
Atmospheric Pollution Research 6 (2015) 904 915

© Author(s) 2015. This work is distributed under the Creative Commons Attribution 3.0 License.

AAtm spheric PPollution RResearch
www.atmospolres.com

The development of a dense urban air pollution monitoring network 

Hamid Taheri Shahraiyni 1,2, Sahar Sodoudi 1, Andreas Kerschbaumer 3, Ulrich Cubasch 1

1 Institut für Meteorologie, Freie Universität Berlin, Carl–Heinrich–Becker–Weg 6–10, 12165 Berlin, Germany
2 Faculty of Civil Eng., Shahrood University, Shahrood, Iran
3 Senate Department for Urban Development and the Environment, Berlin, Germany

ABSTRACT
The importance of air pollution monitoring networks in urban areas is well known because of their miscellaneous
applications. At the beginning of the 1990s, Berlin had more than 40 particulate matter monitoring stations,
whereas, by 2013, there were only 12 stations. In this study, a new and free–of–charge methodology for the
densifying of the PM10 monitoring network of Berlin is presented. It endeavors to find the non–linear relationship
between the hourly PM10 concentration of the still–operating PM10 monitoring stations and the shut–down
stations by using the Artificial Neural Network (ANN), and, consequently, the results of the shut–down stations
were simulated and re–constructed. However, input–variables selection is a pre–requisite for any ANN simulation,
and hence a new fuzzy–heuristic input selection has been developed and joined to the ANN for the simulation. The
hourly PM10 concentrations of the 20 shut–down stations were simulated and re–constructed. The mean error,
bias and absolute error of the simulations were 27.7%, –0.03 (μg/m3), and 7.4 (μg/m3), respectively. Then, the
simulated hourly PM10 concentration data were converted to a daily scale and the performance of ANN models
which were developed for the simulation of the daily PM10 data were evaluated (correlation coefficient >0.94).
These appropriate results imply the ability of the developed input selection technique to make the appropriate
selection of the input variables, and it can be introduced as a new input variable selection for the ANN. In addition,
a dense PM10 monitoring network was developed by the combination of both the re–constructed (20 stations) and
the current (12 stations) stations. This dense monitoring network was applied in order to determine a reliable
mean annual PM10 concentration in the different areas in Berlin in 2012.
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1. Introduction

There are some major objectives for the development of air
pollution monitoring networks in urban areas. The importance and
application of air pollution monitoring networks have been well–
known from the 1960s, and the main reported objectives and uses
of air pollution monitoring in the literature are:

Planning for the appropriate urbanization and land use
development (WHO, 1977; Trujillo–Ventura and Ellis, 1991;
Chen et al., 2006);
Evaluation of the exposure of people to air pollution and
consequently its effects on human health, and the protection
of the public health (Darby et al., 1974; Hougland and
Stephens, 1976; Ott, 1977; WHO, 1977; Modak and Lohani,
1985; Trujillo–Ventura and Ellis, 1991; Kanaroglou et al., 2005;
Lozano et al., 2009; Ferradas et al., 2010; Zheng et al., 2011;
Pope and Wu, 2014);
Quantifying the effects of the emission sources (e.g., power
plants) on air pollution (Leavitt et al., 1957; Seinfeld, 1972;
Pope and Wu, 2014);
The control and management of urban air pollution (Hougland
and Stephens, 1976; WHO, 1977; Van Egmond and
Onderdelinden, 1981);
The evaluation of air pollution control programs and strategies
(Seinfeld, 1972; WHO, 1977; Zheng et al., 2011);
The initial assessment of air pollution condition, e.g., the
determination of the mean concentrations of air pollutants in
urban areas in different time scales (i.e., hourly, daily)

(Goldstein and Landovitz, 1977; WHO, 1977; Shannon et al.,
1978);
Time series analysis for the determination of the trends of air
pollutants (WHO, 1977; Trujillo–Ventura and Ellis, 1991; Pope
and Wu, 2014);
Investigation of the compliance of the concentrations of air
pollutants with air quality standards (Hougland and Stephens,
1976; Ott, 1977; WHO, 1977; Van Egmond and Onderdelinden,
1981; Modak and Lohani, 1985; Chen et al., 2006; Ferradas et
al., 2010; Pope and Wu, 2014)
The evaluation and validation of the mechanistic models
describing the spatio–temporal emission, transport and
transformation of air pollutants (WHO, 1977; Van Egmond and
Onderdelinden, 1981; Trujillo–Ventura and Ellis, 1991; Zheng et
al., 2011);
The spatial and knowledge–based modeling of air pollutants
(Shannon et al., 1978; Modak and Lohani, 1985; Briggs et al.,
1997; Briggs et al., 2000; Lozano et al., 2009; Taheri Shahraiyni
et al., 2015);
The determination of critical air pollution conditions and
notification to the people affected (at risk) and to the relevant
organizations (Seinfeld, 1972; WHO, 1977; Trujillo–Ventura and
Ellis, 1991; Chen et al., 2006).

