-

View metadata, citation and similar papers at core.ac.uk brought to you byfz CORE

provided by Institutional Repository of the Freie Universitat Berlin

NeuroSim: Neuronal Simulation System of
biological neural networks

Olga Kroupina
October 9, 2003

1 Introduction

Neuroscientists use computer simulations of neural systems in their efforts to
understand processes that underlie neural function. As experimental data in-
crease, it becomes clear that detailed physiological data alone are not enough
to infer how neural circuits work. Experimentalists appear to be recogniz-
ing the need for a quantitative approach to the exploration of the functional
consequences of particular neural features, which is provided by modelling.
The number of computer simulation programs is designed as a tool for de-
velopment and simulation of realistic models of single neurons and neural
networks.

The present available packages for modelling of biological neural networks
are often dedicated Unix-based simulation packages, which require rather
large computational power from workstations, typically Unix systems. The
widely distributed packages, as Genesis [8] and Neuron [4], have their own
interpreted scripting language, in which users define components and run-
ning parameters for their simulations. In the hands of experienced users
with access to a compatible computer system, these modelling packages are
powerful research tools. However, they do suffer several drawbacks for non-
expert users: they don’t provide a Graphical User Interface (GUI) or have a
very simple one, and as a result of it they can’t visually represent the simula-
tion process. Also, the formal structure of the language is difficult and time
consuming to learn; at least initial knowledge and skills about Unix system
are necessary for users.

https://core.ac.uk/display/199428983?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 The problem and its solution

Large computational power is necessary for solving the system of the differ-
ential equations which describe the spread and interaction of electrical and
chemical signals in neuronal networks. The Client-Server architecture of the
application software is an alternative for performing intensive calculation on
the high-power computers (workstations), while control and visual results
presentation are left to a personal computer.

All of it stimulated the development of the software, with following dis-
tinctive features:

e platform independence;
e user friendly and intuitive GUI;

e a comprehensive library of standard models, on basics of that definition
of the complicated neuron systems and its modification without any
programming skills is possible and not time consuming;

e reserve the possibility for extension of this library for users; standard
and extensible format of the model description, which ensure compat-
ibility with different software packages;

e active utilization of visual teaching methods for presentation neuronal
networks and excitation and inhibition processes in it on the basics of
the simulations results.

Realization of these ideas to a great extent gives a stimulus to developing
a simulation system, "NeuroSim”. It was realized in Java, a web-enabled
cross-platform language. All aspects of developing and running simulations
are mediated through a user-friendly GUI and no programming skills are
necessary. The model description and resulting data are specified in the
standard XML model description language.

NeuroSim was designed with a Client-Server structure, which is effective
for numerical integration. The remote computer is used for extensive calcu-
lations and the personal computers for models and results presentation. At
the first stage of the project the Genesis-Simulator [1] was used as a server
on the powerful computer under Unix system on it.

The Java-Client is used for the models definition, transferring data to
server and starting calculations on it. After performing the simulations,

data are received by the Java-Client, which performs the presentation of
simulation results. The resulting data, received from the Server, can be
played back. This gives the possibility to visually present the behavior of
the different parameters, describing a model dynamic. The action potential
evolution and the spread of ”spike” events, channel conductance and voltage
curves help to understand the detailed physiology and structure of neural
networks.

The neurons can be modelled with Hodgkin-Huxley-type conductance
channels [5]. The neurons can be coupled with synaptically activated chan-
nels. For more detailed exploring the models with compartment structure
can be simulated. The program allows choosing between several integration
methods, from the crude explicit forward Euler method through highly sta-
ble implicit methods [6]. One can define the value and integration step size
influencing accuracy and speed of integration.

3 The Client-Server connection

Once a Java program has been started and the experimental model has been
defined, the Client-Server connection can be established. The connection
mechanism was made with the Java software tool - Remote Method Invoca-
tion (RMI). The idea is that the whole distributing objects can communicate
among Java application on multiple machines. The values are sent back and
forth, so that neither the client nor server has to do anything explicit with
input and output streams, no parsing is required. The conversion of model
description from Java client to server and results of integration back was
realized by Java serialization facility.

The neurons, their connections and inserting mechanisms in the model
implements as a serializable objects, the necessary for integration properties
will be sent in the XML format. The running server will parse this informa-
tion to the Genesis code and then integration will be started.

The transformation of data in the XML format into Genesis code was
made with the XSLT (XML style sheet), the standard part of Java 2 standard
Edition. The benefit of this method is that one can define formatting rules for
transformation a XML document. The transformer was generated to apply
it to documents of model properties.

Genesis gives the results in the standard output stream. The data contain
in every time step the time and the value received after integration. It will

fl'i-l-
F
\Mié? gescrohon
gk
4

Figure 1: The Client-Server architecture.

be sent for the client and used for the simulation.

4 The Simulation

After the neurons were added and the properties of them were assigned the
simulation can be started. For the real networks the data received from the
remote server will be played back.

Java Client can represent the process of simulation, with the possibility
to visually estimate the modelling process. The main panel with the neuron
structures represents the spike events and the spread of the pulses between
neurons. At the same time the graphs of the simulated parameters will be
shown as well as their change in the time (See Fig. 2).

