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Anisotropic susceptibilities in the honeycomb Kitaev system α-RuCl3
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The magnetic insulator α-RuCl3 is a promising candidate to realize Kitaev interactions on a quasi-two-
dimensional honeycomb lattice. We perform extensive susceptibility measurements on single crystals of
α-RuCl3, including angle dependence of the in-plane longitudinal and transverse susceptibilities, which reveal
a unidirectional anisotropy within the honeycomb plane. By comparing the experimental results to a high-
temperature expansion of a Kitaev-Heisenberg-� spin Hamiltonian with bond anisotropy, we find excellent
agreement with the observed phase shift and periodicity of the angle-resolved susceptibilities. Within this model,
we show that the pronounced difference between in-plane and out-of-plane susceptibilities as well as the finite
transverse susceptibility are rooted in strong symmetric off-diagonal � spin exchange. The � couplings and
relationships between other terms in the model Hamiltonian are quantified by extracting relevant Curie-Weiss
intercepts from the experimental data.

DOI: 10.1103/PhysRevB.98.100403

Introduction. Quantum spin liquids are exotic states of
matter in which the formation of conventional long-range order
is avoided down to the lowest temperatures due to strong
quantum fluctuations [1,2]. A number of frustrated magnets
are promising candidates to host quantum spin-liquid ground
states [3], however, both the theoretical prediction and the
experimental observation of such spin liquids are notoriously
difficult, since clear identifying signatures are uncommon in
the absence of any order. A notable exception is the Kitaev
honeycomb model, a spin Hamiltonian with an exactly solvable
spin-liquid ground state [4]. The exact solvability of the model
allows for the extraction of insights and details which can be
very difficult to determine for more generic systems [5].

Consequently, there has been considerable effort over the
past several years to identify materials which realize Kitaev
spin exchange [5–11]. Potential manifestations of the two-
dimensional (2D) Kitaev model are found in the layered
honeycomb magnetic insulators A2IrO3 (A = Na, Li, Cu)
[6,12–14] and α-RuCl3 [15–18]. Kitaev interactions in these
systems are accompanied by more conventional spin exchange,
leading to long-range magnetic order at low temperatures
[19–25] with the exception of Cu2IrO3 which exhibits a
short-range magnetic order [14]. Despite the rapidly increasing
interest in these materials, the effective spin Hamiltonian that
best captures the experimental results remains controversial—
see the discussion in Ref. [26] and references therein.

A marked anisotropy between the magnetic susceptibil-
ities measured with a magnetic field applied parallel χ‖
or perpendicular χ⊥ to the honeycomb plane has been re-
ported in α-RuCl3 [21,27,28] and A2IrO3 [29,30]. However, a

systematic explanation for this phenomenon in terms of micro-
scopic exchange couplings has not yet been given. Moreover,
experimental results which involve a magnetic field applied
parallel to the honeycomb plane depend on the in-plane angle
of the applied field [31–33]. Motivated by these observations,
we perform extensive susceptibility measurements on single
crystals of α-RuCl3. The longitudinal and transverse suscepti-
bilities as a function of angle within the honeycomb plane are
compared to a high-temperature expansion of the magnetic sus-
ceptibility tensor for a bond-anisotropic Kitaev-Heisenberg-�
model. Given the excellent agreement between the model and
experimental results, we suggest mechanisms for the observed
anisotropies and extract quantitative relationships between
terms in the model Hamiltonian.

Experimental details. Single crystals of α-RuCl3 were
prepared using a vapor transport technique [18], and crys-
tallographic directions were identified prior to susceptibility
measurements via Laue diffraction. Angle-resolved longitudi-
nal and transverse magnetic susceptibilities within the honey-
comb plane, χ‖(φ) and χT

‖ (φ), respectively, were measured
using commercial superconducting quantum interference de-
vice (SQUID) magnetometers (Quantum Design) [34]. See
Fig. 1 for a definition of the in-plane angle φ and details of
the experimental setup. The raw transverse SQUID voltage
was corrected for the uncompensated longitudinal moment,
arising due to displacement from the precise center of rotation,
before fitting to an appropriate response function to extract the
transverse moment at each condition [34,35].