Many studies have been performed on the air pollution
monitoring network design. Geostatistical techniques has been
widely used for the calculation of the local spatial representativity
of each monitoring station and the determination of the location
of monitoring stations based upon the minimization of the
estimation variance (Trujillo–Ventura and Ellis, 1991; Kanaroglou et
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al., 2005; Taheri Shahraiyni et al., 2014). In some studies, analysis
techniques, such as principal component analysis and cluster
analysis, have been employed for the site selection of air quality
monitoring stations (e.g., Pires et al., 2008a; Pires et al., 2008b;
Pires et al., 2009). The design of monitoring networks using spatial
distribution patterns, developed by an atmospheric dispersion
model, is another alternative (e.g., Mazzeo and Venegas, 2008;
Zheng et al., 2011). High–resolution measuring campaigns have
been utilized in some studies for the suitable site selection of the
monitoring stations (e.g., Cocheo et al., 2008; Ferradas et al.,
2010). Another method is based upon the multi–objective network
design, which considers environmental, social and economical
objectives simultaneously (e.g., Chen et al., 2006; Pope and Wu,
2014). The design of virtual monitoring stations has been utilized in
some studies for the minimization of the monitoring costs (e.g.,
Ung et al., 2001; Beaulant et al., 2008).

The Euclidean distance of a point in the city to the closest
monitoring station is one of the spatial indicators that can
influence the representation of the air quality monitoring network
(Pope and Wu, 2014), and, consequently, an increase in the
number of monitoring stations will improve this spatial indicator.

Although an increase in the number of air pollution
monitoring stations in urban areas can lead to better air pollution
estimation and evaluation (Stalker and Dickerson, 1962; Modak
and Lohani, 1985; Cocheo et al., 2008), it increases the monitoring
costs (Hickey et al., 1971; Cocheo et al., 2008), which is the main
constraint for the development of a dense air pollution monitoring
network (Trujillo–Ventura and Ellis, 1991).

In this study, a new methodology for the densifying of the
PM10 (particulate matter less than 10 μm in aerodynamic diameter)
monitoring network of an urban area (Berlin, Germany) is
presented which is totally free–of–charge. At the beginning of the
1990s, Berlin had more than 40 particulate matter monitoring
stations (SenStadt, 1998). The number of monitoring stations
decreased steadily until the end of 1990s (Lenschow et al., 2001)
and now there are a little number of PM10 monitoring stations. In
this study, an attempt is made to re–construct the shut–down
particulate matter monitoring stations by non–linear simulation
using a knowledge–based black–box modeling technique. In this
study, we try to find the non–linear relation between the
concentration of PM10 of the still operating PM10 monitoring
stations and the shut–down stations, and, consequently, the PM10
concentrations for the shut–down stations are estimated.

Artificial neural networks (ANNs) are well–known powerful
knowledge–based black–box modeling techniques, and are widely
used in the static (real–time estimation) and dynamic (prediction)
modeling of air pollutants (Gardner and Dorling, 1998). ANN as a
static modeling technique is used not only for the estimation of the
concentration of the air pollutants (e.g., Lal and Tripathy, 2012;
Elangasinghe et al., 2014; Zhang and Peng, 2014) and the
determination of the relative apportionment of the various sources
on the concentration of a receptor site (e.g., Reich et al., 1999), but
also for the estimation of spatial distribution of the pollutants (e.g.,
Yao and Lu, 2014). ANN as a dynamic modeling technique
is utilized in different forms of forecasting. For example,
Papanastasiou et al. (2007), Wu et al. (2011), and Russo et al.
(2015) used ANN for the daily forecasting of PM10 concentration,
and Dutot et al. (2007), Corani (2005), and Nejadkoorki and
Baroutian (2012) employed ANN for the prediction of the hourly,
8–hourly, and daily maximum of air pollutants, respectively. In this
study, ANN is employed for the simulation of virtual stations or for
the re–construction of the shut–down stations by the development
of a non–linear relation between the PM10 concentration of the
still operating monitoring stations and the shut–down stations.

One of the most important issues of ANN is the input variable
selection, and it is a pre–requisite for the ANN simulation
(Giordano et al., 2014). Input variable selection is performed to
remove the superfluous (redundant and irrelevant) variables (May
et al., 2011). Irrelevant variables have no significant influence on
the output variable. Redundant variables have influence on the
output variables, but their influence can be represented by either
one or other of the relevant variables (Bell and Wang, 2000). The
superfluous variables increase the size of the input variables to
ANN, and, consequently, the complexity of the ANN model and its
training time also increase. The superfluous variables increase the
training difficulty. The inclusion of redundant variables increases
the number of local extrema in the error function of the learning
technique, and, accordingly, the developed ANN model will bear
poor generalization. The inclusion of irrelevant variables increases
the complexity of the knowledge extraction because these
variables behave similarly to the noise, and hide the input–output
relationships. In addition, it is very difficult to interpret the results
of the ANN modeling when the inpfuts are superfluous variables
which impede our understanding the behavior of the investigated
phenomenon (May et al., 2011; Giordano et al., 2014).

Up to now, many different input variable selection techniques
have been developed (see Blum and Langley, 1997; Kohavi and
John, 1997; Guyon and Elisseeff, 2003) and also used for the input
variable selection in the neural network simulations (e.g., Bowden
et al., 2005; La Rocca and Perna, 2005; Giordano et al., 2014). In
this study, a new heuristic input selection technique based upon
fuzzy curve fitting is developed and joined to the ANN.
Consequently, this modeling framework is employed to simulate
the shut–down PM10 monitoring stations in Berlin.

