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Selective excitation with shaped pulses transported through a fiber using reverse propagation
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Reverse propagation is a numeric technique that makes it possible to obtain arbitrarily shaped pulses after
propagation through a fiber in the nonlinear regime. We apply it to achieve selective two-photon excitation of
dyes that have overlapping absorption spectra with pulses transported through the fiber. By comparing both
contrast and signal level it is shown that phase and amplitude shaped pulses generated using reverse propagation
are superior to pulses with antisymmetric phase despite loss caused by amplitude shaping.
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I. INTRODUCTION

One of the fields where ultrashort pulses offer an advantage
over other optical techniques is nonlinear optical microscopy
and imaging. In microscopy, the nonlinear dependence of
the signal intensity on the intensity of tightly focused light
enables optical sectioning and reduces detrimental out-of-
focus processes such as photobleaching and photoinduced
damage. In addition, infrared lasers have the advantage of
falling into the maximum optical transparency window for
most biological systems [1].

Several methods used in these fields utilize two-photon
processes such as second-harmonic generation [2] and two-
photon excited fluorescence [3]. It has been known for
some time that the efficiency of such processes can be
controlled by shaping the spectral phase of the pulse [4]. More
recently, shaped pulses have been incorporated into nonlinear
microscopy and imaging. It has been demonstrated that pulse
shaping applied to two-photon processes can be used to achieve
selective excitation in two-photon microscopy [5–7], suppress
unwanted three-photon absorption [8], or provide structural
contrast [9].

In parallel, compact fiber-based microscopes are being
developed. Devices based on both step-index and photonic-
crystal fibers enable measurements using various methods
utilizing two- and three-photon processes. Imaging is also
possible by using fiber bundles or a scanning mechanism such
as a piezoelectric element attached to the fiber end [10].

Combining the techniques mentioned above would allow
one to extend the capabilities of fiber-based microscopy. In
order to do this one needs the ability to deliver shaped pulses
with sufficient pulse energy through a fiber. A problem that
has to be overcome to achieve that is the interaction of the
femtosecond laser pulses with the fiber. While propagating
through an optical fiber, pulses with broad spectrum and high
peak power are distorted by dispersion and nonlinear effects,
mostly self-phase modulation (SPM).

Several schemes have been proposed to compensate for
these effects. If nonlinear effects are negligible, a linear
dispersion compensating element such as a grating compressor
or a pulse shaper is sufficient. However, this is true only for
ultrashort pulses with pulse energy of several picojoules [11].
Another possibility is to use photonic crystal fibers that have ei-
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ther a large mode area [12] or an air-filled core [13,14] and thus
a smaller nonlinear parameter. This, however, does not elimi-
nate nonlinear effects, but only extends the pulse energy range
in which shaped pulses can propagate without distortions.

A more general method of dealing with distortions of the
pulse during propagation in the fiber has been proposed by
Tsang et al. [15]. It relies on calculating the propagation of
the desired pulse shape through the fiber backwards and then
generating the required input pulse shape with the help of a
pulse shaper. The authors demonstrated the validity of this
approach experimentally by characterizing the output pulse,
simulating its reverse propagation, and then comparing the
simulated pulse to the actual characterized input pulse. They
also suggested that a pulse shaper can be used to generate the
input pulse shape required to obtain an arbitrary output pulse.

In this paper we apply reverse propagation to selectively
optimize the fluorescence of dye molecules with pulses trans-
ported through a step-index fiber. We show that amplitude-
shaped pulses obtained with reverse propagation allow for
selective excitation with contrast and signal better than those
achieved with other pulse-shaping methods. The paper is
organized as follows: First, the two-photon selective excitation
is discussed briefly. Then, the method of obtaining tailored
pulses after nonlinear propagation and the experimental setup
are described. Finally, the results are presented and discussed.