Oscillating susceptibility. Figure 2(a) shows the longitudi-
nal susceptibility of an α-RuCl3 single crystal as the direction
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FIG. 1. (a) Definition of the in-plane angle φ, the three Ru-Ru
bonds B1, B2x , and B2y , and notation for various measurement
configurations. For simplicity we adopt a trigonal notation, in which
the bonds are parallel to the (0,1,0), (1,0,0), and (1̄, 1, 0) reciprocal
lattice vectors, respectively. φ is the angle between the measurement
direction and (1,0,0). Sketch of the geometry for in-plane angle-
resolved susceptibility measurements in (b) longitudinal SQUID coils
and (c) transverse SQUID coils. The axes along which the magnetic
field �B is applied (black arrow) and the susceptibility is measured
(red arrow) are indicated. The angle dependence is mapped out
as the sample is rotated 360◦ about a fixed axis perpendicular or
parallel to �B, respectively, yielding χ‖(φ) and χT

‖ (φ). The diagonal
elements χμμ of the susceptibility tensor are determined in a standard
longitudinal SQUID measurement while the off-diagonal elements
χμμ′

are accessed in the transverse geometry.

of the magnetic field varies within the ab plane [see Fig. 1(b)].
Clear oscillations in the magnitude of the in-plane susceptibil-
ity χ‖(φ) with π periodicity are observed both below and above
the zigzag magnetic ordering transition at TN � 7 K, suggest-
ing that the appearance of in-plane magnetic anisotropy is not
tied to long-range order. The maxima (minima) of χ‖ occur
at φ = 60◦ and 240◦ (φ = 150◦ and 330◦), corresponding to
a magnetic field parallel (perpendicular) to one of the Ru-Ru
bond directions. This inequivalent bond is referred to hereafter
as B1 [Fig. 1(a)]. Oscillations in χ‖ with π periodicity persist
for T � TN even as the mean value χm decays with the overall
susceptibility at high temperatures.

Oscillations are also observed in the in-plane transverse
susceptibility χT

‖ , where the magnetic field is applied along
(0,0,1). Figure 2(c) shows the φ dependence of χT

‖ as the crystal
was rotated about a vertical axis coinciding with the field
direction. Both below and above TN, the susceptibility shows
a well-defined oscillation about zero with a 2π period. The
absolute maxima (nodes) of the oscillation occur perpendicular

FIG. 2. (a) Angle-resolved longitudinal susceptibility χ‖(φ) of
a single crystal of α-RuCl3 as the direction of magnetic field
(B = 0.1 T) is varied within the honeycomb plane shown at 2 K
(blue), 10 K (green), 20 K (yellow), and 180 K (pink). φ is
the in-plane angle between a∗ and the measurement direction. A
diamagnetic contribution from the rotation stage is subtracted from
the presented data. (b) Theoretical oscillation of χ‖(φ) predicted
for a bond-anisotropic Kitaev-Heisenberg-� model [see Eq. (4)]. (c)
Angle-resolved transverse susceptibility χT

‖ (φ) of a single crystal of
α-RuCl3 as a function of the in-plane angle φ with B = 1 T applied
perpendicular to the ab plane. The 200-K data are scaled by a factor
of 5 to facilitate viewing on the same axes. (d) Theoretical oscillation
of χT

‖ (φ) resulting from Eq. (5). The location of the anisotropic bond
(B1) is marked on the upper horizontal axis.

(parallel) to the inequivalent B1 bond at φ = 150◦ and 330◦
(φ = 60◦ and 240◦).

A number of space groups, distinguished primarily by
the stacking sequence of van der Waals-coupled honeycomb
layers, have been proposed for α-RuCl3 [36]. Most recently, a
structural transition from high-temperature monoclinic C2/m

to trigonal R3 was reported at T � 150 K [37]. Our analysis
below relies on a high-temperature model expansion, and thus
a quantitative comparison to the model is made within the
monoclinic phase. The monoclinic structure of the sample
for which data are presented in Figs. 2–4 was confirmed
directly by single-crystal neutron diffraction at T > 150 K
using the HB-3A beamline at the High Flux Isotope Reactor,
Oak Ridge National Laboratory [see Supplemental Material
(SM) [38]]. The small inequivalence in one of the Ru-Ru bond
lengths [22] provides a natural explanation for the observation
of a unique magnetically easy direction. We note that the
π -period oscillation observed at all temperatures in this Rapid
Communication, as well as in-plane anisotropy reported in
a recent THz study [32], appear to be incompatible with a
low-temperature trigonal point group. These results suggest a
deviation from an ideal R3 structure, which may be related to
strain induced at the structural transition.