2. The Study Area

Berlin is the capital city of Germany (Figure 1) and it is located
in the North–Eastern part of Germany. Its population is ranked
seventh among the urban areas in the European Union (about
3 500 000 inhabitants). Berlin covers an area of about 900 km2 and
about one–third of its inhabitants live in the inner city in an area of
about 88 km2 and, accordingly, it has low building and population
density outside the inner city. Berlin has a flat topography and
about 45% of its area is made up of water bodies and green areas.
35% of Berlin’s area is built–up areas. The transport and infrastruc
ture areas cover about 20% of the city (Dugord et al., 2014). It has
a moderate climate and its average wind speed and temperature
are about 3 m/s and 8.8 °C, respectively. There are about 0.32 cars
and LDV (Light Duty Vehicles) per resident in Berlin (Lenschow et
al., 2001). The transportation system of Berlin is composed of
passenger cars with diesel engines (54%), passenger cars with
gasoline/petrol engines (30%), Light Duty Vehicles (LDV) with diesel
engines (7%), LDV with gasoline engines (4%), Heavy Duty Vehicles
(HDV) (3%), buses (1%), and motor cycles (1%). In addition, 39, 34,
and 24% of the passenger cars with diesel engines in Berlin have
EURO–5, EURO–4 with diesel particle filters, and poorer emissions
standards, respectively and also 18, 52, and 30% of the passenger
cars with gasoline engines in Berlin have EURO–5 and EURO–4
engines, and poorer emissions standards, respectively (Schmidt
and During, 2013). Berlin is situated in the approximately 200 km
northwest of the industrialized area at Germany’s borders with
Poland and the Czech Republic, an area which is called the “Black
Triangle” (Lenschow et al., 2001). Sometimes, the concentration of
PM10 in Berlin exceeds the EU limit (Gorgen and Lambrecht, 2007).
About 64.4% of PM10 in Berlin stems from non–Berlin emission
sources (regional background sources) and the emission sources of
the remaining 35.6% come from the urban background and traffic
PM10 sources (Rauterberg–Wulff et al., 2013). Figure S1 (see the
Supporting Material, SM) shows the sources of PM10 in Berlin in
detail. The EU has set two limit values for PM10 for the protection
of human health. According to these limits, the mean daily PM10
concentration may not exceed 50 μg/m3 more than 35 times per
year, and the mean annual PM10 concentration may not exceed
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40 μg/m3 (EU, 2008). At the beginning of the 1990s, Berlin had a
high level of Total Suspended Particulate (TSP) (Lenschow et al.,
2001) and hence, a dense monitoring network was developed for
the appropriate monitoring of the pollutants in Berlin (SenStadt,
1998). Both the concentration of TSP and the number of TSP
monitoring stations decreased greatly until the end of 1990s
(Lenschow et al., 2001) and also the TSP stations were gradually
replaced with PM10 stations. In 1999, there were 18 TSP
monitoring stations in Berlin. By 2013, there were only 12 PM10
monitoring stations. There are continuous particulate matter data
(TSP or PM10 data) from 1990s until the present in only 7 stations
(Table 1). Table 1 presents some of the shut–down stations
(20 stations) and the 12 still operating ones at least until end of
2013 with their respective properties. The suburban (SU)
(background) (Bg) in Table 1 indicates the stations located near to
the boundary of the urban area and influenced by some local
emission sources, while the rural stations within the Berlin
municipality boundary are the stations located at rural
environments such as forests, grasslands and near lakes, far away
from direct air pollution sources.

Figure 1. The location of Berlin in Germany (Source map: goway.com).

3. Input–Output Databases

The 20 stations removed from Berlin’s network were selected
for the re–construction by simulation (Table 1). We tried to find
some old concurrent hourly particulate matter data from the
20 shut–down stations (output variables) and some of the current
(still–operated) stations (candidate input variables). Table 2 shows
the time period of the concurrent hourly particulate matter data of
each shut–down station and some of the current stations
employed as the output and candidate input data for ANNs in this
study, respectively. In this study, only the PM10 data of the still
operating stations are employed as input variables, because the
influences of the other variables such as meteorological param
eters, and regional and urban background PM10 sources have been
incorporated in the measured PM10 data by the still operating
stations. In addition, the aim of this study is the development of an
automatic module that will be able to densify the PM10 monitoring
network immediately by using only the hourly PM10 measurements
of still operating network. The influence of the traffic intensity near
to the shut–down stations has not been incorporated in the set of
input variables (still operating stations), because traffic intensity
has a local effect. Accordingly, the shut–down stations with a
special characteristic are utilized in this study. This characteristic is

that each station is either far from the main traffic lanes, or the
current traffic level around it has no significant difference from the
traffic level during the time period presented in Table 2. All of the
shut–down stations in Table 2 satisfied this traffic characteristic.

We could not re–construct some of the shut–down stations
because the current traffic level around them is significantly
different from the traffic level during the time period presented in
Table 2. When there is a significant difference in the traffic
intensity around a shut–down station between the simulation
period and current situation, the shut–down station is simulated
using the old PM data based upon old traffic intensity around the
shut–down station and developed model for shut–down station is
based upon old traffic intensity around it. Consequently, when the
developed model is employed for re–construction of the current
PM10 concentration of the shut–down station, it not only does not
consider the current local effect of traffic intensity for PM10
estimation, but also consider the old local effects of traffic
intensity, and thus, the error of PM10 increases and it is not
possible to develop a model for re–construction of the shut–down
station.

For evaluation of the above–mentioned traffic characteristic,
Berlin’s traffic–intensity maps were generated in ArcGIS. Figure 2
shows one sample of the traffic–intensity maps of Berlin. The
traffic intensity (No. of vehicles/day) in Figure 2 is the mean daily
number of all the motor–vehicles using a street in both directions
throughout the year. The previous studies in Berlin showed that
about 50% of particulate matter, measured at street level, stems
from exhaust emissions, tyre abrasion and the re–suspension of
soil particles in the individual street, and the remaining 50%
originates from other sources in the city and in the regional
backgrounds (Lenschow et al., 2001). In addition, a primary
particulate matter source at ground level can influence the
surrounding areas in a radius of less than 100 m (Hewitt and
Jackson, 2008) and the traffic has an immediate influence on the
coarse particulate matter in the immediate vicinity of the station.
Thus, point buffer operation with constant width buffer (100 m) in
the GIS (Geographical Information System) environment was
applied to the shut–down stations, presented in Table 2, to
determine the areas in which the traffic can have a significant
influence on the particulate matter concentration of the shut–
down stations. Then, the traffic intensity inside the buffering zone
around each station was investigated using the traffic intensity
maps in ArcGIS.