The windows ”Waves”, " Potentials” and ” Conductances”, which is avail-
able from menu ”Window”, are visually presented the process of simulation
(See Fig. 3) . These windows contain two scrolling panels, the list of all
elements with possibility to choose the observed graphs, and the resulting
curves. The left scrolling panel has a pointer, which represent a time of
simulation course. One can move it back and forth, so that the simulation
will be started at the time, where the pointer is located. The time course of
simulation the value is showed in the infoline. The detailed values of simu-

View “" g it Proce s L
D@ [oM][~ w](v[w](=[8][=]T[e]]F] mf-

File
=] [A12] wpoiner

E CompNeuron? soma [=18 i

|v CompNeuron & soma £
i P et L
[Compienton 9 soma
v
71 Compheuron 10 soma

J] Compblenn 10 domi 10

<]

1 vmee03se

¥ Compheuron 7 syn3 :: f\

{7 Compteuron 7 symd
¥ compieuron 8 syns [\
SR |

& compiieuron 8 syn7
v

& Compteuron 10 syne

¥l Compheuron 10 syn10 i

08 | GBASHBES Il

Figure 2: The resulting data.

File
EE @@ [v Pointer
I T :: T II , &

[i/| CompMeuron 8 soma
Iv/| CompNeuron 8 dend8
[¥] CompMeuron 9 soma
[v/| CompNeuron 9 dend?
v

[v| CompNeuron 10 dend10 : | \

: . [= =
1] [» & il a0 10.0 14.0 200 240 a0 35.0 400 4510 st
Tirmne; 16.9 11349 Wm-56.940389999999594

Figure 3: The window of potentials.

lated parameters are represented with the mouse movement on the graphical
panels.

The process of simulation was implemented as a thread with two utility
classes - SwingWorker(not swing class) and the Timer (javax.swing.Timer)
classes. A SwingWorker object creates a thread to execute a time-consuming
operation. Timers are used for performing a task either repeatedly or after
a specified delay. After the operation is finished, SwingWorker gives you the
option of executing some additional code in the event-dispatching thread. A
SwingWorker moves a time-consuming task from an action event handler into
a background thread, so that the GUI remains responsive. The Timer class
allows you to schedule an arbitrary number of periodic or delayed actions
with just one thread. Accordingly one can name these two modes as an
asynchronous and synchronous.

Once the simulation has been set up, a main loop is begun. This loop
makes one call to the library to simultaneously update all the simulation
components, generates the output of interest - spike events and the move-
ment of parameters curves, and repeats until done. The events are saved in
the vector (OrderedDoubleVector) - priority queue, the data structure that
stores " prioritized elements”. The priority queue stores elements according
to their priorities ("key” value), that is in our case a time of events arise,
and supports removal and getting of elements only in order of priority. So,

the value of studied parameter together with the time of arising are saved in
the OrderedDoubleVector.

5 Further work

The developed system for simulation of real neural networks has effective
Client-Server structure. The Genesis simulator is used as a Server in the
remote computer for numerical integration. In the second phase of the project
the Genesis will be replaced with own Server for solving the systems of the
differential equations describing the models.

At first, the realization of simulations based on compartment modelling is
planed. It is explained by increasing interest in detailed models dependent on
the anatomy and physiology of the neurons. The structures of cells divided
into many isopotential compartments, joined by conductances, and activated
with simulated ion channels and current injectors will be implemented. The
ionic channels with Hodgkin-Huxley dynamic as often presented in neural
models have to be simulated. On the basic of it the general voltage gated
ionic channels will be derived [2]. The ion concentrations and its dynamic
have to be taken into account. The connection of neurons will be made with
chemical synapses.

The choice of numerical integration technique is a critical part of the sim-
ulation process. The most effective method for the general form of the differ-
ential equations arising in neural modelling is an exponential Euler method.
This method together with another explicit methods gives accurate results
for integration of simple cell models with few compartments. The implicit
methods as a background Euler or implemented by Hines Crank-Nicholson
will require a much smaller time step for simulation of multicompartmental
models, because equation to be solved is stiff [3]. All groups of these methods
have to be implemented.

Another direction of the project development is the integration NeuroSim
with the electronic chalkboard, E-Chalk, a multimedia system for distance
teaching [7]. NeuroSim is developed as a suitable system both for research
and educational purposes. Together with the E-Chalk it can be used both
as powerful education software and as the tools for research results presen-
tation.

References

1]

J Bower and D. Beeman. The Book of Genesis: Exploring Realistic Neural
Models with the GEneral NEural SImulation System. Springer TELOS,
1998.

G.B. Ermentrout. Channeling with Bard. Comp.Neuroscience, Januar
1998.

M. Hines. Effecient computation of branched nerve equations.
J.Biomed.Comp., 15:69-76, 1984.

M. Hines. A program for simulation of nerve equations with branching
geometries. International Journal of Biomedical Computing, 24:33-68,
1989.

A. Hodgkin and A. Huxley. The components of membrane conductance
in the giant axon of loligo. J. Phyiol., 116:473-496, 1952.

M. Mascagni. Numerical methods for neuronal modelling. MIT Press,
Cambridge, Mass, 1989.

R. Rojas, G. Friedland, L. Knipping, and W. L. Raffel. Elektronische
Kreide: Eine Java-Multimedia-Tafel fiir den Prasenz- und Fernunterricht.
Technical Report B-00-17, FU Berlin, Institut fiir Informatik, October
2000.

Bhalla U.S. Uhley J.D. Wilson, M.A. and J.M. Bower. Genesis: a sys-
tem for simulating neural networks. In Advances in Neural Information
Processing Systems., pages 348-353. Morgan Kaufman, San Mateo, 1989.