Model and high-temperature expansion. To model the
observed behavior we consider a variant of an anisotropic
Kitaev-Heisenberg-� Hamiltonian with a nearest-neighbor
Heisenberg exchange (J1), Kitaev interactions (K1), and
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nearest-neighbor symmetric off-diagonal spin exchange (�1).
Inequivalent interactions J ′

1, K ′
1, and �′

1 are assigned to the
bond direction B1, giving a Hamiltonian of the form H =
HB1 + HB2x

+ HB2y
, where

HB1 =
∑

B1 bonds (ij )

J ′
1SiSj + K ′

1S
z
i S

z
j + �′

1

(
Sx

i S
y

j + S
y

i Sx
j

)
,

(1)

HB2x
=

∑
B2x bonds (ij )

J1SiSj + K1S
x
i Sx

j + �1
(
S

y

i Sz
j + Sz

i S
y

j

)
,

(2)

and HB2y
follows from HB2x

by replacing x ↔ y [39]. Note
that the B1 bond is symmetry inequivalent to the two B2α

bonds while HB2x
and HB2y

are related by a spin rotation.
Additional further neighbor couplings can be straightforwardly
included (which also applies to the J3 coupling which has
been proposed to be sizable [40]), however, here we restrict
the analysis to nearest-neighbor couplings for simplicity of
notation [41].

A high-temperature expansion of the full zero-field suscep-
tibility tensor χμμ′

(μ,μ′ = x, y, z) of this model up to terms
∼T −2 yields

χμμ′
(T ) = μ2

BN

4kBT

⎛
⎝

g2
x 0 0

0 g2
x 0

0 0 g2
z

⎞
⎠ − μ2

BN

(4kBT )2

⎛
⎝

g2
x (2J1 + J ′

1 + K1) g2
x�

′
1 gxgz�1

g2
x�

′
1 g2

x (2J1 + J ′
1 + K1) gxgz�1

gxgz�1 gxgz�1 g2
z (2J1 + J ′

1 + K ′
1)

⎞
⎠ + O(T −3),

(3)

where N denotes the total number of spins (see SM Sec. II for the derivation of the expansion). Here, we allow for a g-factor
anisotropy of the form gx = gy �= gz due to symmetry considerations. Projecting Eq. (3) onto an in-plane direction yields an
expression for the longitudinal in-plane susceptibility χ‖(φ),

χ‖(φ) = 1
6 [4χxx + 2χzz − 2χxy − 4χxz + (χxx − χzz − 2χxy + 2χxz)(− cos(2φ) +

√
3 sin(2φ))]. (4)

The harmonic oscillation described by the term − cos(2φ) +√
3 sin(2φ) is illustrated in Fig. 2(b), which reproduces the

experimentally observed periodicity of χ‖(φ). Furthermore,
the location of the extrema parallel and perpendicular to a
Ru-Ru bond direction is in agreement with the measured
susceptibility.

The susceptibility tensor χμμ′
can likewise be projected to

yield an expression for the transverse in-plane susceptibility
χT

‖ (φ),

χT
‖ (φ) = 1

3
√

2
(−χxx + χzz − χxy + χxz)

× [sin(φ) −
√

3 cos(φ)], (5)

where the term sin(φ) − √
3 cos(φ) again reproduces the

measured oscillations, showing maxima (minima) at φ = 150◦
(330◦) as well as zeros at 60◦ and 240◦ [see Figs. 2(c) and 2(d)].