The old monitoring network in Berlin measured the TSP
concentration while the current monitoring network measures the
PM10 concentration. Lenschow et al. (2001) studied the relation
between the PM10 and the TSP concentrations in Berlin, and found
that the ratio of PM10 to TSP was about 0.8. This ratio was
employed for the conversion of the TSP data in Table 2 to PM10.
Thus, 20 input–output databases of hourly PM10 concentrations
were generated. The hourly PM10 concentrations of the current
stations and hourly PM10 concentrations in each of the station
removed (each row of Table 2) are considered as input variables
and output variable for simulation, respectively.

4. Simulation Algorithm

The simulation algorithm has two major stages (fuzzy–
heuristic input selection and neural network modeling). A
schematic diagram of two major stages of this study with the input
and output variables in each stage has been presented in Figure S2
(see the SM). In this section, the algorithm of the shut–down
stations simulation is described in detail, step by step. The
flowchart of the algorithm of the study has been presented in
Figure 3. Fuzzy–heuristic input selection and neural network
modeling stages are implemented by Steps 1–7 and Steps 8–15,
respectively. These steps are implemented by a developed
computer program in the MATLAB R2013b.
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Table 1. The characteristics of the current particulate matter monitoring stations and the 20 shut–down stations, utilized in this study with their
operation period from 1992 (SU: Suburban; Bg: Background; Ur: Urban; Tr: Traffic; R–N: Rural–Near city)

Station
Code Station Name Operation

Period
Type of
Area

Type of
Station

Altitude
(m)

Longitude
(degree)

Latitude
(degree)

MC 010 Wedding–Amrumer Str. 1992–now Ur Bg 35 13.349 52.543
MC 032 Grunewald 1992–now R–N Bg 50 13.225 52.473
MC 042 Neukolln–Nansenstr. 1992–now Ur Bg 35 13.431 52.489
MC 077 Buch 1992–now SU Bg 60 13.490 52.643
MC 085 Friedrichshagen 1994–now R–N Bg 35 13.647 52.447
MC 115 Hardenbergplatz 2004–2013 Ur Tr 35 13.333 52.506
MC 117 Steglitz–Schildhornstr. 1994–now Ur Tr 45 13.318 52.464
MC 124 Mariendorf–Mariendorfer Damm 2005–now Ur Tr 50 13.388 52.438
MC 143 Neukolln–Silbersteinstr. 2004–now Ur Tr 40 13.442 52.468
MC 171 Mitte–Bruckenstr. 1998–now Ur Bg 35 13.419 52.514
MC 174 Friedrichshain–Frankfurter Allee 1993–now Ur Tr 40 13.470 52.514
MC 220 Neukolln–Karl–Marx–Str. 2005–now Ur Tr 40 13.434 52.482
MC 001 Heiligensee–Krantorweg 1992–1997 SU Bg 35 13.227 52.622
MC 006 Wittenau–Rodernallee 1992–1995 SU Bg 45 13.345 52.586
MC 007 Falkenhagener Feld–Pionierstr. 1992–1996 SU Bg 35 13.168 52.558
MC 009 Tegel–Flughafen 1992–1996 SU Bg 35 13.288 52.551
MC 011 Wedding/Prenzlauer Berg–Behmstr. 1992–2000 SU Tr 45 13.396 52.550
MC 017 Schmargendorf–Lentzeallee 1992–1997 SU Bg 50 13.294 52.471
MC 018 Schoneberg–Belziger Str. 1992–2002 Ur Bg 40 13.349 52.489
MC 020 Neukolln–Ederstr. 1992–1994 Ur Bg 35 13.456 52.476
MC 023 Lankwitz–Leonorenstr. 1992–1995 SU Bg 40 13.347 52.444
MC 024 Mariendorf–Walnussweg 1992–1995 SU Bg 45 13.413 52.441
MC 025 Britz–Parchimer Allee 1992–1997 SU Bg 35 13.458 52.447
MC 027 Mariendorf–Schichauweg 1992–2001 R–N Bg 45 13.368 52.398
MC 028 Lichterfelde–Dielingsgrund 1992–1995 SU Bg 45 13.409 52.411
MC 030 Rudow–Kunnekeweg 1992–1995 SU Bg 45 13.520 52.418
MC 072 Pankow–Blankenfelder Str. 1992–1997 SU Tr 45 13.404 52.591
MC 078 Blankenburg 1992–1996 SU Bg 50 13.459 52.588
MC 080 Marzahn 1993–1997 SU Tr 50 13.583 52.549
MC 081 Hellersdorf 1993–1996 SU Bg 40 13.576 52.513
MC 083 Kaulsdorf–Sud 1993–1996 R–N Bg 40 13.595 52.476
MC 145 Frohnau–Funkturm 1996–2001 R–N Bg 50 13.296 52.653

Table 2. The time periods of the concurrent hourly particulate matter data of the current and shut–down stations

Shut–Down Station
(Output Variable) Current Stations (Input Variables) Hourly Particulate