II. SELECTIVE FLUORESCENCE EXCITATION

The efficiency of the selective excitation of two fluorescent
species can be described by the contrast factor defined as

� = Rmax − Rmin

Rmax + Rmin
, (1)

where Rmax and Rmin are the biggest and the smallest achieved
ratios of emission of the two substances. Fluorophores usually
have broad absorption spectra which makes it difficult to
achieve high contrast unless a narrow excitation source tunable
in a wide spectral range is used. However, it is not necessary to
achieve 100% contrast to obtain a good image. If the contrast
is sufficient, crosstalk can be eliminated by taking appropriate
linear combinations of the two acquired signals as shown in
Ref. [6].

One way to achieve selective excitation despite a broad
spectrum of the exciting field is coherent control of two-photon
excitation. The effective field driving a multiphoton transition
is a result of interference between spectral components of the
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pulse field. In particular, for an ultrashort pulse with an electric
field spectrum of E(ω) = |E(ω)|ei�(ω) the effective field at a
frequency of 2ω0 is [16]

E(2)(2ω0)

=
∫ ∞

−∞
|E(ω0 + �)||E(ω0 − �)|ei[�(ω0+�)+�(ω0−�)]d�.

(2)

If no intermediate level is present, the two-photon excited
fluorescence is proportional to |E(2)(2ω0)|2 and can be con-
trolled by shaping the phase of the pulse field �(ω). In
particular, a phase function that is antisymmetric around a
certain frequency, ω0, results in a narrow second harmonic
field centered at the frequency 2ω0.

When an ultrashort pulse propagates in a fiber, the nonlinear
effects modify both its amplitude and phase, so the effective
second harmonic field changes as well in a way that in
general cannot be predicted without numerical simulation. In
a previous paper [17] we have shown that a certain phase, a π

step, stays antisymmetric despite SPM (although the position
of the step changes) which enables selective excitation of
narrow transitions. However, this kind of spectral phase is
not suitable for distinguishing between broad transitions that
are common in biological systems. In this case a different
approach is needed.

Another thing that can be done is modulating the spectral
amplitude |E(ω)| to remove unwanted spectral components.
The obvious disadvantage is that a significant part of the pulse
energy is lost and the price for achieving a good contrast
is a low signal level [6]. However, in this paper we show
that, if shaped pulses experience nonlinear distortions before
reaching the sample, amplitude shaping combined with reverse
propagation achieves a higher contrast and at the same time a
similar signal level similar to that of phase shaping.

III. REVERSE PROPAGATION THROUGH THE FIBER

In the reverse propagation method the spectral phase and
amplitude of the input pulse are calculated by simulating the
propagation of the pulse through an optical fiber backwards.
In order to do that, one has to be able to describe the forward
propagation.

For a medium with no second-order electric susceptibility
and in the slowly varying envelope approximation the pulse
propagation equation has the form [18]

∂A

∂z
= [D̂ + N̂ (A)]A, (3)

where A(z,t) is the slowly varying amplitude of the electric
field, and D̂ and N̂ are the linear and the nonlinear operators,
respectively. In general, D̂ contains loss and chromatic
dispersion and N̂ terms describing SPM, self-steepening, and
the Raman effect. Unless the pulse is linearly polarized and
parallel to one of the optical axes of the fiber then birefringence
and cross-phase modulation have to be included as well.

To simplify the calculation it is useful to consider which
parameters play a role in a given situation and which can
be neglected. First of all, for a short single-mode fiber it
can be assumed that the dominating source of loss is the
coupling into the fiber and the fiber itself is lossless. Second,

the dispersion of the fiber does not change rapidly within the
relevant spectral range and thus two terms of the Taylor series
expansion of the mode-propagation constant β(ω) around the
carrier frequency of the pulse, β2 and β3, corresponding to the
group velocity dispersion (GVD) and third-order dispersion
(TOD), are enough to describe it (β1 corresponds to a shift
of the pulse in time and has no effect on its spectral or
temporal shape). Furthermore, our simulations indicate that in
the pulse energy regime we consider the higher-order nonlinear
effects; that is, self-steeping and intrapulse Raman scattering,
are negligible. To sum up, the only parameters we considered
in the calculation are β2, β3, and the nonlinear refractive index
n2. Equation (3) then takes the form

∂A

dz
=

[
iβ2

2

∂2

dt2
− β3

6

∂3

dt3
+ i

ω0n2

cAeff
|A|2

]
A, (4)

where Aeff is the effective mode area (in many cases the
nonlinear parameter γ = n2ω0/cAeff is used instead). In the
following we assume that n2 and Aeff are constant within
the pulse bandwidth.

