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� Introduction

We consider the linear programming problem� given a set H of n halfspaces in Rd

and a direction vector c � Rd	 
nd a point x � TH that minimizes c�x� We restrict
ourselves to the case where n is very large compared to d	 and so	 the dependency of
the running time on n is of primary interest� For the algorithms we will discuss the
running time will be linear in n for any �xed d	 with a constant of proportionality
exponential in d� It is this dependency on d which we wish to study closely�

There are known polynomial�time algorithms for linear programming Kha��	
Kar���	 but the number of arithmetic operations they perform depends on the bit
complexity of the input and grows with the precision of the numbers describing the
input� In contrast	 we consider purely combinatorial algorithms	 where the number
of arithmetic operations performed only depends on n� d and not on the precision of
the input numbers� A natural model of computation for these considerations is the
real RAM	 where the input data contain arbitrary real numbers and each arithmetic
operation with real numbers is charged unit cost�

Megiddo Meg��� has given the 
rst deterministic algorithm whose running time
is of the form O�C�d�n�	 with C�d� � ��

d

� This was improved to C�d� � �d
�
by Dyer

Dye��� and Clarkson Cla���� Recently	 a number of randomized algorithms have
been presented for the problem	 see DF���	 Cla���	 Sei���	 with a better depen�
dency on d� Clarkson�s algorithm Cla��� has the best expected complexity among
those	 namely O�d�n�dd���O�� log n� � Notice that although this is still exponential
in d the exponential term is multiplied only by a log n factor� Recently Kalai Kal���
and independently Matou�sek	 Sharir and Welzl MSW��� have developed algorithms
with a subexponential dependency on both n and d� In combination with Clark�
son�s algorithm	 one obtains a randomized algorithm for linear programming with
expected running timeO�d�n�eO�

p
d lnd� log n�� To match these performance bounds

by a deterministic algorithm seems to be di�cult at the present time�
However	 as was observed by the authors of this paper some time ago and men�

tioned in Cha���	 one can apply the derandomization technique of Mat��� to the
above mentioned Clarkson�s randomized algorithm and obtain another linear�time
deterministic algorithm for linear programming� We prove here that the constant of
proportionality is of the form dO�d�	 which is far behind the randomized complexity	
but signi
cantly better than the constants for the previously known deterministic
algorithms�

Clarkson�s algorithm can be shown to work in a general framework	 which in�
cludes various other geometric optimization problems �see below for examples��
With few extra algorithmic assumptions	 our derandomization works in this frame�
work as well� For some of these problems	 linear�time deterministic algorithms were
given by Dyer Dye���� our approach again brings a better dependency on the di�
mension� For others	 as e�g�	 
nding the maximum volume ellipsoid inscribed into a
polyhedron in Rd �given by its n facets�	 we get the 
rst known e�cient determinis�

�As for the bit complexity� one can show that the bit size of the numbers is at most a constant
multiple of the bit size of the input numbers in the algorithms we will consider�
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tic algorithm� For some of these problems there are much more e�cient randomized
algorithms known � Clarkson�s algorithm itself �applied in this setting�	 and a recent
subexponential algorithm by G�artner G�ar����

In this paper we 
rst describe the tools used for derandomization� We use this
opportunity to give a somewhat di�erent and hopefully simpler presentation of an
algorithm from Mat���	 and we will be careful to trace the dependence of the
constants of d� We will also outline a parallel �NC� version of the algorithm� Then
we give a deterministic variant of Clarkson�s algorithm	 and discuss sample problems
where it can be applied�

Throughout the paper	 the O�� symbol only hides absolute constants	 indepen�
dent of the dimension d� If a dependency of the constant on d is allowed	 then we
write Od���

� Computing ��approximations and ��nets

We begin by brie�y recalling some de
nitions� we refer e�g�	 to HW���	Mat��� for
more details� Let � � �X�R� be a set system� on a set X� If Y is a subset of X	
we denote by RjY the set system fR� Y � R � Rg �the system induced by R on Y �
let us emphasize that although many sets of R may intersect Y in the same subset	
this intersection only appears once in RjY ��

Let us say that a subset Y � X is shattered �by R� if every possible subset of Y
is induced by R	 i�e� if RjY � �Y � We de
ne the Vapnik�Chervonenkis dimension	
VC�dimension for short	 of the set system � � �X�R� as the maximum size of a
shattered subset of X �if there are shattered subsets of any size	 then we say that the
VC�dimension is in
nite�� Let us de
ne the shatter function �R of �X�R� as follows�
�R�m� is the maximum possible number of sets in a subsystem of �X�R� induced
by an m point subset of X� The shatter function of a set system of VC�dimension d
is bounded by