Matter Data Concurrent Time Periods

MC 001 MC 10, 32, 42, 77, 85, 117, 174 TSP 1996.01.23–1997.01.22
MC 006 MC 10, 32, 42, 77, 85, 174 TSP 1994.01.31–1995.04.03
MC 007 MC 10, 32, 42, 77, 85, 117, 174 TSP 1994.12.01–1996.02.02
MC 009 MC 10, 32, 42, 77, 85, 117, 174 TSP 1994.12.01–1996.03.29
MC 011 MC 10,32,42,77,85,117,174 TSP 1996.07.22–1998.07.22
MC 017 MC 10, 32, 42, 77, 85, 117, 174 TSP 1995.10.16–1997.10.06
MC 018 MC 10, 32, 42, 77, 85, 117, 174 PM10 2009.01.18–2011.01.18
MC 020 MC 10, 32, 42, 77, 85, 174 TSP 1994.01.31–1995.11.24
MC 023 MC 10, 32, 42, 77, 85, 117, 174 TSP 1995.03.30–1996.03.29
MC 024 MC 10, 32, 42, 77, 85, 174 TSP 1994.08.28–1995.10.19
MC 025 MC 10, 32, 42, 77, 85, 117, 174 TSP 1995.03.28–1997.03.27
MC 027 MC 10, 32, 42, 77, 85, 117, 174 PM10 2009.01.10–2011.01.10
MC 028 MC 10, 32, 42, 77, 85, 117, 174 TSP 1994.10.19–1995.10.19
MC 030 MC 10, 32, 42, 77, 85, 117, 174 TSP 1994.10.19–1995.10.19
MC 072 MC 10, 32, 42, 77, 85, 117, 171, 174, 271 PM10 2003.03.15–2004.03.14
MC 078 MC 10, 32, 42, 77, 85, 117, 174 TSP 1995.01.30–1996.01.30
MC 080 MC 10, 32, 42, 77, 85, 117, 174 TSP 1995.03.27–1997.03.26
MC 081 MC 10, 32, 42, 77, 85, 117, 174 TSP 1995.04.04–1996.04.03
MC 083 MC 10, 32, 42, 77, 85, 117, 174 TSP 1995.01.30–1996.01.30
MC 145 MC 10, 32, 42, 77, 85, 117, 171, 174 PM10 2002.03.27–2004.03.09
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Figure 2. The average of traffic intensity in Berlin (No. of vehicles/day) in 2009.

Step 1. The database (D) of input candidate variables and
corresponding output variable data has been prepared in the
previous section. Each row in Table 2 is equal to one input–output
database. In this section, the simulation algorithm for one
database is explained, hence for simulation of 20 databases in
Table 2, the simulation algorithm must be implemented on
20 databases one by one.

Imagine that the database has input variables ( X=X1, X2,…,
Xn ) and one output variable (Y). Thus, D can be expressed as
Equation (1):

m
kx (1)

where, Xkm is the mth member of the kth variable (Xk) (Xkm Xk and
Xk, X), ym is the mth member of Y and M is the total number of
observations.

Step 2. A random partitioning program was developed for the
random partitioning of the databases. The random number
generator in this program was based upon the uniform probability
density function. The database was randomly partitioned to the
train (two third of database) and test (one third of database)
databases using this program. Hereinafter, the train database is
called the database.

Step 3. The idea of the developed new input variable selection
scheme in this study is that a heuristic partitioning method is
utilized for the partitioning of the main MISO (Multi Inputs–Single
Output) database for some MISO sub–databases in a successive
manner. Each MISO sub–database is converted to some SISO
(Single Input–Single Output) sub–databases and the behavior of
output is investigated in each SISO. It means that the space of the
input variables is divided into many sub–databases and the relation
between each input variable and output variable is evaluated in
each small sub–database; accordingly, the influence of each input
variable on the output is calculated in detail in this new heuristic
input selection technique. Thus, the heuristic dividing is one of the
major steps of this fuzzy–heuristic input variable selection
algorithm, which is explained below.

In the first iteration of the input variable selection algorithm,
there is only one database (D) and it is divided into two smaller
databases. In general, a generated database is expressed as Dkds

and it is the sth database in the dth iteration and has been
generated by dividing the kth variable of a bigger database. The
bigger database has been divided into two parts (s 1, 2 ) and this
database is the sth part.

When any of the input variables (Xk) are divided into two
parts, then D is divided into two sub–databases .

are the databases, generated by dividing the kth
variable in the first iteration.

(2)

(3)

(4)

where, is the median of in database . is the number of
observations in each database and it is equal toM/2.

In the second iteration, it is decided which database should be
divided into two smaller databases ( ). Imagine is
selected for dividing and it is divided to two smaller databases

. and are the databases,
generated by dividing the k’th variable of in the second
iteration. In the second iteration, has been divided to three
databases as below:

(5)

(6)

(7)

(8)

where, is the number of observations in each database and is
equal to . is the median of in database .

This algorithm is iterated and the D is divided into more small
databases. In general, D in the dth iteration is divided into d+1 small
databases.

Which database is selected for dividing into two smaller
databases in each step and which Xk is the best one to divide the
selected database? First, the method for the determination of the
appropriate Xk for dividing a database is explained here. Then, the
method for the selection of a database for dividing will be
explained in Step 4.
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Figure 3. The flowchart of the algorithm of study.

For the determination of the best option, all of the possible
dividing options are performed. Hence, for dividing the into
two smaller databases, n possible options are performed and 2n
databases are generated. The data in each generated database are
divided into n one–variable databases. Thus, when the jth variable
is divided into two small databases, 2n one–variable databases (S)
are generated.

(9)

is the number of data in the one–variable database.