Equation (3) can be used to describe the propagation of
a pulse in both directions. Backwards propagation means
reversing the sign of z, which is in turn mathematically
equivalent to reversing the signs of the parameters β2, β3,
and n2 in Eq. (4). Usually this means that the same code which
is used for numerical forward propagation can be also used
for reverse propagation simply by changing the signs of the
input parameters. We used the split-step routine taken from
the LAB2 package [19] for LabVIEW mainly because it was
convenient to integrate it with the existing code for converting
given pulse shapes into transmission and phase patterns that
can be applied on the pulse shaper.

The most important additional thing to consider while
implementing the reverse propagation algorithm to apply it
to pulse shaping is accounting for the spectral amplitude
shape. In general, by reverse propagation of a given output
pulse one obtains an input pulse that has a spectral amplitude
different than that of the available laser pulse. The required
spectrum can be obtained by amplitude shaping, but then the
pulse energy changes and the performed simulation is not valid
anymore. We solved this problem by assuming a fixed loss due
to amplitude shaping (or in other words a fixed overall shaper
transmission) and using a modified pulse energy value for the
simulation. The obtained transmission profile is then scaled
down to fit the assumed total transmission. If there is a need for
scaling up—which is not possible with a shaper—the program
indicates an error. On a standard PC the whole procedure
takes a few seconds per pulse shape. In order to shorten the
time of the actual measurement, we calculate the set of pulses
beforehand and then load the pattern that has to be written on
the modulator from a file. This way the only limitation is the
modulator switching time.

Contrary to adaptive optimization, which can produce
desired pulses with no or very little knowledge of the fiber
properties, reverse propagation requires precise knowledge of
the parameters that appear in Eq. (4). Simply assuming the
parameters of bulk fused silica is not sufficient. First of all,
the waveguide dispersion is not negligible [20]. Second, the
known values for n2 for femtosecond pulses at 800 nm are
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scarce and not reliable enough as it has been shown that the
nonlinearity of different samples of fused silica can differ by
as much as 30% [21].

To our knowledge there are no exact data for the fiber
used in this experiment so we had to measure the dispersion
and nonlinear refractive index ourselves. The dispersion was
measured using a procedure first described in Ref. [20]. It
relies on shaping the spectral phase of a pulse entering the
fiber so that the pulse length after propagation through the
fiber is minimized and the dispersion is calculated from
the optimal phase. The advantage of this method is that
dispersion properties are measured exactly in the spectral range
that the laser pulse is covering. Our method for determining n2

relies on simulating spectral narrowing for negatively chirped
pulses. More precisely, we measure the spectrum after the
fiber and then compare the spectrum obtained by reverse
propagation with different values of n2 with the actual input
spectrum.

IV. EXPERIMENTAL SETUP

The experimental setup is shown in Fig. 1. The laser source
is a Ti:sapphire femtosecond oscillator (Mira, Coherent)
delivering pulses at the repetition rate of 76 MHz with a
28-nm spectral width centered at 805 nm. The pulse shaper
consists of two diffraction gratings with 1200 lines/mm, two
cylindrical lenses with 250-mm focal length in a standard 4f

zero dispersion compressor configuration and a double liquid
crystal array spatial light modulator (SLM-640, CRi) placed in
the Fourier plane. The resolution of this setup is 0.27 nm/pixel.
Together with a polarizer placed after the second grating the
setup enables phase shaping and amplitude shaping. A phase
offset is determined to remove the chirp of the laser pulse and
compensate for the dispersion of the optical elements in the
setup so that the pulse is transform limited when no additional
pattern is written on the modulator.