�
m
�

�
�
�
m


�
� � � �� �m

d

�
�Sau���	 VC����	 and conversely	 if the shatter

function is bounded by a 
xed polynomial	 then the VC�dimension is bounded by a
constant�

Set systems of VC�dimension bounded by a constant occur naturally in geometry�
a typical example is the plane standing for X and the set of all triangles for R�

The following two notions will be crucial in our algorithm� Let X be 
nite	
� � ��� ��� A subset A � X is a ��approximation for �X�R�	 provided that���� jA �RjjAj � jRj

jXj
���� � �

for every set R � R� A subset S � X is called an ��net for �X�R� provided that
S � R �� � for every set R � R with jRj�jXj � �� In the sequel	 it will be more
convenient to write ��r for �	 with r � ��

�In computational geometry literature� set systems in this context are usually called range

spaces� the sets belonging to the set system ranges and the elements of the underlying set points�
In this paper we will not use this terminology�
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A remarkable property of set systems of VC�dimension at most d is that for any
r � �	 they admit a ���r��approximation whose size only depends on d and r	 not on
the size of X� the quantitative bounds on the size are ���o����dr log r for ���r��nets
KPW���	 and Od�r�����d���log r�����d��� for ���r� approximations MWW����

These ���r� nets and ���r��approximations of small size are quite powerful tools
for derandomizing geometric algorithms� It was shown in Mat��� that under cer�
tain computational assumptions about the set system �X�R� of a bounded VC�
dimension	 one can compute small ���r��approximations and ���r��nets for small
r reasonably e�ciently	 in time Od��r�d log

d r�jXj� �in particular	 in linear time for

xed d� r�� In this section we give a somewhat simpli
ed exposition of this result	
using observations of MWW���	 and we will estimate the dependence on d more
carefully�

The algorithm will work by a repeated application of the following  halving
lemma!� It is based on standard result from discrepancy theory�

Lemma ��� Let �A�S� be a set system� n � jAj� m � jSj� n even� Then one
can �nd� in O�nm� deterministic time� a subset "A 	 A of size jAj��� which is an
��approximation for �A�R� with

� �
r

� ln��m� ��

n
�

Proof� We let S � � S 
 fAg	 and we 
nd	 following the method nicely described
in Spencer�s book Spe���	 a mapping � � A � f�����g	 such that j��S�j � # �p

�n ln��jS �j� for every S � S �� One uses a standard probabilistic proof showing that
a random mapping � works with probability at least ���	 and then derandomizes it
using the method of conditional probabilities� With some care	 the derandomized
algorithm can be implemented to run in O�nm� time	 see Mat����

With such a �	 we let A� be the larger of the sets �����	 ������� Since A � S �	
we have jA�j � jA nA�j � #	 or jA�j � n

�
� �

�
� We remove jA�j � n

�
arbitrary elements

of A�	 forming a set "A with exactly n�� elements� Then for a S � S	 we have
j �j "A � Sj � jSj j � j �jA� � Sj � jSj j� ��jA�j � j "Aj� � �#� Thus

���� j
"A � Sj
j "Aj � jSj

jAj
���� � �

n
j �j "A � Sj � jSj j � �#

n
�

from which the bound on � follows� �
For e�cient computation of ��approximations and ��nets	 we need that the set

system is given to us in a more  compact! form than by the list of its sets�

De�nition ��� We say that a set system �X�R� has a subsystem oracle of dimen�
sion d� if �R�m� � O�m�d and there is an algorithm �oracle� which� given a subset
A � X� returns the list of sets in RjA �each set represented by a list of its members��
in O�jAj�d� time�

Following the basic scheme of Mat���	 we prove the following�
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Theorem ��� Let �X�R� be a set system with a subsystem oracle of dimension d�
For a given r � �� one can in time

O�d��dr�d logd�dr�jXj
compute a ���r��approximation of size O�dr� log�dr�� for �X�R�� and a ���r��net
of size O�dr log�dr�� for �X�R��

Proof� The following technical assumption simpli
es the presentation consider�
ably� We suppose that n � jXj is of the form �p for an integer p� To remove this
assumption is not di�cult� we may	 for instance	 add at most n��  arti
cial! points
belonging to no set of R to X	 compute a ����r��approximation for this new set
system	 and check that it will also provide a ���r��approximation for the original
system	 after removing the arti
cial points from it� similarly for a ���r��net�

We describe the algorithm for ���r��approximations 
rst� It proceeds by parti�
tioning X into subsets of size �k each �with k chosen suitably� and then performing
a sequence of  halving steps! intermixed with  merging steps!� At the beginning
of ith step	 either a merging or a halving one	 we have a current collection Ai of
disjoint subsets of X� Each set of Ai has the same number of elements ni �which
will be a power of ��� On the beginning of the �st step	 the union of all sets of A

is X	 and after the last �Kth	 say� step	 AK� will consist of a single set	 which will
be the desired ���r��approximation for �X�R��

If the ith step is a merging one	 we arbitrarily partition Ai into pairs �jAij will
always be a power of two�� For every pair �A� A�� we form the union A 
A�	 and
the collection of all these unions will be Ai�� Hence the size of the sets is doubled
and their number halved by a merging step�

If the ith step is a halving one	 we consider every A � Ai� We call the subsystem
oracle on A	 and we obtain the list of all sets in RjA� we have m � jRjAj � O�ni�d�
Then we apply Lemma ��� on �A�RjA� and we compute a set "A 	 A with jAj��
elements	 which is an ��ni��approximation for �A�RjA�	 where

��t� �

r
�d�ln t�O����

t
� ���

Then we set Ai� � f "A� A � Ag� Thus a halving step preserves the number of sets
and halves their size�

Elementary observations in Mat��� imply that when the algorithm 
nishes with
a single set	 this set will be a 	�approximation for �X�R�	 where 	 is the sum of the
��ni� over all i such that the ith step was a halving step��

It remains to show how to organize the sequence of halving and merging steps	 so
that the running time remains small	 and that 		 the resulting error of the approx�
imation	 remains below ��r� First	 we keep alternating halving step and merging

�The relevant observations can be summarized in the phrases �an ��approximation for a ��
approximation is an �� � ���approximation	 and �an ��approximation for a disjoint union of two
sets of equal cardinality can be obtained as the union of ��approximations of equal cardinality for
both sets	�
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step �d � �� times	 and after these ��d � �� steps �ending with a merging step� we
perform one extra merging step �see Fig� ��� We call this the 
rst round	 and the
second and further rounds will be exactly the same ��d � �� alternations and one
extra merging step�� We 
nish this 
rst phase as soon as there remains only one set
in Ai �thus we cannot perform any more merging steps�� Then	 in a second phase	
we repeat the halving step	 until the size of the single current set A becomes so
small that the ��jAj� given by ��� exceeds ���r� Then we 
nish	 and the resulting
set A will be our ���r��approximation� we must now prove that everything works as
claimed�

First consider the size of the resulting set A� By the terminating rule	 we must
have ��jAj� � ���r� From this we calculate jAj � O�dr� log�dr���

We observe that with t � $ �say�	 we have

���t� � �

�
��t� � ���

Let us estimate the total error in the approximations	 i�e� the ��ni��s summed
over all halving steps� The 
rst phase of the algorithms begins with sets of size �k

�for k to be determined�� In the 
rst round one performs �d��� halving steps with
sets of this size	 contributing �d � �����k� � O�d���k����k���� Then the size of the
current sets is doubled by the extra merging step	 and the second round contributes
an error of at most �d � �����k��	 etc� We may assume ni � $ for all i	 so by ���
the errors of approximation in the successive rounds form a geometrically decreasing
sequence	 and the total error in the 
rst phase is thus O�d���k����k���� Choosing a
value of k with k with �k � Cd�r� log�rd� for large enough absolute constant C	 we
get that the 
rst phase contributes an error at most ���r�

We now consider the second phase� The terminating condition gives that the
error at the last step is at most ���r� Each previous step in the second phase halved
the size of the current set	 and using ���	 we get that the errors in the second phase
form a geometrically increasing sequence with quotient at least ���� Thus	 the total
error in the second phase is at most ����r���� � ���� � ���r	 so the 
nal set is
indeed a ���r��approximation for �X�R��

Let us analyze the running time� In the 
rst halving step of the algorithm	 we
perform the computation as in Lemma ��� on jXj��k sets of size �k � O�d�r� log�rd��
each� the total time needed for this is O�d��dr�d logd�rd�� For the 
rst d� � halving
steps of the 
rst round	 the total number of sets decreases twice by the mergings in
between and the size remains the same	 so the running times decrease geometrically
within one round� The extra merging step doubles the sizes of sets entering the next
round	 which increases the running time needed for halving for a single set by �d��
However	 the �d � �� merging steps in the previous round have reduced the total
number of sets by �d��	 so the running time of the following round is at most half of
the time for previous round� This shows that the total running time is as claimed
in Theorem ����

To compute a ���r��net rather than a ���r��approximation	 we 
rst compute a
����r��approximation A by the previous algorithm and then we compute a ����r��
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net for RjA by the greedy algorithm of Lov%asz� This is discussed in CF���	 Mat���
and estimating the dependence on d is a trivial calculation	 so we omit further
details� �
Remark� For the subsystem oracle of dimension d	 it might be somewhat more
natural to assume that the shatter function �R�m� is bounded by the maximum
possible value for VC�dimension d	 that is	

�
m
d

�
�
�
m
d�
�
� � � � � �

m
�

�
� O�m�d �

��d	 rather than just O�m�d� Then	 with somewhat more complicated calculations	
we could replace the log�dr� term in the estimates for the ���r��net and ���r��
approximation size by log r�

Using known techniques	 it is relatively straightforward to obtain a parallel ver�
sion of the algorithm from Theorem ���	 which might be of interest in some appli�
cations� We will only state the result for a �xed d�

Theorem ��� Let �X�R� be a set system with a subsystem oracle of dimension d� d
�xed� and suppose that the oracle can be implemented in NC� Then one can compute
a ���r��approximation of size Od���r���� and a ���r��net of size Od���r��� for �X�R�
in parallel� with at most nrc processors and �log n�c

�

parallel time for any �xed 
 � �
�the constants c� c� depending on d� 
 and on the implementation of the oracle�� In
particular� the computation can be performed in a polylogarithmic parallel time with
Od�r�n� processors for every �xed r�

Proof sketch� By inspecting the proof of Theorem ���	 we 
nd that there is only
one nontrivial part in parallelizing the algorithm	 namely the application of Halving
lemma �at least if we do not care about the speci
c power of logarithm in the parallel
running time�� Here we can use the results of Berger and Rompel BR��� �or the
very similar results of Motwani et al� MNN�����

A particular case of their results gives the following� given a set system �A�S�
as in Lemma ��� and a 
xed � � �	 one can compute a coloring � � A� f�����g
with j��S�j � O��n

����
p
logm� for all S � S in a polylogarithmic parallel time

and with a polynomial number of processors �depending on �	 the dependence being
approximately of the form �m � n����� This coloring is somewhat worse than the
random one	 but it is su�cient for our purposes�

We leave the algorithm for computing ���r��approximations almost without
change	 only we use the Berger�Rompel algorithm for the halving step	 and we
adjust the paremeter k �determining the size of the sets enetring the 
rst halv�
ing step� suitably� For the error in the halving step	 instead of ��� we get ��t� �
Od���t�������

p
ln t�� For any � � ���	 the complexity of the 
rst halving step will

dominate the complexity of the whole algorithm� The value of � then determines
both the size of the sets entering this 
rst halving step �and thus the complexity of
the whole algorithm� and the size of the resulting ���r��approximation� Both these
sizes will be roughly �r

p
log r��������	 so the exponent converges to � as � � ��

The ���r��net is again computed from a ����r��approximation� This time we
can use e�g�	 the result of Berger et al� BRS��� on parallelizing the set covering
problem	 from which our claim follows� �
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Remark� The most important special case of the above theorem is for a 
xed r� In
such a situation	 we can produce an NC algorithm with a linear number of processors
without the machinery of BR���	 MNN����

If the size of the sets entering each halving step were only polylogarithmic in n	
we could simply implement Halving lemma sequentially� Note that the version of
the algorithm described in the proof of Theorem ��� does not have this property� al�
though the size of the sets is bounded by a constant both in the 
rst and last halving
steps	 it increases geometrically during the 
rst phase and decreases geometrically
during the second phase	 reaching a small positive power of n in the middle�

We can modify the 
rst phase	 letting the sizes grow more slowly	 but in such a
way that the errors of the halving steps still form a convergent series� Namely	 we
may use the following rule� the extra merging step �increasing the size� is inserted
at the end of the ith round only if f�i� � f�i� ��	 where f�i� � b$ log� ic� Thus the
sizes grow like �b� log� ic  i�� The total error during the 
rst phase is then at most
�with ��t� given by ���� ��n����n�����n��� � � � � ��n������n������n�� � � � �
O���n���������������� � �� � O���n��� Thus the total error during the 
rst phase
is still proportional to the error in the 
rst halving step	 only the constant becomes
larger� In this way	 the sets entering the halving step only reach a polylogarithmic
size throughout the algorithm	 and we get an NC algorithm for any 
xed r�

� Derandomizing Clarkson�s algorithm

To simplify our discussion of linear programming	 we suppose that

�i� the vector c determining the objective function is vertical	 that is	 parallel to
the xd�axis	 and we look for the lexicographically smallest� optimal vertex	

�ii� we only look for nonnegative solutions �to avoid dealing with unbounded so�
lutions and points at in
nity�	

�iii� the problem has an admissible nonnegative solution�

It is not di�cult to relax these assumptions� �i� is without loss of generality �we can
rotate the coordinate system so that the optimization direction becomes vertical�� for
unbounded solutions	 we can formally add  constraints at in
nity!	 which will play
the role of nonnegativity in �ii�	 and also nonadmissible problems can be handled
easily� See also Cla���	 Sei��� for a similar discussion�

We begin by introducing an abstract framework for optimization problems sim�
ilar to linear programming	 due to Sharir and Welzl �SW���	 see also MSW�����
Clarkson�s randomized algorithm for linear programming can be formulated and an�
alyzed in this framework	 and with one extra axiom	 this will also be the case for
the derandomized version� Throughout	 we will illustrate the abstract concepts on
the speci
c example of linear programming�

�Considering xd the most signi
cant coordinate and x� the least signi
cant one�
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In the abstract framework	 an optimization problem will be a pair �H�w�	 where
H is a 
nite set	 and w � �H �W is a function with values in a linearly ordered set
�W���� The elements of H will be called the constraints	 and for a subset G � H	
w�G� will be called the value of G�

In the linear programming setting	 H will be the given set of halfspaces in Rd	
and W will be the set Rd with the lexicographic ordering� For G � H	 w�G� will
be the optimal nonnegative solution for G �a point in Rd��

In general	 we de
ne an LP�type problem to be a pair �H�w� as above	 satisfying
the following two axioms�

Axiom �� �Monotonicity� For any F � G � H	 w�F � � w�G��
Axiom �� �Locality� For any F � G � H with w�F � � w�G� and any
h � H	 w�G 
 fhg� � w�G� implies that also w�F 
 fhg� � w�F ��

It is easy to check that both axioms hold for linear programming with the above
assumptions� Notice that the second axiom follows from uniqueness of the optimal
solution �as a point in Rd� and does not require any general position assumptions
concerning the constraints�

For an LP�type problem	 a basis B is a set of constraints with w�B�� � w�B� for
all proper subsets B� of B� A basis for a subset G of H is a basis B with B � G
and w�B� � w�G�� So a basis of G is a minimal subset of G with the same value as
G� We say that a constraint h � H violates a basis B	 if w�B 
 fhg� � w�B��

The maximum cardinality of any basis is called the combinatorial dimension of
�H�w�	 and it is denoted by dim�H�w�� In the sequel	 D will stand for the combi�
natorial dimension of the considered LP�type problem� Note that the combinatorial
dimension is a monotone function� if F � G then dim�F�w� � dim�G�w�� Lin�
ear programming with d variables has combinatorial dimension exactly d �since we
exclude infeasible linear programs	 where a minimum set of constraints witnessing
infeasibility may have d� � rather than at most d elements��

In order to formulate an algorithm for solving an LP�type problem	 we also need
some computational assumptions� Clarkson�s randomized algorithm requires

Computational assumption �� �Violation test� Given a basis B and
a constraint h � H	 decide whether h violates B �and return an error
message if the input set B is not a basis��

For linear programming	 the violation test as described can be performed inO�d��
time� use Gauss elimination to 
nd the vertex de
ned by B� then the violation test
with h needs O�d� additional time� One can	 however	 organize the algorithm in
such a way that the vertex is available together with the basis at no extra cost	 then
a violation test needs O�d� time only�

The reader familiar with Clarkson�s algorithm knows that one also needs to solve
 small! subproblems directly �ones with fewer than about D� constraints�� With the
violation test available	 one can solve a problem with n constraints and combinatorial
dimension D simply by a brute force testing of each at most d�element subset of
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H �a potential basis� for optimality� This needs at most n
��

n
D

�
� � � �� �n

�

��
�

n�O�n�D � ��D violation tests� For speci
c applications	 however	 one may use a
more sophisticated algorithm for these small subproblems �Clarkson suggest to use
the simplex algorithm for linear programming	 or the subexponential randomized
algorithms of MSW���	 G�ar��� can be used for some problems��

For a deterministic counterpart of Clarkson�s algorithm	 we will need a stronger
assumption� To every LP�type problem �H�w�	 we associate a set system �H�R��
For every basis B � H	 we let V �B� be the set of constraints of H violating B	 and
we let R � R�H�w� be the set of all sets of the form V �B� for some basis B�

We will need

Computational assumption �� A subsystem oracle for �H�R� of
dimension &D �see De
nition ���� is available��

We will postpone the discussion of the subsystem oracle for linear programming
to the next section�

In general	 the dimension &D need not be identical to D	 the combinatorial dimen�
sion of the considered LP�type problem� Typically it will be equal to D or larger�
The following example shows that it can be arbitrarily large even for D � ��

Example ��� There exist �quite natural� LP�type problems �H�w� of combinatorial
dimension �� for which the associated set system �H�R� has arbitrarily large VC�
dimension�

Proof sketch� We let H be a suitable 
nite collection of convex continuous
functions from �� �� to real numbers	 which are nonconstant at every subinterval of
�� ��� For G � H	 we de
ne

w�G� � min
x�����

max
g�G

g�x� �

By compactness and the nonconstancy assumption	 for every �nonempty� G the
minimum exists and it is realized in exactly one point of �� ��� It is easy to verify
Axioms � and � and see that the combinatorial dimension is �at most� �� We leave it
to the reader to check that for a suitably chosen H	 the VC�dimension of �H�R� can
be arbitrarily large� Fig� � gives a hint how to shatter a ��element set of constraints
f� f�� f� byR �the black points correspond to minima for certain bases� the functions
belonging to those bases are not shown�� �

Since the randomized version of Clarkson�s algorithm works with Axioms � and
� and Computational assumption � only �Wel����	 the assumptions needed for the
randomized version are strictly weaker than we need for the deterministic case�

For simplicity	 let us assume D � &D in the subsequent algorithm and analysis�
If is is not the case	 then the resulting estimate will hold with max�D� &D� standing

�Actually it su�ces to have a subsystem oracle of dimension �D for any system �H�R�� with
R � R� this is what we will in fact have in applications
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for D� In applications	 we usually have &D � D	 and the savings in the estimate
gained by distinguishing D and &D are negligible�

Now we can formulate a deterministic version of Clarkson�s algorithm �a familiar�
ity with the original Clarkson�s algorithm may be helpful for understanding it�� We
formulate it as a recursive procedure DetLp	 which takes a single argument G � H	
a set of constraints	 and outputs a basis for G� The procedure works as follows �in
the description	 we use the notation n � jGj	 D � dim�H�w���

Procedure DetLp�G�

Step �� If n � n� � CD� logD �C a suitable constant�	 compute the solution directly	
by inspecting all possible at most D�element subsets of G �or by some other
algorithm if available for the speci
c problem�� Otherwise continue by the
next step�

Step �� Compute S	 a ���r��net for �G�RjG�	 where R is as de
ned above and r �
�D��

Step �� Set W �� �	 G �� G� For i � �� �� � � �	 perform the next step	 until a solution
is found �it will happen for i � D at latest��

Step �� Let Bi be a basis for Wi 
 S	 computed by a recursive call of DetLp�Wi 
 S��
Let Vi � V �Bi� be the set of all constraints h � Gi violating Bi� If Vi � �	 then
Bi is a basis for G and the computation 
nishes	 otherwise set Gi� � Gi n Vi	
Wi� ��Wi 
 Vi	 increment i and repeat this step�

Let us 
rst prove correctness �following Clarkson Cla����� For every i we have
Gi 
Wi � G	 so the returned basis indeed de
nes an optimum for G� The crucial
observation is that if Vi� �� �	 then for every basis B for G Vi� must contain at
least one constraint of B nWi� Indeed	 if it is not the case	 we have w�G n fhg� �
w�G� for every h � Vi�	 and by a repeated application of Axiom � we 
nd that
w�G n Vi�� � w�G�� Also	 since none of the constraints of G n Vi� violates Bi	
w�Bi� � w�G n Vi�� � w�G�	 thus Bi de
nes an optimum of G� Since any basis of
G has at most D elements	 the algorithmmust terminate after at most D repetitions
of Step ��

Let us analyze the running time� The fact that S is chosen as a ���r��net for
�G�R� implies that any basis violated by more than n�r constraints of G is also
violated by a constraint of S� Since no constraint of S is violated by Bi	 it follows
that jVi�j � n�r	 hence jWij � in

r
� n��D�

Let T �n� denote the worst�case running time of the algorithm for n constraints�
For Step �	 we get that the brute force search for solution requires at most O�n��D�
��D � O�D��D logDD violation tests� We charge every violation test a unit cost� a
more re
ned analysis counting violation tests separately is straightforward�

Step � consumes no more than O�D��D logDD�n time	 by Theorem ���� Then	 in
each of the at mostD recursive calls	 we have a subproblem with at most jSj�jWij �
O�D� logD� � n

�D constraints� If the constant C in the de
nition of n� is chosen
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large enough	 we get that this quantity does not exceed n��D� The total cost of the
violation tests is O�Dn�	 which is negligible compared to the previously discussed
overhead� We thus get the following bounds for T �n��

T �n� � O�D��D logDD for n � n��

T �n� � O�D��D logDD�n �DT �n��D� for n � n��

This recurrence yields T �n� � O�D��D logDD�n�
We have thus proved the following

Theorem ��� Let �H�w� be a LP�type problem with n constraints of combinatorial
dimension at most D� satisfying Computational assumptions 	 and �� with &D � D�
Then the optimum of �H�w� can be found deterministically in time at most C�D�n�
where C�D� � O�D��D logDD� �

Remark� A reader familiar with Clarkson�s work may know that Clarkson has
proposed also another variant of his algorithm	 one with smaller sample size and
 reweighting! of the constraints� We could also derandomize this variant	 but it
seems that this brings no improvement	 since the main overhead comes from the
deterministic computation of the sample	 and this remains roughly the same for
both methods�

� Sample of applications

In this section we give few examples of application of Theorem ��� to speci
c geo�
metric optimization problems� First we 
nish the discussion of

Linear programming� It remains to construct the subsystem oracle� A constraint
h violates a basis B i� its bounding hyperplane lies above the vertex x de
ned by B	
that is	 if the bounding hyperplane intersects the open vertical semiline emanating
from x upwards�� Thus	 any set of R corresponds to a set of bounding hyperplanes
intersecting certain vertical semiline�

For a set A of constraints	 let "A be the bounding hyperplanes	 and consider the
arragnement of "A� Then the semilines with endpoint within the same cell �and lower�
dimensional faces bounding that cell from below� give rise to the same subsets� At
this point it is convenient to use the simplifying assumptions �i���iii� from Section ��
Since we only look for the lowest nonnegative admissible vertex	 it su�ces to consider
the portion of the arrangement of "A in the nonnegative orthant� Then each cell has
at least one bottommost vertex	 which is de
ned by some k hyperplanes of "A and
d � k of the coordinate hyperplanes bounding the nonnegative orthant� All such
vertices and the sets of hyperplanes lying above them can be inspected	 in at most
O�d��md�

��
m
d

�
� � � �� �m

�

��
time �m � jAj�	 and each set of RjA occurs as the sets

of hyperplanes lying above some such vertex� Hence a subsystem oracle of dimension
d is available and we conclude that

�Constraints with vertical bounding hyperplanes formally require a special treatment this is
easy to handle�



Optimization problems in �xed dimension �$

Theorem ��� The linear programming problem with n constraints in Rd can be
solved in d�d�o�d�n deterministic time� �

Extremal ellipsoids� The smallest enclosing ellipsoid problem is the following�
Given an n�point set P in Rd	 
nd the smallest volume ellipsoid containing P �also
called minimum spanning ellipsoid	 L
owner�John ellipsoid�� We have chosen this
example because there is an extensive literature concerning it	 and it has been
considered in several recent papers related to our theme �Pos���	 Wel���	 SW���	
Dye����� Here the points of P play the role of the constraints	 and the function w
is the volume of the smallest ellipsoid enclosing a given subset� Axiom � is satis
ed
obviously	 Axiom � follows easily from the well�known uniqueness of the L�owner�
John ellipsoid DLL$��� The combinatorial dimension is D � �d���d�� �this is the
number of degrees of freedom of an ellipsoid	 see DLL$��	 Juh���	 Wel���	 SW�����

The violation test in this case is somewhat more problematic� Speci
cally	 it
means the following� Given a set B � fb� b�� � � � � brg of r � D points in Rd and an
extra point h	 decide whether h is contained in the unique minimal ellipsoid con�
taining B� The minimum enclosing ellipsoid is determined by a system of nonlinear
inequalities� Post Pos��� mentions that explicit formulae for solution can be given
for d � �� However	 for a general dimension	 no better algorithm is known to us
than to apply general methods for solving systems of polynomial inequalities�

The set of points x of an ellipsoid E in Rd can be described by the inequality

�x� c�Q�x� c�T � �� ���

where c � Rd is the center of the ellipsoid and Q is a symmetric positive de
nite
d�d matrix� Juhnke Juh��� formulates necessary and su�cient conditions for such
an ellipsoid E to be the smallest enclosing ellipsoid of B� this is i� there exist real
numbers � � �	  � �� � � � � r � � such that

�bj � c�Q�bj � c�T � � j � �� � � � � rPr
j� jbj �

�Pr
j� j

�
c

�� detQ�E �
Pr

j� jQ�bj � c�T �bj � c� �

�E denotes the unit matrix�� Then the membership of another point h in this
ellipsoid is expressed using ���� Hence the violation test reduces to deciding the
solvability of a system of �r�D�� polynomial equalities and inequalities in D� r
variables �the unknowns are the entries of Q	 of c and the j �s� of maximum degree
d � �� Renegar Ren��� shows that the solvability of a system of m inequalities
of maximum degree d in D variables can be decided in �md�O�D� time�� Hence a
violation test can be performed in DO�D� time� It would be interesting to develop
some more e�cient methods for determining the minimum enclosing ellipsoid for
� D points �this is also a bottleneck for the randomized algorithms��

It remains to discuss the subsystem oracle� Here perhaps the easiest way is to use
a  lifting transform! �pioneered by Yao and Yao YY�$� for problems of this �avor��

�This assumes the real RAM model of computation�
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The left hand side of the inequality ��� describing an allipsoid is quadratic in the
xi�s	 but we can  linearize! it by mapping the problem into a higher dimensional
space� Given a point x � �x� � � � � xd� � Rd	 we map it to a point ��x� in RD	 given
by

��x� � �x� � � � � xd� x
�
� xx�� xx�� � � � � xxd� x

�
�� x�x�� � � � � x

�
d� �

Then the condition x � E or ��� is equivalent to ��x� � h	 where h � h�Q� c� is
certain halfspace in RD	 determined by Q and c�

For a given A � P 	 we want to 
nd all sets de
nable by ellipsoids determined
by bases of P � Being somewhat generous	 we include subsets of A de
nable by all
ellipsoids� In fact	 we mapA into RD by �	 and we list the preimages of all subsets of
��A� de
nable by halfspaces in RD� The number of such subsets is stillO�jAj�D	 and
we can list them in O�jAj�D� time �using essentially the method discussed above
for linear programming�� Hence a subsystem oracle of dimension D is available and
we can apply the general result� Let us remark that	 strictly speaking	 the algorithm
only computes the minimal subset determining the ellipsoid� the ellipsoid itself is
given implicitly	 as a solution of the above system of inequalities and equalities�

A problem of very similar �avor is 
nding the maximum volume ellipsoid in�
scribed into the intersection of n given halfspaces in Rd� This ellipsoid is again
unique DLL$��	 and the combinatorial dimension is again D� Both violation test
and subsystem oracle can be handled in a similar way as for the previous problem�
We get

Theorem ��� The minimum volume enclosing ellipsoid for a set of n points in
Rd or the maximum volume ellipsoid inscribed into the intersection of n halfspaces
in Rd can be computed deterministically in DO�D�n time� D � d�d � ����� The
computation needs D�D�o�D�n arithmetic operations plus D�D�o�D�n violation tests�

We believe that the above examples su�ciently illustrate the technique of apply�
ing the general result to speci
c geometric optimization problems� In general	 prob�
lems similar to convex programming involving bounded degree polynomials should
be amenable to such treatment� It would be interesting to 
nd also nongeometric
applications for the Sharir�Welzl framework and the algorithms�
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