polarizing agent for biomolecular DNP MAS NMR studies. The three urea-based 

radicals AMUPol, bcTol und bcTol-M show a considerable higher enhancement and 

SNR compared to 1H-TOTAPol and cyolyl-TOTAPol. Among the urea based radicals, 

the enhancement values do not differ to a large extent but the values for the SNR do. 

Furthermore, the electron relaxation times that were measured at the same field as the 

NMR spectra (9.4 T) for the radicals 1H- TOTAPOL, cyolyl-TOTAPOL, bcTol, 

AMUPol, and bcTol-M do not dominate the performance of the radicals at 110 K, 8 kHz 

MAS and 9.4 T. The different performance correlates with the chosen type of linker and 

the degree of alkylation, affecting the size of the effective electron-electron dipolar 

coupling and the nuclear relaxation times.  

A sample preparation protocol for the SH3 samples was developed in order to get 

reliable and reproducible results. 2D 13C-13C DARR spectra were recorded under DNP 

conditions for each radical. The best resolution was obtained for the samples containing 

AMUPol as polarizing agent. The signal-to-noise ratio at 200 K on SH3 standard 

samples is 15 times larger compared to a sample without polarizing agent. 2D and 3D 

NCACX/NCOCX spectra were recorded at 200 K within 1 and 13 hours respectively. 

The obtained resolution allows for some spectral assignment of amino acid side chains. 

For the novel nitroxide biradical bcTol the signal-to-noise per unit time were higher 

compared to AMUPol at 181 K. 2D spectra of the SH3 domain sample recorded at 

181 K gave a signal enhancement of e ~ 40 and show sufficient resolution for structural 

studies. In the final sections of this thesis, the power of these new insights and 

developments were demonstrated on diverse biological problems. 
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Zusammenfassung 

Das Signal-zu-Rausch Verhältnis kann in der Festkörper Kern-Magnetresonanz 

Spektroskopie (NMR Spektroskopie) um ein Vielfaches mit Hilfe der dynamischen 

Kernpolarisation (DNP) verstärkt werden. Die dynamische Kernpolarisation bietet 

dadurch neue Perspektiven in der Strukturbiologie, metabolomischen Studien und den 

Materialwissenschaften. Bei kryogenen Temperaturen (100 K) werden stabile, 

wasserlösliche Nitroxid-Biradikale zu den zu untersuchenden Proben hinzugefügt. Mit 

dem sogenannten Kreuzeffekt kann die vergleichsweise große Polarisationsenergie der 

Radikalelektronen unter Einstrahlung kontinuierlicher Mikrowellenstrahlung auf 

Probenmoleküle übertragen werden um eine Steigerung der Empfindlichkeit zu erzielen. 

Dadurch verkürzen sich die Messzeiten von Experimenten drastisch und es können auch 

solche Experimente durchgeführt werden, die ohne die dynamische Kernpolarisation 

unagemessen lange Messzeit in Anspruch genommen hätten. Die aktuellen 

Limitierungen dieser Methode stellen sowohl die heterogene und homogene 

Linienverbreiterung als auch die Temperaturabhängigkeit des Kreuzeffektes dar. In 

dieser Arbeit wurde experimentelle Bedingungen, Parameter und Aspekte welche die 

Effizienz des Kreuzeffekts determinieren untersucht. Dazu wurden die Aminosäure 

Prolin und die SH3 Domäne des Proteins Spektrin, die 62 Aminosäuren enthält, als 

Modellsystems verwendet. Zunächst wurde die Effizienz verschiedener Radikale als 

Polarisationsverstärker untersucht. Standardproben mit deuterierten CD3-TOTAPOL 

Isotopologen, 1H-TOTAPOL und AMUPol wurden hergestellt. Die Effizienz 

hinsichtlich ihrer Eignung als Polarisationsverstärker wurde mit dem 

Verstärkungsfaktor (e) und dem Signal-zu-Rausch Verhältnis verglichen. Dieses wurde 

nach 10 Minuten Datenakquisition für 1D hC (1H-13C CP) Experimente zwischen 100 

und 200 K und einer Magnetfeldstärke von 9.4 T bestimmt. Die Signal-zu-Rausch 

Verhältnisse wurden mit einer neu entwickelten Prozedur, welche in dieser Arbeit 

entwickelt wurde, analysiert und verglichen. Ein Protokoll zur Probenpräparation der 

SH3 Domäne in mikrokristalliner Form wurde etabliert um zuverlässige und 

reproduzierbare Ergebnisse zu erreichen. 2D 13C-13C DARR Spektren der SH3 Domäne 

wurden für verschiedene Radikale unter DNP Bedingungen aufgenommen, die beste 

Auflösung konnte mit Proben erhalten werden in denen sich AMUPol als 

Polarisationsverstärker befand. Das Signal-zu-Rausch Verhältnis ist bei 200 K für SH3 

Standardproben 15-mal größer als eine vergleichbare Probe ohne Radikal. 2D und 3D 