FIG. 1. (Color online) Experimental setup. A laser pulse is shaped
by a spatial light modulator (SLM) placed in a 4f setup. A half-wave
plate (HWP) rotates the polarization to coincide with an optical axis
of the fiber. After propagating through the fiber the beam is focused
in a cuvette with lens L1 and the fluorescence is collected by lenses
L2 and L3 into a spectrometer.

The laser beam is then coupled into a 1-m-long silica
single-mode step index optical fiber with a 5.3-μm mode
field diameter (SM750, Fibercore Limited) using a standard
collimator (F-C5-F3-780, Newport) directly attached to the
fiber FC/PC connector. The pulse energy after the fiber is
limited to about 0.8 nJ because of the transmission of the
shaper setup (mainly grating reflectivity) and the efficiency of
coupling into the fiber. The latter was around 35% even when
a telescope was used to optimize the beam waist at the fiber
input.

For the measurement of the fiber dispersion the pulse energy
was reduced using a neutral density filter to suppress nonlinear
effects. After verifying that adding further phase terms in the
optimization does not further reduce the pulse duration, β2(ω)
is expressed using the first two Taylor terms. The obtained
GVD value (41.0 fs2/mm) is about 10% greater than the
value for bulk fused silica (35.8 fs2/mm). This indicates
that the waveguide contribution has the same sign as the
material contribution, which is consistent with calculations for
single-mode fibers [22,23] as well as with the measurement
for a similar fiber included in Ref. [20]. Also the TOD value
that we obtained (153 fs3/mm) is different from the one for
bulk material (27.8 fs3/mm).

For the nonlinear refractive index we obtained n2 = 2.6 ×
10−20 m2 W−1, which is consistent with previous measure-
ments [21]. The uncertainty of this measurement results from
uncertainties of the other parameters used in the simulation of
spectral narrowing: the fiber dispersion, the spectral phase and
amplitude of the pulse, and the pulse intensity measurement.
However, if the same power meter is used all along and only
SPM is considered, as in this case, a systematic error of
intensity measurement has no influence on the pulse shaping
because the parameter determining the strength on nonlinear
effects is in fact the product of n2 and pulse intensity.

The fiber parameters considered above are sufficient to cal-
culate the input pulse shape that yields the desired output pulse
shape. The next step is determining the shaper modulation
function—transmission and phase filter—required to generate
the calculated pulse shape. For this the spectral amplitude
and phase of the available laser pulse must be known. The
overall intensity is measured with a power meter. When
measuring pulse spectrum one has to keep in mind possible
losses during coupling into the fiber. Apart from a constant loss
that reduces the pulse energy we observe spectrally dependent
loss caused by space-time coupling effects in the shaper.
Space-time coupling is an inherent effect caused by coupling
between the temporal phases of the pulse components and
their wave vectors [24]. To investigate its influence on the
spectrum coupled into the fiber we placed a 10-cm-long piece
of SF10 glass to stretch the pulse temporally and thus eliminate
nonlinear effects that also modulate the spectrum. We found
that the biggest contribution in our case is the quadratic phase
of around −5 × 104 fs2 that is needed to compensate the GVD
of the fiber. It causes linear spatial chirp and thus limits the
spectral bandwidth coupled into the fiber to about 20 nm.
Finally, autocorrelation is measured to ensure that the pulse is
transform limited and therefore the phase is flat.

The selective excitation is demonstrated in a mixture of two
dyes, Coumarin 1 (also known as Coumarin 460 or Coumarin
47) and Rhodamine B, dissolved in ethanol. The dyes were
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FIG. 2. (Color online) Generating short pulses with changing central wavelength by reverse propagation. (a) Desired spectral amplitude
after the fiber. (b) Calculated input spectral amplitude for pulses with 12-nm spectral width and central wavelengths: 793, 801, 809, and 817 nm.
Dashed line: Pulse spectrum before the shaper.

chosen because they satisfy two conditions. First of all, they
both absorb at 400 nm, which is the second harmonic of our
pulse, but for Coumarin 1 the maximum of absorption is blue-
shifted from this wavelength (see Ref. [25]) and for Rhodamine
B the maximum of absorption is red-shifted (to 420 nm
according to Ref. [26]). Second, because we tested the method
in solution we had to use two dyes with different fluorescence
spectra, which is the case for Coumarin 1 and Rhodamine B
[see inset in Fig. 4(a)], but in an actual imaging setup where the
fluorophores are present in different concentrations in different
regions of the sample this is obviously not a requirement.