The relationship between and
in all of is calculated by a fuzzy curve fitting technique, called
IDS (Ink Drop Spread) (Bagheri Shouraki and Honda, 1999).
Similarly, the relationship between and

in all of is calculated. The accuracy of and
functions (one– variable functions) for the estimation of output ( )
is evaluated. Consequently, and are
determined as the as the best one–variable functions with the
lowest errors, respectively. If we consider as the total error of
the output ( ) estimation in by and , then for

is calculated and the minimum value in is
determined. Consider as the minimum. Consequently, the
input variable corresponding to the minimum error is the
best variable for dividing into two smaller databases
( and and are the best one–
variable functions for the estimation of output in the two
generated databases and and are their
corresponding errors, respectively.

Step 4. In the first iteration of the dividing algorithm, is divided
into two databases [see Equations (2)–(4)]. Then two one–variable
functions ( and ) are determined and utilized for
the output estimation in two databases. The error of the one–
variable functions are and . Therefore, the rule–base
can be expressed as Equation (10):

(10)

Using the test database, the accuracy of generated rule–base
[Equation (10)] for the estimation of the output variable (Y) is
evaluated. The error of output estimation in the first iteration is
expressed as E1.

In the second iteration of the dividing algorithm, the database
with higher error is selected for dividing. Imagine ,
then, must be divided to two smaller databases using the
dividing method, explained in Step 3. Thus, two one–variable
functions [ and ] are determined and utilized for
the output estimation in the two databases. Accordingly, D is
divided to three databases [Equation (5)], and a rule–base with
three rules [Equation (11)] is generated. The error of these one
variable functions are , and .

(11)

Using the test database, the accuracy of generated rule–base
[Equation (11)] for the estimation of the output variable (Y) is
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evaluated. The error of the output estimation, in the second
iteration is expressed as E2. This dividing procedure and the rule–
base generation (Steps 3 and 4) are continued until Ed>Ed–1.

Step 5. The generated rule–base with d–1 rules in Step 4 is
considered as the best rule–base in the first iteration of algorithm,
and it is expressed as R1=d–1. In this rule–base, the number of the
estimated data by a variable (fv ) can be calculated by Equation
(12):

(12)

where, Nrj is the number of data in the jth database and Lj is
expressed as Equation (13):

(13)

where, the f(Xh) is one–variable function in the jth rule in the rule–
base and k 1,…, n . Consequently, the results of calculation of fv
for whole variables can be presented as the function vector (

.

Step 6. Combine the train and test databases to generate the
original database, and then proceed to Step 2. Steps 2–6 are
iterated according to the user defined criterion of iterations. Here,
when VP< , the iteration procedure is terminated, where p is the
number of the performed iterations, and Vk is
the kth member of (

. When VP then p=I or I is the total number
of iterations. can be defined by user and it was considered equal
to 0.01n/2 in this study, where is equal to the number of input
variables. These iterations neutralize the effects of the random
dividing in the second step, and generalize the results. Steps 2–6
are iterated I times. Thus, I function vectors are
generated.

Step 7. Input selection: the average of function vectors is
calculated ( . Then is normalized as Equation (14):

(14)

where, is the summation of elements and is the
relative importance vector and its elements show the relative
importance of the different input variables for the modeling of the
output variable. Finally, the variables with low importance are
removed from database and the set of suitable variables for
modeling are determined.

Step 8. The new input–output database is regenerated based upon
the set of suitable input variables, determined in Step 7.

Step 9. The new database is randomly partitioned to the train (two
third of database) and test (one third of database) databases.

Step 10. Kolmogorov’s theorem expresses that any continuous
function with any number of variables can be represented as finite
sum of one–variable continuous functions (Kolmogorov, 1957).
Sprecher’s theorem (Sprecher, 1965) is a refinement of
Kolmogrov’s theorem and it shows that one–variable continuous
functions in Kolmogrov’s theorem can be replaced with monotonic
increasing functions. Hecht–Nielsen (1987) reformulated the
Sprecher’s theorem into the form of feed forward neural network
and showed that any continuous function with any number of

variables (n) can be exactly represented by a three layered–neural
network with 2n+1 neurons in the hidden layer with monotonic
increasing activation function. The initial structure of the ANN in
this study is determined based upon Sprecher’s theorem and the
Hecht–Nielsen re–formulation. Hence, feed forward neural
networks with one hidden layer are utilized for modeling in this
study, and monotonic increasing function (hyperbolic tangent
sigmoid function) and linear functions are employed as the
activation functions for the hidden and the output layers,
respectively. In addition, the initial number of neurons in hidden
layer is considered equal to 2n+1.

Step 11. The initial weights and biases of neural network is
randomly determined.

Step 12. The initial weights and biases of neural network are tuned
using Levenberg–Marquadt technique. After each training step
(epoch), the performance of the model is evaluated by the testing
dataset. If the error of the model is less than the previous step,
then the training procedure is continued and the next training step
is performed, otherwise the training procedure is terminated. The
trained neural network is a candidate for final neural network.

Step 13. Steps 11 and 12 are iterated 30 times and consequently
30 trained neural networks are generated. The 30 trained neural
networks are evaluated using the test dataset and the best one is
selected as a candidate for the final neural network.

Step 14. Add one neuron to the hidden layer and then proceed to
Step 11. This procedure is continued until Nh=4(2n+1) (Nh: the
number of neurons in the hidden layer).

Step 15. The 3(2n+1) developed candidate neural networks in
Step 13 are compared using the test dataset and the best one is
selected as the final neural network model and it is utilized for
simulation of shut–down station.