NCACX/NCOCX Spektren konnten innerhalb 1 und 13 Stunden bei einer 
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Probentemperatur von 200 K aufgenommen werden. Die erzielte spektrale Auflösung 

erlaubte die Zuordnung von mehreren Aminosäureseitenketten des SH3 Proteins. Die 

Deuterierung der Methylgruppen des Biradikals TOTAPOL führte zu deutlich größeren 

Signalverstärkungen im Vergleich zum protonierten Molekül. Es wurden 4 verschiedene 

CD3-TOTAPOL Isotopologe mit unterschiedlichem Deuterierungsgrad hergestellt. Die 

Deuterierung von TOTAPOL hatte nicht wie zunächst angenommen einen Einfluss auf 

die Elektronenrelaxation und ist nicht der Grund für die vergrößerte Signalintensität. 

Die größte Signalverstärkung konnte mit das CD3-TOTAPOL-0 Isotopolog erreicht 

werden, welches deuterierte Methylgruppen besitzt aber protonierte 3- und 5- Positionen 

der TEMPO Ringe. Mit steigendem Deuterierungsgrad an diesen Stellen nimmt die 

Signalverstärkung ab. Dieses Ergebnis zeigt die Wichtigkeit von Protonen in 

unmittelbarer Nähe zu den Radikalzentren auf, welche wahrscheinlich in den 

Polarisationstransfer involviert sind. Das neue Biradikal bcTol welches für 

biomolekulare Anwendungen synthetisiert wurde, wurde erstmals im Zuge dieser Arbeit 

getestet.  Die maximale erzielte Signalverstärkung lag bei e ~ 248 für eine SH3 probe 

die bei einer Probentemperatur von 110 K untersucht wurde. Das Molekül zeigt eine 

beispiellose hohe Löslichkeit in Wasser, GDH, und [D8]-Glycerol. Die Signal-zu-

Rausch Werte pro Zeiteinheit beziehungsweise die Effizienz bezüglich einer 

Signalverstärkung sind vergleichbar mit der von AMUPol bei 110 K aber deutlich höher 

bei einer Temperatur von 181 K. 13C-13C DARR Spektren konnten mit einer 

Signalverstärkung von e ~ 40 aufgenommen werden und haben eine ausreichende 

Auflösung um strukturbiologische Studien durchzuführen. Demzufolge ist das neue 

Biradikal speziell für biomolekulare DNP Festkörperstudien bei 9.4 T geeignet. 

Weiterhin wurde eine Signal-zu-Rausch Studie durchgeführt um den Einfluss der 

Elektronenrelaxation Parameter und des Radikal-Linker zu untersuchen. Dazu wurden 

die neuen Nitroxide-Biradikale cyolyl-TOTAPOL und bcTol-M erstmals untersucht. 

bcTol-M ist strukturell ähnlich zu bcTol, hat aber Methylgruppen an den 

Stickstoffatomen zeigte noch größere Signalverstärkungen und Signal-zu-Rausch 

Verhältnisse auf als bcTol. Die maximale Verstärkung die mit einem Saphirrotor bei 

110 K gemessen wurde gemessen werden konnte, liegt bei e ~ 302 für eine Prolinprobe. 

Die ausgezeichnete Effizienz dieses Radikals kann hauptsächlich mit den kürzeren 1H-

T1 Werten begründet werden da die Methylgruppen mutmaßlich die Kern-Relaxation 

beschleunigen. Angesichts der einfachen Handhabung des Radikals und seiner guten 

Polarisationsübertragung in hC Experimenten und ebenfalls guten Löslichkeit stellt 



 

     116 

bcTol-M ein ideales Biradikal für biomolekulare Untersuchungen dar. Die hohe 

Löslichkeit erlaubt es Stammlösungen in hoher Konzentration herzustellen. Mit den drei 

Harnstoff basierten Radikalen AMUPol, bcTol und bcTol-M, lassen sich deutlich 

höhere Signalverstärkungen erzielen als mit 1H-TOTAPol und cyolyl-TOTAPOL. 

Untereinander zeigen die Harnstoff-basierten Radikale keine großen Unterschiede für 

die Signalverstärkung, jedoch für die Signal-zu-Rausch Werte pro Zeiteinheit. Des 

Weiteren konnten für die Radikale 1H- TOTAPOL, cyolyl-TOTAPOL, bcTol, AMUPol, 

und bcTol-M keine Korrelationen zwischen den Elektron Relaxations--parametern und 

der Kreuzeffekteffizienz bei 9.4 T und 110 K für Prolinproben festgestellt bei werden. 

Die unterschiedliche Effizienz kann mit der unterschiedlichen Flexibilität der vorhanden 

Linker und dem Grad der Alkylierung des Harnstoff-Linkers erklärt werden. Diese 

haben Einfluss auf die Elektron-Elektronen Kopplung, die dipolare Kopplung und die 

Kernrelaxationszeit. Zusätzlich konnten die neu gewonnenen Erkenntnisse, die durch 

die Methodenentwicklung erreicht werden konnten, an biologischen Anwendungen 

eingebracht werden. 
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