The concentration of dyes in the solution was 13 mM for
Coumarin 1 and 0.33 mM for Rhodamine B. The proportions
were chosen so that the ratio of emission for an unshaped
pulse was close to 1. The fluorescence was collected with a
lens and coupled into a spectrometer and then the two spectral

regions corresponding to the fluorescence of each dye were
integrated. In order to minimize the reabsorption of Coumarin
1 fluorescence by Rhodamine B the cuvette with solution was
placed in such a away that the excited volume was as close to
the glass surface as possible.

V. RESULTS

In this section we demonstrate selective fluorescence excita-
tion with pulses obtained by reverse propagation. Our approach
is to use amplitude shaping in addition to phase shaping
to generate a spectrally narrow pulse with shifting central
wavelength (in the range limited by the input pulse spectral
width). Because of spectral narrowing the pulses before the
fiber have to be broader than the desired output pulses and the
spectral phase has to precompensate for chromatic dispersion

FIG. 3. (Color online) Short pulses with changing central wavelength obtained by reverse propagation. (a) Measured central wavelength
(solid symbols) and spectral width (open symbols) for pulses with spectral width set to 12 nm (black squares) and 15 nm (red circles). Set
central wavelength and spectral width marked with dashed lines. (b) Solid lines: Measured spectra after propagation through the fiber for 12-nm
spectral width and central wavelengths: 793, 801, 809, and 817 nm. Dashed line: Expected spectrum.
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FIG. 4. (Color online) (a) Coumarin 1 (C1) to Rhodamine B (RB) normalized fluorescence ratio for phase-shaped pulses with sinusoidal
phase with b = 0.055 nm−1 and changing λ0. Inset: Joint fluorescence spectrum for an unshaped pulse. (b) C1 to RB fluorescence ratio for
pulses with changing central wavelengths obtained by reverse propagation. (c) and (d) Integrated RB fluorescence for pulses from panels (a)
and (b), respectively.

and nonlinear phase shift. Examples of calculated input pulse
spectra are shown in Fig. 2(b). Next, we verify that the desired
pulse shapes are generated correctly. The systematic variation
of the central wavelength for two different spectral widths, 12
and 15 nm, is presented in Fig. 3(a). Figure 3(b) shows some
example spectra measured after the fiber.

In previous work concerning selective excitation of flu-
orophores with shaped pulses phase-only modulated pulses
were used [5,6]. Here we compare this approach to selective
excitation with amplitude-shaped pulses obtained by reverse
propagation for the case when pulses propagate through a fiber
in the nonlinear regime. For that we use phase-shaped pulses
with the sinusoidal phase function �(λ) = A sin [b(λ − λ0)]
combined with dispersion compensation.

The results are shown in Fig. 4. First, the ratio of Coumarin
1 to Rhodamine B fluorescence normalized with the value
for an unshaped short pulse (with phase optimized to achieve
minimal pulse duration after the fiber) is shown. Selective
excitation using pulses with a sinusoidal spectral phase with
changing λ0, b = 0.055 nm−1, and two different values of A

[Fig. 4(a)] is compared to excitation with short Gaussian pulses
with a changing central wavelength [Fig. 4(b)]. First of all, it
can be seen that the contrast [as defined by Eq. (1)] achieved

by shifting the central wavelength is much higher, � = 0.33
compared to � = 0.22, for the sinusoidal phase with amplitude
A = 50. However, in both cases it was possible to increase
the ratio significantly, but not to decrease it. This means
that no pulse shape that significantly enhances Rhodamine
B fluorescence compared to Coumarin 1 was found, possibly
because the absorption of Rhodamine B is fairly constant in
the spectral range covered by the pulse bandwidth.