5. Results and Discussion

The fuzzy–heuristic input selection technique was imple
mented on the 20 hourly PM10 concentration databases and
for the each database was determined. The variable with the
relative importance of less than half of mean value of were
removed, and the remaining variables were selected as the
appropriate input variables for modeling. The results of the input
selection have been presented in Table 3. It shows that the traffic
stations (MC 117 and MC 174) have almost not been selected as
the appropriate input variables. But at least one of the urban
background stations (MC 010 and MC 042) has been selected as
the appropriate input variables for simulation of almost all of the
shut–down stations. The PM10 from traffic sources can influence
the surrounding areas within a radius of less than 100 m (Hewitt
and Jackson, 2008), and the PM10 measurements in a traffic station
have been greatly influenced by local effects, hence traffic stations
are not suitable for the simulation of other stations. In addition,
the EU (2008) has pointed out that urban background stations
must be representative for several square kilometers.
Consequently, these stations are representative for large areas and
are also suitable candidates for the simulation of the shut–down
stations. The results presented in Table 3 demonstrate the ability
of the utilized fuzzy–heuristic input selection technique for the
suitable selection of the input variables.

Then, the neural network models were trained and tested
based upon the input and output variables presented in Table 3.
The number of neurons in the hidden layers of the 20 optimum
neural network models have been presented in Table 3.

The results of the training of optimum neural network models
of 20 shut–down PM stations for estimation of hourly PM10
concentration have been presented in Table S1 (see the SM). In
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addition, the characteristics of the test datasets and the results of
the testing of the 20 optimum neural network models for the
simulation of the hourly PM10 concentration have been presented
in Table 4.

Table 3. The results of input variable selection by the fuzzy–heuristic
technique and the number of neurons in hidden layer of optimum neural
network models (Nr. Hid.)

Output Variable Appropriate Input Variables Nr. Hid.

MC 001 MC 10, 42, 77 15
MC 006 MC 10, 77, 85 9
MC 007 MC 10, 32, 77 13
MC 009 MC 10, 42 16
MC 011 MC 10 10
MC 017 MC 10, 32, 42 21
MC 018 MC 42 7
MC 020 MC 10, 42 13
MC 023 MC 10, 32, 42, 85 26
MC 024 MC 42, 85 6
MC 025 MC 10, 42 7
MC 027 MC 10, 32, 42, 171 27
MC 028 MC 10, 42 10
MC 030 MC 42 3
MC 072 MC 10 3
MC 078 MC 77 5
MC 080 MC 10, 42, 77 9
MC 081 MC 10, 42, 77, 85 17
MC 083 MC 85 10
MC 145 MC 10, 32, 77 21

The R, MBE, MAE, RMSE and MAPE values in Table S1 and
Table 4 represent the correlation coefficient, Mean Bias Error,
Mean Absolute Error, Root Mean Square Error and Mean Absolute
of Percentage Error, respectively. These goodness of fit criteria are
expressed as Equations (15)–(19):

(15)

(16)

(17)

(18)

(19)

where, M is the total number of observation data, and are the
average of the observed and simulated PM10 concentration, and Oi

and Si are the observed and simulated PM10 concentration of the ith
data, respectively.

The high similarity between the training (see the SM, Table S1)
and testing (Table 4) results demonstrates that over–fitting and
under–fitting have not been occurred in the developed optimum
neural network models. Many uncertainties and errors (about 4–
20%) are associated with PM10 measurements in daily scale with
different instruments (Stalker and Dickerson, 1962; Heal et al.,
2000; Hitzenberger et al., 2004; Baxter et al., 2007; Lagler et al.,
2011; Pernigotti et al., 2013) and it is clear that the uncertainty of
hourly PM10 measurement is higher than daily measurement. Thus,
the results of hourly simulation (Average error: 27.7%; correlation
coefficient 0.82; average bias: –0.03 μg/m3; average absolute
error: 7.4 μg/m3) (calculated using Table 4) seem to be very good.
In addition, the scatter–plots of the measured and simulated
hourly PM10 concentration (μg/m3) in the testing phase in some of
the studied stations have been presented in Figure S3 (see the SM)
and one sample of each type of the simulated stations (MC 018:
Urban–background; MC 025: Suburban–background; MC 027:
Rural near city–background; MC 072: Suburban–traffic) have been
exhibited in it. The scatter–plots imply the suitability of the
performed simulations in the different stations.

Consequently, a dense monitoring network can be developed
by the combination of the simulated and current stations. In
addition, this suitable result implies that the fuzzy–heuristic input
selection technique has selected the appropriate input variables.
The locations of the PM10 stations of the developed dense
monitoring network have been presented in Figure 4. An automatic
module has been developed by the combination of the 20
developed neural network models and this module which uses the
hourly PM10 concentration in the current stations as the input
variables, and, accordingly, its output is the concentration of
hourly PM10 in the 20 shut–down (simulated) stations.

When the time–scale increases, the accuracy of the simulated
stations for the PM10 estimation also increases because the
variability in the data decreases. The hourly PM10 simulated data
were converted to the daily PM10 data and the performance of the
developed neural network models for the simulation of daily PM10
data were evaluated. The performance of the 20 daily PM10 models
has been presented in Table S2 (see the SM). The average of
values in Table S2 is about 2.6 g/m3, while the uncertainty of daily
PM10 measurement in Berlin is about 1.8 g/m3. The comparison
between the MAE values of simulations and the uncertainty of the
measurements and also the results of Table S2 (R 0.94,
MAPE<11.5% and MAE<3.9 g/m3) demonstrate that the
simulated stations have excellent performance for the estimation
of the daily PM10 concentration.