The results of Fig. 2 demonstrate that the anisotropic nature
of the susceptibilities in α-RuCl3 is captured well by the
bond-inequivalent Kitaev-Heisenberg-� model described in
Eqs. (1) and (2). Using the high-temperature expansion in
Eq. (3) and assuming an isotropic g-factor gx = gy = gz,
which is close to the recently reported value gx = gy = 1.1gz

[42], a simple interpretation of the observed oscillations and
the in-plane/out-of-plane anisotropy arises: The amplitude
χ+ − χ− of the oscillation in χ‖(φ) [where χ+ and χ− are the
maxima and minima of χ‖(φ)] is proportional to the differences
of the couplings on the B1 and B2α bonds,

χ+ − χ− ∼ T −2[K ′
1 − K1 + 2(�′

1 − �1)]. (6)

The oscillation of the in-plane susceptibility is expected
to vanish in the absence of bond anisotropies. Furthermore,
the difference χm − χ⊥ [where χm = (χ+ + χ−)/2 is the
mean value of the in-plane oscillation] is proportional to the

off-diagonal exchange couplings �1 and �′
1,

χm − χ⊥ ∼ T −2(�′
1 + 2�1). (7)

That is, the observed anisotropy between in-plane and out-of-
plane susceptibility originates from symmetric off-diagonal �

spin exchange. As discussed below, a small g-factor anisotropy
of the form gx = gy �= gz generates additional terms in these
dependencies, however, the overall trends remain unchanged.

As shown in Fig. 2, the experimentally observed oscil-
lations of χ as a function of φ, and the locations of their
extrema, persist over large temperature ranges. Figures 3(a)
and 3(b) show the temperature dependence of the longitudinal
susceptibility measured perpendicular to the plane χ⊥(T ) and
at the locations of the in-plane extrema χ+(T ) and χ−(T ),
as well as the maximum transverse in-plane susceptibility
χT

+(T ). The temperature-dependent data were collected at a
fixed angle using standard, low-background sample holders
to avoid diamagnetic contributions from the sample rotation
stage. To confirm the validity of the high-temperature model,
the differences χ+ − χ− and χm − χ⊥ are shown in Fig. 3(c).
The data plotted against T −2 show reasonable correspondence
with the linear behavior predicted by Eqs. (6) and (7).

Curie-Weiss analysis and model parameters. The good
agreement between the φ dependence of the experimentally
measured susceptibility and the high-temperature expansion
suggests a route to quantify the relationships between vari-
ous model parameters. Due to symmetry considerations, the
susceptibility tensor χμμ′

in Eq. (3) has four independent
components χxx , χzz, χxy , χxz, which allows the same number
of exchange couplings to be determined. Since a bond-isotropic
Kitaev model does not break the cubic symmetry of the
interactions in spin space, it is generally impossible from
susceptibility alone to distinguish between Heisenberg interac-
tions J1 and Kitaev exchange K1 when fitting our experimental
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FIG. 3. Temperature-dependent susceptibilities at fixed angle,
corrected for core diamagnetism [43]. (a) In-plane maximum and
minimum longitudinal susceptibilities χ+ and χ−. (b) Out-of-plane
longitudinal susceptibility χ⊥ and maximum transverse in-plane
susceptibility χT

+. χ+, χ−, and χT
+ are measured in the same crystal

for which angle-resolved data are shown. χ⊥ is measured on a second
sample with greater thickness in the c direction. (c) Differences
χ+ − χ− (blue axis, left) and χm − χ⊥ (purple axis, right), where
χm is the mean longitudinal in-plane susceptibility, shown in the
range T = 150–330 K. Solid lines are a linear fit. (d) Inverse of the
temperature-dependent susceptibilities. χT

+ is plotted on a different
scale for clarity (green axis, right). Solid lines are a fit to the
Curie-Weiss law above the structural transition TS (gray region). The
extraction of the small transverse signal at high temperature leads to
large systematic error �250 K (see text).

data to the high-temperature expansion. A possible set of
linearly independent model parameters that can be determined
in a fitting procedure is given by J̃1 ≡ 2J1 + J ′

1 + K1, �K1 ≡
K1 − K ′

1, �1, �′
1.