Figures 4(c) and 4(d) show the corresponding Rhodamine
B fluorescence signal. Remarkably, although the energy of the
pulses with shifting central wavelength was reduced due to am-
plitude shaping by a factor between 2 and 7 (depending on the
spectral width and detuning from the central wavelength of the
laser pulse), the fluorescence signal is comparable to the signal
obtained with phase-shaped pulses generated without reverse
propagation. This can be explained by the pulses with shifting
central wavelengths being shorter, which results in greater ef-
ficiency of two-photon excitation. A similar effect can be seen
if sinusoidal phases with different values of A are compared. A
larger value of A corresponds to a stronger phase modulation,
which results in less signal, but more contrast. The values used
in the presented measurements were chosen as a compromise.
As a side effect, if a lower pulse energy is required for the same
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FIG. 5. (Color online) (a) Coumarin 1 (C1) to Rhodamine B (RB) normalized fluorescence ratio for pulses with changing central wavelengths
and spectral width set to 12 nm (squares) or 15 nm (circles): reverse propagation (solid symbols) compared to linear compensation (open
symbols). (b) Corresponding integrated RB fluorescence.

amount of signal, as is the case with the amplitude-shaped
pulses, sample damage by heating can be reduced.

In a separate measurement we compared pulses with
shifting central wavelengths generated by two methods:
reverse propagation and solely linear compensation to confirm
that the improvement is due to reverse propagation and not
amplitude shaping alone. In the case of linear compensation
the amplitude modulation by nonlinear effects is not accounted
for, so the spectral amplitude of the input pulses is the same as
that of the desired output pulses (see examples in Fig. 2).
The results are shown in Fig. 5. For pulses obtained by
reverse propagation the contrast that can be calculated from
the fluorescence ratio shown in Fig. 5(a) is slightly larger.
More importantly, the fluorescence signal shown in Fig. 5(b)
is significantly better (by more than a factor of 2). To make the
comparison meaningful, the shaper transmission was adjusted
so that the pulse energy for a pulse with a given central
wavelength was the same in both cases, which was verified
using a photodiode. However, reverse propagation takes into
account that the amount of phase modulation differs depending
on the pulse spectral amplitude. Therefore the pulses are
shorter than those obtained by linear compensation.

VI. DISCUSSION AND SUMMARY

The measurements presented above show that reverse
propagation is superior to other commonly used methods,
as it achieves simultaneously more contrast and signal. In
principle, comparable results could be also obtained by other
methods. Every pulse shape that is possible to obtain by reverse
propagation could be obtained by characterizing the pulse
after the fiber and adapting the input pulse shape iteratively
until the desired output pulse is reached. Another possibility

is a multiobjective optimization algorithm with contrast and
signal as optimization goals. However, these methods are not
practical for two-photon microscopy. In the first case a bulky
pulse characterization setup is required. For adaptive contrast
optimization one needs to know a priori where the different
areas of the sample are in order to have an observable that can
be optimized. Compared to that, reverse propagation is quite
simple. The fiber can be characterized before attaching it to
the microscope and very little knowledge of the investigated
sample itself is required.

The pulse spectral bandwidth in our measurements, espe-
cially considering the spectral narrowing, was quite modest.
One can expect better results with broader pulses. To see
what contrast could be achieved with the two dyes we used
we repeated the measurement without the fiber, with the full
available bandwidth of 28 nm. The best achieved value with
amplitude shaping was � = 0.44. In our case the bandwidth
after the fiber was limited by the bandwidth of the laser itself.
When using a broadband laser one has to choose the fiber
carefully, but it has been reported that a pulse spectrum as
broad as 120 nm can fully be transmitted (although with
some modulations of unclear origin) through a polarization-
maintaining single-mode fiber [27].

In summary, reverse propagation is a promising method for
applications where selective two-photon excitation takes place
in setups containing optical fibers, such as in vivo two-photon
microscopy and imaging.
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