Using the developed automatic module, the hourly PM10
concentration of the 20 simulated stations were estimated for
2012 and then the mean annual PM10 concentration of all the
stations (the 12 current stations and the 20 simulated stations)
were calculated and presented in Figure 4. Now, Berlin has a dense
monitoring network with a sufficient number of suburban, urban
and traffic stations, and, accordingly, it is possible to calculate the
reliable mean annual PM10 concentration for the different areas in
Berlin. For example, the mean annual PM10 concentration for
suburban (combination of suburban and rural stations), urban and
traffic areas (see Table 1) in 2012 (Figure 4) are 19.8, 22.5 and
25.2 μg/m3, respectively.

The EU (2008) has pointed out that improvement in the
monitoring and assessment of the air quality in the whole
environment is important. The still operating network in Berlin has
a small number of monitoring stations and there is also no
suburban–traffic station in the still operating network and it is not
possible to evaluate the air pollution conditions in the suburban–
traffic areas. But the developed dense monitoring network has
sufficient stations (e.g., 3 stations in the suburban–traffic areas),
and it is capable of providing better assessment and monitoring of
PM10 concentration for the different areas in Berlin in a manner
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which is free–of–charge. In addition, when the information from
some of the air quality monitoring stations is supplemented by
modeling, then the number of monitoring stations can be reduced
(EU, 2008). According to the findings of this study, it is possible to
re–construct 20 shut–down stations. If only seven of the still
operating stations (MC 010, 032, 042, 077, 085, 117 and 174)
operate and the others are shut down, the developed PM10

monitoring network has 27 stations (more than 2.0 times more
than the number of stations in the current monitoring network).
Hence, the findings of this study are very useful for the decrease of
the number of monitoring stations and, consequently, the
monitoring cost.

Figure 4. The developed dense PM10 monitoring network (12 current stations and 20 simulated
stations) with the mean annual PM10 concentration (μg/m3) for 2012.

Table 4. Characteristics of test datasets and the results of the testing of optimum neural network models of 20 shut–down PM stations for estimation of
hourly PM10 concentration (M: Number of hourly test PM10 data; Min, Max: Minimum and maximum hourly PM10 concentration (μg/m3) in the test

database, respectively; M.h: Mean of hourly test PM10 data (μg/m3); Sd.h.: Standard deviation of hourly test PM10 data (μg/m3))

Shut–Down Station M Min Max M.h. Sd.h. R MBE (μg/m3) MAE (μg/m3) RMSE (μg/m3) MAPE (%)

MC 001 1 981 3.6 204 43.7 27.0 0.87 –0.12 9.48 13.15 30.40
MC 006 3 147 2.8 167 37.0 23.6 0.87 0.02 7.89 11.65 27.48
MC 007 2 113 1.6 163 33.9 22.8 0.89 –0.31 7.22 10.24 31.03
MC 009 2 489 1.6 176 36.9 27 0.90 0.05 8.42 11.57 38.74
MC 011 4 206 2.4 180 36.1 24 0.82 0.10 8.37 13.65 27.59
MC 017 4 186 2 170 35.4 23.6 0.91 –0.02 6.68 9.76 25.65
MC 018 5 002 2.5 106 24 14.5 0.94 0.03 3.52 5.04 18.09
MC 020 2 165 4 162 40.5 23.4 0.88 –0.02 7.82 11.00 24.81
MC 023 1 627 2.8 187.2 39.7 24.5 0.90 –0.09 7.67 10.80 27.66
MC 024 2 743 2.4 127.6 32.6 18.5 0.84 0.02 7.46 10.19 32.22
MC 025 3 794 2 171 36.5 24.4 0.89 0.06 7.73 11.14 29.71
MC 027 3 910 3 106 23.4 14.0 0.95 0.02 3.33 4.53 17.29
MC 028 2 462 3.2 144 33.5 19.2 0.82 –0.09 7.82 10.85 31.50
MC 030 2 421 2.4 142 33 18.6 0.81 –0.22 8.24 10.95 34.75
MC 072 3 617 3 181 35.3 23.1 0.91 0.09 6.21 9.68 20.13
MC 078 1 657 3.2 140 39 22.5 0.83 –0.45 8.66 12.47 31.53
MC 080 3 720 3.6 215 44.2 27.7 0.88 0.20 8.98 13.19 26.25
MC 081 1 733 3.6 194 51.7 30 0.88 0.14 9.91 14.24 28.16
MC 083 1 704 2.4 155 36 22.3 0.85 –0.19 8.34 11.90 33.30
MC 145 3 526 2.5 140 28 20.6 0.96 0.10 3.88 5.49 18.59
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6. Conclusions

The developed fuzzy–heuristic input selection was joined with
the ANN and applied for the simulation of the 20 shut–down
stations. The appropriate results of hourly (Error: 27.7%;
correlation coefficient 0.82; average bias: –0.03 μg/m3; average
absolute error: 7.4 (μg/m3)) and daily (R 0.94, MAPE<11.5% and
MAE<3.9 g/m3 simulations revealed that the coupling of the ANN
and this new automatic input variable selection technique is a fast,
straightforward and reliable tool for simulation of non–linear
systems. In addition, the presented new and free–of–charge
methodology for the densifying of the PM10 monitoring network of
Berlin was successfully implemented. The 20 shut–down PM10
stations were re–constructed and a dense PM10 monitoring
network was developed by the combination of the 12 still –
operating stations and the 20 re–constructed stations for Berlin.
Now, more reliable PM10 monitoring is possible because of the
development of the dense monitoring network with a sufficient
number of suburban, urban and traffic stations. The findings of this
study are very useful in the light of the decrease in the number of
monitoring stations and monitoring costs based upon the
European Union directive on air quality.
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