Using the expansion in Eq. (3), the inverse of the four
susceptibility data sets shown in Figs. 3(a) and 3(b) can be
brought into the form χ−1(T ) ∼ T − TCW + O(T −1) yield-
ing four Curie-Weiss temperatures TCW⊥, TCW+, TCW−, and
T T

CW+. These Curie-Weiss temperatures can be expressed
as linear combinations of the model parameters. Defin-
ing the vectors TCW = (TCW⊥, TCW+, TCW−, T T

CW+) and J =
(J̃1,�K1,�1,�

′
1), one finds J = kBMTCW, where M is a

matrix which depends on the ratio gx/gz (see SM Sec. II).
The components of TCW were determined by fitting a

linear Curie-Weiss behavior to the high-temperature inverse
susceptibilities χ−1

⊥ , χ−1
+ , χ−1

− , and χT−1
+ [Fig. 3(d)]. The

analysis is restricted to the high-temperature region 175 K �
T � 330 K away from the structural transition at TS � 150 K
[37] that produces kinks in the susceptibility curves. Fitting

the longitudinal susceptibilities yields TCW⊥ = −216.4(3) K,
TCW+ = 39.6(2) K, and TCW− = 32.6(3) K. At high temper-
atures, longitudinal contamination in the transverse SQUID
coils is comparable to the intrinsic transverse signal, so
that separating the two components introduces large errors
[Figs. 3(b) and 3(d)]. Therefore the Curie-Weiss fitting is
performed over a narrower temperature range of 175 K � T �
275 K to determine the intercept, T T

CW+ = 50(2) K. Based
on these Curie-Weiss temperatures and the reported g-factor
anisotropy of gx/gz = 1.1 [42] we obtain the model parameters
(J̃1,�K1,�1,�

′
1) = (14.3,−7.7, 29.8, 27.9) meV.

Inelastic neutron scattering [18,44–47] and most calcula-
tions [26] place the magnetic exchange couplings for α-RuCl3

on the order of ∼5−10 meV, although K1 as high as 16 meV
[48] and recently 30 meV [49] have also been proposed. The
discrepancy in energy scale between lower estimates and the
couplings of up to 30 meV in the model parameters determined
above might be due to the limited temperature ranges in which
our Curie-Weiss fits are performed. Despite the fact that our in-
verse susceptibility data are well described by a linear behavior
within our fitting range (see Fig. 3), shifting the temperature
intervals upwards might still improve the results. Indeed, it
has been argued for a Kitaev-Heisenberg model that depending
on the precise fitting range, experimentally determined Curie-
Weiss temperatures need to be rescaled by factors of 2 or larger
to obtain the true Curie-Weiss intercepts [50]. We speculate that
such a rescaling (which in the simplest case would apply to all
interactions in the same way) would lead to exchange couplings
with an overall size more consistent with other methods. Inde-
pendent of such considerations, we conclude that off-diagonal
exchange � and �′ plays a large role in the susceptibility
of α-RuCl3, in line with growing theoretical recognition of
the importance of the � term in the behavior of the system
[23,26], including the recent prediction of a quantum spin-
liquid ground state in a Kitaev-� model [51,52]. Moreover,
assuming the aforementioned model parameters and mapping
out the classical phase diagram within Luttinger-Tisza as a
function of the remaining free parameters J1 and K1, we indeed
find the experimentally observed zigzag antiferromagnetic
ground state in a large region of parameter space (see SM
[38] Sec. III and Fig. S2). We point out that no longer-ranged
interactions are necessary to stabilize the zigzag ground state
in the presence of the bond anisotropies manifested in the
measured oscillations of the longitudinal susceptibility.

Conclusion. The mapping out of the susceptibility tensor
in single crystals of α-RuCl3 yields insight into possibilities
for the correct Hamiltonian describing the system. The phase
shifts and periodicity of the observed in-plane oscillations can
be understood within a bond-anisotropic spin Hamiltonian
with substantial � exchange. The agreement between the
high-temperature expansion of the theoretical model and the
measured oscillating susceptibilities χ‖ and χT is remarkable,
and indicates that the amplitude of the oscillations of suscep-
tibility are proportional to the bond anisotropies in the Kitaev
and � terms. Our analysis further reveals that the marked
easy-plane anisotropy in the system is a consequence of a
significant symmetric off-diagonal � exchange.
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